• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "inliner.h"
18 
19 #include "art_method-inl.h"
20 #include "base/logging.h"
21 #include "base/pointer_size.h"
22 #include "builder.h"
23 #include "class_linker.h"
24 #include "class_root-inl.h"
25 #include "compiler_callbacks.h"
26 #include "constant_folding.h"
27 #include "data_type-inl.h"
28 #include "dead_code_elimination.h"
29 #include "dex/inline_method_analyser.h"
30 #include "driver/compiler_options.h"
31 #include "driver/dex_compilation_unit.h"
32 #include "handle_cache-inl.h"
33 #include "instruction_simplifier.h"
34 #include "intrinsics.h"
35 #include "jit/jit.h"
36 #include "jit/jit_code_cache.h"
37 #include "mirror/class_loader.h"
38 #include "mirror/dex_cache.h"
39 #include "mirror/object_array-alloc-inl.h"
40 #include "mirror/object_array-inl.h"
41 #include "nodes.h"
42 #include "profiling_info_builder.h"
43 #include "reference_type_propagation.h"
44 #include "register_allocator_linear_scan.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "sharpening.h"
47 #include "ssa_builder.h"
48 #include "ssa_phi_elimination.h"
49 #include "thread.h"
50 #include "verifier/verifier_compiler_binding.h"
51 
52 namespace art HIDDEN {
53 
54 // Instruction limit to control memory.
55 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
56 
57 // Maximum number of instructions for considering a method small,
58 // which we will always try to inline if the other non-instruction limits
59 // are not reached.
60 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
61 
62 // Limit the number of dex registers that we accumulate while inlining
63 // to avoid creating large amount of nested environments.
64 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
65 
66 // Limit recursive call inlining, which do not benefit from too
67 // much inlining compared to code locality.
68 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
69 
70 // Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of
71 // hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic
72 // recursive calls at all.
73 static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0;
74 
75 // Controls the use of inline caches in AOT mode.
76 static constexpr bool kUseAOTInlineCaches = true;
77 
78 // Controls the use of inlining try catches.
79 static constexpr bool kInlineTryCatches = true;
80 
81 // We check for line numbers to make sure the DepthString implementation
82 // aligns the output nicely.
83 #define LOG_INTERNAL(msg) \
84   static_assert(__LINE__ > 10, "Unhandled line number"); \
85   static_assert(__LINE__ < 10000, "Unhandled line number"); \
86   VLOG(compiler) << DepthString(__LINE__) << msg
87 
88 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
89 #define LOG_NOTE() LOG_INTERNAL("Note: ")
90 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
91 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
92 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
93 
DepthString(int line) const94 std::string HInliner::DepthString(int line) const {
95   std::string value;
96   // Indent according to the inlining depth.
97   size_t count = depth_;
98   // Line numbers get printed in the log, so add a space if the log's line is less
99   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
100   if (!kIsTargetBuild) {
101     if (line < 100) {
102       value += " ";
103     }
104     if (line < 1000) {
105       value += " ";
106     }
107     // Safeguard if this file reaches more than 10000 lines.
108     DCHECK_LT(line, 10000);
109   }
110   for (size_t i = 0; i < count; ++i) {
111     value += "  ";
112   }
113   return value;
114 }
115 
CountNumberOfInstructions(HGraph * graph)116 static size_t CountNumberOfInstructions(HGraph* graph) {
117   size_t number_of_instructions = 0;
118   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
119     for (HInstructionIterator instr_it(block->GetInstructions());
120          !instr_it.Done();
121          instr_it.Advance()) {
122       ++number_of_instructions;
123     }
124   }
125   return number_of_instructions;
126 }
127 
UpdateInliningBudget()128 void HInliner::UpdateInliningBudget() {
129   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
130     // Always try to inline small methods.
131     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
132   } else {
133     inlining_budget_ = std::max(
134         kMaximumNumberOfInstructionsForSmallMethod,
135         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
136   }
137 }
138 
Run()139 bool HInliner::Run() {
140   if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
141     // Inlining effectively disabled.
142     return false;
143   } else if (graph_->IsDebuggable()) {
144     // For simplicity, we currently never inline when the graph is debuggable. This avoids
145     // doing some logic in the runtime to discover if a method could have been inlined.
146     return false;
147   }
148 
149   bool did_inline = false;
150 
151   // Initialize the number of instructions for the method being compiled. Recursive calls
152   // to HInliner::Run have already updated the instruction count.
153   if (outermost_graph_ == graph_) {
154     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
155   }
156 
157   UpdateInliningBudget();
158   DCHECK_NE(total_number_of_instructions_, 0u);
159   DCHECK_NE(inlining_budget_, 0u);
160 
161   // If we're compiling tests, honor inlining directives in method names:
162   // - if a method's name contains the substring "$noinline$", do not
163   //   inline that method;
164   // - if a method's name contains the substring "$inline$", ensure
165   //   that this method is actually inlined.
166   // We limit the latter to AOT compilation, as the JIT may or may not inline
167   // depending on the state of classes at runtime.
