/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkAlphaType.h" #include "include/core/SkBBHFactory.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkColorType.h" #include "include/core/SkData.h" #include "include/core/SkFlattenable.h" #include "include/core/SkFont.h" #include "include/core/SkImage.h" #include "include/core/SkImageFilter.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPicture.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkPoint.h" #include "include/core/SkPoint3.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkSamplingOptions.h" #include "include/core/SkScalar.h" #include "include/core/SkSerialProcs.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceProps.h" #include "include/core/SkTileMode.h" #include "include/core/SkTypes.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkImageFilters.h" #include "include/effects/SkPerlinNoiseShader.h" #include "include/encode/SkPngEncoder.h" #include "include/gpu/GpuTypes.h" #include "include/gpu/ganesh/GrTypes.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTo.h" #include "src/core/SkBitmapDevice.h" #include "src/core/SkDevice.h" #include "src/core/SkImageFilterTypes.h" #include "src/core/SkImageFilter_Base.h" #include "src/core/SkRectPriv.h" #include "src/core/SkSpecialImage.h" #include "src/effects/colorfilters/SkColorFilterBase.h" #include "src/image/SkImage_Base.h" #include "tests/CtsEnforcement.h" #include "tests/Test.h" #include "tools/EncodeUtils.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" #include "tools/fonts/FontToolUtils.h" #if defined(SK_GANESH) #include "include/gpu/ganesh/GrDirectContext.h" #include "include/gpu/ganesh/GrRecordingContext.h" #include "include/gpu/ganesh/SkImageGanesh.h" #include "include/gpu/ganesh/SkSurfaceGanesh.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/image/GrImageUtils.h" #include "src/gpu/ganesh/image/SkImage_GaneshBase.h" #include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h" #endif #if defined(SK_GRAPHITE) #include "include/gpu/graphite/Context.h" #include "include/gpu/graphite/Image.h" #include "include/gpu/graphite/Surface.h" #include "tools/graphite/GraphiteToolUtils.h" #endif #include #include #include #include #include using namespace skia_private; class SkReadBuffer; class SkWriteBuffer; struct GrContextOptions; static const int kBitmapSize = 4; namespace { static constexpr GrSurfaceOrigin kTestSurfaceOrigin = kTopLeft_GrSurfaceOrigin; class MatrixTestImageFilter : public SkImageFilter_Base { public: MatrixTestImageFilter(skiatest::Reporter* reporter, const SkM44& expectedMatrix) : SkImageFilter_Base(nullptr, 0) , fReporter(reporter) , fExpectedMatrix(expectedMatrix) { // Layers have an extra pixel of padding that adjusts the coordinate space fExpectedMatrix.postTranslate(1.f, 1.f); } private: Factory getFactory() const override { SK_ABORT("Does not participate in serialization"); return nullptr; } const char* getTypeName() const override { return "MatrixTestImageFilter"; } skif::FilterResult onFilterImage(const skif::Context& ctx) const override { REPORTER_ASSERT(fReporter, ctx.mapping().layerMatrix() == fExpectedMatrix); return ctx.source(); } skif::LayerSpace onGetInputLayerBounds( const skif::Mapping& mapping, const skif::LayerSpace& desiredOutput, std::optional> contentBounds) const override { return desiredOutput; } std::optional> onGetOutputLayerBounds( const skif::Mapping& mapping, std::optional> contentBounds) const override { return contentBounds; } skiatest::Reporter* fReporter; SkM44 fExpectedMatrix; }; void draw_gradient_circle(SkCanvas* canvas, int width, int height) { SkScalar x = SkIntToScalar(width / 2); SkScalar y = SkIntToScalar(height / 2); SkScalar radius = std::min(x, y) * 0.8f; canvas->clear(0x00000000); SkColor colors[2]; colors[0] = SK_ColorWHITE; colors[1] = SK_ColorBLACK; sk_sp shader( SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2, SkTileMode::kClamp) ); SkPaint paint; paint.setShader(shader); canvas->drawCircle(x, y, radius, paint); } SkBitmap make_gradient_circle(int width, int height) { SkBitmap bitmap; bitmap.allocN32Pixels(width, height); SkCanvas canvas(bitmap); draw_gradient_circle(&canvas, width, height); return bitmap; } class FilterList { public: FilterList(const sk_sp& input, const SkIRect* cropRect = nullptr) { static const SkScalar kBlurSigma = SkIntToScalar(5); SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); { sk_sp cf(SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcIn)); this->addFilter("color filter", SkImageFilters::ColorFilter(std::move(cf), input, cropRect)); } { sk_sp gradientImage(make_gradient_circle(64, 64).asImage()); sk_sp gradientSource(SkImageFilters::Image(std::move(gradientImage), SkFilterMode::kNearest)); this->addFilter("displacement map", SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f, std::move(gradientSource), input, cropRect)); } this->addFilter("blur", SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("drop shadow", SkImageFilters::DropShadow( SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input, cropRect)); this->addFilter("diffuse lighting", SkImageFilters::PointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect)); this->addFilter("specular lighting", SkImageFilters::PointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input, cropRect)); { SkScalar kernel[9] = { SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), }; const SkISize kernelSize = SkISize::Make(3, 3); const SkScalar gain = SK_Scalar1, bias = 0; // This filter needs a saveLayer bc it is in repeat mode this->addFilter("matrix convolution", SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkTileMode::kRepeat, false, input, cropRect), true); } this->addFilter("merge", SkImageFilters::Merge(input, input, cropRect)); { sk_sp greenColorShader = SkShaders::Color(SK_ColorGREEN); SkIRect leftSideCropRect = SkIRect::MakeXYWH(0, 0, 32, 64); sk_sp shaderFilterLeft(SkImageFilters::Shader(greenColorShader, &leftSideCropRect)); SkIRect rightSideCropRect = SkIRect::MakeXYWH(32, 0, 32, 64); sk_sp shaderFilterRight(SkImageFilters::Shader(greenColorShader, &rightSideCropRect)); this->addFilter("merge with disjoint inputs", SkImageFilters::Merge( std::move(shaderFilterLeft), std::move(shaderFilterRight), cropRect)); } this->addFilter("offset", SkImageFilters::Offset(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("dilate", SkImageFilters::Dilate(3, 2, input, cropRect)); this->addFilter("erode", SkImageFilters::Erode(2, 3, input, cropRect)); this->addFilter("tile", SkImageFilters::Tile(SkRect::MakeXYWH(0, 0, 50, 50), cropRect ? SkRect::Make(*cropRect) : SkRect::MakeXYWH(0, 0, 100, 100), input)); if (!cropRect) { SkMatrix matrix; matrix.setTranslate(SK_Scalar1, SK_Scalar1); matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1); this->addFilter("matrix", SkImageFilters::MatrixTransform(matrix, SkSamplingOptions(SkFilterMode::kLinear), input)); } { sk_sp blur(SkImageFilters::Blur(kBlurSigma, kBlurSigma, input)); this->addFilter("blur and offset", SkImageFilters::Offset( kBlurSigma, kBlurSigma, std::move(blur), cropRect)); } { SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(64, 64); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); sk_sp picture(recorder.finishRecordingAsPicture()); sk_sp pictureFilter(SkImageFilters::Picture(std::move(picture))); this->addFilter("picture and blur", SkImageFilters::Blur( kBlurSigma, kBlurSigma, std::move(pictureFilter), cropRect)); } { sk_sp paintFilter(SkImageFilters::Shader( SkShaders::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0))); this->addFilter("paint and blur", SkImageFilters::Blur( kBlurSigma, kBlurSigma, std::move(paintFilter), cropRect)); } this->addFilter("blend", SkImageFilters::Blend( SkBlendMode::kSrc, input, input, cropRect)); } int count() const { return fFilters.size(); } SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); } const char* getName(int index) const { return fFilters[index].fName; } bool needsSaveLayer(int index) const { return fFilters[index].fNeedsSaveLayer; } private: struct Filter { Filter() : fName(nullptr), fNeedsSaveLayer(false) {} Filter(const char* name, sk_sp filter, bool needsSaveLayer) : fName(name) , fFilter(std::move(filter)) , fNeedsSaveLayer(needsSaveLayer) { } const char* fName; sk_sp fFilter; bool fNeedsSaveLayer; }; void addFilter(const char* name, sk_sp filter, bool needsSaveLayer = false) { fFilters.push_back(Filter(name, std::move(filter), needsSaveLayer)); } TArray fFilters; }; } // namespace static skif::Context make_context(const SkIRect& out, const SkSpecialImage* src) { sk_sp backend; if (src->isGaneshBacked()) { backend = skif::MakeGaneshBackend(sk_ref_sp(src->getContext()), kTestSurfaceOrigin, src->props(), src->colorType()); } else { backend = skif::MakeRasterBackend(src->props(), src->colorType()); } return skif::Context{std::move(backend), skif::Mapping{SkM44()}, skif::LayerSpace{out}, skif::FilterResult{sk_ref_sp(src)}, src->getColorSpace(), /*stats=*/nullptr}; } static skif::Context make_context(int outWidth, int outHeight, const SkSpecialImage* src) { return