• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Sequence.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/ModRef.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <optional>
51 #include <vector>
52 
53 namespace llvm {
54 
55 class AnalysisUsage;
56 class AtomicCmpXchgInst;
57 class BasicAAResult;
58 class BasicBlock;
59 class CatchPadInst;
60 class CatchReturnInst;
61 class DominatorTree;
62 class FenceInst;
63 class Function;
64 class LoopInfo;
65 class PreservedAnalyses;
66 class TargetLibraryInfo;
67 class Value;
68 template <typename> class SmallPtrSetImpl;
69 
70 /// The possible results of an alias query.
71 ///
72 /// These results are always computed between two MemoryLocation objects as
73 /// a query to some alias analysis.
74 ///
75 /// Note that these are unscoped enumerations because we would like to support
76 /// implicitly testing a result for the existence of any possible aliasing with
77 /// a conversion to bool, but an "enum class" doesn't support this. The
78 /// canonical names from the literature are suffixed and unique anyways, and so
79 /// they serve as global constants in LLVM for these results.
80 ///
81 /// See docs/AliasAnalysis.html for more information on the specific meanings
82 /// of these values.
83 class AliasResult {
84 private:
85   static const int OffsetBits = 23;
86   static const int AliasBits = 8;
87   static_assert(AliasBits + 1 + OffsetBits <= 32,
88                 "AliasResult size is intended to be 4 bytes!");
89 
90   unsigned int Alias : AliasBits;
91   unsigned int HasOffset : 1;
92   signed int Offset : OffsetBits;
93 
94 public:
95   enum Kind : uint8_t {
96     /// The two locations do not alias at all.
97     ///
98     /// This value is arranged to convert to false, while all other values
99     /// convert to true. This allows a boolean context to convert the result to
100     /// a binary flag indicating whether there is the possibility of aliasing.
101     NoAlias = 0,
102     /// The two locations may or may not alias. This is the least precise
103     /// result.
104     MayAlias,
105     /// The two locations alias, but only due to a partial overlap.
106     PartialAlias,
107     /// The two locations precisely alias each other.
108     MustAlias,
109   };
110   static_assert(MustAlias < (1 << AliasBits),
111                 "Not enough bit field size for the enum!");
112 
113   explicit AliasResult() = delete;
AliasResult(const Kind & Alias)114   constexpr AliasResult(const Kind &Alias)
115       : Alias(Alias), HasOffset(false), Offset(0) {}
116 
Kind()117   operator Kind() const { return static_cast<Kind>(Alias); }
118 
hasOffset()119   constexpr bool hasOffset() const { return HasOffset; }
getOffset()120   constexpr int32_t getOffset() const {
121     assert(HasOffset && "No offset!");
122     return Offset;
123   }
setOffset(int32_t NewOffset)124   void setOffset(int32_t NewOffset) {
125     if (isInt<OffsetBits>(NewOffset)) {
126       HasOffset = true;
127       Offset = NewOffset;
128     }
129   }
130 
131   /// Helper for processing AliasResult for swapped memory location pairs.
132   void swap(bool DoSwap = true) {
133     if (DoSwap && hasOffset())
134       setOffset(-getOffset());
135   }
136 };
137 
138 static_assert(sizeof(AliasResult) == 4,
139               "AliasResult size is intended to be 4 bytes!");
140 
141 /// << operator for AliasResult.
142 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
143 
144 /// Virtual base class for providers of capture information.
145 struct CaptureInfo {
146   virtual ~CaptureInfo() = 0;
147   virtual bool isNotCapturedBeforeOrAt(const Value *Object,
148                                        const Instruction *I) = 0;
149 };
150 
151 /// Context-free CaptureInfo provider, which computes and caches whether an
152 /// object is captured in the function at all, but does not distinguish whether
153 /// it was captured before or after the context instruction.
154 class SimpleCaptureInfo final : public CaptureInfo {
155   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
156 
157 public:
158   bool isNotCapturedBeforeOrAt(const Value *Object,
159                                const Instruction *I) override;
160 };
161 
162 /// Context-sensitive CaptureInfo provider, which computes and caches the
163 /// earliest common dominator closure of all captures. It provides a good
164 /// approximation to a precise "captures before" analysis.