168   const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest();
169   const bool honor_inline_directives =
170       honor_noinline_directives &&
171       Runtime::Current()->IsAotCompiler() &&
172       !graph_->IsCompilingBaseline();
173 
174   // Keep a copy of all blocks when starting the visit.
175   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
176   DCHECK(!blocks.empty());
177   // Because we are changing the graph when inlining,
178   // we just iterate over the blocks of the outer method.
179   // This avoids doing the inlining work again on the inlined blocks.
180   for (HBasicBlock* block : blocks) {
181     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
182       HInstruction* next = instruction->GetNext();
183       HInvoke* call = instruction->AsInvokeOrNull();
184       // As long as the call is not intrinsified, it is worth trying to inline.
185       if (call != nullptr && !codegen_->IsImplementedIntrinsic(call)) {
186         if (honor_noinline_directives) {
187           // Debugging case: directives in method names control or assert on inlining.
188           std::string callee_name =
189               call->GetMethodReference().PrettyMethod(/* with_signature= */ false);
190           // Tests prevent inlining by having $noinline$ in their method names.
191           if (callee_name.find("$noinline$") == std::string::npos) {
192             if (TryInline(call)) {
193               did_inline = true;
194             } else if (honor_inline_directives) {
195               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
196               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
197             }
198           }
199         } else {
200           DCHECK(!honor_inline_directives);
201           // Normal case: try to inline.
202           if (TryInline(call)) {
203             did_inline = true;
204           }
205         }
206       }
207       instruction = next;
208     }
209   }
210 
211   if (run_extra_type_propagation_) {
212     ReferenceTypePropagation rtp_fixup(graph_,
213                                        outer_compilation_unit_.GetDexCache(),
214                                        /* is_first_run= */ false);
215     rtp_fixup.Run();
216   }
217 
218   // We return true if we either inlined at least one method, or we marked one of our methods as
219   // always throwing.
220   // To check if we added an always throwing method we can either:
221   //   1) Pass a boolean throughout the pipeline and get an accurate result, or
222   //   2) Just check that the `HasAlwaysThrowingInvokes()` flag is true now. This is not 100%
223   //     accurate but the only other part where we set `HasAlwaysThrowingInvokes` is constant
224   //     folding the DivideUnsigned intrinsics for when the divisor is known to be 0. This case is
225   //     rare enough that changing the pipeline for this is not worth it. In the case of the false
226   //     positive (i.e. A) we didn't inline at all, B) the graph already had an always throwing
227   //     invoke, and C) we didn't set any new always throwing invokes), we will be running constant
228   //     folding, instruction simplifier, and dead code elimination one more time even though it
229   //     shouldn't change things. There's no false negative case.
230   return did_inline || graph_->HasAlwaysThrowingInvokes();
231 }
232 
IsMethodOrDeclaringClassFinal(ArtMethod * method)233 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
234     REQUIRES_SHARED(Locks::mutator_lock_) {
235   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
236 }
237 
238 /**
239  * Given the `resolved_method` looked up in the dex cache, try to find
240  * the actual runtime target of an interface or virtual call.
241  * Return nullptr if the runtime target cannot be proven.
242  */
FindVirtualOrInterfaceTarget(HInvoke * invoke,ReferenceTypeInfo info)243 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ReferenceTypeInfo info)
244     REQUIRES_SHARED(Locks::mutator_lock_) {
245   ArtMethod* resolved_method = invoke->GetResolvedMethod();
246   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
247     // No need to lookup further, the resolved method will be the target.
248     return resolved_method;
249   }
250 
251   if (info.GetTypeHandle()->IsInterface()) {
252     // Statically knowing that the receiver has an interface type cannot
253     // help us find what is the target method.
254     return nullptr;
255   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
256     // The method that we're trying to call is not in the receiver's class or super classes.
257     return nullptr;
258   } else if (info.GetTypeHandle()->IsErroneous()) {
259     // If the type is erroneous, do not go further, as we are going to query the vtable or
260     // imt table, that we can only safely do on non-erroneous classes.
261     return nullptr;
262   }
263 
264   ClassLinker* cl = Runtime::Current()->GetClassLinker();
265   PointerSize pointer_size = cl->GetImagePointerSize();
266   if (invoke->IsInvokeInterface()) {
267     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
268         resolved_method, pointer_size);
269   } else {
270     DCHECK(invoke->IsInvokeVirtual());
271     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
272         resolved_method, pointer_size);
273   }
274 
275   if (resolved_method == nullptr) {
276     // The information we had on the receiver was not enough to find
277     // the target method. Since we check above the exact type of the receiver,
278     // the only reason this can happen is an IncompatibleClassChangeError.
279     return nullptr;
280   } else if (!resolved_method->IsInvokable()) {
281     // The information we had on the receiver was not enough to find
282     // the target method. Since we check above the exact type of the receiver,
283     // the only reason this can happen is an IncompatibleClassChangeError.
284     return nullptr;
285   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
286     // A final method has to be the target method.
287     return resolved_method;
288   } else if (info.IsExact()) {
289     // If we found a method and the receiver's concrete type is statically
290     // known, we know for sure the target.