make_context(SkIRect::MakeWH(outWidth, outHeight), src); } static sk_sp make_small_image() { auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize))); SkCanvas* canvas = surface->getCanvas(); canvas->clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int kRectSize = kBitmapSize / 4; static_assert(kBitmapSize % 4 == 0, "bitmap size not multiple of 4"); for (int y = 0; y < kBitmapSize; y += kRectSize) { for (int x = 0; x < kBitmapSize; x += kRectSize) { canvas->save(); canvas->translate(SkIntToScalar(x), SkIntToScalar(y)); canvas->drawRect( SkRect::MakeXYWH(0, 0, kRectSize, kRectSize), darkPaint); canvas->drawRect( SkRect::MakeXYWH(kRectSize, 0, kRectSize, kRectSize), lightPaint); canvas->drawRect( SkRect::MakeXYWH(0, kRectSize, kRectSize, kRectSize), lightPaint); canvas->drawRect( SkRect::MakeXYWH(kRectSize, kRectSize, kRectSize, kRectSize), darkPaint); canvas->restore(); } } return surface->makeImageSnapshot(); } static sk_sp make_scale(float amount, sk_sp input) { float s = amount; float matrix[20] = { s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0 }; sk_sp filter(SkColorFilters::Matrix(matrix)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input)); } static sk_sp make_grayscale(sk_sp input, const SkIRect* cropRect) { float matrix[20]; memset(matrix, 0, 20 * sizeof(float)); matrix[0] = matrix[5] = matrix[10] = 0.2126f; matrix[1] = matrix[6] = matrix[11] = 0.7152f; matrix[2] = matrix[7] = matrix[12] = 0.0722f; matrix[18] = 1.0f; sk_sp filter(SkColorFilters::Matrix(matrix)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); } static sk_sp make_blue(sk_sp input, const SkIRect* cropRect) { sk_sp filter(SkColorFilters::Blend(SK_ColorBLUE, SkBlendMode::kSrcIn)); return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); } static sk_sp create_empty_device(GrRecordingContext* rContext, int widthHeight) { const SkImageInfo ii = SkImageInfo::Make({ widthHeight, widthHeight }, kRGBA_8888_SkColorType, kPremul_SkAlphaType); if (rContext) { return rContext->priv().createDevice(skgpu::Budgeted::kNo, ii, SkBackingFit::kApprox, 1, skgpu::Mipmapped::kNo, skgpu::Protected::kNo, kTestSurfaceOrigin, {}, skgpu::ganesh::Device::InitContents::kUninit); } else { SkBitmap bm; SkAssertResult(bm.tryAllocPixels(ii)); return sk_make_sp(bm, SkSurfaceProps()); } } static sk_sp create_empty_special_image(GrRecordingContext* rContext, int widthHeight, SkColor4f color = SkColors::kTransparent) { sk_sp device = create_empty_device(rContext, widthHeight); SkASSERT(device); SkPaint p; p.setColor4f(color, /*colorSpace=*/nullptr); p.setBlendMode(SkBlendMode::kSrc); device->drawPaint(p); return device->snapSpecial(SkIRect::MakeWH(widthHeight, widthHeight)); } DEF_TEST(ImageFilter, reporter) { { // Check that a color matrix filter followed by a color matrix filter // concatenates into a single filter. sk_sp doubleBrightness(make_scale(2.0f, nullptr)); sk_sp halfBrightness(make_scale(0.5f, std::move(doubleBrightness))); REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf)); cf->unref(); } { // Check that a color filter image filter without a crop rect can be // expressed as a color filter. sk_sp gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Check that a colorfilterimage filter without a crop rect but with an input // that is another colorfilterimage can be expressed as a colorfilter (composed). sk_sp mode(make_blue(nullptr, nullptr)); sk_sp gray(make_grayscale(std::move(mode), nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Test that if we exceed the limit of what ComposeColorFilter can combine, we still // can build the DAG and won't assert if we call asColorFilter. sk_sp filter(make_blue(nullptr, nullptr)); const int kWayTooManyForComposeColorFilter = 100; for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) { filter = make_blue(filter, nullptr); // the first few of these will succeed, but after we hit the internal limit, // it will then return false. (void)filter->asColorFilter(nullptr); } } { // Check that a color filter image filter with a crop rect cannot // be expressed as a color filter. SkIRect cropRect = SkIRect::MakeWH(100, 100); sk_sp grayWithCrop(make_grayscale(nullptr, &cropRect)); REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr)); } { // Check that two non-commutative matrices are concatenated in // the correct order. float blueToRedMatrix[20] = { 0 }; blueToRedMatrix[2] = blueToRedMatrix[18] = 1; float redToGreenMatrix[20] = { 0 }; redToGreenMatrix[5] = redToGreenMatrix[18] = 1; sk_sp blueToRed(SkColorFilters::Matrix(blueToRedMatrix)); sk_sp filter1(SkImageFilters::ColorFilter(std::move(blueToRed), nullptr)); sk_sp redToGreen(SkColorFilters::Matrix(redToGreenMatrix)); sk_sp filter2(SkImageFilters::ColorFilter(std::move(redToGreen), std::move(filter1))); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setImageFilter(std::move(filter2)); SkCanvas canvas(result); canvas.clear(0x0); SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize)); canvas.drawRect(rect, paint); uint32_t pixel = *result.getAddr32(0, 0); // The result here should be green, since we have effectively shifted blue to green. REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } { // Tests pass by not asserting sk_sp image(make_small_image()); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); { // This tests for : // 1 ) location at (0,0,1) SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); // 2 ) location and target at same value SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ); // 3 ) large negative specular exponent value SkScalar specularExponent = -1000; sk_sp bmSrc(SkImageFilters::Image(std::move(image), {})); SkPaint paint; paint.setImageFilter(SkImageFilters::SpotLitSpecular( location, target, specularExponent, 180, 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, std::move(bmSrc))); SkCanvas canvas(result); SkRect r = SkRect::MakeIWH(kBitmapSize, kBitmapSize); canvas.drawRect(r, paint); } } } static void test_cropRects(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that all filters offset to their absolute crop rect, // unaffected by the input crop rect. // Tests pass by not asserting. sk_sp srcImg(create_empty_special_image(rContext, 100)); SkASSERT(srcImg); SkIRect inputCropRect = SkIRect::MakeXYWH(8, 13, 80, 80); SkIRect cropRect = SkIRect::MakeXYWH(20, 30, 60, 60); sk_sp input(make_grayscale(nullptr, &inputCropRect)); FilterList filters(input, &cropRect); for (int i = 0; i < filters.count(); ++i) { SkImageFilter* filter = filters.getFilter(i); SkIPoint offset; skif::Context ctx = make_context(100, 100, srcImg.get()); sk_sp resultImg(as_IFB(filter)->filterImage(ctx) .imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, resultImg, "%s", filters.getName(i)); REPORTER_ASSERT(reporter, offset.fX == 20 && offset.fY == 30, "%s", filters.getName(i)); } } static bool special_image_to_bitmap(GrDirectContext* dContext, const SkSpecialImage* src, SkBitmap* dst) { sk_sp img = src->asImage(); if (!img) { return false; } if (!dst->tryAllocN32Pixels(src->width(), src->height())) { return false; } return img->readPixels(dContext, dst->pixmap(), src->subset().fLeft, src->subset().fTop); } static void test_negative_blur_sigma(skiatest::Reporter* reporter, GrDirectContext* dContext) { // Check that SkBlurImageFilter will reject a negative sigma on creation, but properly uses the // absolute value of the mapped sigma after CTM application. static const int kWidth = 32, kHeight = 32; static const SkScalar kBlurSigma = SkIntToScalar(5); sk_sp positiveFilter(SkImageFilters::Blur(kBlurSigma, kBlurSigma, nullptr)); sk_sp negativeFilter(SkImageFilters::Blur(-kBlurSigma, kBlurSigma, nullptr)); REPORTER_ASSERT(reporter, !negativeFilter); sk_sp gradient = make_gradient_circle(kWidth, kHeight).asImage(); sk_sp imgSrc; if (dContext) { imgSrc = SkSpecialImages::MakeFromTextureImage( dContext, SkIRect::MakeWH(kWidth, kHeight), gradient, SkSurfaceProps()); } else { imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), gradient, {}); } SkIPoint offset; skif::Context ctx = make_context(32, 32, imgSrc.get()); sk_sp positiveResult( as_IFB(positiveFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, positiveResult); const SkM44 negativeScale = SkM44::Scale(-SK_Scalar1, SK_Scalar1); skif::Context negativeCTX = ctx.withNewMapping(skif::Mapping(negativeScale)); sk_sp negativeResult( as_IFB(positiveFilter)->filterImage(negativeCTX).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, negativeResult); SkBitmap positiveResultBM; SkBitmap negativeResultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, positiveResult.get(), &positiveResultBM)); REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, negativeResult.get(), &negativeResultBM)); for (int y = 0; y < kHeight; y++) { int diffs = memcmp(positiveResultBM.getAddr32(0, y), negativeResultBM.getAddr32(0, y), positiveResultBM.