use core::array; use core::borrow::BorrowMut; use std::fmt; use std::iter::FusedIterator; use super::lazy_buffer::LazyBuffer; use alloc::vec::Vec; use crate::adaptors::checked_binomial; /// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations) pub type Combinations = CombinationsGeneric>; /// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations) pub type ArrayCombinations = CombinationsGeneric; /// Create a new `Combinations` from a clonable iterator. pub fn combinations(iter: I, k: usize) -> Combinations where I::Item: Clone, { Combinations::new(iter, (0..k).collect()) } /// Create a new `ArrayCombinations` from a clonable iterator. pub fn array_combinations(iter: I) -> ArrayCombinations where I::Item: Clone, { ArrayCombinations::new(iter, array::from_fn(|i| i)) } /// An iterator to iterate through all the `k`-length combinations in an iterator. /// /// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information. #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] pub struct CombinationsGeneric { indices: Idx, pool: LazyBuffer, first: bool, } /// A type holding indices of elements in a pool or buffer of items from an inner iterator /// and used to pick out different combinations in a generic way. pub trait PoolIndex: BorrowMut<[usize]> { type Item; fn extract_item>(&self, pool: &LazyBuffer) -> Self::Item where T: Clone; fn len(&self) -> usize { self.borrow().len() } } impl PoolIndex for Vec { type Item = Vec; fn extract_item>(&self, pool: &LazyBuffer) -> Vec where T: Clone, { pool.get_at(self) } } impl PoolIndex for [usize; K] { type Item = [T; K]; fn extract_item>(&self, pool: &LazyBuffer) -> [T; K] where T: Clone, { pool.get_array(*self) } } impl Clone for CombinationsGeneric where I: Iterator + Clone, I::Item: Clone, Idx: Clone, { clone_fields!(indices, pool, first); } impl fmt::Debug for CombinationsGeneric where I: Iterator + fmt::Debug, I::Item: fmt::Debug, Idx: fmt::Debug, { debug_fmt_fields!(Combinations, indices, pool, first); } impl> CombinationsGeneric { /// Constructor with arguments the inner iterator and the initial state for the indices. fn new(iter: I, indices: Idx) -> Self { Self { indices, pool: LazyBuffer::new(iter), first: true, } } /// Returns the length of a combination produced by this iterator. #[inline] pub fn k(&self) -> usize { self.indices.len() } /// Returns the (current) length of the pool from which combination elements are /// selected. This value can change between invocations of [`next`](Combinations::next). #[inline] pub fn n(&self) -> usize { self.pool.len() } /// Returns a reference to the source pool. #[inline] pub(crate) fn src(&self) -> &LazyBuffer { &self.pool } /// Return the length of the inner iterator and the count of remaining combinations. pub(crate) fn n_and_count(self) -> (usize, usize) { let Self { indices, pool, first, } = self; let n = pool.count(); (n, remaining_for(n, first, indices.borrow()).unwrap()) } /// Initialises the iterator by filling a buffer with elements from the /// iterator. Returns true if there are no combinations, false otherwise. fn init(&mut self) -> bool { self.pool.prefill(self.k()); let done = self.k() > self.n(); if !done { self.first = false; } done } /// Increments indices representing the combination to advance to the next /// (in lexicographic order by increasing sequence) combination. For example /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...` /// /// Returns true if we've run out of combinations, false otherwise. fn increment_indices(&mut self) -> bool { // Borrow once instead of noise each time it's indexed let indices = self.indices.borrow_mut(); if indices.is_empty() { return true; // Done } // Scan from the end, looking for an index to increment let mut i: usize = indices.len() - 1; // Check if we need to consume more from the iterator if indices[i] == self.pool.len() - 1 { self.pool.get_next(); // may change pool size } while indices[i] == i + self.pool.len() - indices.len() { if i > 0 { i -= 1; } else { // Reached the last combination return true; } } // Increment index, and reset the ones to its right indices[i] += 1; for j in i + 1..indices.len() { indices[j] = indices[j - 1] + 1; } // If we've made it this far, we haven't run out of combos false } /// Returns the n-th item or the number of successful steps. pub(crate) fn try_nth(&mut self, n: usize) -> Result<::Item, usize> where I: Iterator, I::Item: Clone, { let done = if self.first { self.init() } else { self.increment_indices() }; if done { return Err(0); } for i in 0..n { if self.increment_indices() { return Err(i + 1); } } Ok(self.indices.extract_item(&self.pool)) } } impl Iterator for CombinationsGeneric where I: Iterator, I::Item: Clone, Idx: PoolIndex, { type Item = Idx::Item; fn next(&mut self) -> Option { let done = if self.first { self.init() } else { self.increment_indices() }; if done { return None; } Some(self.indices.extract_item(&self.pool)) } fn nth(&mut self, n: usize) -> Option { self.try_nth(n).ok() } fn size_hint(&self) -> (usize, Option) { let (mut low, mut upp) = self.pool.size_hint(); low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX); upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow())); (low, upp) } #[inline] fn count(self) -> usize { self.n_and_count().1 } } impl FusedIterator for CombinationsGeneric where I: Iterator, I::Item: Clone, Idx: PoolIndex, { } impl Combinations { /// Resets this `Combinations` back to an initial state for combinations of length /// `k` over the same pool data source. If `k` is larger than the current length /// of the data pool an attempt is made to prefill the pool so that it holds `k` /// elements. pub(crate) fn reset(&mut self, k: usize) { self.first = true; if k < self.indices.len() { self.indices.truncate(k); for i in 0..k { self.indices[i] = i; } } else { for i in 0..self.indices.len() { self.indices[i] = i; } self.indices.extend(self.indices.len()..k); self.pool.prefill(k); } } } /// For a given size `n`, return the count of remaining combinations or None if it would overflow. fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option { let k = indices.len(); if n < k { Some(0) } else if first { checked_binomial(n, k) } else { // https://en.wikipedia.org/wiki/Combinatorial_number_system // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf // The combinations generated after the current one can be counted by counting as follows: // - The subsequent combinations that differ in indices[0]: // If subsequent combinations differ in indices[0], then their value for indices[0] // must be at least 1 greater than the current indices[0]. // As indices is strictly monotonically sorted, this means we can effectively choose k values // from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities. // - The subsequent combinations with same indices[0], but differing indices[1]: // Here we can choose k - 1 values from (n - 1 - indices[1]) values, // leading to binomial(n - 1 - indices[1], k - 1) possibilities. // - (...) // - The subsequent combinations with same indices[0..=i], but differing indices[i]: // Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i). // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. // Below, `n0` resembles indices[i]. indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?) }) } }