291     return resolved_method;
292   } else {
293     // Even if we did find a method, the receiver type was not enough to
294     // statically find the runtime target.
295     return nullptr;
296   }
297 }
298 
FindMethodIndexIn(ArtMethod * method,const DexFile & dex_file,uint32_t name_and_signature_index)299 static uint32_t FindMethodIndexIn(ArtMethod* method,
300                                   const DexFile& dex_file,
301                                   uint32_t name_and_signature_index)
302     REQUIRES_SHARED(Locks::mutator_lock_) {
303   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
304     return method->GetDexMethodIndex();
305   } else {
306     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
307   }
308 }
309 
FindClassIndexIn(ObjPtr<mirror::Class> cls,const DexCompilationUnit & compilation_unit)310 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
311                                        const DexCompilationUnit& compilation_unit)
312     REQUIRES_SHARED(Locks::mutator_lock_) {
313   const DexFile& dex_file = *compilation_unit.GetDexFile();
314   dex::TypeIndex index;
315   if (cls->GetDexCache() == nullptr) {
316     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
317     index = cls->FindTypeIndexInOtherDexFile(dex_file);
318   } else if (!cls->GetDexTypeIndex().IsValid()) {
319     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
320     // TODO: deal with proxy classes.
321   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
322     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
323     index = cls->GetDexTypeIndex();
324   } else {
325     index = cls->FindTypeIndexInOtherDexFile(dex_file);
326     // We cannot guarantee the entry will resolve to the same class,
327     // as there may be different class loaders. So only return the index if it's
328     // the right class already resolved with the class loader.
329     if (index.IsValid()) {
330       ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
331           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
332       if (resolved != cls) {
333         index = dex::TypeIndex::Invalid();
334       }
335     }
336   }
337 
338   return index;
339 }
340 
GetInlineCacheType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)341 HInliner::InlineCacheType HInliner::GetInlineCacheType(
342     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
343   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
344   uint8_t number_of_types = classes.Size();
345   if (number_of_types == 0) {
346     return kInlineCacheUninitialized;
347   } else if (number_of_types == 1) {
348     return kInlineCacheMonomorphic;
349   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
350     return kInlineCacheMegamorphic;
351   } else {
352     return kInlineCachePolymorphic;
353   }
354 }
355 
GetMonomorphicType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)356 static inline ObjPtr<mirror::Class> GetMonomorphicType(
357     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes)
358     REQUIRES_SHARED(Locks::mutator_lock_) {
359   DCHECK(classes.GetReference(0) != nullptr);
360   return classes.GetReference(0)->AsClass();
361 }
362 
FindMethodFromCHA(ArtMethod * resolved_method)363 ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) {
364   if (!resolved_method->HasSingleImplementation()) {
365     return nullptr;
366   }
367   if (Runtime::Current()->IsAotCompiler()) {
368     // No CHA-based devirtulization for AOT compiler (yet).
369     return nullptr;
370   }
371   if (Runtime::Current()->IsZygote()) {
372     // No CHA-based devirtulization for Zygote, as it compiles with
373     // offline information.
374     return nullptr;
375   }
376   if (outermost_graph_->IsCompilingOsr()) {
377     // We do not support HDeoptimize in OSR methods.
378     return nullptr;
379   }
380   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
381   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
382   if (single_impl == nullptr) {
383     return nullptr;
384   }
385   if (single_impl->IsProxyMethod()) {
386     // Proxy method is a generic invoker that's not worth
387     // devirtualizing/inlining. It also causes issues when the proxy
388     // method is in another dex file if we try to rewrite invoke-interface to
389     // invoke-virtual because a proxy method doesn't have a real dex file.
390     return nullptr;
391   }
392   if (!single_impl->GetDeclaringClass()->IsResolved()) {
393     // There's a race with the class loading, which updates the CHA info
394     // before setting the class to resolved. So we just bail for this
395     // rare occurence.
396     return nullptr;
397   }
398   return single_impl;
399 }
400 
IsMethodVerified(ArtMethod * method)401 static bool IsMethodVerified(ArtMethod* method)
402     REQUIRES_SHARED(Locks::mutator_lock_) {
403   if (method->GetDeclaringClass()->IsVerified()) {
404     return true;
405   }
406   // For AOT, we check if the class has a verification status that allows us to
407   // inline / analyze.
408   // At runtime, we know this is cold code if the class is not verified, so don't
409   // bother analyzing.
410   if (Runtime::Current()->IsAotCompiler()) {
411     if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks()) {
412       DCHECK(!Runtime::Current()->GetCompilerCallbacks()->IsUncompilableMethod(
413                   MethodReference(method->GetDexFile(), method->GetDexMethodIndex())));
414       return true;
415     }
416     if (method->GetDeclaringClass()->ShouldVerifyAtRuntime()) {
417       return !Runtime::Current()->GetCompilerCallbacks()->IsUncompilableMethod(
418           MethodReference(method->GetDexFile(), method->GetDexMethodIndex()));
419     }
420   }
421   return false;
422 }
423 
AlwaysThrows(ArtMethod * method)424 static bool AlwaysThrows(ArtMethod* method)
425     REQUIRES_SHARED(Locks::mutator_lock_) {
426   DCHECK(method != nullptr);
427   // Skip non-compilable and unverified methods.
