/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_SHARDING_REMOVER_H_ #define TENSORFLOW_COMPILER_XLA_SERVICE_SHARDING_REMOVER_H_ #include #include #include "tensorflow/compiler/xla/service/hlo_module.h" #include "tensorflow/compiler/xla/service/hlo_pass_interface.h" #include "tensorflow/compiler/xla/statusor.h" namespace xla { // Remove Sharding custom-call instruction by assigning its users to // to its operand. This is helpful when partition_count == 1. class ShardingRemover : public HloModulePass { public: absl::string_view name() const override { return "sharding-remover"; } using HloPassInterface::Run; StatusOr Run( HloModule* module, const absl::flat_hash_set& execution_threads) override; }; } // namespace xla #endif // TENSORFLOW_COMPILER_XLA_SERVICE_SHARDING_REMOVER_H_