165 class EarliestEscapeInfo final : public CaptureInfo {
166   DominatorTree &DT;
167   const LoopInfo &LI;
168 
169   /// Map from identified local object to an instruction before which it does
170   /// not escape, or nullptr if it never escapes. The "earliest" instruction
171   /// may be a conservative approximation, e.g. the first instruction in the
172   /// function is always a legal choice.
173   DenseMap<const Value *, Instruction *> EarliestEscapes;
174 
175   /// Reverse map from instruction to the objects it is the earliest escape for.
176   /// This is used for cache invalidation purposes.
177   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
178 
179   const SmallPtrSetImpl<const Value *> &EphValues;
180 
181 public:
EarliestEscapeInfo(DominatorTree & DT,const LoopInfo & LI,const SmallPtrSetImpl<const Value * > & EphValues)182   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo &LI,
183                      const SmallPtrSetImpl<const Value *> &EphValues)
184       : DT(DT), LI(LI), EphValues(EphValues) {}
185 
186   bool isNotCapturedBeforeOrAt(const Value *Object,
187                                const Instruction *I) override;
188 
189   void removeInstruction(Instruction *I);
190 };
191 
192 /// Cache key for BasicAA results. It only includes the pointer and size from
193 /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
194 /// the value of MayBeCrossIteration, which may affect BasicAA results.
195 struct AACacheLoc {
196   using PtrTy = PointerIntPair<const Value *, 1, bool>;
197   PtrTy Ptr;
198   LocationSize Size;
199 
AACacheLocAACacheLoc200   AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
AACacheLocAACacheLoc201   AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
202       : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
203 };
204 
205 template <> struct DenseMapInfo<AACacheLoc> {
206   static inline AACacheLoc getEmptyKey() {
207     return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
208             DenseMapInfo<LocationSize>::getEmptyKey()};
209   }
210   static inline AACacheLoc getTombstoneKey() {
211     return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
212             DenseMapInfo<LocationSize>::getTombstoneKey()};
213   }
214   static unsigned getHashValue(const AACacheLoc &Val) {
215     return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
216            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
217   }
218   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
219     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
220   }
221 };
222 
223 class AAResults;
224 
225 /// This class stores info we want to provide to or retain within an alias
226 /// query. By default, the root query is stateless and starts with a freshly
227 /// constructed info object. Specific alias analyses can use this query info to
228 /// store per-query state that is important for recursive or nested queries to
229 /// avoid recomputing. To enable preserving this state across multiple queries
230 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
231 /// The information stored in an `AAQueryInfo` is currently limitted to the
232 /// caches used by BasicAA, but can further be extended to fit other AA needs.
233 class AAQueryInfo {
234 public:
235   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
236   struct CacheEntry {
237     AliasResult Result;
238     /// Number of times a NoAlias assumption has been used.
239     /// 0 for assumptions that have not been used, -1 for definitive results.
240     int NumAssumptionUses;
241     /// Whether this is a definitive (non-assumption) result.
242     bool isDefinitive() const { return NumAssumptionUses < 0; }
243   };
244 
245   // Alias analysis result aggregration using which this query is performed.
246   // Can be used to perform recursive queries.
247   AAResults &AAR;
248 
249   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
250   AliasCacheT AliasCache;
251 
252   CaptureInfo *CI;
253 
254   /// Query depth used to distinguish recursive queries.
255   unsigned Depth = 0;
256 
257   /// How many active NoAlias assumption uses there are.
258   int NumAssumptionUses = 0;
259 
260   /// Location pairs for which an assumption based result is currently stored.
261   /// Used to remove all potentially incorrect results from the cache if an
262   /// assumption is disproven.
263   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
264 
265   /// Tracks whether the accesses may be on different cycle iterations.
266   ///
267   /// When interpret "Value" pointer equality as value equality we need to make
268   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
269   /// come from different "iterations" of a cycle and see different values for
270   /// the same "Value" pointer.