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterNegativeBlurSigma, reporter) { test_negative_blur_sigma(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_negative_blur_sigma(reporter, ctxInfo.directContext()); } static void test_morphology_radius_with_mirror_ctm(skiatest::Reporter* reporter, GrDirectContext* dContext) { // Check that SkMorphologyImageFilter maps the radius correctly when the // CTM contains a mirroring transform. static const int kWidth = 32, kHeight = 32; static const int kRadius = 8; sk_sp filter(SkImageFilters::Dilate(kRadius, kRadius, nullptr)); SkBitmap bitmap; bitmap.allocN32Pixels(kWidth, kHeight); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); SkPaint paint; paint.setColor(SK_ColorWHITE); canvas.drawRect(SkRect::MakeXYWH(kWidth / 4, kHeight / 4, kWidth / 2, kHeight / 2), paint); sk_sp image = bitmap.asImage(); sk_sp imgSrc; if (dContext) { imgSrc = SkSpecialImages::MakeFromTextureImage( dContext, SkIRect::MakeWH(kWidth, kHeight), image, SkSurfaceProps()); } else { imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), image, {}); } SkIPoint offset; skif::Context ctx = make_context(32, 32, imgSrc.get()); sk_sp normalResult( as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, normalResult); SkM44 mirrorX = SkM44::Translate(0, 32); mirrorX.preScale(SK_Scalar1, -SK_Scalar1); skif::Context mirrorXCTX = ctx.withNewMapping(skif::Mapping(mirrorX)); sk_sp mirrorXResult( as_IFB(filter)->filterImage(mirrorXCTX).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, mirrorXResult); SkM44 mirrorY = SkM44::Translate(32, 0); mirrorY.preScale(-SK_Scalar1, SK_Scalar1); skif::Context mirrorYCTX = ctx.withNewMapping(skif::Mapping(mirrorY)); sk_sp mirrorYResult( as_IFB(filter)->filterImage(mirrorYCTX).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, mirrorYResult); SkBitmap normalResultBM, mirrorXResultBM, mirrorYResultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, normalResult.get(), &normalResultBM)); REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorXResult.get(), &mirrorXResultBM)); REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorYResult.get(), &mirrorYResultBM)); for (int y = 0; y < kHeight; y++) { int diffs = memcmp(normalResultBM.getAddr32(0, y), mirrorXResultBM.getAddr32(0, y), normalResultBM.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(normalResultBM.getAddr32(0, y), mirrorYResultBM.getAddr32(0, y), normalResultBM.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(MorphologyFilterRadiusWithMirrorCTM, reporter) { test_morphology_radius_with_mirror_ctm(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(MorphologyFilterRadiusWithMirrorCTM_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_morphology_radius_with_mirror_ctm(reporter, ctxInfo.directContext()); } static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrDirectContext* dContext) { // Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly. SkIRect cropRect = SkIRect::MakeXYWH(5, 0, 5, 10); sk_sp input(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); sk_sp filter(SkImageFilters::Blur(0, 0, std::move(input), &cropRect)); sk_sp image = create_empty_special_image(dContext, 10, SkColors::kGreen); SkIPoint offset; skif::Context ctx = make_context(32, 32, image.get()); sk_sp result(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10); SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); for (int y = 0; y < resultBM.height(); y++) { for (int x = 0; x < resultBM.width(); x++) { bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN; REPORTER_ASSERT(reporter, !diff); if (diff) { break; } } } } DEF_TEST(ImageFilterZeroBlurSigma, reporter) { test_zero_blur_sigma(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_zero_blur_sigma(reporter, ctxInfo.directContext()); } // Tests that, even when an upstream filter has returned null (due to failure or clipping), a // downstream filter that affects transparent black still does so even with a nullptr input. static void test_fail_affects_transparent_black(skiatest::Reporter* reporter, GrDirectContext* dContext) { sk_sp failFilter = SkImageFilters::Empty(); sk_sp source(create_empty_special_image(dContext, 5)); skif::Context ctx = make_context(1, 1, source.get()); sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); SkASSERT(as_CFB(green)->affectsTransparentBlack()); sk_sp greenFilter(SkImageFilters::ColorFilter(std::move(green), std::move(failFilter))); SkIPoint offset; sk_sp result(as_IFB(greenFilter)->filterImage(ctx) .imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, nullptr != result.get()); if (result) { SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN); } } DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) { test_fail_affects_transparent_black(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_fail_affects_transparent_black(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterDrawTiled, reporter) { // Check that all filters when drawn tiled (with subsequent clip rects) exactly // match the same filters drawn with a single full-canvas bitmap draw. // Tests pass by not asserting. FilterList filters(nullptr); SkBitmap untiledResult, tiledResult; const int width = 64, height = 64; untiledResult.allocN32Pixels(width, height); tiledResult.allocN32Pixels(width, height); SkCanvas tiledCanvas(tiledResult); SkCanvas untiledCanvas(untiledResult); const int tileSize = 8; SkPaint textPaint; textPaint.setColor(SK_ColorWHITE); SkFont font(ToolUtils::DefaultPortableTypeface(), height); const char* text = "ABC"; const SkScalar yPos = SkIntToScalar(height); for (int scale = 1; scale <= 2; ++scale) { for (int i = 0; i < filters.count(); ++i) { SkPaint combinedPaint; combinedPaint.setColor(SK_ColorWHITE); combinedPaint.setImageFilter(sk_ref_sp(filters.getFilter(i))); untiledCanvas.clear(SK_ColorTRANSPARENT); untiledCanvas.save(); untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); untiledCanvas.drawString(text, 0, yPos, font, combinedPaint); untiledCanvas.restore(); tiledCanvas.clear(SK_ColorTRANSPARENT); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { tiledCanvas.save(); const SkRect clipRect = SkRect::MakeXYWH(x, y, tileSize, tileSize); tiledCanvas.clipRect(clipRect); if (filters.needsSaveLayer(i)) { tiledCanvas.saveLayer(nullptr, &combinedPaint); tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawString(text, 0, yPos, font, textPaint); tiledCanvas.restore(); } else { tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawString(text, 0, yPos, font, combinedPaint); } tiledCanvas.restore(); } } if (!ToolUtils::equal_pixels(untiledResult, tiledResult)) { SkString encoded; SkString errString("Tiled image filter doesn't match untiled reference"); errString.append("\nExpected: "); if (ToolUtils::BitmapToBase64DataURI(untiledResult, &encoded)) { errString.append(encoded); } else { errString.append("failed to encode"); } errString.append("\nActual: "); if (ToolUtils::BitmapToBase64DataURI(tiledResult, &encoded)) { errString.append(encoded); } else { errString.append("failed to encode"); } ERRORF(reporter, "%s\n%s", filters.getName(i), errString.c_str()); } } } } static void draw_saveLayer_picture(int width, int height, int tileSize, SkBBHFactory* factory, SkBitmap* result) { SkMatrix matrix; matrix.setTranslate(SkIntToScalar(50), 0); sk_sp cf(SkColorFilters::Blend(SK_ColorWHITE, SkBlendMode::kSrc)); sk_sp cfif(SkImageFilters::ColorFilter(std::move(cf), nullptr)); sk_sp imageFilter(SkImageFilters::MatrixTransform(matrix, SkSamplingOptions(), std::move(cfif))); SkPaint paint; paint.setImageFilter(std::move(imageFilter)); SkPictureRecorder recorder; SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50)); SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width), SkIntToScalar(height), factory); recordingCanvas->translate(-55, 0); recordingCanvas->saveLayer(&bounds, &paint); recordingCanvas->restore(); sk_sp picture1(recorder.finishRecordingAsPicture()); result->allocN32Pixels(width, height); SkCanvas canvas(*result); canvas.clear(0); canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize))); canvas.drawPicture(picture1.get()); } DEF_TEST(ImageFilterDrawMatrixBBH, reporter) { // Check that matrix filter when drawn tiled with BBH exactly // matches the same thing drawn without BBH. // Tests pass by not asserting. const int width = 200, height = 200; const int tileSize = 100; SkBitmap result1, result2; SkRTreeFactory factory; draw_saveLayer_picture(width, height, tileSize, &factory, &result1); draw_saveLayer_picture(width, height, tileSize, nullptr, &result2); for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } static sk_sp make_blur(sk_sp input) { return SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(input)); } static sk_sp make_drop_shadow(sk_sp input) { return SkImageFilters::DropShadow(100, 100, 10, 10, SK_ColorBLUE, std::move(input)); } DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) { sk_sp filter1(make_blur(nullptr)); sk_sp filter2(make_drop_shadow(std::move(filter1))); static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); // For output, the [0,0,100,100] source is expanded to [-3,-3,103,103] by the initial blur. // The drop shadow is translated by [100,100] and further outset by 30px -> [67,67,233,233], // The blend unions the inner blur result with the drop shadow to get [-3,-3,233,233]. static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233); SkIRect