// Generated from vec_mask.rs.tera template. Edit the template, not the generated file. use core::fmt; use core::ops::*; use core::arch::aarch64::*; #[repr(C)] union UnionCast { a: [u32; 4], v: BVec3A, } /// Creates a 3-dimensional `bool` vector mask. #[inline(always)] #[must_use] pub const fn bvec3a(x: bool, y: bool, z: bool) -> BVec3A { BVec3A::new(x, y, z) } /// A 3-dimensional SIMD vector mask. /// /// This type is 16 byte aligned. #[derive(Clone, Copy)] #[repr(transparent)] pub struct BVec3A(pub(crate) uint32x4_t); const MASK: [u32; 2] = [0, 0xff_ff_ff_ff]; impl BVec3A { /// All false. pub const FALSE: Self = Self::splat(false); /// All true. pub const TRUE: Self = Self::splat(true); /// Creates a new vector mask. #[inline(always)] #[must_use] pub const fn new(x: bool, y: bool, z: bool) -> Self { unsafe { UnionCast { a: [MASK[x as usize], MASK[y as usize], MASK[z as usize], 0], } .v } } /// Creates a vector mask with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: bool) -> Self { Self::new(v, v, v) } /// Creates a new vector mask from a bool array. #[inline] #[must_use] pub const fn from_array(a: [bool; 3]) -> Self { Self::new(a[0], a[1], a[2]) } /// Returns a bitmask with the lowest 3 bits set from the elements of `self`. /// /// A true element results in a `1` bit and a false element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] #[must_use] pub fn bitmask(self) -> u32 { let movemask = unsafe { let mma = vandq_u32(self.0, vld1q_u32([1, 2, 4, 8].as_ptr())); // [0 1 2 3] let mmb = vextq_u32(mma, mma, 2); // [2 3 0 1] let mmc = vorrq_u32(mma, mmb); // [0+2 1+3 0+2 1+3] let mmd = vextq_u32(mmc, mmc, 3); // [1+3 0+2 1+3 0+2] let mme = vorrq_u32(mmc, mmd); // [0+1+2+3 ...] vgetq_lane_u32(mme, 0) }; movemask & 0x7 } /// Returns true if any of the elements are true, false otherwise. #[inline] #[must_use] pub fn any(self) -> bool { self.bitmask() != 0 } /// Returns true if all the elements are true, false otherwise. #[inline] #[must_use] pub fn all(self) -> bool { self.bitmask() == 0x7 } /// Tests the value at `index`. /// /// Panics if `index` is greater than 2. #[inline] #[must_use] pub fn test(&self, index: usize) -> bool { match index { 0 => (self.bitmask() & (1 << 0)) != 0, 1 => (self.bitmask() & (1 << 1)) != 0, 2 => (self.bitmask() & (1 << 2)) != 0, _ => panic!("index out of bounds"), } } /// Sets the element at `index`. /// /// Panics if `index` is greater than 2. #[inline] pub fn set(&mut self, index: usize, value: bool) { self.0 = match index { 0 => unsafe { vsetq_lane_u32(MASK[value as usize], self.0, 0) }, 1 => unsafe { vsetq_lane_u32(MASK[value as usize], self.0, 1) }, 2 => unsafe { vsetq_lane_u32(MASK[value as usize], self.0, 2) }, _ => panic!("index out of bounds"), } } #[inline] #[must_use] fn into_bool_array(self) -> [bool; 3] { let bitmask = self.bitmask(); [(bitmask & 1) != 0, (bitmask & 2) != 0, (bitmask & 4) != 0] } #[inline] #[must_use] fn into_u32_array(self) -> [u32; 3] { let bitmask = self.bitmask(); [ MASK[(bitmask & 1) as usize], MASK[((bitmask >> 1) & 1) as usize], MASK[((bitmask >> 2) & 1) as usize], ] } } impl Default for BVec3A { #[inline] fn default() -> Self { Self::FALSE } } impl PartialEq for BVec3A { #[inline] fn eq(&self, rhs: &Self) -> bool { self.bitmask().eq(&rhs.bitmask()) } } impl Eq for BVec3A {} impl core::hash::Hash for BVec3A { #[inline] fn hash(&self, state: &mut H) { self.bitmask().hash(state); } } impl BitAnd for BVec3A { type Output = Self; #[inline] fn bitand(self, rhs: Self) -> Self { Self(unsafe { vandq_u32(self.0, rhs.0) }) } } impl BitAndAssign for BVec3A { #[inline] fn bitand_assign(&mut self, rhs: Self) { *self = self.bitand(rhs); } } impl BitOr for BVec3A { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self { Self(unsafe { vorrq_u32(self.0, rhs.0) }) } } impl BitOrAssign for BVec3A { #[inline] fn bitor_assign(&mut self, rhs: Self) { *self = self.bitor(rhs); } } impl BitXor for BVec3A { type Output = Self; #[inline] fn bitxor(self, rhs: Self) -> Self { Self(unsafe { veorq_u32(self.0, rhs.0) }) } } impl BitXorAssign for BVec3A { #[inline] fn bitxor_assign(&mut self, rhs: Self) { *self = self.bitxor(rhs); } } impl Not for BVec3A { type Output = Self; #[inline] fn not(self) -> Self { Self(unsafe { vmvnq_u32(self.0) }) } } impl From for uint32x4_t { #[inline] fn from(t: BVec3A) -> Self { t.0 } } impl fmt::Debug for BVec3A { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let arr = self.into_u32_array(); write!( f, "{}({:#x}, {:#x}, {:#x})", stringify!(BVec3A), arr[0], arr[1], arr[2] ) } } impl fmt::Display for BVec3A { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let arr = self.into_bool_array(); write!(f, "[{}, {}, {}]", arr[0], arr[1], arr[2]) } } impl From<[bool; 3]> for BVec3A { #[inline] fn from(a: [bool; 3]) -> Self { Self::from_array(a) } } impl From for [bool; 3] { #[inline] fn from(mask: BVec3A) -> Self { mask.into_bool_array() } } impl From for [u32; 3] { #[inline] fn from(mask: BVec3A) -> Self { mask.into_u32_array() } }