271   ///
272   /// The following example shows the problem:
273   ///   %p = phi(%alloca1, %addr2)
274   ///   %l = load %ptr
275   ///   %addr1 = gep, %alloca2, 0, %l
276   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
277   ///      alias(%p, %addr1) -> MayAlias !
278   ///   store %l, ...
279   bool MayBeCrossIteration = false;
280 
281   AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
282 };
283 
284 /// AAQueryInfo that uses SimpleCaptureInfo.
285 class SimpleAAQueryInfo : public AAQueryInfo {
286   SimpleCaptureInfo CI;
287 
288 public:
289   SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
290 };
291 
292 class BatchAAResults;
293 
294 class AAResults {
295 public:
296   // Make these results default constructable and movable. We have to spell
297   // these out because MSVC won't synthesize them.
298   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
299   AAResults(AAResults &&Arg);
300   ~AAResults();
301 
302   /// Register a specific AA result.
303   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
304     // FIXME: We should use a much lighter weight system than the usual
305     // polymorphic pattern because we don't own AAResult. It should
306     // ideally involve two pointers and no separate allocation.
307     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
308   }
309 
310   /// Register a function analysis ID that the results aggregation depends on.
311   ///
312   /// This is used in the new pass manager to implement the invalidation logic
313   /// where we must invalidate the results aggregation if any of our component
314   /// analyses become invalid.
315   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
316 
317   /// Handle invalidation events in the new pass manager.
318   ///
319   /// The aggregation is invalidated if any of the underlying analyses is
320   /// invalidated.
321   bool invalidate(Function &F, const PreservedAnalyses &PA,
322                   FunctionAnalysisManager::Invalidator &Inv);
323 
324   //===--------------------------------------------------------------------===//
325   /// \name Alias Queries
326   /// @{
327 
328   /// The main low level interface to the alias analysis implementation.
329   /// Returns an AliasResult indicating whether the two pointers are aliased to
330   /// each other. This is the interface that must be implemented by specific
331   /// alias analysis implementations.
332   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
333 
334   /// A convenience wrapper around the primary \c alias interface.
335   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
336                     LocationSize V2Size) {
337     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
338   }
339 
340   /// A convenience wrapper around the primary \c alias interface.
341   AliasResult alias(const Value *V1, const Value *V2) {
342     return alias(MemoryLocation::getBeforeOrAfter(V1),
343                  MemoryLocation::getBeforeOrAfter(V2));
344   }
345 
346   /// A trivial helper function to check to see if the specified pointers are
347   /// no-alias.
348   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
349     return alias(LocA, LocB) == AliasResult::NoAlias;
350   }
351 
352   /// A convenience wrapper around the \c isNoAlias helper interface.
353   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
354                  LocationSize V2Size) {
355     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
356   }
357 
358   /// A convenience wrapper around the \c isNoAlias helper interface.
359   bool isNoAlias(const Value *V1, const Value *V2) {
360     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
361                      MemoryLocation::getBeforeOrAfter(V2));
362   }
363 
364   /// A trivial helper function to check to see if the specified pointers are
365   /// must-alias.
366   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
367     return alias(LocA, LocB) == AliasResult::MustAlias;
368   }
369 
370   /// A convenience wrapper around the \c isMustAlias helper interface.
371   bool isMustAlias(const Value *V1, const Value *V2) {
372     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
373            AliasResult::MustAlias;
374   }
375 
376   /// Checks whether the given location points to constant memory, or if
377   /// \p OrLocal is true whether it points to a local alloca.
378   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
379     return isNoModRef(getModRefInfoMask(Loc, OrLocal));
380   }
381 
382   /// A convenience wrapper around the primary \c pointsToConstantMemory
383   /// interface.
384   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
385     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
386   }
387 
388   /// @}
389   //===--------------------------------------------------------------------===//
390   /// \name Simple mod/ref information
391   /// @{
392 
393   /// Returns a bitmask that should be unconditionally applied to the ModRef
394   /// info of a memory location. This allows us to eliminate Mod and/or Ref
395   /// from the ModRef info based on the knowledge that the memory location
396   /// points to constant and/or locally-invariant memory.