outputBounds = filter2->filterBounds(kContentBounds, SkMatrix::I(), SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); // For input, it should be able to restrict itself to the source content. SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &kContentBounds); REPORTER_ASSERT(reporter, inputBounds == kContentBounds); } DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) { sk_sp filter1(make_drop_shadow(nullptr)); sk_sp filter2(make_blur(std::move(filter1))); static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); // For output, the [0,0,100,100] source is translated by 100px and outset by 30px for the drop // shadow = [70,70,230,230], then blended back with its original to get [0,0,230,230]. This is // then outset by 3px for the outer blur to get [-3,-3,233,233]. static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233); SkIRect outputBounds = filter2->filterBounds(kContentBounds, SkMatrix::I(), SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); // For input, it should be able to restrict itself to the source content. SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &kContentBounds); REPORTER_ASSERT(reporter, inputBounds == kContentBounds); } DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) { sk_sp filter1(SkImageFilters::Dilate(2, 2, nullptr)); sk_sp filter2(make_drop_shadow(std::move(filter1))); static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); // For output, the [0,0,100,100] source is outset by dilate radius (2px) to [-2,-2,102,102]. // This is then translated by 100px and outset by 30px for the drop shadow = [68,68,232,232]. // Finally this is joined with the original dilate result to get [-2,-2,232,232]. static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-2, -2, 232, 232); SkIRect outputBounds = filter2->filterBounds(kContentBounds, SkMatrix::I(), SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); // For input, it should be able to restrict itself to the source content. SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &kContentBounds); REPORTER_ASSERT(reporter, inputBounds == kContentBounds); } DEF_TEST(ImageFilterScaledBlurRadius, reporter) { // Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow // (before the CTM). Bounds should be computed correctly in the presence of // a (possibly negative) scale. sk_sp blur(make_blur(nullptr)); sk_sp dropShadow(make_drop_shadow(nullptr)); { // Uniform scale by 2. SkMatrix scaleMatrix; scaleMatrix.setScale(2, 2); static const SkIRect kBounds = SkIRect::MakeLTRB(0, 0, 200, 200); static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206); SkIRect blurBounds = blur->filterBounds( kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds); static const SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460); SkIRect shadowBounds = dropShadow->filterBounds( kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds); SkIRect reverseShadowBounds = dropShadow->filterBounds( kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds); } { // Vertical flip. SkMatrix scaleMatrix; scaleMatrix.setScale(1, -1); static const SkIRect kBounds = SkIRect::MakeLTRB(0, -100, 100, 0); static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3); SkIRect blurBounds = blur->filterBounds( kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds); SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0); SkIRect shadowBounds = dropShadow->filterBounds( kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds); SkIRect reverseShadowBounds = dropShadow->filterBounds( kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds); } } DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) { sk_sp filter1(make_blur(nullptr)); sk_sp filter2(make_blur(nullptr)); sk_sp composedFilter(SkImageFilters::Compose(std::move(filter1), std::move(filter2))); static const SkRect kBoundsSrc = SkRect::MakeIWH(100, 100); static const SkRect kExpectedBounds = SkRect::MakeXYWH(-6, -6, 112, 112); SkRect boundsDst = composedFilter->computeFastBounds(kBoundsSrc); REPORTER_ASSERT(reporter, boundsDst == kExpectedBounds); } DEF_TEST(ImageFilterUnionBounds, reporter) { sk_sp offset(SkImageFilters::Offset(50, 0, nullptr)); // Regardless of which order they appear in, the image filter bounds should // be combined correctly. { sk_sp composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, offset)); SkRect bounds = SkRect::MakeIWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); } { sk_sp composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr, offset, nullptr)); SkRect bounds = SkRect::MakeIWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); } } static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter, GrRecordingContext* rContext) { SkBitmap greenBM; greenBM.allocN32Pixels(20, 20); greenBM.eraseColor(SK_ColorGREEN); sk_sp greenImage(greenBM.asImage()); sk_sp source(SkImageFilters::Image(std::move(greenImage), {})); sk_sp merge(SkImageFilters::Merge(source, source)); sk_sp srcImg(create_empty_special_image(rContext, 1)); skif::Context ctx = make_context(100, 100, srcImg.get()); SkIPoint offset; sk_sp resultImg(as_IFB(merge)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20); } DEF_TEST(ImageFilterMergeResultSize, reporter) { test_imagefilter_merge_result_size(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_imagefilter_merge_result_size(reporter, ctxInfo.directContext()); } static void draw_blurred_rect(SkCanvas* canvas) { SkPaint filterPaint; filterPaint.setColor(SK_ColorWHITE); filterPaint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(8), 0, nullptr)); canvas->saveLayer(nullptr, &filterPaint); SkPaint whitePaint; whitePaint.setColor(SK_ColorWHITE); canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint); canvas->restore(); } static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) { canvas->save(); canvas->clipRect(clipRect); canvas->drawPicture(picture); canvas->restore(); } DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) { // Check that the blur filter when recorded with RTree acceleration, // and drawn tiled (with subsequent clip rects) exactly // matches the same filter drawn with without RTree acceleration. // This tests that the "bleed" from the blur into the otherwise-blank // tiles is correctly rendered. // Tests pass by not asserting. int width = 16, height = 8; SkBitmap result1, result2; result1.allocN32Pixels(width, height); result2.allocN32Pixels(width, height); SkCanvas canvas1(result1); SkCanvas canvas2(result2); int tileSize = 8; canvas1.clear(0); canvas2.clear(0); SkRTreeFactory factory; SkPictureRecorder recorder1, recorder2; // The only difference between these two pictures is that one has RTree aceleration. SkCanvas* recordingCanvas1 = recorder1.beginRecording(width, height); SkCanvas* recordingCanvas2 = recorder2.beginRecording(width, height, &factory); draw_blurred_rect(recordingCanvas1); draw_blurred_rect(recordingCanvas2); sk_sp picture1(recorder1.finishRecordingAsPicture()); sk_sp picture2(recorder2.finishRecordingAsPicture()); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)); draw_picture_clipped(&canvas1, tileRect, picture1.get()); draw_picture_clipped(&canvas2, tileRect, picture2.get()); } } for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterMatrixConvolution, reporter) { // Check that a 1x3 filter does not cause a spurious assert. SkScalar kernel[3] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(1, 3); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr)); SkBitmap result; int width = 16, height = 16; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint paint; paint.setImageFilter(std::move(filter)); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); canvas.drawRect(rect, paint); } DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) { // Check that a filter with borders outside the target bounds // does not crash. SkScalar kernel[3] = { 0, 0, 0, }; SkISize kernelSize = SkISize::Make(3, 1); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(2, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr)); SkBitmap result; int width = 10, height = 10; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint filterPaint; filterPaint.setImageFilter(std::move(filter)); SkRect bounds = SkRect::MakeIWH(1, 10); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); SkPaint rectPaint; canvas.saveLayer(&bounds, &filterPaint); canvas.drawRect(rect, rectPaint); canvas.restore(); } static void test_big_kernel(skiatest::Reporter* reporter, GrRecordingContext* rContext) { // Check that a kernel that is too big for the GPU still works SkScalar identityKernel[49] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; SkISize kernelSize = SkISize::Make(7, 7); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp filter(SkImageFilters::MatrixConvolution( kernelSize, identityKernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr)); sk_sp srcImg(create_empty_special_image(rContext, 100)); SkASSERT(srcImg); SkIPoint offset; skif::Context ctx = make_context(100, 100, srcImg.get()); sk_sp resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, SkToBool(rContext) == resultImg->isGaneshBacked()); REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100); REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0); } DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) { test_big_kernel(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_big_kernel(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterCropRect, reporter) { test_cropRects(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_cropRects(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterMatrix, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); const SkM44 expectedMatrix = canvas.getLocalToDevice(); SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory); SkPaint paint; paint.setImageFilter(sk_sp(new MatrixTestImageFilter(reporter, expectedMatrix))); recordingCanvas->saveLayer(nullptr, &paint); SkPaint solidPaint; solidPaint.setColor(0xFFFFFFFF); recordingCanvas->save(); recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); recordingCanvas->restore(); // scale recordingCanvas->restore(); // saveLayer canvas.drawPicture(recorder.finishRecordingAsPicture()); } static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp picture; { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); picture = recorder.finishRecordingAsPicture(); } sk_sp srcImg(create_empty_special_image(rContext, 2)); sk_sp imageFilter(SkImageFilters::Picture(picture)); SkIPoint offset; skif::Context ctx = make_context(SkIRect::MakeXYWH(1,1,1,1), srcImg.get()); sk_sp resultImage( as_IFB(imageFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, !resultImage); } DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) { test_clipped_picture_imagefilter(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_clipped_picture_imagefilter(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterEmptySaveLayer, reporter) { // Even when there's an empty saveLayer()/restore(), ensure that an image // filter or color filter which affects transparent black still draws. SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); SkCanvas canvas(bitmap); SkRTreeFactory factory; SkPictureRecorder recorder; sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); sk_sp imageFilter(SkImageFilters::ColorFilter(green, nullptr)); SkPaint imageFilterPaint; imageFilterPaint.setImageFilter(std::move(imageFilter)); SkPaint colorFilterPaint; colorFilterPaint.setColorFilter(green); SkRect bounds = SkRect::MakeIWH(10, 10); SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory); recordingCanvas->saveLayer(&bounds, &imageFilterPaint); recordingCanvas->restore(); sk_sp picture(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory); recordingCanvas->saveLayer(nullptr, &imageFilterPaint); recordingCanvas->restore(); sk_sp picture2(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture2); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory); recordingCanvas->saveLayer(&bounds, &colorFilterPaint); recordingCanvas->restore(); sk_sp picture3(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture3); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); // Check that a blur with a very large radius does not crash or assert. SkPaint paint; paint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr)); canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); } DEF_TEST(HugeBlurImageFilter, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_huge_blur(&canvas, reporter); } DEF_TEST(ImageFilterMatrixConvolutionTest, reporter) { SkScalar kernel[1] = { 0 }; SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(1, 1); // Check that an enormous (non-allocatable) kernel gives a nullptr filter. sk_sp conv(SkImageFilters::MatrixConvolution( SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr)); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a nullptr kernel gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a kernel width < 1 gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(0, 1), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that kernel height < 1 gives a nullptr filter. conv = SkImageFilters::MatrixConvolution( SkISize::Make(1, -1), kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); } static void test_xfermode_cropped_input(SkSurface* surf, skiatest::Reporter* reporter) { auto canvas = surf->getCanvas(); canvas->clear(SK_ColorRED); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); bitmap.eraseARGB(255, 255, 255, 255); sk_sp green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrcIn)); sk_sp greenFilter(SkImageFilters::ColorFilter(green, nullptr)); SkIRect cropRect = SkIRect::MakeEmpty(); sk_sp croppedOut(SkImageFilters::ColorFilter(green, nullptr, &cropRect)); // Check that an blend image filter whose input has been cropped out still draws the other // input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning. SkBlendMode mode = SkBlendMode::kSrcOver; sk_sp xfermodeNoFg(SkImageFilters::Blend( mode, greenFilter, croppedOut, nullptr)); sk_sp xfermodeNoBg(SkImageFilters::Blend( mode, croppedOut, greenFilter, nullptr)); sk_sp xfermodeNoFgNoBg(SkImageFilters::Blend( mode, croppedOut, croppedOut, nullptr)); SkPaint paint; paint.setImageFilter(std::move(xfermodeNoFg)); canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite // xfermodeNoFg is a src-over blend between a green image and a transparent black image, // so should just be green. uint32_t pixel; SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // xfermodeNoBg is the reverse of the above, but because it's src-over the final blend // between transparent black and green is still green. canvas->clear(SK_ColorRED); // should be overwritten paint.setImageFilter(std::move(xfermodeNoBg)); canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // xfermodeNoFgNoBg is a src-over blend of two empty images, so should produce no change // to the image. canvas->clear(SK_ColorRED); // should not be overwritten paint.setImageFilter(std::move(xfermodeNoFgNoBg)); canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite surf->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorRED); } DEF_TEST(ImageFilterNestedSaveLayer, reporter) { SkBitmap temp; temp.allocN32Pixels(50, 50); SkCanvas canvas(temp); canvas.clear(0x0); SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); bitmap.eraseColor(SK_ColorGREEN); SkMatrix matrix; matrix.setScale(SkIntToScalar(2), SkIntToScalar(2)); matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20)); sk_sp matrixFilter( SkImageFilters::MatrixTransform(matrix, SkSamplingOptions(SkFilterMode::kLinear), nullptr)); // Test that saveLayer() with a filter nested inside another saveLayer() applies the // correct offset to the filter matrix. SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30); canvas.saveLayer(&bounds1, nullptr); SkPaint filterPaint; filterPaint.setImageFilter(std::move(matrixFilter)); SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10); canvas.saveLayer(&bounds2, &filterPaint); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); canvas.drawRect(bounds2, greenPaint); canvas.restore(); canvas.restore(); SkPaint strokePaint; strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setColor(SK_ColorRED); SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); uint32_t pixel; temp.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Test that drawSprite() with a filter nested inside a saveLayer() applies the // correct offset to the filter matrix. canvas.clear(0x0); temp.readPixels(info, &pixel, 4, 25, 25); canvas.saveLayer(&bounds1, nullptr); canvas.drawImage(bitmap.asImage(), 20, 20, SkSamplingOptions(), &filterPaint); // drawSprite canvas.restore(); temp.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(XfermodeImageFilterCroppedInput, reporter) { test_xfermode_cropped_input(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100)).get(), reporter); } static void test_composed_imagefilter_offset(skiatest::Reporter* reporter, GrRecordingContext* rContext) { sk_sp srcImg(create_empty_special_image(rContext, 100)); SkIRect cropRect = SkIRect::MakeXYWH(1, 0, 20, 20); sk_sp offsetFilter(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); sk_sp blurFilter(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, nullptr, &cropRect)); sk_sp composedFilter(SkImageFilters::Compose(std::move(blurFilter), std::move(offsetFilter))); SkIPoint offset; skif::Context ctx = make_context(100, 100, srcImg.get()); sk_sp resultImg( as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0); } DEF_TEST(ComposedImageFilterOffset, reporter) { test_composed_imagefilter_offset(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_composed_imagefilter_offset(reporter, ctxInfo.directContext()); } static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter, GrDirectContext* dContext) { // The bounds passed to the inner filter must be filtered by the outer // filter, so that the inner filter produces the pixels that the outer // filter requires as input. This matters if the outer filter moves pixels. // Here, accounting for the outer offset is necessary so that the green // pixels of the picture are not clipped. SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeIWH(200, 