// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2020 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions to generate block size descriptor and decimation tables. */ #include "astc_codec_internals.h" #include struct TexelWeight { int weightcount_of_texel[MAX_TEXELS_PER_BLOCK]; int grid_weights_of_texel[MAX_TEXELS_PER_BLOCK][4]; int weights_of_texel[MAX_TEXELS_PER_BLOCK][4]; int texelcount_of_weight[MAX_WEIGHTS_PER_BLOCK]; int texels_of_weight[MAX_WEIGHTS_PER_BLOCK][MAX_TEXELS_PER_BLOCK]; int texelweights_of_weight[MAX_WEIGHTS_PER_BLOCK][MAX_TEXELS_PER_BLOCK]; }; // return 0 on invalid mode, 1 on valid mode. static int decode_block_mode_2d( int blockmode, int* Nval, int* Mval, int* dual_weight_plane, int* quant_mode ) { int base_quant_mode = (blockmode >> 4) & 1; int H = (blockmode >> 9) & 1; int D = (blockmode >> 10) & 1; int A = (blockmode >> 5) & 0x3; int N = 0, M = 0; if ((blockmode & 3) != 0) { base_quant_mode |= (blockmode & 3) << 1; int B = (blockmode >> 7) & 3; switch ((blockmode >> 2) & 3) { case 0: N = B + 4; M = A + 2; break; case 1: N = B + 8; M = A + 2; break; case 2: N = A + 2; M = B + 8; break; case 3: B &= 1; if (blockmode & 0x100) { N = B + 2; M = A + 2; } else { N = A + 2; M = B + 6; } break; } } else { base_quant_mode |= ((blockmode >> 2) & 3) << 1; if (((blockmode >> 2) & 3) == 0) return 0; int B = (blockmode >> 9) & 3; switch ((blockmode >> 7) & 3) { case 0: N = 12; M = A + 2; break; case 1: N = A + 2; M = 12; break; case 2: N = A + 6; M = B + 6; D = 0; H = 0; break; case 3: switch ((blockmode >> 5) & 3) { case 0: N = 6; M = 10; break; case 1: N = 10; M = 6; break; case 2: case 3: return 0; } break; } } int weight_count = N * M * (D + 1); int qmode = (base_quant_mode - 2) + 6 * H; int weightbits = compute_ise_bitcount(weight_count, (quantization_method) qmode); if (weight_count > MAX_WEIGHTS_PER_BLOCK || weightbits < MIN_WEIGHT_BITS_PER_BLOCK || weightbits > MAX_WEIGHT_BITS_PER_BLOCK) return 0; *Nval = N; *Mval = M; *dual_weight_plane = D; *quant_mode = qmode; return 1; } static int decode_block_mode_3d( int blockmode, int* Nval, int* Mval, int* Qval, int* dual_weight_plane, int* quant_mode ) { int base_quant_mode = (blockmode >> 4) & 1; int H = (blockmode >> 9) & 1; int D = (blockmode >> 10) & 1; int A = (blockmode >> 5) & 0x3; int N = 0, M = 0, Q = 0; if ((blockmode & 3) != 0) { base_quant_mode |= (blockmode & 3) << 1; int B = (blockmode >> 7) & 3; int C = (blockmode >> 2) & 0x3; N = A + 2; M = B + 2; Q = C + 2; } else { base_quant_mode |= ((blockmode >> 2) & 3) << 1; if (((blockmode >> 2) & 3) == 0) return 0; int B = (blockmode >> 9) & 3; if (((blockmode >> 7) & 3) != 3) { D = 0; H = 0; } switch ((blockmode >> 7) & 3) { case 0: N = 6; M = B + 2; Q = A + 2; break; case 1: N = A + 2; M = 6; Q = B + 2; break; case 2: N = A + 2; M = B + 2; Q = 6; break; case 3: N = 2; M = 2; Q = 2; switch ((blockmode >> 5) & 3) { case 0: N = 6; break; case 1: M = 6; break; case 2: Q = 6; break; case 3: return 0; } break; } } int weight_count = N * M * Q * (D + 1); int qmode = (base_quant_mode - 2) + 6 * H; int weightbits = compute_ise_bitcount(weight_count, (quantization_method) qmode); if (weight_count > MAX_WEIGHTS_PER_BLOCK || weightbits < MIN_WEIGHT_BITS_PER_BLOCK || weightbits > MAX_WEIGHT_BITS_PER_BLOCK) return 