397   ///
398   /// If IgnoreLocals is true, then this method returns NoModRef for memory
399   /// that points to a local alloca.
400   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
401                                bool IgnoreLocals = false);
402 
403   /// A convenience wrapper around the primary \c getModRefInfoMask
404   /// interface.
405   ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
406     return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
407   }
408 
409   /// Get the ModRef info associated with a pointer argument of a call. The
410   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
411   /// that these bits do not necessarily account for the overall behavior of
412   /// the function, but rather only provide additional per-argument
413   /// information.
414   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
415 
416   /// Return the behavior of the given call site.
417   MemoryEffects getMemoryEffects(const CallBase *Call);
418 
419   /// Return the behavior when calling the given function.
420   MemoryEffects getMemoryEffects(const Function *F);
421 
422   /// Checks if the specified call is known to never read or write memory.
423   ///
424   /// Note that if the call only reads from known-constant memory, it is also
425   /// legal to return true. Also, calls that unwind the stack are legal for
426   /// this predicate.
427   ///
428   /// Many optimizations (such as CSE and LICM) can be performed on such calls
429   /// without worrying about aliasing properties, and many calls have this
430   /// property (e.g. calls to 'sin' and 'cos').
431   ///
432   /// This property corresponds to the GCC 'const' attribute.
433   bool doesNotAccessMemory(const CallBase *Call) {
434     return getMemoryEffects(Call).doesNotAccessMemory();
435   }
436 
437   /// Checks if the specified function is known to never read or write memory.
438   ///
439   /// Note that if the function only reads from known-constant memory, it is
440   /// also legal to return true. Also, function that unwind the stack are legal
441   /// for this predicate.
442   ///
443   /// Many optimizations (such as CSE and LICM) can be performed on such calls
444   /// to such functions without worrying about aliasing properties, and many
445   /// functions have this property (e.g. 'sin' and 'cos').
446   ///
447   /// This property corresponds to the GCC 'const' attribute.
448   bool doesNotAccessMemory(const Function *F) {
449     return getMemoryEffects(F).doesNotAccessMemory();
450   }
451 
452   /// Checks if the specified call is known to only read from non-volatile
453   /// memory (or not access memory at all).
454   ///
455   /// Calls that unwind the stack are legal for this predicate.
456   ///
457   /// This property allows many common optimizations to be performed in the
458   /// absence of interfering store instructions, such as CSE of strlen calls.
459   ///
460   /// This property corresponds to the GCC 'pure' attribute.
461   bool onlyReadsMemory(const CallBase *Call) {
462     return getMemoryEffects(Call).onlyReadsMemory();
463   }
464 
465   /// Checks if the specified function is known to only read from non-volatile
466   /// memory (or not access memory at all).
467   ///
468   /// Functions that unwind the stack are legal for this predicate.
469   ///
470   /// This property allows many common optimizations to be performed in the
471   /// absence of interfering store instructions, such as CSE of strlen calls.
472   ///
473   /// This property corresponds to the GCC 'pure' attribute.
474   bool onlyReadsMemory(const Function *F) {
475     return getMemoryEffects(F).onlyReadsMemory();
476   }
477 
478   /// Check whether or not an instruction may read or write the optionally
479   /// specified memory location.
480   ///
481   ///
482   /// An instruction that doesn't read or write memory may be trivially LICM'd
483   /// for example.
484   ///
485   /// For function calls, this delegates to the alias-analysis specific
486   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
487   /// helpers above.
488   ModRefInfo getModRefInfo(const Instruction *I,
489                            const std::optional<MemoryLocation> &OptLoc) {
490     SimpleAAQueryInfo AAQIP(*this);
491     return getModRefInfo(I, OptLoc, AAQIP);
492   }
493 
494   /// A convenience wrapper for constructing the memory location.
495   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
496                            LocationSize Size) {
497     return getModRefInfo(I, MemoryLocation(P, Size));
498   }
499 
500   /// Return information about whether a call and an instruction may refer to
501   /// the same memory locations.