100)); recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100)); recordingCanvas->clear(SK_ColorGREEN); sk_sp picture(recorder.finishRecordingAsPicture()); sk_sp pictureFilter(SkImageFilters::Picture(picture)); SkIRect cropRect = SkIRect::MakeWH(100, 100); sk_sp offsetFilter(SkImageFilters::Offset(-100, 0, nullptr, &cropRect)); sk_sp composedFilter(SkImageFilters::Compose(std::move(offsetFilter), std::move(pictureFilter))); sk_sp sourceImage(create_empty_special_image(dContext, 100)); skif::Context ctx = make_context(100, 100, sourceImage.get()); SkIPoint offset; sk_sp result( as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); REPORTER_ASSERT(reporter, offset.isZero()); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100)); SkBitmap resultBM; REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN); } DEF_TEST(ComposedImageFilterBounds, reporter) { test_composed_imagefilter_bounds(reporter, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { test_composed_imagefilter_bounds(reporter, ctxInfo.directContext()); } DEF_TEST(ImageFilterCanComputeFastBounds, reporter) { { SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); sk_sp lighting(SkImageFilters::PointLitDiffuse( location, SK_ColorGREEN, 0, 0, nullptr)); REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds()); } { sk_sp gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); { SkColorFilter* grayCF; REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF)); REPORTER_ASSERT(reporter, !as_CFB(grayCF)->affectsTransparentBlack()); grayCF->unref(); } REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); sk_sp grayBlur(SkImageFilters::Blur( SK_Scalar1, SK_Scalar1, std::move(gray))); REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds()); } { float greenMatrix[20] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0f/255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0f/255 }; sk_sp greenCF(SkColorFilters::Matrix(greenMatrix)); sk_sp green(SkImageFilters::ColorFilter(greenCF, nullptr)); REPORTER_ASSERT(reporter, as_CFB(greenCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !green->canComputeFastBounds()); sk_sp greenBlur(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(green))); REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds()); } uint8_t allOne[256], identity[256]; for (int i = 0; i < 256; ++i) { identity[i] = i; allOne[i] = 255; } sk_sp identityCF(SkColorFilters::TableARGB(identity, identity, identity, allOne)); sk_sp identityFilter(SkImageFilters::ColorFilter(identityCF, nullptr)); REPORTER_ASSERT(reporter, !as_CFB(identityCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds()); sk_sp forceOpaqueCF(SkColorFilters::TableARGB(allOne, identity, identity, identity)); sk_sp forceOpaque(SkImageFilters::ColorFilter(forceOpaqueCF, nullptr)); REPORTER_ASSERT(reporter, as_CFB(forceOpaqueCF)->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds()); } // Verify that SkImageSource survives serialization DEF_TEST(ImageFilterImageSourceSerialization, reporter) { auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(10, 10))); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp image(surface->makeImageSnapshot()); sk_sp filter(SkImageFilters::Image(std::move(image), SkFilterMode::kNearest)); SkSerialProcs sProcs; sProcs.fImageProc = [](SkImage* img, void*) -> sk_sp { return SkPngEncoder::Encode(as_IB(img)->directContext(), img, SkPngEncoder::Options{}); }; sk_sp data(filter->serialize(&sProcs)); sk_sp unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); REPORTER_ASSERT(reporter, unflattenedFilter); SkBitmap bm; bm.allocN32Pixels(10, 10); bm.eraseColor(SK_ColorBLUE); SkPaint paint; paint.setColor(SK_ColorRED); paint.setImageFilter(unflattenedFilter); SkCanvas canvas(bm); canvas.drawRect(SkRect::MakeIWH(10, 10), paint); REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN)); } DEF_TEST(ImageFilterImageSourceUninitialized, r) { sk_sp data(GetResourceAsData("crbug769134.fil")); if (!data) { return; } sk_sp unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); // This will fail. More importantly, msan will verify that we did not // compare against uninitialized memory. REPORTER_ASSERT(r, !unflattenedFilter); } static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) { SkBitmap largeBmp; int largeW = 5000; int largeH = 5000; // If we're GPU-backed make the bitmap too large to be converted into a texture. if (auto ctx = canvas->recordingContext()) { largeW = ctx->priv().caps()->maxTextureSize() + 1; } largeBmp.allocN32Pixels(largeW, largeH); largeBmp.eraseColor(0); if (!largeBmp.getPixels()) { ERRORF(reporter, "Failed to allocate large bmp."); return; } sk_sp largeImage(largeBmp.asImage()); if (!largeImage) { ERRORF(reporter, "Failed to create large image."); return; } sk_sp largeSource(SkImageFilters::Image(std::move(largeImage), {})); if (!largeSource) { ERRORF(reporter, "Failed to create large SkImageSource."); return; } sk_sp blur(SkImageFilters::Blur(10.f, 10.f, std::move(largeSource))); if (!blur) { ERRORF(reporter, "Failed to create SkBlurImageFilter."); return; } SkPaint paint; paint.setImageFilter(std::move(blur)); // This should not crash (http://crbug.com/570479). canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint); } DEF_TEST(ImageFilterBlurLargeImage, reporter) { auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100))); test_large_blur_input(reporter, surface->getCanvas()); } static void test_make_with_filter( skiatest::Reporter* reporter, const std::function(int width, int height)>& createSurface, const std::function(sk_sp src, const SkImageFilter* filter, const SkIRect& subset, const SkIRect& clipBounds, SkIRect* outSubset, SkIPoint* offset)>& makeWithFilter) { sk_sp surface(createSurface(192, 128)); surface->getCanvas()->clear(SK_ColorRED); SkPaint bluePaint; bluePaint.setColor(SK_ColorBLUE); SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50); surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint); sk_sp sourceImage = surface->makeImageSnapshot(); sk_sp filter = make_grayscale(nullptr, nullptr); SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100); SkIRect outSubset; SkIPoint offset; sk_sp result; result = makeWithFilter(sourceImage, nullptr, subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); // filter is required result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, nullptr, &offset); REPORTER_ASSERT(reporter, !result); // outSubset is required result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, nullptr); REPORTER_ASSERT(reporter, !result); // offset is required SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000); result = makeWithFilter(sourceImage, filter.get(), bigSubset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); // subset needs to be w/in source's bounds const SkIRect kEmpty = SkIRect::MakeEmpty(); result = makeWithFilter(sourceImage, filter.get(), kEmpty, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); // subset can't be empty result = makeWithFilter(sourceImage, filter.get(), subset, kEmpty, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); // clipBounds can't be empty const SkIRect kLeftField = SkIRect::MakeXYWH(-1000, 0, 100, 100); result = makeWithFilter(sourceImage, filter.get(), subset, kLeftField, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->bounds().contains(outSubset)); SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(), outSubset.width(), outSubset.height()); REPORTER_ASSERT(reporter, clipBounds.contains(destRect)); // In GPU-mode, this case creates a special image with a backing size that differs from // the content size { clipBounds.setXYWH(0, 0, 170, 100); subset.setXYWH(0, 0, 160, 90); filter = SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr); result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); // In Ganesh, we want the result image (and all intermediate steps) to have used the same // origin as the original surface. if (result && as_IB(result)->isGaneshBacked()) { SkImage_GaneshBase* base = static_cast(result.get()); REPORTER_ASSERT(reporter, base->origin() == kTestSurfaceOrigin); } } } DEF_TEST(ImageFilterMakeWithFilter, reporter) { auto createRasterSurface = [](int width, int height) -> sk_sp { const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); return SkSurfaces::Raster(info); }; auto raster = [](sk_sp src, const SkImageFilter* filter, const SkIRect& subset, const SkIRect& clipBounds, SkIRect* outSubset, SkIPoint* offset) -> sk_sp { return SkImages::MakeWithFilter(std::move(src), filter, subset, clipBounds, outSubset, offset); }; test_make_with_filter(reporter, createRasterSurface, raster); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Ganesh, reporter, ctxInfo, CtsEnforcement::kNever) { GrRecordingContext* rContext = ctxInfo.directContext(); auto createGaneshSurface = [rContext](int width, int height) -> sk_sp { const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); return SkSurfaces::RenderTarget( rContext, skgpu::Budgeted::kNo, info, 0, kTestSurfaceOrigin, nullptr); }; auto ganesh = [rContext](sk_sp src, const SkImageFilter* filter, const SkIRect& subset, const