// Copyright 2015-2017 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! ECDH key agreement using the P-256 and P-384 curves. use super::{ops::*, private_key::*, public_key::*}; use crate::{agreement, ec, error}; /// A key agreement algorithm. macro_rules! ecdh { ( $NAME:ident, $curve:expr, $name_str:expr, $private_key_ops:expr, $public_key_ops:expr, $ecdh:ident ) => { #[doc = "ECDH using the NSA Suite B"] #[doc=$name_str] #[doc = "curve."] /// /// Public keys are encoding in uncompressed form using the /// Octet-String-to-Elliptic-Curve-Point algorithm in /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]. Public keys are /// validated during key agreement according to /// [NIST Special Publication 800-56A, revision 2] and Appendix B.3 of /// the NSA's [Suite B Implementer's Guide to NIST SP 800-56A]. /// /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]: /// http://www.secg.org/sec1-v2.pdf /// [NIST Special Publication 800-56A, revision 2]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf /// [Suite B Implementer's Guide to NIST SP 800-56A]: /// https://github.com/briansmith/ring/blob/main/doc/ecdh.pdf pub static $NAME: agreement::Algorithm = agreement::Algorithm { curve: $curve, ecdh: $ecdh, }; fn $ecdh( out: &mut [u8], my_private_key: &ec::Seed, peer_public_key: untrusted::Input, ) -> Result<(), error::Unspecified> { ecdh( $private_key_ops, $public_key_ops, out, my_private_key, peer_public_key, ) } }; } ecdh!( ECDH_P256, &ec::suite_b::curve::P256, "P-256 (secp256r1)", &p256::PRIVATE_KEY_OPS, &p256::PUBLIC_KEY_OPS, p256_ecdh ); ecdh!( ECDH_P384, &ec::suite_b::curve::P384, "P-384 (secp384r1)", &p384::PRIVATE_KEY_OPS, &p384::PUBLIC_KEY_OPS, p384_ecdh ); fn ecdh( private_key_ops: &PrivateKeyOps, public_key_ops: &PublicKeyOps, out: &mut [u8], my_private_key: &ec::Seed, peer_public_key: untrusted::Input, ) -> Result<(), error::Unspecified> { // The NIST SP 800-56Ar2 steps are from section 5.7.1.2 Elliptic Curve // Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive. // // The "NSA Guide" steps are from section 3.1 of the NSA guide, "Ephemeral // Unified Model." // NSA Guide Step 1 is handled separately. // NIST SP 800-56Ar2 5.6.2.2.2. // NSA Guide Step 2. // // `parse_uncompressed_point` verifies that the point is not at infinity // and that it is on the curve, using the Partial Public-Key Validation // Routine. let peer_public_key = parse_uncompressed_point(public_key_ops, peer_public_key)?; // NIST SP 800-56Ar2 Step 1. // NSA Guide Step 3 (except point at infinity check). // // Note that the cofactor (h) is one since we only support prime-order // curves, so we can safely ignore the cofactor. // // It is impossible for the result to be the point at infinity because our // private key is in the range [1, n) and the curve has prime order and // `parse_uncompressed_point` verified that the peer public key is on the // curve and not at infinity. However, since the standards require the // check, we do it using `assert!`. // // NIST SP 800-56Ar2 defines "Destroy" thusly: "In this Recommendation, to // destroy is an action applied to a key or a piece of secret data. After // a key or a piece of secret data is destroyed, no information about its // value can be recovered." We interpret "destroy" somewhat liberally: we // assume that since we throw away the values to be destroyed, no // information about their values can be recovered. This doesn't meet the // NSA guide's explicit requirement to "zeroize" them though. // TODO: this only needs common scalar ops let my_private_key = private_key_as_scalar(private_key_ops, my_private_key); let product = private_key_ops.point_mul(&my_private_key, &peer_public_key); // NIST SP 