502   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
503 
504   /// Return information about whether a particular call site modifies
505   /// or reads the specified memory location \p MemLoc before instruction \p I
506   /// in a BasicBlock.
507   ModRefInfo callCapturesBefore(const Instruction *I,
508                                 const MemoryLocation &MemLoc,
509                                 DominatorTree *DT) {
510     SimpleAAQueryInfo AAQIP(*this);
511     return callCapturesBefore(I, MemLoc, DT, AAQIP);
512   }
513 
514   /// A convenience wrapper to synthesize a memory location.
515   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
516                                 LocationSize Size, DominatorTree *DT) {
517     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
518   }
519 
520   /// @}
521   //===--------------------------------------------------------------------===//
522   /// \name Higher level methods for querying mod/ref information.
523   /// @{
524 
525   /// Check if it is possible for execution of the specified basic block to
526   /// modify the location Loc.
527   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
528 
529   /// A convenience wrapper synthesizing a memory location.
530   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
531                            LocationSize Size) {
532     return canBasicBlockModify(BB, MemoryLocation(P, Size));
533   }
534 
535   /// Check if it is possible for the execution of the specified instructions
536   /// to mod\ref (according to the mode) the location Loc.
537   ///
538   /// The instructions to consider are all of the instructions in the range of
539   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
540   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
541                                  const MemoryLocation &Loc,
542                                  const ModRefInfo Mode);
543 
544   /// A convenience wrapper synthesizing a memory location.
545   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
546                                  const Value *Ptr, LocationSize Size,
547                                  const ModRefInfo Mode) {
548     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
549   }
550 
551   // CtxI can be nullptr, in which case the query is whether or not the aliasing
552   // relationship holds through the entire function.
553   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
554                     AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
555 
556   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
557                               bool OrLocal = false);
558   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
559                                bool IgnoreLocals = false);
560   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
561                            AAQueryInfo &AAQIP);
562   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
563                            AAQueryInfo &AAQI);
564   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
565                            AAQueryInfo &AAQI);
566   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
567                            AAQueryInfo &AAQI);
568   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
569                            AAQueryInfo &AAQI);
570   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
571                            AAQueryInfo &AAQI);
572   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
573                            AAQueryInfo &AAQI);
574   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
575                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
576   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
577                            AAQueryInfo &AAQI);
578   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
579                            AAQueryInfo &AAQI);
580   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
581                            AAQueryInfo &AAQI);
582   ModRefInfo getModRefInfo(const Instruction *I,
583                            const std::optional<MemoryLocation> &OptLoc,
584                            AAQueryInfo &AAQIP);
585   ModRefInfo callCapturesBefore(const Instruction *I,
586                                 const MemoryLocation &MemLoc, DominatorTree *DT,
587                                 AAQueryInfo &AAQIP);
588   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
589 
590 private:
591   class Concept;
592 
593   template <typename T> class Model;
594 
595   friend class AAResultBase;
596 
597   const TargetLibraryInfo &TLI;
598 
599   std::vector<std::unique_ptr<Concept>> AAs;
600 
601   std::vector<AnalysisKey *> AADeps;
602 
603   friend class BatchAAResults;
604 };
605 
606 /// This class is a wrapper over an AAResults, and it is intended to be used
607 /// only when there are no IR changes inbetween queries. BatchAAResults is
608 /// reusing the same `AAQueryInfo` to preserve the state across queries,
609 /// esentially making AA work in "batch mode". The internal state cannot be
610 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
611 /// or create a new BatchAAResults.