428   if (!method->IsCompilable() || !IsMethodVerified(method)) {
429     return false;
430   }
431 
432   // Skip native methods, methods with try blocks, and methods that are too large.
433   // TODO(solanes): We could correctly mark methods with try/catch blocks as always throwing as long
434   // as we can get rid of the infinite loop cases. These cases (e.g. `void foo() {while (true) {}}`)
435   // are the only ones that can have no return instruction and still not be an "always throwing
436   // method". Unfortunately, we need to construct the graph to know there's an infinite loop and
437   // therefore not worth the trouble.
438   CodeItemDataAccessor accessor(method->DexInstructionData());
439   if (!accessor.HasCodeItem() ||
440       accessor.TriesSize() != 0 ||
441       accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
442     return false;
443   }
444   // Scan for exits.
445   bool throw_seen = false;
446   for (const DexInstructionPcPair& pair : accessor) {
447     switch (pair.Inst().Opcode()) {
448       case Instruction::RETURN:
449       case Instruction::RETURN_VOID:
450       case Instruction::RETURN_WIDE:
451       case Instruction::RETURN_OBJECT:
452         return false;  // found regular control flow back
453       case Instruction::THROW:
454         throw_seen = true;
455         break;
456       default:
457         break;
458     }
459   }
460   return throw_seen;
461 }
462 
TryInline(HInvoke * invoke_instruction)463 bool HInliner::TryInline(HInvoke* invoke_instruction) {
464   MaybeRecordStat(stats_, MethodCompilationStat::kTryInline);
465 
466   // Don't bother to move further if we know the method is unresolved or the invocation is
467   // polymorphic (invoke-{polymorphic,custom}).
468   if (invoke_instruction->IsInvokeUnresolved()) {
469     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved);
470     return false;
471   } else if (invoke_instruction->IsInvokePolymorphic()) {
472     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic);
473     return false;
474   } else if (invoke_instruction->IsInvokeCustom()) {
475     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom);
476     return false;
477   }
478 
479   ScopedObjectAccess soa(Thread::Current());
480   LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod();
481 
482   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
483   if (resolved_method == nullptr) {
484     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
485     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
486     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
487     return false;
488   }
489 
490   ArtMethod* actual_method = nullptr;
491   ReferenceTypeInfo receiver_info = ReferenceTypeInfo::CreateInvalid();
492   if (invoke_instruction->GetInvokeType() == kStatic) {
493     actual_method = invoke_instruction->GetResolvedMethod();
494   } else {
495     HInstruction* receiver = invoke_instruction->InputAt(0);
496     while (receiver->IsNullCheck()) {
497       // Due to multiple levels of inlining within the same pass, it might be that
498       // null check does not have the reference type of the actual receiver.
499       receiver = receiver->InputAt(0);
500     }
501     receiver_info = receiver->GetReferenceTypeInfo();
502     if (!receiver_info.IsValid()) {
503       // We have to run the extra type propagation now as we are requiring the RTI.
504       DCHECK(run_extra_type_propagation_);
505       run_extra_type_propagation_ = false;
506       ReferenceTypePropagation rtp_fixup(graph_,
507                                          outer_compilation_unit_.GetDexCache(),
508                                          /* is_first_run= */ false);
509       rtp_fixup.Run();
510       receiver_info = receiver->GetReferenceTypeInfo();
511     }
512 
513     DCHECK(receiver_info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
514     if (invoke_instruction->IsInvokeStaticOrDirect()) {
515       actual_method = invoke_instruction->GetResolvedMethod();
516     } else {
517       actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, receiver_info);
518     }
519   }
520 
521   if (actual_method != nullptr) {
522     // Single target.
523     bool result = TryInlineAndReplace(invoke_instruction,
524                                       actual_method,
525                                       receiver_info,
526                                       /* do_rtp= */ true,
527                                       /* is_speculative= */ false);
528     if (result) {
529       MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
530       if (outermost_graph_ == graph_) {
531         MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface);
532       }
533     } else {
534       HInvoke* invoke_to_analyze = nullptr;
535       if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) {
536         // Consider devirtualization as inlining.
537         result = true;
538         MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized);
539       } else {
540         invoke_to_analyze = invoke_instruction;
541       }
542       // Set always throws property for non-inlined method call with single target.
543       if (invoke_instruction->AlwaysThrows() || AlwaysThrows(actual_method)) {
544         invoke_to_analyze->SetAlwaysThrows(/* always_throws= */ true);
545         graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
546       }
547     }
548     return result;
549   }
550 
551   if (graph_->IsCompilingBaseline()) {
552     LOG_FAIL_NO_STAT() << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
553                        << " not inlined because we are compiling baseline and we could not"
554                        << " statically resolve the target";
555     // For baseline compilation, we will collect inline caches, so we should not
556     // try to inline using them.