SkIRect& clipBounds, SkIRect* outSubset, SkIPoint* offset) -> sk_sp { return SkImages::MakeWithFilter(rContext, std::move(src), filter, subset, clipBounds, outSubset, offset); }; test_make_with_filter(reporter, createGaneshSurface, ganesh); } #if defined(SK_GRAPHITE) DEF_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Graphite, reporter, context, CtsEnforcement::kApiLevel_202404) { std::unique_ptr recorder = context->makeRecorder(ToolUtils::CreateTestingRecorderOptions()); auto createGraphiteSurface = [r = recorder.get()](int width, int height) -> sk_sp { const SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType); return SkSurfaces::RenderTarget(r, info); }; auto graphite = [r = recorder.get()](sk_sp src, const SkImageFilter* filter, const SkIRect& subset, const SkIRect& clipBounds, SkIRect* outSubset, SkIPoint* offset) -> sk_sp { return SkImages::MakeWithFilter(r, std::move(src), filter, subset, clipBounds, outSubset, offset); }; test_make_with_filter(reporter, createGraphiteSurface, graphite); } #endif DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { sk_sp surf(SkSurfaces::RenderTarget( ctxInfo.directContext(), skgpu::Budgeted::kNo, SkImageInfo::MakeN32Premul(100, 100))); SkCanvas* canvas = surf->getCanvas(); test_huge_blur(canvas, reporter); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { sk_sp surf(SkSurfaces::RenderTarget( ctxInfo.directContext(), skgpu::Budgeted::kNo, SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); test_xfermode_cropped_input(surf.get(), reporter); } DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu, reporter, ctxInfo, CtsEnforcement::kNever) { auto surface(SkSurfaces::RenderTarget( ctxInfo.directContext(), skgpu::Budgeted::kYes, SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); test_large_blur_input(reporter, surface->getCanvas()); } /* * Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more * than just scale/translate, but that other filters do. */ DEF_TEST(ImageFilterComplexCTM, reporter) { // just need a colorfilter to exercise the corresponding imagefilter sk_sp cf = SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcATop); sk_sp cfif = SkImageFilters::ColorFilter(cf, nullptr); // can handle sk_sp blif = SkImageFilters::Blur(3, 3, nullptr); // cannot handle using MatrixCapability = SkImageFilter_Base::MatrixCapability; struct { sk_sp fFilter; MatrixCapability fExpectCapability; } recs[] = { { cfif, MatrixCapability::kComplex }, { SkImageFilters::ColorFilter(cf, cfif), MatrixCapability::kComplex }, { SkImageFilters::Merge(cfif, cfif), MatrixCapability::kComplex }, { SkImageFilters::Compose(cfif, cfif), MatrixCapability::kComplex }, { blif, MatrixCapability::kScaleTranslate }, { SkImageFilters::Blur(3, 3, cfif), MatrixCapability::kScaleTranslate }, { SkImageFilters::ColorFilter(cf, blif), MatrixCapability::kScaleTranslate }, { SkImageFilters::Merge(cfif, blif), MatrixCapability::kScaleTranslate }, { SkImageFilters::Compose(blif, cfif), MatrixCapability::kScaleTranslate }, }; for (const auto& rec : recs) { const MatrixCapability capability = as_IFB(rec.fFilter)->getCTMCapability(); REPORTER_ASSERT(reporter, capability == rec.fExpectCapability); } } // Test SkXfermodeImageFilter::filterBounds with different blending modes. DEF_TEST(XfermodeImageFilterBounds, reporter) { SkIRect background_rect = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect foreground_rect = SkIRect::MakeXYWH(50, 50, 100, 100); sk_sp background = SkImageFilters::Crop(SkRect::Make(background_rect), nullptr); sk_sp foreground = SkImageFilters::Crop(SkRect::Make(foreground_rect), nullptr); SkIRect expectedBounds[kSkBlendModeCount]; // Expect union of input rects by default. for (int i = 0; i < kSkBlendModeCount; ++i) { expectedBounds[i] = background_rect; expectedBounds[i].join(foreground_rect); } SkIRect intersection = background_rect; intersection.intersect(foreground_rect); expectedBounds[static_cast(SkBlendMode::kClear)] = SkIRect::MakeEmpty(); expectedBounds[static_cast(SkBlendMode::kSrc)] = foreground_rect; expectedBounds[static_cast(SkBlendMode::kDst)] = background_rect; expectedBounds[static_cast(SkBlendMode::kSrcIn)] = intersection; expectedBounds[static_cast(SkBlendMode::kDstIn)] = intersection; expectedBounds[static_cast(SkBlendMode::kSrcOut)] = foreground_rect; expectedBounds[static_cast(SkBlendMode::kDstOut)] = background_rect; expectedBounds[static_cast(SkBlendMode::kSrcATop)] = background_rect; expectedBounds[static_cast(SkBlendMode::kDstATop)] = foreground_rect; expectedBounds[static_cast(SkBlendMode::kModulate)] = intersection; // Use a very large input bounds so that the crop rects stored in 'background' and 'foreground' // aren't restricted. SkIRect src = SkRectPriv::MakeILarge(); for (int i = 0; i < kSkBlendModeCount; ++i) { sk_sp xfermode(SkImageFilters::Blend(static_cast(i), background, foreground, nullptr)); auto bounds = xfermode->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, bounds == expectedBounds[i]); } // Test empty intersection. sk_sp background2 = SkImageFilters::Crop(SkRect::MakeXYWH(0, 0, 20, 20), nullptr); sk_sp foreground2 = SkImageFilters::Crop(SkRect::MakeXYWH(40, 40, 50, 50), nullptr); sk_sp xfermode(SkImageFilters::Blend( SkBlendMode::kSrcIn, std::move(background2), std::move(foreground2), nullptr)); auto bounds = xfermode->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, bounds.isEmpty()); } DEF_TEST(OffsetImageFilterBounds, reporter) { const SkIRect src = SkIRect::MakeXYWH(0, 0, 100, 100); const SkVector srcOffset = {-50.5f, -50.5f}; sk_sp offset(SkImageFilters::Offset(srcOffset.fX, srcOffset.fY, nullptr)); // Because the offset has a fractional component, the final output and required input bounds // will be rounded out to include an extra pixel. SkIRect expectedForward = SkRect::Make(src).makeOffset(srcOffset.fX, srcOffset.fY).roundOut(); SkIRect boundsForward = offset->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, boundsForward == expectedForward); SkIRect expectedReverse = SkRect::Make(src).makeOffset(-srcOffset.fX, -srcOffset.fY).roundOut(); // Intersect 'expectedReverse' with the source because we are passing &src in as the known // input bounds, which is the bounds of non-transparent pixels that can be moved by the offset. // While the ::Offset filter could show all pixels inside 'expectedReverse' given that 'src' // is also the target device output of the filter, the required input can be made tighter. SkAssertResult(expectedReverse.intersect(src)); SkIRect boundsReverse = offset->filterBounds(src, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &src); REPORTER_ASSERT(reporter, boundsReverse == expectedReverse); } DEF_TEST(OffsetImageFilterBoundsNoOverflow, reporter) { const SkIRect src = SkIRect::MakeXYWH(-10.f, -10.f, 20.f, 20.f); const SkScalar bigOffset = SkIntToScalar(std::numeric_limits::max()) * 2.f / 3.f; sk_sp filter = SkImageFilters::Blend(SkBlendMode::kSrcOver, SkImageFilters::Offset(-bigOffset, -bigOffset, nullptr), SkImageFilters::Offset(bigOffset, bigOffset, nullptr)); SkIRect boundsForward = filter->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); // NOTE: isEmpty() will return true even if the l/r or t/b didn't overflow but the dimensions // would overflow an int32. However, when isEmpty64() is false, it means the actual edge coords // are valid, which is good enough for our purposes (and gfx::Rect has its own strategies for // ensuring such a rectangle doesn't get accidentally treated as empty during chromium's // conversions). REPORTER_ASSERT(reporter, !boundsForward.isEmpty64()); // When querying with unbounded input content, it should not overflow and should not be empty. SkIRect boundsReverse = filter->filterBounds(src, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, nullptr); REPORTER_ASSERT(reporter, !boundsReverse.isEmpty64()); // However in this case, when 'src' is also passed as the content bounds, the ::Offset() filters // detect that they would be transparent black. This propagates up to the src-over blend and // the entire graph is identified as empty. boundsReverse = filter->filterBounds(src, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &src); REPORTER_ASSERT(reporter, boundsReverse.isEmpty64()); } static void test_arithmetic_bounds(skiatest::Reporter* reporter, float k1, float k2, float k3, float k4, sk_sp background, sk_sp foreground, const SkIRect* crop, const SkIRect& expected) { sk_sp arithmetic(SkImageFilters::Arithmetic( k1, k2, k3, k4, false, std::move(background), std::move(foreground), crop)); // Use a very large input bounds so that the crop rects stored in 'background' and 'foreground' // aren't restricted. SkIRect src = SkRectPriv::MakeILarge(); SkIRect bounds = arithmetic->filterBounds(src, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr); REPORTER_ASSERT(reporter, expected == bounds); } static void test_arithmetic_combinations(skiatest::Reporter* reporter, float v) { SkIRect bgRect = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect fgRect = SkIRect::MakeXYWH(50, 50, 100, 100); sk_sp background = SkImageFilters::Crop(SkRect::Make(bgRect), nullptr); sk_sp