/* * Copyright (c) 2007-present, Stephen Colebourne & Michael Nascimento Santos * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of JSR-310 nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.threeten.bp.zone; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.io.Serializable; import java.util.Arrays; import java.util.Collections; import java.util.List; import org.threeten.bp.Duration; import org.threeten.bp.Instant; import org.threeten.bp.LocalDateTime; import org.threeten.bp.ZoneOffset; import org.threeten.bp.jdk8.Jdk8Methods; /** * A transition between two offsets caused by a discontinuity in the local time-line. *
* A transition between two offsets is normally the result of a daylight savings cutover. * The discontinuity is normally a gap in spring and an overlap in autumn. * {@code ZoneOffsetTransition} models the transition between the two offsets. *
* Gaps occur where there are local date-times that simply do not exist. * An example would be when the offset changes from {@code +03:00} to {@code +04:00}. * This might be described as 'the clocks will move forward one hour tonight at 1am'. *
* Overlaps occur where there are local date-times that exist twice. * An example would be when the offset changes from {@code +04:00} to {@code +03:00}. * This might be described as 'the clocks will move back one hour tonight at 2am'. * *
* Applications should normally obtain an instance from {@link ZoneRules}. * This factory is only intended for use when creating {@link ZoneRules}. * * @param transition the transition date-time at the transition, which never * actually occurs, expressed local to the before offset, not null * @param offsetBefore the offset before the transition, not null * @param offsetAfter the offset at and after the transition, not null * @return the transition, not null * @throws IllegalArgumentException if {@code offsetBefore} and {@code offsetAfter} * are equal, or {@code transition.getNano()} returns non-zero value */ public static ZoneOffsetTransition of(LocalDateTime transition, ZoneOffset offsetBefore, ZoneOffset offsetAfter) { Jdk8Methods.requireNonNull(transition, "transition"); Jdk8Methods.requireNonNull(offsetBefore, "offsetBefore"); Jdk8Methods.requireNonNull(offsetAfter, "offsetAfter"); if (offsetBefore.equals(offsetAfter)) { throw new IllegalArgumentException("Offsets must not be equal"); } if (transition.getNano() != 0) { throw new IllegalArgumentException("Nano-of-second must be zero"); } return new ZoneOffsetTransition(transition, offsetBefore, offsetAfter); } /** * Creates an instance defining a transition between two offsets. * * @param transition the transition date-time with the offset before the transition, not null * @param offsetBefore the offset before the transition, not null * @param offsetAfter the offset at and after the transition, not null */ ZoneOffsetTransition(LocalDateTime transition, ZoneOffset offsetBefore, ZoneOffset offsetAfter) { this.transition = transition; this.offsetBefore = offsetBefore; this.offsetAfter = offsetAfter; } /** * Creates an instance from epoch-second and offsets. * * @param epochSecond the transition epoch-second * @param offsetBefore the offset before the transition, not null * @param offsetAfter the offset at and after the transition, not null */ ZoneOffsetTransition(long epochSecond, ZoneOffset offsetBefore, ZoneOffset offsetAfter) { this.transition = LocalDateTime.ofEpochSecond(epochSecond, 0, offsetBefore); this.offsetBefore = offsetBefore; this.offsetAfter = offsetAfter; } //----------------------------------------------------------------------- /** * Uses a serialization delegate. * * @return the replacing object, not null */ private Object writeReplace() { return new Ser(Ser.ZOT, this); } /** * Writes the state to the stream. * * @param out the output stream, not null * @throws IOException if an error occurs */ void writeExternal(DataOutput out) throws IOException { Ser.writeEpochSec(toEpochSecond(), out); Ser.writeOffset(offsetBefore, out); Ser.writeOffset(offsetAfter, out); } /** * Reads the state from the stream. * * @param in the input stream, not null * @return the created object, not null * @throws IOException if an error occurs */ static ZoneOffsetTransition readExternal(DataInput in) throws IOException { long epochSecond = Ser.readEpochSec(in); ZoneOffset before = Ser.readOffset(in); ZoneOffset after = Ser.readOffset(in); if (before.equals(after)) { throw new IllegalArgumentException("Offsets must not be equal"); } return new ZoneOffsetTransition(epochSecond, before, after); } //----------------------------------------------------------------------- /** * Gets the transition instant. *
* This is the instant of the discontinuity, which is defined as the first * instant that the 'after' offset applies. *
* The methods {@link #getInstant()}, {@link #getDateTimeBefore()} and {@link #getDateTimeAfter()} * all represent the same instant. * * @return the transition instant, not null */ public Instant getInstant() { return transition.toInstant(offsetBefore); } /** * Gets the transition instant as an epoch second. * * @return the transition epoch second */ public long toEpochSecond() { return transition.toEpochSecond(offsetBefore); } //------------------------------------------------------------------------- /** * Gets the local transition date-time, as would be expressed with the 'before' offset. *