612 class BatchAAResults {
613   AAResults &AA;
614   AAQueryInfo AAQI;
615   SimpleCaptureInfo SimpleCI;
616 
617 public:
618   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
619   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
620 
621   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
622     return AA.alias(LocA, LocB, AAQI);
623   }
624   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
625     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
626   }
627   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
628                                bool IgnoreLocals = false) {
629     return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
630   }
631   ModRefInfo getModRefInfo(const Instruction *I,
632                            const std::optional<MemoryLocation> &OptLoc) {
633     return AA.getModRefInfo(I, OptLoc, AAQI);
634   }
635   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
636     return AA.getModRefInfo(I, Call2, AAQI);
637   }
638   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
639     return AA.getArgModRefInfo(Call, ArgIdx);
640   }
641   MemoryEffects getMemoryEffects(const CallBase *Call) {
642     return AA.getMemoryEffects(Call, AAQI);
643   }
644   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
645     return alias(LocA, LocB) == AliasResult::MustAlias;
646   }
647   bool isMustAlias(const Value *V1, const Value *V2) {
648     return alias(MemoryLocation(V1, LocationSize::precise(1)),
649                  MemoryLocation(V2, LocationSize::precise(1))) ==
650            AliasResult::MustAlias;
651   }
652   ModRefInfo callCapturesBefore(const Instruction *I,
653                                 const MemoryLocation &MemLoc,
654                                 DominatorTree *DT) {
655     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
656   }
657 
658   /// Assume that values may come from different cycle iterations.
659   void enableCrossIterationMode() {
660     AAQI.MayBeCrossIteration = true;
661   }
662 };
663 
664 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
665 /// pointer or reference.
666 using AliasAnalysis = AAResults;
667 
668 /// A private abstract base class describing the concept of an individual alias
669 /// analysis implementation.
670 ///
671 /// This interface is implemented by any \c Model instantiation. It is also the
672 /// interface which a type used to instantiate the model must provide.
673 ///
674 /// All of these methods model methods by the same name in the \c
675 /// AAResults class. Only differences and specifics to how the
676 /// implementations are called are documented here.
677 class AAResults::Concept {
678 public:
679   virtual ~Concept() = 0;
680 
681   //===--------------------------------------------------------------------===//
682   /// \name Alias Queries
683   /// @{
684 
685   /// The main low level interface to the alias analysis implementation.
686   /// Returns an AliasResult indicating whether the two pointers are aliased to
687   /// each other. This is the interface that must be implemented by specific
688   /// alias analysis implementations.
689   virtual AliasResult alias(const MemoryLocation &LocA,
690                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
691                             const Instruction *CtxI) = 0;
692 
693   /// @}
694   //===--------------------------------------------------------------------===//
695   /// \name Simple mod/ref information
696   /// @{
697 
698   /// Returns a bitmask that should be unconditionally applied to the ModRef
699   /// info of a memory location. This allows us to eliminate Mod and/or Ref from
700   /// the ModRef info based on the knowledge that the memory location points to
701   /// constant and/or locally-invariant memory.
702   virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
703                                        AAQueryInfo &AAQI,
704                                        bool IgnoreLocals) = 0;
705 
706   /// Get the ModRef info associated with a pointer argument of a callsite. The
707   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
708   /// that these bits do not necessarily account for the overall behavior of
709   /// the function, but rather only provide additional per-argument
710   /// information.
711   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
712                                       unsigned ArgIdx) = 0;
713 
714   /// Return the behavior of the given call site.
715   virtual MemoryEffects getMemoryEffects(const CallBase *Call,
716                                          AAQueryInfo &AAQI) = 0;
717 
718   /// Return the behavior when calling the given function.
719   virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
720 
721   /// getModRefInfo (for call sites) - Return information about whether
722   /// a particular call site modifies or reads the specified memory location.
723   virtual ModRefInfo getModRefInfo(const CallBase *Call,
724                                    const MemoryLocation &Loc,
725                                    AAQueryInfo &AAQI) = 0;
726 
727   /// Return information about whether two call sites may refer to the same set
728   /// of memory locations. See the AA documentation for details:
729   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
730   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
731                                    AAQueryInfo &AAQI) = 0;
732 
733   /// @}
734 };
735 
736 /// A private class template which derives from \c Concept and wraps some other
737 /// type.
738 ///
739 /// This models the concept by directly forwarding each interface point to the
740 /// wrapped type which must implement a compatible interface. This provides
741 /// a type erased binding.
