/* * Copyright 2015 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkCodecPriv_DEFINED #define SkCodecPriv_DEFINED #include "include/codec/SkCodec.h" #include "include/codec/SkEncodedOrigin.h" #include "include/core/SkImageInfo.h" #include "include/core/SkTypes.h" #include "include/private/SkEncodedInfo.h" #include "src/codec/SkColorPalette.h" #include "src/core/SkColorData.h" #include #ifdef SK_PRINT_CODEC_MESSAGES #define SkCodecPrintf SkDebugf #else #define SkCodecPrintf(...) #endif namespace SkCodecs { bool HasDecoder(std::string_view id); } class SkCodecPriv final { public: static const SkEncodedInfo& GetEncodedInfo(const SkCodec* codec) { SkASSERT(codec); return codec->getEncodedInfo(); } static bool SelectXformFormat(SkColorType colorType, bool forColorTable, skcms_PixelFormat* outFormat); // FIXME: Consider sharing with dm, nanbench, and tools. static float GetScaleFromSampleSize(int sampleSize) { return 1.0f / ((float)sampleSize); } static bool IsValidSubset(const SkIRect& subset, const SkISize& imageDims) { return SkIRect::MakeSize(imageDims).contains(subset); } /* * returns a scaled dimension based on the original dimension and the sampleSize * NOTE: we round down here for scaled dimension to match the behavior of SkImageDecoder */ static int GetSampledDimension(int srcDimension, int sampleSize) { if (sampleSize > srcDimension) { return 1; } return srcDimension / sampleSize; } /* * Returns the first coordinate that we will keep during a scaled decode. * The output can be interpreted as an x-coordinate or a y-coordinate. * * This does not need to be called and is not called when sampleFactor == 1. */ static int GetStartCoord(int sampleFactor) { return sampleFactor / 2; } /* * Given a coordinate in the original image, this returns the corresponding * coordinate in the scaled image. This function is meaningless if * IsCoordNecessary returns false. * The output can be interpreted as an x-coordinate or a y-coordinate. * * This does not need to be called and is not called when sampleFactor == 1. */ static int GetDstCoord(int srcCoord, int sampleFactor) { return srcCoord / sampleFactor; } /* * When scaling, we will discard certain y-coordinates (rows) and * x-coordinates (columns). This function returns true if we should keep the * coordinate and false otherwise. * The inputs may be x-coordinates or y-coordinates. * * This does not need to be called and is not called when sampleFactor == 1. */ static bool IsCoordNecessary(int srcCoord, int sampleFactor, int scaledDim) { // Get the first coordinate that we want to keep int startCoord = GetStartCoord(sampleFactor); // Return false on edge cases if (srcCoord < startCoord || GetDstCoord(srcCoord, sampleFactor) >= scaledDim) { return false; } // Every sampleFactor rows are necessary return ((srcCoord - startCoord) % sampleFactor) == 0; } static bool ValidAlpha(SkAlphaType dstAlpha, bool srcIsOpaque) { if (kUnknown_SkAlphaType == dstAlpha) { return false; } if (srcIsOpaque) { if (kOpaque_SkAlphaType != dstAlpha) { SkCodecPrintf( "Warning: an opaque image should be decoded as opaque " "- it is being decoded as non-opaque, which will draw slower\n"); } return true; } return dstAlpha != kOpaque_SkAlphaType; } /* * If there is a color table, get a pointer to the colors, otherwise return nullptr */ static const SkPMColor* GetColorPtr(SkColorPalette* colorTable) { return nullptr != colorTable ? colorTable->readColors() : nullptr; } /* * Compute row bytes for an image using pixels per byte */ static size_t ComputeRowBytesPixelsPerByte(int width, uint32_t pixelsPerByte) { return (width + pixelsPerByte - 1) / pixelsPerByte; } /* * Compute row bytes for an image using bytes per pixel */ static size_t ComputeRowBytesBytesPerPixel(int width, uint32_t bytesPerPixel) { return width * bytesPerPixel; } /* * Compute row bytes for an image */ static size_t ComputeRowBytes(int width, uint32_t bitsPerPixel) { if (bitsPerPixel < 16) { SkASSERT(0 == 8 % bitsPerPixel); const uint32_t pixelsPerByte = 8 / bitsPerPixel; return ComputeRowBytesPixelsPerByte(width, pixelsPerByte); } else { SkASSERT(0 == bitsPerPixel % 8); const uint32_t bytesPerPixel = bitsPerPixel / 8; return ComputeRowBytesBytesPerPixel(width, bytesPerPixel); } } /* * Get a byte from a buffer * This method is unsafe, the caller is responsible for performing a check */ static uint8_t UnsafeGetByte(const uint8_t* buffer, uint32_t i) { return buffer[i]; } /* * Get a short from a buffer * This method is unsafe, the caller is responsible for performing a check */ static uint16_t UnsafeGetShort(const uint8_t* buffer, uint32_t i) { uint16_t result; memcpy(&result, &(buffer[i]), 2); #ifdef SK_CPU_BENDIAN return SkEndianSwap16(result); #else return result; #endif } /* * Get an int from a buffer * This method is unsafe, the caller is responsible for performing a check */ static uint32_t UnsafeGetInt(const uint8_t* buffer, uint32_t i) { uint32_t result; memcpy(&result, &(buffer[i]), 4); #ifdef SK_CPU_BENDIAN return SkEndianSwap32(result); #else return result; #endif } /* * @param data Buffer to read bytes from * @param isLittleEndian Output parameter * Indicates if the data is little endian * Is unaffected on false returns */ static bool IsValidEndianMarker(const uint8_t* data, bool* isLittleEndian) { // II indicates Intel (little endian) and MM indicates motorola (big endian). if (('I' != data[0] || 'I' != data[1]) && ('M' != data[0] || 'M' != data[1])) { return false; } *isLittleEndian = ('I' == data[0]); return true; } static uint16_t GetEndianShort(const uint8_t* data, bool littleEndian) { if (littleEndian) { return (data[1] << 8) | (data[0]); } return (data[0] << 8) | (data[1]); } static uint32_t GetEndianInt(const uint8_t* data, bool littleEndian) { if (littleEndian) { return (data[3] << 24) | (data[2] << 16) | (data[1] << 8) | (data[0]); } return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | (data[3]); } static SkPMColor PremultiplyARGBasRGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { if (a != 255) { r = SkMulDiv255Round(r, a); g = SkMulDiv255Round(g, a); b = SkMulDiv255Round(b, a); } return SkPackARGB_as_RGBA(a, r, g, b); } static SkPMColor PremultiplyARGBasBGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { if (a != 255) { r = SkMulDiv255Round(r, a); g = SkMulDiv255Round(g, a); b = SkMulDiv255Round(b, a); } return SkPackARGB_as_BGRA(a, r, g, b); } static bool IsRGBA(SkColorType colorType) { #ifdef SK_PMCOLOR_IS_RGBA return (kBGRA_8888_SkColorType != colorType); #else return (kRGBA_8888_SkColorType == colorType); #endif } // Method for coverting to a 32 bit pixel. using PackColorProc = uint32_t (*)(U8CPU a, U8CPU r, U8CPU g, U8CPU b); static PackColorProc ChoosePackColorProc(bool isPremul, SkColorType colorType) { bool isRGBA = IsRGBA(colorType); if (isPremul) { if (isRGBA) { return &PremultiplyARGBasRGBA; } else { return &PremultiplyARGBasBGRA; } } else { if (isRGBA) { return &SkPackARGB_as_RGBA; } else { return &SkPackARGB_as_BGRA; } } } }; #endif // SkCodecPriv_DEFINED