557     outermost_graph_->SetUsefulOptimizing();
558     return false;
559   }
560 
561   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
562 
563   // No try catch inlining allowed here, or recursively. For try catch inlining we are banking on
564   // the fact that we have a unique dex pc list. We cannot guarantee that for some TryInline methods
565   // e.g. `TryInlinePolymorphicCall`.
566   // TODO(solanes): Setting `try_catch_inlining_allowed_` to false here covers all cases from
567   // `TryInlineFromCHA` and from `TryInlineFromInlineCache` as well (e.g.
568   // `TryInlinePolymorphicCall`). Reassess to see if we can inline inline catch blocks in
569   // `TryInlineFromCHA`, `TryInlineMonomorphicCall` and `TryInlinePolymorphicCallToSameTarget`.
570 
571   // We store the value to restore it since we will use the same HInliner instance for other inlinee
572   // candidates.
573   const bool previous_value = try_catch_inlining_allowed_;
574   try_catch_inlining_allowed_ = false;
575 
576   if (TryInlineFromCHA(invoke_instruction)) {
577     try_catch_inlining_allowed_ = previous_value;
578     return true;
579   }
580 
581   const bool result = TryInlineFromInlineCache(invoke_instruction);
582   try_catch_inlining_allowed_ = previous_value;
583   return result;
584 }
585 
TryInlineFromCHA(HInvoke * invoke_instruction)586 bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) {
587   ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod());
588   if (method == nullptr) {
589     return false;
590   }
591   LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod();
592 
593   uint32_t dex_pc = invoke_instruction->GetDexPc();
594   HInstruction* cursor = invoke_instruction->GetPrevious();
595   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
596   Handle<mirror::Class> cls = graph_->GetHandleCache()->NewHandle(method->GetDeclaringClass());
597   if (!TryInlineAndReplace(invoke_instruction,
598                            method,
599                            ReferenceTypeInfo::Create(cls),
600                            /* do_rtp= */ true,
601                            /* is_speculative= */ true)) {
602     return false;
603   }
604   AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
605   // Add dependency due to devirtualization: we are assuming the resolved method
606   // has a single implementation.
607   outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod());
608   MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
609   return true;
610 }
611 
UseOnlyPolymorphicInliningWithNoDeopt()612 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
613   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
614   // do not generate a deopt.
615   //
616   // For AOT:
617   //    Generating a deopt does not ensure that we will actually capture the new types;
618   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
619   //    Take for example the following scenario:
620   //      - we capture the inline cache in one run
621   //      - the next run, we deoptimize because we miss a type check, but the method
622   //        never becomes hot again
623   //    In this case, the inline cache will not be updated in the profile and the AOT code
624   //    will keep deoptimizing.
625   //    Another scenario is if we use profile compilation for a process which is not allowed
626   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
627   //    rest of the lifetime.
628   // TODO(calin):
629   //    This is a compromise because we will most likely never update the inline cache
630   //    in the profile (unless there's another reason to deopt). So we might be stuck with
631   //    a sub-optimal inline cache.
632   //    We could be smarter when capturing inline caches to mitigate this.
633   //    (e.g. by having different thresholds for new and old methods).
634   //
635   // For OSR:
636   //     We may come from the interpreter and it may have seen different receiver types.
637   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
638 }
TryInlineFromInlineCache(HInvoke * invoke_instruction)639 bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction)
640     REQUIRES_SHARED(Locks::mutator_lock_) {
641   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
642     return false;
643   }
644 
645   StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current());
646   // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
647   // for it.
648   InlineCacheType inline_cache_type =
649       (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
650           ? GetInlineCacheAOT(invoke_instruction, &classes)
651           : GetInlineCacheJIT(invoke_instruction, &classes);
652 
653   switch (inline_cache_type) {
654     case kInlineCacheNoData: {
655       LOG_FAIL_NO_STAT()
656           << "No inline cache information for call to "
657           << invoke_instruction->GetMethodReference().PrettyMethod();
658       return false;
659     }
660 
661     case kInlineCacheUninitialized: {
662       LOG_FAIL_NO_STAT()
663           << "Interface or virtual call to "
664           << invoke_instruction->GetMethodReference().PrettyMethod()
665           << " is not hit and not inlined";
666       return false;
667     }
668 
669     case kInlineCacheMonomorphic: {
670       MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
671       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
672         return TryInlinePolymorphicCall(invoke_instruction, classes);
673       } else {
674         return TryInlineMonomorphicCall(invoke_instruction, classes);
675       }
676     }
677 
678     case kInlineCachePolymorphic: {
679       MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
680       return TryInlinePolymorphicCall(invoke_instruction, classes);
681     }
682 
683     case kInlineCacheMegamorphic: {
684       LOG_FAIL_NO_STAT()
685           << "Interface or virtual call to "
686           << invoke_instruction->GetMethodReference().PrettyMethod()
687           << " is megamorphic and not inlined";
688       MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
689       return false;
690     }
691 
692     case kInlineCacheMissingTypes: {
693       LOG_FAIL_NO_STAT()
694           << "Interface or virtual call to "
695           << invoke_instruction->GetMethodReference().PrettyMethod()
696           << " is missing types and not inlined";
697       return false;
698     }
699   }
700 }
701 
GetInlineCacheJIT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)702 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
703     HInvoke* invoke_instruction,
704     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
705   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler());
706 
707   ArtMethod* caller = graph_->GetArtMethod();
708   // Under JIT, we should always know the caller.