0; *Nval = N; *Mval = M; *Qval = Q; *dual_weight_plane = D; *quant_mode = qmode; return 1; } static void initialize_decimation_table_2d( int xdim, int ydim, int x_weights, int y_weights, decimation_table* dt ) { int i, j; int x, y; int texels_per_block = xdim * ydim; int weights_per_block = x_weights * y_weights; std::unique_ptr tw(new TexelWeight); for (i = 0; i < weights_per_block; i++) tw->texelcount_of_weight[i] = 0; for (i = 0; i < texels_per_block; i++) tw->weightcount_of_texel[i] = 0; for (y = 0; y < ydim; y++) for (x = 0; x < xdim; x++) { int texel = y * xdim + x; int x_weight = (((1024 + xdim / 2) / (xdim - 1)) * x * (x_weights - 1) + 32) >> 6; int y_weight = (((1024 + ydim / 2) / (ydim - 1)) * y * (y_weights - 1) + 32) >> 6; int x_weight_frac = x_weight & 0xF; int y_weight_frac = y_weight & 0xF; int x_weight_int = x_weight >> 4; int y_weight_int = y_weight >> 4; int qweight[4]; int weight[4]; qweight[0] = x_weight_int + y_weight_int * x_weights; qweight[1] = qweight[0] + 1; qweight[2] = qweight[0] + x_weights; qweight[3] = qweight[2] + 1; // truncated-precision bilinear interpolation. int prod = x_weight_frac * y_weight_frac; weight[3] = (prod + 8) >> 4; weight[1] = x_weight_frac - weight[3]; weight[2] = y_weight_frac - weight[3]; weight[0] = 16 - x_weight_frac - y_weight_frac + weight[3]; for (i = 0; i < 4; i++) if (weight[i] != 0) { tw->grid_weights_of_texel[texel][tw->weightcount_of_texel[texel]] = qweight[i]; tw->weights_of_texel[texel][tw->weightcount_of_texel[texel]] = weight[i]; tw->weightcount_of_texel[texel]++; tw->texels_of_weight[qweight[i]][tw->texelcount_of_weight[qweight[i]]] = texel; tw->texelweights_of_weight[qweight[i]][tw->texelcount_of_weight[qweight[i]]] = weight[i]; tw->texelcount_of_weight[qweight[i]]++; } } for (i = 0; i < texels_per_block; i++) { dt->texel_num_weights[i] = tw->weightcount_of_texel[i]; // ensure that all 4 entries are actually initialized. // This allows a branch-free implementation of compute_value_of_texel_flt() for (j = 0; j < 4; j++) { dt->texel_weights_int[i][j] = 0; dt->texel_weights[i][j] = 0; } for (j = 0; j < tw->weightcount_of_texel[i]; j++) { dt->texel_weights_int[i][j] = (uint8_t)(tw->weights_of_texel[i][j]); dt->texel_weights[i][j] = (uint8_t)(tw->grid_weights_of_texel[i][j]); } } dt->num_weights = weights_per_block; } static void initialize_decimation_table_3d( int xdim, int ydim, int zdim, int x_weights, int y_weights, int z_weights, decimation_table* dt ) { int i, j; int x, y, z; int texels_per_block = xdim * ydim * zdim; int weights_per_block = x_weights * y_weights * z_weights; std::unique_ptr tw(new TexelWeight); for (i = 0; i < weights_per_block; i++) tw->texelcount_of_weight[i] = 0; for (i = 0; i < texels_per_block; i++) tw->weightcount_of_texel[i] = 0; for (z = 0; z < zdim; z++) { for (y = 0; y < ydim; y++) { for (x = 0; x < xdim; x++) { int texel = (z * ydim + y) * xdim + x; int x_weight = (((1024 + xdim / 2) / (xdim - 1)) * x * (x_weights - 1) + 32) >> 6; int y_weight = (((1024 + ydim / 2) / (ydim - 1)) * y * (y_weights - 1) + 32) >> 6; int z_weight = (((1024 + zdim / 2) / (zdim - 1)) * z * (z_weights - 1) + 32) >> 6; int x_weight_frac = x_weight & 0xF; int y_weight_frac = y_weight & 0xF; int z_weight_frac = z_weight & 0xF; int x_weight_int = x_weight >> 4; int y_weight_int = y_weight >> 4; int z_weight_int = z_weight >> 4; int qweight[4]; int weight[4]; qweight[0] = (z_weight_int * y_weights + y_weight_int) * x_weights + x_weight_int; qweight[3] = ((z_weight_int + 1) * y_weights + (y_weight_int + 1)) * x_weights + (x_weight_int + 1); // simplex interpolation int fs = x_weight_frac; int ft = y_weight_frac; int fp = z_weight_frac; int cas = ((fs > ft) << 2) + ((ft > fp) << 1) + ((fs > fp)); int N = x_weights; int NM = x_weights * y_weights; int s1, s2, w0, w1, w2, w3; switch (cas) { case 7: s1 = 1; s2 = N; w0 = 16 - fs; w1 = fs - ft; w2 = ft - fp; w3 = fp; break; case 3: s1 = N; s2 = 1; w0 = 16 - ft; w1 = ft - fs; w2 = fs - fp; w3 = fp; break; case 5: s1 = 1; s2 = NM; w0 = 16 - fs; w1 = fs - fp; w2 = fp - ft; w3 = ft; break; case 4: s1 = NM; s2 = 1; w0 = 16 - fp; w1 = fp - fs; w2 = fs - ft; w3 = ft; break; case 2: s1 = N; s2 = NM; w0 = 16 - ft; w1 = ft - fp; w2 = fp - fs; w3 = fs; break; case 0: s1 = NM; s2 = N; w0 = 16 - fp; w1 = fp - ft; w2 = ft - fs; w3 = fs; break; default: s1 = NM; s2 = N; w0 = 16 - fp; w1 = fp - ft; w2 = ft - fs; w3 = fs; break; } qweight[1] = qweight[0] + s1; qweight[2] = qweight[1] + s2; weight[0] = w0; weight[1] = w1; weight[2] = w2; weight[3] = w3; for (i = 0; i < 4; i++) { if (weight[i] != 0) { tw->grid_weights_of_texel[texel][tw->weightcount_of_texel[texel]] = qweight[i]; tw->weights_of_texel[texel][tw->weightcount_of_texel[texel]] = weight[i]; tw->weightcount_of_texel[texel]++; tw->texels_of_weight[qweight[i]][tw->texelcount_of_weight[qweight[i]]] = texel; tw->texelweights_of_weight[qweight[i]][tw->texelcount_of_weight[qweight[i]]] = weight[i]; tw->texelcount_of_weight[qweight[i]]++; } } } } } for (i = 0; i < texels_per_block; i++) { dt->texel_num_weights[i] = tw->weightcount_of_texel[i]; // ensure that all 4 entries are actually initialized. // This allows a branch-free implementation of compute_value_of_texel_flt() for (j = 0; j < 4; j++) { dt->texel_weights_int[i][j] = 0; dt->texel_weights[i][j] = 0; } for (j = 0; j < tw->weightcount_of_texel[i]; j++) { dt->texel_weights_int[i][j] = (uint8_t)(tw->weights_of_texel[i][j]); dt->texel_weights[i][j] = (uint8_t)(tw->grid_weights_of_texel[i][j]); } } dt->num_weights = weights_per_block; } static void construct_block_size_descriptor_2d( int xdim, int ydim, block_size_descriptor* bsd ) { int decimation_mode_index[256]; // for each of the 256 entries in the decim_table_array, its index int decimation_mode_count = 0; bsd->xdim = xdim; bsd->ydim = ydim; bsd->zdim = 1; bsd->texel_count = xdim * ydim; for (int i = 0; i < 256; i++) { decimation_mode_index[i] = -1; } // gather all the infill-modes that can be used with the current block size for (int x_weights = 2; x_weights <= 12; x_weights++) { for (int y_weights = 2; y_weights <= 12; y_weights++) { if (x_weights * y_weights > MAX_WEIGHTS_PER_BLOCK) { continue; } decimation_table *dt = new decimation_table; decimation_mode_index[y_weights * 16 + x_weights] = decimation_mode_count; initialize_decimation_table_2d(xdim, ydim, x_weights, y_weights, dt); bsd->decimation_tables[decimation_mode_count] = dt; decimation_mode_count++; } } bsd->decimation_mode_count = decimation_mode_count; // then construct the list of block formats for (int i = 0; i < 2048; i++) { int