* This is the date-time where the discontinuity begins expressed with the 'before' offset. * At this instant, the 'after' offset is actually used, therefore the combination of this * date-time and the 'before' offset will never occur. *
* The combination of the 'before' date-time and offset represents the same instant * as the 'after' date-time and offset. * * @return the transition date-time expressed with the before offset, not null */ public LocalDateTime getDateTimeBefore() { return transition; } /** * Gets the local transition date-time, as would be expressed with the 'after' offset. *
* This is the first date-time after the discontinuity, when the new offset applies. *
* The combination of the 'before' date-time and offset represents the same instant * as the 'after' date-time and offset. * * @return the transition date-time expressed with the after offset, not null */ public LocalDateTime getDateTimeAfter() { return transition.plusSeconds(getDurationSeconds()); } /** * Gets the offset before the transition. *
* This is the offset in use before the instant of the transition. * * @return the offset before the transition, not null */ public ZoneOffset getOffsetBefore() { return offsetBefore; } /** * Gets the offset after the transition. *
* This is the offset in use on and after the instant of the transition. * * @return the offset after the transition, not null */ public ZoneOffset getOffsetAfter() { return offsetAfter; } /** * Gets the duration of the transition. *
* In most cases, the transition duration is one hour, however this is not always the case. * The duration will be positive for a gap and negative for an overlap. * Time-zones are second-based, so the nanosecond part of the duration will be zero. * * @return the duration of the transition, positive for gaps, negative for overlaps */ public Duration getDuration() { return Duration.ofSeconds(getDurationSeconds()); } /** * Gets the duration of the transition in seconds. * * @return the duration in seconds */ private int getDurationSeconds() { return getOffsetAfter().getTotalSeconds() - getOffsetBefore().getTotalSeconds(); } /** * Does this transition represent a gap in the local time-line. *
* Gaps occur where there are local date-times that simply do not exist. * An example would be when the offset changes from {@code +01:00} to {@code +02:00}. * This might be described as 'the clocks will move forward one hour tonight at 1am'. * * @return true if this transition is a gap, false if it is an overlap */ public boolean isGap() { return getOffsetAfter().getTotalSeconds() > getOffsetBefore().getTotalSeconds(); } /** * Does this transition represent a gap in the local time-line. *
* Overlaps occur where there are local date-times that exist twice. * An example would be when the offset changes from {@code +02:00} to {@code +01:00}. * This might be described as 'the clocks will move back one hour tonight at 2am'. * * @return true if this transition is an overlap, false if it is a gap */ public boolean isOverlap() { return getOffsetAfter().getTotalSeconds() < getOffsetBefore().getTotalSeconds(); } /** * Checks if the specified offset is valid during this transition. *
* This checks to see if the given offset will be valid at some point in the transition. * A gap will always return false. * An overlap will return true if the offset is either the before or after offset. * * @param offset the offset to check, null returns false * @return true if the offset is valid during the transition */ public boolean isValidOffset(ZoneOffset offset) { return isGap() ? false : (getOffsetBefore().equals(offset) || getOffsetAfter().equals(offset)); } /** * Gets the valid offsets during this transition. *
* A gap will return an empty list, while an overlap will return both offsets.
*
* @return the list of valid offsets
*/
List
* This compares the instants of each transition.
* The offsets are ignored, making this order inconsistent with equals.
*
* @param transition the transition to compare to, not null
* @return the comparator value, negative if less, positive if greater
*/
@Override
public int compareTo(ZoneOffsetTransition transition) {
return this.getInstant().compareTo(transition.getInstant());
}
//-----------------------------------------------------------------------
/**
* Checks if this object equals another.
*
* The entire state of the object is compared.
*
* @param other the other object to compare to, null returns false
* @return true if equal
*/
@Override
public boolean equals(Object other) {
if (other == this) {
return true;
}
if (other instanceof ZoneOffsetTransition) {
ZoneOffsetTransition d = (ZoneOffsetTransition) other;
return transition.equals(d.transition) &&
offsetBefore.equals(d.offsetBefore) && offsetAfter.equals(d.offsetAfter);
}
return false;
}
/**
* Returns a suitable hash code.
*
* @return the hash code
*/
@Override
public int hashCode() {
return transition.hashCode() ^ offsetBefore.hashCode() ^ Integer.rotateLeft(offsetAfter.hashCode(), 16);
}
//-----------------------------------------------------------------------
/**
* Returns a string describing this object.
*
* @return a string for debugging, not null
*/
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append("Transition[")
.append(isGap() ? "Gap" : "Overlap")
.append(" at ")
.append(transition)
.append(offsetBefore)
.append(" to ")
.append(offsetAfter)
.append(']');
return buf.toString();
}
}