709   DCHECK(caller != nullptr);
710 
711   InlineCache* cache = nullptr;
712   // Start with the outer graph profiling info.
713   ProfilingInfo* profiling_info = outermost_graph_->GetProfilingInfo();
714   if (profiling_info != nullptr) {
715     if (depth_ == 0) {
716       cache = profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
717     } else {
718       uint32_t dex_pc = ProfilingInfoBuilder::EncodeInlinedDexPc(
719           this, codegen_->GetCompilerOptions(), invoke_instruction);
720       if (dex_pc != kNoDexPc) {
721         cache = profiling_info->GetInlineCache(dex_pc);
722       }
723     }
724   }
725 
726   if (cache == nullptr) {
727     // Check the current graph profiling info.
728     profiling_info = graph_->GetProfilingInfo();
729     if (profiling_info == nullptr) {
730       return kInlineCacheNoData;
731     }
732 
733     cache = profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
734   }
735 
736   if (cache == nullptr) {
737     // Either we never hit this invoke and we never compiled the callee,
738     // or the method wasn't resolved when we performed baseline compilation.
739     // Bail for now.
740     return kInlineCacheNoData;
741   }
742   Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(*cache, classes);
743   return GetInlineCacheType(*classes);
744 }
745 
GetInlineCacheAOT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)746 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
747     HInvoke* invoke_instruction,
748     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
749   DCHECK_EQ(classes->Capacity(), InlineCache::kIndividualCacheSize);
750   DCHECK_EQ(classes->Size(), 0u);
751 
752   const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
753   if (pci == nullptr) {
754     return kInlineCacheNoData;
755   }
756 
757   ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference(
758       caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex()));
759   if (!hotness.IsHot()) {
760     return kInlineCacheNoData;  // no profile information for this invocation.
761   }
762 
763   const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
764   DCHECK(inline_caches != nullptr);
765 
766   // Inlined inline caches are not supported in AOT, so we use the dex pc directly, and don't
767   // call `InlineCache::EncodeDexPc`.
768   // To support it, we would need to ensure `inline_max_code_units` remain the
769   // same between dex2oat and runtime, for example by adding it to the boot
770   // image oat header.
771   const auto it = inline_caches->find(invoke_instruction->GetDexPc());
772   if (it == inline_caches->end()) {
773     return kInlineCacheUninitialized;
774   }
775 
776   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
777   if (dex_pc_data.is_missing_types) {
778     return kInlineCacheMissingTypes;
779   }
780   if (dex_pc_data.is_megamorphic) {
781     return kInlineCacheMegamorphic;
782   }
783   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
784 
785   // Walk over the class descriptors and look up the actual classes.
786   // If we cannot find a type we return kInlineCacheMissingTypes.
787   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
788   Thread* self = Thread::Current();
789   for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
790     const DexFile* dex_file = caller_compilation_unit_.GetDexFile();
791     size_t descriptor_length;
792     const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index, &descriptor_length);
793     ObjPtr<mirror::Class> clazz = class_linker->FindClass(
794         self, descriptor, descriptor_length, caller_compilation_unit_.GetClassLoader());
795     if (clazz == nullptr) {
796       self->ClearException();  // Clean up the exception left by type resolution.
797       VLOG(compiler) << "Could not find class from inline cache in AOT mode "
798           << invoke_instruction->GetMethodReference().PrettyMethod()
799           << " : "
800           << descriptor;
801       return kInlineCacheMissingTypes;
802     }
803     DCHECK_LT(classes->Size(), classes->Capacity());
804     classes->NewHandle(clazz);
805   }
806 
807   return GetInlineCacheType(*classes);
808 }
809 
BuildGetReceiverClass(HInstruction * receiver,uint32_t dex_pc) const810 HInstanceFieldGet* HInliner::BuildGetReceiverClass(HInstruction* receiver,
811                                                    uint32_t dex_pc) const {
812   ArtField* field = WellKnownClasses::java_lang_Object_shadowKlass;
813   HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
814       receiver,
815       field,
816       DataType::Type::kReference,
817       field->GetOffset(),
818       field->IsVolatile(),
819       field->GetDexFieldIndex(),
820       field->GetDeclaringClass()->GetDexClassDefIndex(),
821       *field->GetDexFile(),
822       dex_pc);
823   // The class of a field is effectively final, and does not have any memory dependencies.
824   result->SetSideEffects(SideEffects::None());
825   return result;
826 }
827 
ResolveMethodFromInlineCache(Handle<mirror::Class> klass,HInvoke * invoke_instruction,PointerSize pointer_size)828 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
829                                                HInvoke* invoke_instruction,
830                                                PointerSize pointer_size)
831     REQUIRES_SHARED(Locks::mutator_lock_) {
832   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
833   if (Runtime::Current()->IsAotCompiler()) {
834     // We can get unrelated types when working with profiles (corruption,
835     // systme updates, or anyone can write to it). So first check if the class
836     // actually implements the declaring class of the method that is being
837     // called in bytecode.
