If you just want to re-generate existing heuristics with already collected data for mm for A100/H100, run the following scripts: `bash get_mm_dataset.sh # Downloads A100 and H100 datasets` `bash gen_heuristic_a100.sh # Generates A100 heuristic` `bash gen_heuristic_h100.sh # Generates H100 heuristic` If you want to collect new data, or generate a heuristic for another GPU, use the `generate_heuristic_mm.sh` script: First, go into the generate_heuristic_mm.sh and modify the variables according to the comments. Then, run the script to perform benchmarks and collect training data: `bash generate_heuristic.sh collect` This will collect training data on random inputs. Depending on how many GPUs you are using, this might take a day. If you use multiple GPU, you will have one file per GPU, e.g. "data_6.txt", "data_7.txt" if you used GPUs with id 6 and 7. To merge this into a single file run: `python torchgen/_autuoheuristic/merge_data.py mm_train.txt data_6.txt data_7.txt` For mm, we also want to incorporate data from huggingface and TIMM models into the training data. To collect data for huggingface, run the following command: ``` TORCHINDUCTOR_AUTOHEURISTIC_USE="" TORCHINDUCTOR_AUTOHEURISTIC_COLLECT="mm" TORCHINDUCTOR_AUTOHEURISTIC_LOG_PATH="hf_train_mm.txt" TORCHINDUCTOR_MAX_AUTOTUNE=1 time python ../../../benchmarks/dynamo/huggingface.py --ci --performance --timing --explain --inductor --device cuda --train --amp ``` To collect data for TIMM models, run the following command ``` TORCHINDUCTOR_AUTOHEURISTIC_USE="" TORCHINDUCTOR_AUTOHEURISTIC_COLLECT="mm" TORCHINDUCTOR_AUTOHEURISTIC_LOG_PATH="timm_train_mm.txt" TORCHINDUCTOR_MAX_AUTOTUNE=1 time python ../../../benchmarks/dynamo/timm_models.py --ci --performance --timing --explain --inductor --device cuda --train --amp ``` Afterwards, run the script in order to learn the heuristic: `bash generate_heuristic_mm.sh generate`