800-56Ar2 Steps 2, 3, 4, and 5. // NSA Guide Steps 3 (point at infinity check) and 4. // // Again, we have a pretty liberal interpretation of the NIST's spec's // "Destroy" that doesn't meet the NSA requirement to "zeroize." // `big_endian_affine_from_jacobian` verifies that the result is not at // infinity and also does an extra check to verify that the point is on // the curve. big_endian_affine_from_jacobian(private_key_ops, Some(out), None, &product) // NSA Guide Step 5 & 6 are deferred to the caller. Again, we have a // pretty liberal interpretation of the NIST's spec's "Destroy" that // doesn't meet the NSA requirement to "zeroize." } #[cfg(test)] mod tests { use super::super::ops; use crate::{agreement, ec, limb, test}; static SUPPORTED_SUITE_B_ALGS: [(&str, &agreement::Algorithm, &ec::Curve, &ops::CommonOps); 2] = [ ( "P-256", &agreement::ECDH_P256, &super::super::curve::P256, &super::super::ops::p256::COMMON_OPS, ), ( "P-384", &agreement::ECDH_P384, &super::super::curve::P384, &super::super::ops::p384::COMMON_OPS, ), ]; #[test] fn test_agreement_suite_b_ecdh_generate() { // Generates a string of bytes 0x00...00, which will always result in // a scalar value of zero. let random_00 = test::rand::FixedByteRandom { byte: 0x00 }; // Generates a string of bytes 0xFF...FF, which will be larger than the // group order of any curve that is supported. let random_ff = test::rand::FixedByteRandom { byte: 0xff }; for &(_, alg, curve, ops) in SUPPORTED_SUITE_B_ALGS.iter() { // Test that the private key value zero is rejected and that // `generate` gives up after a while of only getting zeros. assert!(agreement::EphemeralPrivateKey::generate(alg, &random_00).is_err()); // Test that the private key value larger than the group order is // rejected and that `generate` gives up after a while of only // getting values larger than the group order. assert!(agreement::EphemeralPrivateKey::generate(alg, &random_ff).is_err()); // Test that a private key value exactly equal to the group order // is rejected and that `generate` gives up after a while of only // getting that value from the PRNG. let mut n_bytes = [0u8; ec::SCALAR_MAX_BYTES]; let num_bytes = curve.elem_scalar_seed_len; limb::big_endian_from_limbs(&ops.n.limbs[..ops.num_limbs], &mut n_bytes[..num_bytes]); { let n_bytes = &mut n_bytes[..num_bytes]; let rng = test::rand::FixedSliceRandom { bytes: n_bytes }; assert!(agreement::EphemeralPrivateKey::generate(alg, &rng).is_err()); } // Test that a private key value exactly equal to the group order // minus 1 is accepted. let mut n_minus_1_bytes = n_bytes; { let n_minus_1_bytes = &mut n_minus_1_bytes[..num_bytes]; n_minus_1_bytes[num_bytes - 1] -= 1; let rng = test::rand::FixedSliceRandom { bytes: n_minus_1_bytes, }; let key = agreement::EphemeralPrivateKey::generate(alg, &rng).unwrap(); assert_eq!(n_minus_1_bytes, key.bytes()); } // Test that n + 1 also fails. let mut n_plus_1_bytes = n_bytes; { let n_plus_1_bytes = &mut n_plus_1_bytes[..num_bytes]; n_plus_1_bytes[num_bytes - 1] += 1; let rng = test::rand::FixedSliceRandom { bytes: n_plus_1_bytes, }; assert!(agreement::EphemeralPrivateKey::generate(alg, &rng).is_err()); } // Test recovery from initial RNG failure. The first value will be // n, then n + 1, then zero, the next value will be n - 1, which // will be accepted. { let bytes = [ &n_bytes[..num_bytes], &n_plus_1_bytes[..num_bytes], &[0u8; ec::SCALAR_MAX_BYTES][..num_bytes], &n_minus_1_bytes[..num_bytes], ]; let rng = test::rand::FixedSliceSequenceRandom { bytes: &bytes, current: core::cell::UnsafeCell::new(0), }; let key = agreement::EphemeralPrivateKey::generate(alg, &rng).unwrap(); assert_eq!(&n_minus_1_bytes[..num_bytes], key.bytes()); } } } }