838     // Note: the lookup methods used below require to have assignable types.
839     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
840       return nullptr;
841     }
842 
843     // Also check whether the type in the inline cache is an interface or an
844     // abstract class. We only expect concrete classes in inline caches, so this
845     // means the class was changed.
846     if (klass->IsAbstract() || klass->IsInterface()) {
847       return nullptr;
848     }
849   }
850 
851   if (invoke_instruction->IsInvokeInterface()) {
852     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
853   } else {
854     DCHECK(invoke_instruction->IsInvokeVirtual());
855     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
856   }
857   // Even if the class exists we can still not have the function the
858   // inline-cache targets if the profile is from far enough in the past/future.
859   // We need to allow this since we don't update boot-profiles very often. This
860   // can occur in boot-profiles with inline-caches.
861   DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr);
862   return resolved_method;
863 }
864 
TryInlineMonomorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)865 bool HInliner::TryInlineMonomorphicCall(
866     HInvoke* invoke_instruction,
867     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
868   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
869       << invoke_instruction->DebugName();
870 
871   dex::TypeIndex class_index = FindClassIndexIn(
872       GetMonomorphicType(classes), caller_compilation_unit_);
873   if (!class_index.IsValid()) {
874     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller)
875         << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod())
876         << " from inline cache is not inlined because its class is not"
877         << " accessible to the caller";
878     return false;
879   }
880 
881   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
882   PointerSize pointer_size = class_linker->GetImagePointerSize();
883   Handle<mirror::Class> monomorphic_type =
884       graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes));
885   ArtMethod* resolved_method = ResolveMethodFromInlineCache(
886       monomorphic_type, invoke_instruction, pointer_size);
887   if (resolved_method == nullptr) {
888     // Bogus AOT profile, bail.
889     DCHECK(Runtime::Current()->IsAotCompiler());
890     return false;
891   }
892 
893   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
894   HInstruction* receiver = invoke_instruction->InputAt(0);
895   HInstruction* cursor = invoke_instruction->GetPrevious();
896   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
897   if (!TryInlineAndReplace(invoke_instruction,
898                            resolved_method,
899                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
900                            /* do_rtp= */ false,
901                            /* is_speculative= */ true)) {
902     return false;
903   }
904 
905   // We successfully inlined, now add a guard.
906   AddTypeGuard(receiver,
907                cursor,
908                bb_cursor,
909                class_index,
910                monomorphic_type,
911                invoke_instruction,
912                /* with_deoptimization= */ true);
913 
914   // Lazily run type propagation to get the guard typed, and eventually propagate the
915   // type of the receiver.
916   run_extra_type_propagation_ = true;
917 
918   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
919   return true;
920 }
921 
AddCHAGuard(HInstruction * invoke_instruction,uint32_t dex_pc,HInstruction * cursor,HBasicBlock * bb_cursor)922 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
923                            uint32_t dex_pc,
924                            HInstruction* cursor,
925                            HBasicBlock* bb_cursor) {
926   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
927       HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
928   // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA
929   // invalidation or for debugging reasons. It is OK to just check for non-zero
930   // value here instead of the specific CHA value. When a debugging deopt is
931   // requested we deoptimize before we execute any code and hence we shouldn't
932   // see that case here.
933   HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
934       deopt_flag, graph_->GetIntConstant(0));
935   HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
936       graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
937 
938   if (cursor != nullptr) {
939     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
940   } else {
941     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
942   }
943   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
944   bb_cursor->InsertInstructionAfter(deopt, compare);
945 
946   // Add receiver as input to aid CHA guard optimization later.
947   deopt_flag->AddInput(invoke_instruction->InputAt(0));
948   DCHECK_EQ(deopt_flag->InputCount(), 1u);
949   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
950   outermost_graph_->IncrementNumberOfCHAGuards();
951 }
952 
AddTypeGuard(HInstruction * receiver,HInstruction * cursor,HBasicBlock * bb_cursor,dex::TypeIndex class_index,Handle<mirror::Class> klass,HInstruction * invoke_instruction,bool with_deoptimization)953 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
954                                      HInstruction* cursor,
955                                      HBasicBlock* bb_cursor,
956                                      dex::TypeIndex class_index,
957                                      Handle<mirror::Class> klass,
958                                      HInstruction* invoke_instruction,
959                                      bool with_deoptimization) {
960   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
961   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
962       receiver, invoke_instruction->GetDexPc());
963   if (cursor != nullptr) {
964     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
965   } else {
966     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
967   }
968 
969   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
970   bool is_referrer;
971   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
972   if (outermost_art_method == nullptr) {
973     DCHECK(Runtime::Current()->IsAotCompiler());
974     // We are in AOT mode and we don't have an ART method to determine
975     // if the inlined method belongs to the referrer. Assume it doesn't.