742 template <typename AAResultT> class AAResults::Model final : public Concept {
743   AAResultT &Result;
744 
745 public:
746   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
747   ~Model() override = default;
748 
749   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
750                     AAQueryInfo &AAQI, const Instruction *CtxI) override {
751     return Result.alias(LocA, LocB, AAQI, CtxI);
752   }
753 
754   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
755                                bool IgnoreLocals) override {
756     return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
757   }
758 
759   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
760     return Result.getArgModRefInfo(Call, ArgIdx);
761   }
762 
763   MemoryEffects getMemoryEffects(const CallBase *Call,
764                                  AAQueryInfo &AAQI) override {
765     return Result.getMemoryEffects(Call, AAQI);
766   }
767 
768   MemoryEffects getMemoryEffects(const Function *F) override {
769     return Result.getMemoryEffects(F);
770   }
771 
772   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
773                            AAQueryInfo &AAQI) override {
774     return Result.getModRefInfo(Call, Loc, AAQI);
775   }
776 
777   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
778                            AAQueryInfo &AAQI) override {
779     return Result.getModRefInfo(Call1, Call2, AAQI);
780   }
781 };
782 
783 /// A base class to help implement the function alias analysis results concept.
784 ///
785 /// Because of the nature of many alias analysis implementations, they often
786 /// only implement a subset of the interface. This base class will attempt to
787 /// implement the remaining portions of the interface in terms of simpler forms
788 /// of the interface where possible, and otherwise provide conservatively
789 /// correct fallback implementations.
790 ///
791 /// Implementors of an alias analysis should derive from this class, and then
792 /// override specific methods that they wish to customize. There is no need to
793 /// use virtual anywhere.
794 class AAResultBase {
795 protected:
796   explicit AAResultBase() = default;
797 
798   // Provide all the copy and move constructors so that derived types aren't
799   // constrained.
800   AAResultBase(const AAResultBase &Arg) {}
801   AAResultBase(AAResultBase &&Arg) {}
802 
803 public:
804   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
805                     AAQueryInfo &AAQI, const Instruction *I) {
806     return AliasResult::MayAlias;
807   }
808 
809   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
810                                bool IgnoreLocals) {
811     return ModRefInfo::ModRef;
812   }
813 
814   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
815     return ModRefInfo::ModRef;
816   }
817 
818   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
819     return MemoryEffects::unknown();
820   }
821 
822   MemoryEffects getMemoryEffects(const Function *F) {
823     return MemoryEffects::unknown();
824   }
825 
826   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
827                            AAQueryInfo &AAQI) {
828     return ModRefInfo::ModRef;
829   }
830 
831   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
832                            AAQueryInfo &AAQI) {
833     return ModRefInfo::ModRef;
834   }
835 };
836 
837 /// Return true if this pointer is returned by a noalias function.
838 bool isNoAliasCall(const Value *V);
839 
840 /// Return true if this pointer refers to a distinct and identifiable object.
841 /// This returns true for:
842 ///    Global Variables and Functions (but not Global Aliases)
843 ///    Allocas
844 ///    ByVal and NoAlias Arguments
845 ///    NoAlias returns (e.g. calls to malloc)
846 ///
847 bool isIdentifiedObject(const Value *V);
848 
849 /// Return true if V is umabigously identified at the function-level.
850 /// Different IdentifiedFunctionLocals can't alias.
851 /// Further, an IdentifiedFunctionLocal can not alias with any function
852 /// arguments other than itself, which is not necessarily true for
853 /// IdentifiedObjects.
854 bool isIdentifiedFunctionLocal(const Value *V);
855 
856 /// Returns true if the pointer is one which would have been considered an
857 /// escape by isNonEscapingLocalObject.
858 bool isEscapeSource(const Value *V);
859 
860 /// Return true if Object memory is not visible after an unwind, in the sense
861 /// that program semantics cannot depend on Object containing any particular
862 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
863 /// to true, then the memory is only not visible if the object has not been
864 /// captured prior to the unwind. Otherwise it is not visible even if captured.
865 bool isNotVisibleOnUnwind(const Value *Object,
866                           bool &RequiresNoCaptureBeforeUnwind);
867 
868 /// A manager for alias analyses.
