// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////////////// #ifndef TINK_PRF_PRF_SET_H_ #define TINK_PRF_PRF_SET_H_ #include #include #include "absl/strings/string_view.h" #include "tink/util/statusor.h" namespace crypto { namespace tink { // The PRF interface is an abstraction for an element of a pseudo random // function family, selected by a key. It has the following property: // * It is deterministic. PRF.compute(input, length) will always return the // same output if the same key is used. PRF.compute(input, length1) will be // a prefix of PRF.compute(input, length2) if length1 < length2 and the same // key is used. // * It is indistinguishable from a random function: // Given the evaluation of n different inputs, an attacker cannot // distinguish between the PRF and random bytes on an input different from // the n that are known. // Use cases for PRF are deterministic redaction of PII, keyed hash functions, // creating sub IDs that do not allow joining with the original dataset without // knowing the key. // While PRFs can be used in order to prove authenticity of a message, using the // MAC interface is recommended for that use case, as it has support for // verification, avoiding the security problems that often happen during // verification, and having automatic support for key rotation. It also allows // for non-deterministic MAC algorithms. class Prf { public: virtual ~Prf() = default; // Computes the PRF selected by the underlying key on input and // returns the first outputLength bytes. // When choosing this parameter keep the birthday paradox in mind. // If you have 2^n different inputs that your system has to handle // set the output length (in bytes) to at least // ceil(n/4 + 4) // This corresponds to 2*n + 32 bits, meaning a collision will occur with // a probability less than 1:2^32. When in doubt, request a security review. // Returns a non ok status if the algorithm fails or if the output of // algorithm is less than outputLength. virtual util::StatusOr Compute(absl::string_view input, size_t output_length) const = 0; }; // A Tink Keyset can be converted into a set of PRFs using this primitive. Every // key in the keyset corresponds to a PRF in the PRFSet. // Every PRF in the set is given an ID, which is the same ID as the key id in // the Keyset. class PrfSet { public: virtual ~PrfSet() = default; // The primary ID of the keyset. virtual uint32_t GetPrimaryId() const = 0; // A map of the PRFs represented by the keys in this keyset. // The map is guaranteed to contain getPrimaryId() as a key. virtual const std::map& GetPrfs() const = 0; // Convenience method to compute the primary PRF on a given input. // See PRF.compute for details of the parameters. util::StatusOr ComputePrimary(absl::string_view input, size_t output_length) const; }; } // namespace tink } // namespace crypto #endif // TINK_PRF_PRF_SET_H_