x_weights, y_weights; int is_dual_plane; int quantization_mode; int fail = 0; int permit_decode = 1; if (decode_block_mode_2d(i, &x_weights, &y_weights, &is_dual_plane, &quantization_mode)) { if (x_weights > xdim || y_weights > ydim) permit_decode = 0; } else { fail = 1; permit_decode = 0; } if (fail) { bsd->block_modes[i].decimation_mode = -1; bsd->block_modes[i].quantization_mode = -1; bsd->block_modes[i].is_dual_plane = -1; bsd->block_modes[i].permit_decode = 0; } else { int decimation_mode = decimation_mode_index[y_weights * 16 + x_weights]; bsd->block_modes[i].decimation_mode = decimation_mode; bsd->block_modes[i].quantization_mode = quantization_mode; bsd->block_modes[i].is_dual_plane = is_dual_plane; bsd->block_modes[i].permit_decode = permit_decode; // disallow decode of grid size larger than block size. } } } static void construct_block_size_descriptor_3d( int xdim, int ydim, int zdim, block_size_descriptor * bsd ) { int decimation_mode_index[512]; // for each of the 512 entries in the decim_table_array, its index int decimation_mode_count = 0; bsd->xdim = xdim; bsd->ydim = ydim; bsd->zdim = zdim; bsd->texel_count = xdim * ydim * zdim; for (int i = 0; i < 512; i++) { decimation_mode_index[i] = -1; } // gather all the infill-modes that can be used with the current block size for (int x_weights = 2; x_weights <= 6; x_weights++) { for (int y_weights = 2; y_weights <= 6; y_weights++) { for (int z_weights = 2; z_weights <= 6; z_weights++) { if ((x_weights * y_weights * z_weights) > MAX_WEIGHTS_PER_BLOCK) continue; decimation_table *dt = new decimation_table; decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights] = decimation_mode_count; initialize_decimation_table_3d(xdim, ydim, zdim, x_weights, y_weights, z_weights, dt); bsd->decimation_tables[decimation_mode_count] = dt; decimation_mode_count++; } } } bsd->decimation_mode_count = decimation_mode_count; // then construct the list of block formats for (int i = 0; i < 2048; i++) { int x_weights, y_weights, z_weights; int is_dual_plane; int quantization_mode; int fail = 0; int permit_decode = 1; if (decode_block_mode_3d(i, &x_weights, &y_weights, &z_weights, &is_dual_plane, &quantization_mode)) { if (x_weights > xdim || y_weights > ydim || z_weights > zdim) permit_decode = 0; } else { fail = 1; permit_decode = 0; } if (fail) { bsd->block_modes[i].decimation_mode = -1; bsd->block_modes[i].quantization_mode = -1; bsd->block_modes[i].is_dual_plane = -1; bsd->block_modes[i].permit_decode = 0; } else { int decimation_mode = decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights]; bsd->block_modes[i].decimation_mode = decimation_mode; bsd->block_modes[i].quantization_mode = quantization_mode; bsd->block_modes[i].is_dual_plane = is_dual_plane; bsd->block_modes[i].permit_decode = permit_decode; } } } /* Public function, see header file for detailed documentation */ void init_block_size_descriptor( int xdim, int ydim, int zdim, block_size_descriptor* bsd ) { if (zdim > 1) construct_block_size_descriptor_3d(xdim, ydim, zdim, bsd); else construct_block_size_descriptor_2d(xdim, ydim, bsd); init_partition_tables(bsd); } void term_block_size_descriptor( block_size_descriptor* bsd) { for(int i = 0; i < bsd->decimation_mode_count; i++) { delete bsd->decimation_tables[i]; } }