869 ///
870 /// This class can have analyses registered with it and when run, it will run
871 /// all of them and aggregate their results into single AA results interface
872 /// that dispatches across all of the alias analysis results available.
873 ///
874 /// Note that the order in which analyses are registered is very significant.
875 /// That is the order in which the results will be aggregated and queried.
876 ///
877 /// This manager effectively wraps the AnalysisManager for registering alias
878 /// analyses. When you register your alias analysis with this manager, it will
879 /// ensure the analysis itself is registered with its AnalysisManager.
880 ///
881 /// The result of this analysis is only invalidated if one of the particular
882 /// aggregated AA results end up being invalidated. This removes the need to
883 /// explicitly preserve the results of `AAManager`. Note that analyses should no
884 /// longer be registered once the `AAManager` is run.
885 class AAManager : public AnalysisInfoMixin<AAManager> {
886 public:
887   using Result = AAResults;
888 
889   /// Register a specific AA result.
890   template <typename AnalysisT> void registerFunctionAnalysis() {
891     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
892   }
893 
894   /// Register a specific AA result.
895   template <typename AnalysisT> void registerModuleAnalysis() {
896     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
897   }
898 
899   Result run(Function &F, FunctionAnalysisManager &AM);
900 
901 private:
902   friend AnalysisInfoMixin<AAManager>;
903 
904   static AnalysisKey Key;
905 
906   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
907                        AAResults &AAResults),
908               4> ResultGetters;
909 
910   template <typename AnalysisT>
911   static void getFunctionAAResultImpl(Function &F,
912                                       FunctionAnalysisManager &AM,
913                                       AAResults &AAResults) {
914     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
915     AAResults.addAADependencyID(AnalysisT::ID());
916   }
917 
918   template <typename AnalysisT>
919   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
920                                     AAResults &AAResults) {
921     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
922     if (auto *R =
923             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
924       AAResults.addAAResult(*R);
925       MAMProxy
926           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
927     }
928   }
929 };
930 
931 /// A wrapper pass to provide the legacy pass manager access to a suitably
932 /// prepared AAResults object.
933 class AAResultsWrapperPass : public FunctionPass {
934   std::unique_ptr<AAResults> AAR;
935 
936 public:
937   static char ID;
938 
939   AAResultsWrapperPass();
940 
941   AAResults &getAAResults() { return *AAR; }
942   const AAResults &getAAResults() const { return *AAR; }
943 
944   bool runOnFunction(Function &F) override;
945 
946   void getAnalysisUsage(AnalysisUsage &AU) const override;
947 };
948 
949 /// A wrapper pass for external alias analyses. This just squirrels away the
950 /// callback used to run any analyses and register their results.
951 struct ExternalAAWrapperPass : ImmutablePass {
952   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
953 
954   CallbackT CB;
955 
956   static char ID;
957 
958   ExternalAAWrapperPass();
959 
960   explicit ExternalAAWrapperPass(CallbackT CB);
961 
962   void getAnalysisUsage(AnalysisUsage &AU) const override {
963     AU.setPreservesAll();
964   }
965 };
966 
967 FunctionPass *createAAResultsWrapperPass();
968 
969 /// A wrapper pass around a callback which can be used to populate the
970 /// AAResults in the AAResultsWrapperPass from an external AA.
971 ///
972 /// The callback provided here will be used each time we prepare an AAResults
973 /// object, and will receive a reference to the function wrapper pass, the
974 /// function, and the AAResults object to populate. This should be used when
975 /// setting up a custom pass pipeline to inject a hook into the AA results.
976 ImmutablePass *createExternalAAWrapperPass(
977     std::function<void(Pass &, Function &, AAResults &)> Callback);
978 
979 /// A helper for the legacy pass manager to create a \c AAResults
980 /// object populated to the best of our ability for a particular function when
981 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
982 ///
983 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
984 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
985 /// getAnalysisUsage.
986 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
987 
988 /// A helper for the legacy pass manager to populate \p AU to add uses to make
989 /// sure the analyses required by \p createLegacyPMAAResults are available.
990 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
991 
992 } // end namespace llvm
993 
994 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
995