foreground = SkImageFilters::Crop(SkRect::Make(fgRect), nullptr); SkIRect unionRect = bgRect; unionRect.join(fgRect); SkIRect intersection = bgRect; intersection.intersect(fgRect); // Test with crop. When k4 is non-zero, the result is expected to be cropRect // regardless of inputs because the filter affects the whole crop area. When there is no crop // rect, it should report an effectively infinite output. static const SkIRect kInf = SkRectPriv::MakeILarge(); test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, nullptr, SkIRect::MakeEmpty()); test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, nullptr, bgRect); test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, nullptr, fgRect); test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, nullptr, intersection); test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, nullptr, bgRect); test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, nullptr, fgRect); test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, nullptr, kInf); test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, nullptr, unionRect); test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, nullptr, kInf); SkIRect cropRect = SkIRect::MakeXYWH(-111, -222, 333, 444); test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, &cropRect, SkIRect::MakeEmpty()); test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, &cropRect, bgRect); test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, &cropRect, fgRect); test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, &cropRect, unionRect); test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, &cropRect, intersection); test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, &cropRect, bgRect); test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, &cropRect, fgRect); test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, &cropRect, cropRect); test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, &cropRect, unionRect); test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, &cropRect, cropRect); } // Test SkArithmeticImageFilter::filterBounds with different blending modes. DEF_TEST(ArithmeticImageFilterBounds, reporter) { test_arithmetic_combinations(reporter, 1); test_arithmetic_combinations(reporter, 0.5); } // Test SkDisplacementMapEffect::filterBounds. DEF_TEST(DisplacementMapBounds, reporter) { SkIRect floodBounds(SkIRect::MakeXYWH(20, 30, 10, 10)); sk_sp flood(SkImageFilters::Shader(SkShaders::Color(SK_ColorGREEN), &floodBounds)); SkIRect tilingBounds(SkIRect::MakeXYWH(0, 0, 200, 100)); sk_sp tiling(SkImageFilters::Tile(SkRect::Make(floodBounds), SkRect::Make(tilingBounds), flood)); sk_sp displace(SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f, nullptr, tiling)); // The filter graph rooted at 'displace' uses the dynamic source image for the displacement // component of ::DisplacementMap, modifying the color component produced by the ::Tile. The // output of the tiling filter will be 'tilingBounds', regardless of its input, so 'floodBounds' // has no effect on the output. Since 'tiling' doesn't reference any dynamic source image, it // also will not affect the required input bounds. The displacement map is sampled 1-to-1 // with the output pixels, and covers the output unless the color's output makes that impossible // and the output is a subset of the desired output. Thus, the displacement can impact the // reported output bounds. SkIRect input(SkIRect::MakeXYWH(20, 30, 40, 50)); // 'input' is the desired output, which directly constrains the displacement component in this // specific filter graph. SkIRect actualInput = displace->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection); REPORTER_ASSERT(reporter, input == actualInput); // 'input' is the content bounds, which don't affect output bounds because it's only referenced // by the displacement component and not the color component. SkIRect actualOutput = displace->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, tilingBounds.makeOutset(10, 10) == actualOutput); } // Test SkImageSource::filterBounds. DEF_TEST(ImageSourceBounds, reporter) { sk_sp image(make_gradient_circle(64, 64).asImage()); // Default src and dst rects. sk_sp source1(SkImageFilters::Image(image, SkFilterMode::kNearest)); SkIRect imageBounds = SkIRect::MakeWH(64, 64); SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40)); REPORTER_ASSERT(reporter, imageBounds == source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input).isEmpty()); SkMatrix scale(SkMatrix::Scale(2, 2)); SkIRect scaledBounds = SkIRect::MakeWH(128, 128); REPORTER_ASSERT(reporter, scaledBounds == source1->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source1->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input).isEmpty()); // Specified src and dst rects (which are outside available pixels). SkRect src(SkRect::MakeXYWH(0.5, 0.5, 100.5, 100.5)); SkRect dst(SkRect::MakeXYWH(-10.5, -10.5, 120.5, 120.5)); sk_sp source2(SkImageFilters::Image(image, src, dst, SkSamplingOptions(SkFilterMode::kLinear, SkMipmapMode::kLinear))); SkRect clippedSrc = src; SkAssertResult(clippedSrc.intersect(SkRect::Make(image->dimensions()))); SkRect clippedDst = SkMatrix::RectToRect(src, dst).mapRect(clippedSrc); REPORTER_ASSERT(reporter, clippedDst.roundOut() == source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input).isEmpty()); scale.mapRect(&clippedDst); scale.mapRect(&clippedSrc); REPORTER_ASSERT(reporter, clippedDst.roundOut() == source2->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source2->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input).isEmpty()); } // Test SkPictureImageFilter::filterBounds. DEF_TEST(PictureImageSourceBounds, reporter) { SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(64, 64); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); sk_sp picture(recorder.finishRecordingAsPicture()); // Default target rect. sk_sp source1(SkImageFilters::Picture(picture)); SkIRect pictureBounds = SkIRect::MakeWH(64, 64); SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40)); REPORTER_ASSERT(reporter, pictureBounds == source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source1->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input).isEmpty()); SkMatrix scale(SkMatrix::Scale(2, 2)); SkIRect scaledPictureBounds = SkIRect::MakeWH(128, 128); REPORTER_ASSERT(reporter, scaledPictureBounds == source1->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source1->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input).isEmpty()); // Specified target rect. SkRect targetRect(SkRect::MakeXYWH(9.5, 9.5, 31, 21)); sk_sp source2(SkImageFilters::Picture(picture, targetRect)); REPORTER_ASSERT(reporter, targetRect.roundOut() == source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source2->filterBounds(input, SkMatrix::I(), SkImageFilter::kReverse_MapDirection, &input).isEmpty()); scale.mapRect(&targetRect); REPORTER_ASSERT(reporter, targetRect.roundOut() == source2->filterBounds(input, scale, SkImageFilter::kForward_MapDirection, nullptr)); REPORTER_ASSERT(reporter, source2->filterBounds(input, scale, SkImageFilter::kReverse_MapDirection, &input).isEmpty()); } DEF_TEST(DropShadowImageFilter_Huge, reporter) { // Successful if it doesn't crash or trigger ASAN. (crbug.com/1264705) auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(300, 150)); SkPaint paint; paint.setImageFilter(SkImageFilters::DropShadowOnly( 0.0f, 0.437009f, 14129.6f, 14129.6f, SK_ColorGRAY, nullptr)); surf->getCanvas()->saveLayer(nullptr, &paint); surf->getCanvas()->restore(); } DEF_TEST(DisplacementImageFilter_InvalidInputs_ReturnsNullptr, reporter) { sk_sp valid(SkImageFilters::Shader(SkShaders::Color(SK_ColorGREEN))); REPORTER_ASSERT(reporter, valid != nullptr); REPORTER_ASSERT( reporter, nullptr == SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, std::numeric_limits::infinity(), valid, valid)); REPORTER_ASSERT(reporter, nullptr == SkImageFilters::DisplacementMap(static_cast(22), SkColorChannel::kB, 5.f, valid, valid)); } DEF_TEST(ImageFilter_DrawExtremeMatrixTransform_DoesNotAssert, reporter) { // Found by fuzzing SkPaint p; p.setDither(true); p.setColor(SkColorSetARGB(255, 1, 255, 255)); p.setStyle(SkPaint::Style::kFill_Style); SkRRect rr = SkRRect::MakeRectXY({5, 10, 15, 20}, 2, 2); sk_sp ifs[4]; ifs[0] = nullptr; ifs[1] = SkImageFilters::Blur(SkBits2Float(0xe0e0e0e), SkBits2Float(0x10108000), nullptr); SkSamplingOptions sampling(SkFilterMode::kLinear, SkMipmapMode::kLinear); SkMatrix matrix = SkMatrix::MakeAll(SkBits2Float(0xfdfe0200), SkBits2Float(0xfdfdfdfd), SkBits2Float(0x2a0202fe), SkBits2Float(0x2020202), SkBits2Float(0x2020202), SkBits2Float(0x20200202), SkBits2Float(0x2fab0024), SkBits2Float(0x8), SkBits2Float(0x0)); ifs[2] = SkImageFilters::MatrixTransform(matrix, sampling, nullptr); ifs[3] = SkImageFilters::Shader(nullptr); auto merged = SkImageFilters::Merge(ifs, 4, nullptr); p.setImageFilter(merged); auto surface = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(128, 160)); surface->getCanvas()->clear(SK_ColorWHITE); surface->getCanvas()->drawRRect(rr, p); }