/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkBlitMask_opts_DEFINED #define SkBlitMask_opts_DEFINED #include "include/private/base/SkFeatures.h" #include "src/core/Sk4px.h" #if defined(SK_ARM_HAS_NEON) #include #endif namespace SK_OPTS_NS { #if defined(SK_ARM_HAS_NEON) // The Sk4px versions below will work fine with NEON, but we have had many indications // that it doesn't perform as well as this NEON-specific code. #define NEON_A (SK_A32_SHIFT / 8) #define NEON_R (SK_R32_SHIFT / 8) #define NEON_G (SK_G32_SHIFT / 8) #define NEON_B (SK_B32_SHIFT / 8) static inline uint16x8_t SkAlpha255To256_neon8(uint8x8_t alpha) { return vaddw_u8(vdupq_n_u16(1), alpha); } static inline uint8x8_t SkAlphaMul_neon8(uint8x8_t color, uint16x8_t scale) { return vshrn_n_u16(vmovl_u8(color) * scale, 8); } static inline uint8x8x4_t SkAlphaMulQ_neon8(uint8x8x4_t color, uint16x8_t scale) { uint8x8x4_t ret; ret.val[0] = SkAlphaMul_neon8(color.val[0], scale); ret.val[1] = SkAlphaMul_neon8(color.val[1], scale); ret.val[2] = SkAlphaMul_neon8(color.val[2], scale); ret.val[3] = SkAlphaMul_neon8(color.val[3], scale); return ret; } template static void blit_mask_d32_a8_neon(void* SK_RESTRICT dst, size_t dstRB, const void* SK_RESTRICT maskPtr, size_t maskRB, SkColor color, int width, int height) { const SkPMColor pmc = SkPreMultiplyColor(color); const U8CPU colorAlpha = SkGetPackedA32(pmc); SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; uint8x8x4_t vpmc; // Nine patch may set maskRB to 0 to blit the same row repeatedly. ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; dstRB -= (width << 2); if (width >= 8) { vpmc.val[NEON_A] = vdup_n_u8(colorAlpha); vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc)); vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc)); vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc)); } do { int w = width; while (w >= 8) { uint8x8_t vmask = vld1_u8(mask); uint16x8_t vmask256 = SkAlpha255To256_neon8(vmask); uint16x8_t vscale; if constexpr (isTranslucent) { vscale = vsubw_u8(vdupq_n_u16(256), SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)); } else { vscale = vsubw_u8(vdupq_n_u16(256), vmask); } uint8x8x4_t vdev = vld4_u8((uint8_t*)device); vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_A], vscale); vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_R], vscale); vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_G], vscale); vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_B], vscale); vst4_u8((uint8_t*)device, vdev); mask += 8; device += 8; w -= 8; } while (w-- > 0) { // These variables aren't actually vectors, but the names are consistent with // the above to make it easier to compare the operations. const U8CPU vmask = *mask++; const U16CPU vmask256 = SkAlpha255To256(vmask); U16CPU vscale; if constexpr (isTranslucent) { vscale = 256 - SkAlphaMulQ(colorAlpha, vmask256); } else { vscale = 256 - vmask; } *device = SkAlphaMulQ(pmc, vmask256) + SkAlphaMulQ(*device, vscale); device += 1; } device = (uint32_t*)((char*)device + dstRB); mask += mask_adjust; } while (--height != 0); } static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { blit_mask_d32_a8_neon(dst, dstRB, mask, maskRB, color, w, h); } // As above, but made slightly simpler by requiring that color is opaque. static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { blit_mask_d32_a8_neon(dst, dstRB, mask, maskRB, color, w, h); } // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, const SkAlpha* maskPtr, size_t maskRB, int width, int height) { SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; // Nine patch may set maskRB to 0 to blit the same row repeatedly. ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; dstRB -= (width << 2); do { int w = width; while (w >= 8) { uint8x8_t vmask = vld1_u8(mask); uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask); uint8x8x4_t vdevice = vld4_u8((uint8_t*)device); vdevice = SkAlphaMulQ_neon8(vdevice, vscale); vdevice.val[NEON_A] += vmask; vst4_u8((uint8_t*)device, vdevice); mask += 8; device += 8; w -= 8; } while (w-- > 0) { // These variables aren't actually vectors, but the names are consistent with // the above to make it easier to compare the operations. const U8CPU vmask = *mask++; const U16CPU vscale = 256 - vmask; *device = SkAlphaMulQ(*device, vscale) + (vmask << SK_A32_SHIFT); device += 1; } device = (uint32_t*)((char*)device + dstRB); mask += mask_adjust; } while (--height != 0); } #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX #include static __m128i SkAlphaMul_lsx(__m128i x, __m128i y) { __m128i tmp = __lsx_vmul_h(x, y); __m128i mask = __lsx_vreplgr2vr_h(0xff00); return __lsx_vsrlri_h(__lsx_vand_v(tmp, mask), 8); } template static void D32_A8_Opaque_Color_lsx(void* SK_RESTRICT dst, size_t dstRB, const void* SK_RESTRICT maskPtr, size_t maskRB, SkColor color, int width, int height) { SkPMColor pmc = SkPreMultiplyColor(color); SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; __m128i vpmc_b = __lsx_vldi(0); __m128i vpmc_g = __lsx_vldi(0); __m128i vpmc_r = __lsx_vldi(0); __m128i vpmc_a = __lsx_vldi(0); // Nine patch may set maskRB to 0 to blit the same row repeatedly. ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; dstRB -= (width << 2); if (width >= 8) { vpmc_b = __lsx_vreplgr2vr_h(SkGetPackedB32(pmc)); vpmc_g = __lsx_vreplgr2vr_h(SkGetPackedG32(pmc)); vpmc_r = __lsx_vreplgr2vr_h(SkGetPackedR32(pmc)); vpmc_a = __lsx_vreplgr2vr_h(SkGetPackedA32(pmc)); } const __m128i zeros = __lsx_vldi(0); __m128i planar = __lsx_vldi(0); planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); do{ int w = width; while(w >= 8){ __m128i lo = __lsx_vld(device, 0); // bgra bgra bgra bgra __m128i hi = __lsx_vld(device, 16); // BGRA BGRA BGRA BGRA lo = __lsx_vshuf_b(zeros, lo, planar); // bbbb gggg rrrr aaaa hi = __lsx_vshuf_b(zeros, hi, planar); // BBBB GGGG RRRR AAAA __m128i bg = __lsx_vilvl_w(hi, lo), // bbbb BBBB gggg GGGG ra = __lsx_vilvh_w(hi, lo); // rrrr RRRR aaaa AAAA __m128i b = __lsx_vilvl_b(zeros, bg), // _b_b _b_b _B_B _B_B g = __lsx_vilvh_b(zeros, bg), // _g_g _g_g _G_G _G_G r = __lsx_vilvl_b(zeros, ra), // _r_r _r_r _R_R _R_R a = __lsx_vilvh_b(zeros, ra); // _a_a _a_a _A_A _A_A __m128i vmask = __lsx_vld(mask, 0); vmask = __lsx_vilvl_b(zeros, vmask); __m128i vscale, vmask256 = __lsx_vadd_h(vmask, __lsx_vreplgr2vr_h(1)); if (isColor) { __m128i tmp = SkAlphaMul_lsx(vpmc_a, vmask256); vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), tmp); } else { vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask); } b = SkAlphaMul_lsx(vpmc_b, vmask256) + SkAlphaMul_lsx(b, vscale); g = SkAlphaMul_lsx(vpmc_g, vmask256) + SkAlphaMul_lsx(g, vscale); r = SkAlphaMul_lsx(vpmc_r, vmask256) + SkAlphaMul_lsx(r, vscale); a = SkAlphaMul_lsx(vpmc_a, vmask256) + SkAlphaMul_lsx(a, vscale); bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8)); // bgbg bgbg BGBG BGBG ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8)); // rara rara RARA RARA lo = __lsx_vilvl_h(ra, bg); // bgra bgra bgra bgra hi = __lsx_vilvh_h(ra, bg); // BGRA BGRA BGRA BGRA __lsx_vst(lo, device, 0); __lsx_vst(hi, device, 16); mask += 8; device += 8; w -= 8; } while (w--) { unsigned aa = *mask++; if (isColor) { *device = SkBlendARGB32(pmc, *device, aa); } else { *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); } device += 1; } device = (uint32_t *)((char*)device + dstRB); mask += mask_adjust; } while (--height != 0); } static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { D32_A8_Opaque_Color_lsx(dst, dstRB, mask, maskRB, color, w, h); } static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { D32_A8_Opaque_Color_lsx(dst, dstRB, mask, maskRB, color, w, h); } // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, const SkAlpha* maskPtr, size_t maskRB, int width, int height) { SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; // Nine patch may set maskRB to 0 to blit the same row repeatedly. ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width; dstRB -= (width << 2); const __m128i zeros = __lsx_vldi(0); __m128i planar = __lsx_vldi(0); planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0); planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1); do { int w = width; while (w >= 8) { __m128i vmask = __lsx_vld(mask, 0); vmask = __lsx_vilvl_b(zeros, vmask); __m128i vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask); __m128i lo = __lsx_vld(device, 0); // bgra bgra bgra bgra __m128i hi = __lsx_vld(device, 16); // BGRA BGRA BGRA BGRA lo = __lsx_vshuf_b(zeros, lo, planar); // bbbb gggg rrrr aaaa hi = __lsx_vshuf_b(zeros, hi, planar); // BBBB GGGG RRRR AAAA __m128i bg = __lsx_vilvl_w(hi, lo), // bbbb BBBB gggg GGGG ra = __lsx_vilvh_w(hi, lo); // rrrr RRRR aaaa AAAA __m128i b = __lsx_vilvl_b(zeros, bg), // _b_b _b_b _B_B _B_B g = __lsx_vilvh_b(zeros, bg), // _g_g _g_g _G_G _G_G r = __lsx_vilvl_b(zeros, ra), // _r_r _r_r _R_R _R_R a = __lsx_vilvh_b(zeros, ra); // _a_a _a_a _A_A _A_A b = SkAlphaMul_lsx(b, vscale); g = SkAlphaMul_lsx(g, vscale); r = SkAlphaMul_lsx(r, vscale); a = SkAlphaMul_lsx(a, vscale); a += vmask; bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8)); // bgbg bgbg BGBG BGBG ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8)); // rara rara RARA RARA lo = __lsx_vilvl_h(ra, bg); // bgra bgra bgra bgra hi = __lsx_vilvh_h(ra, bg); // BGRA BGRA BGRA BGRA __lsx_vst(lo, device, 0); __lsx_vst(hi, device, 16); mask += 8; device += 8; w -= 8; } while (w-- > 0) { unsigned aa = *mask++; *device = (aa << SK_A32_SHIFT) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); device += 1; } device = (uint32_t*)((char*)device + dstRB); mask += mask_adjust; } while (--height != 0); } #else static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); auto fn = [&](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) auto left = s.approxMulDiv255(aa), right = d.approxMulDiv255(left.alphas().inv()); return left + right; // This does not overflow (exhaustively checked). }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } // As above, but made slightly simpler by requiring that color is opaque. static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { SkASSERT(SkColorGetA(color) == 0xFF); auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); auto fn = [&](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) // ~~~> // = s*aa + d(1-aa) return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv()); }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, int w, int h) { auto fn = [](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) // ~~~> // a = 1*aa + d(1-1*aa) = aa + d(1-aa) // c = 0*aa + d(1-1*aa) = d(1-aa) return (aa & Sk4px(skvx::byte16{0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255})) + d.approxMulDiv255(aa.inv()); }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } #endif /*not static*/ inline void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { if (color == SK_ColorBLACK) { blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h); } else if (SkColorGetA(color) == 0xFF) { blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h); } else { blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h); } } } // namespace SK_OPTS_NS #endif//SkBlitMask_opts_DEFINED