976     is_referrer = false;
977   } else {
978     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
979   }
980 
981   // Note that we will just compare the classes, so we don't need Java semantics access checks.
982   // Note that the type index and the dex file are relative to the method this type guard is
983   // inlined into.
984   HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
985                                                                    class_index,
986                                                                    caller_dex_file,
987                                                                    klass,
988                                                                    is_referrer,
989                                                                    invoke_instruction->GetDexPc(),
990                                                                    /* needs_access_check= */ false);
991   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
992       load_class, codegen_, caller_compilation_unit_);
993   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
994       << "We should always be able to reference a class for inline caches";
995   // Load kind must be set before inserting the instruction into the graph.
996   load_class->SetLoadKind(kind);
997   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
998   // In AOT mode, we will most likely load the class from BSS, which will involve a call
999   // to the runtime. In this case, the load instruction will need an environment so copy
1000   // it from the invoke instruction.
1001   if (load_class->NeedsEnvironment()) {
1002     DCHECK(Runtime::Current()->IsAotCompiler());
1003     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1004   }
1005 
1006   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
1007   bb_cursor->InsertInstructionAfter(compare, load_class);
1008   if (with_deoptimization) {
1009     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1010         graph_->GetAllocator(),
1011         compare,
1012         receiver,
1013         Runtime::Current()->IsAotCompiler()
1014             ? DeoptimizationKind::kAotInlineCache
1015             : DeoptimizationKind::kJitInlineCache,
1016         invoke_instruction->GetDexPc());
1017     bb_cursor->InsertInstructionAfter(deoptimize, compare);
1018     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1019     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
1020     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1021     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1022   }
1023   return compare;
1024 }
1025 
MaybeReplaceAndRemove(HInstruction * new_instruction,HInstruction * old_instruction)1026 static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) {
1027   DCHECK(new_instruction != old_instruction);
1028   if (new_instruction != nullptr) {
1029     old_instruction->ReplaceWith(new_instruction);
1030   }
1031   old_instruction->GetBlock()->RemoveInstruction(old_instruction);
1032 }
1033 
TryInlinePolymorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)1034 bool HInliner::TryInlinePolymorphicCall(
1035     HInvoke* invoke_instruction,
1036     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
1037   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
1038       << invoke_instruction->DebugName();
1039 
1040   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) {
1041     return true;
1042   }
1043 
1044   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1045   PointerSize pointer_size = class_linker->GetImagePointerSize();
1046 
1047   bool all_targets_inlined = true;
1048   bool one_target_inlined = false;
1049   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
1050   uint8_t number_of_types = classes.Size();
1051   for (size_t i = 0; i != number_of_types; ++i) {
1052     DCHECK(classes.GetReference(i) != nullptr);
1053     Handle<mirror::Class> handle =
1054         graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass());
1055     ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size);
1056     if (method == nullptr) {
1057       DCHECK(Runtime::Current()->IsAotCompiler());
1058       // AOT profile is bogus. This loop expects to iterate over all entries,
1059       // so just just continue.
1060       all_targets_inlined = false;
1061       continue;
1062     }
1063 
1064     HInstruction* receiver = invoke_instruction->InputAt(0);
1065     HInstruction* cursor = invoke_instruction->GetPrevious();
1066     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1067 
1068     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
1069     HInstruction* return_replacement = nullptr;
1070 
1071     // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call
1072     // `TryInlinePolymorphicCall` even though we are monomorphic.
1073     const bool actually_monomorphic = number_of_types == 1;
1074     DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt());
1075 
1076     // We only want to limit recursive polymorphic cases, not monomorphic ones.
1077     const bool too_many_polymorphic_recursive_calls =
1078         !actually_monomorphic &&
1079         CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls;
1080     if (too_many_polymorphic_recursive_calls) {
1081       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget)
1082           << "Method " << method->PrettyMethod()
1083           << " is not inlined because it has reached its polymorphic recursive call budget.";
1084     } else if (class_index.IsValid()) {
1085       LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
1086     }
1087 
1088     if (too_many_polymorphic_recursive_calls ||
1089         !class_index.IsValid() ||
1090         !TryBuildAndInline(invoke_instruction,
1091                            method,
1092                            ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
1093                            &return_replacement,
1094                            /* is_speculative= */ true)) {
1095       all_targets_inlined = false;
1096     } else {
1097       one_target_inlined = true;
1098 
1099       LOG_SUCCESS() << "Polymorphic call to "
1100                     << invoke_instruction->GetMethodReference().PrettyMethod()
1101                     << " has inlined " << ArtMethod::PrettyMethod(method);
1102 
1103       // If we have inlined all targets before, and this receiver is the last seen,
1104       // we deoptimize instead of keeping the original invoke instruction.
1105       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
1106           all_targets_inlined &&
1107           (i + 1 == number_of_types);
1108 
1109       HInstruction* compare = AddTypeGuard(receiver,
1110                                            cursor,
1111                                            bb_cursor,
1112                                            class_index,
1113                                            handle,
1114                                            invoke_instruction,
1115                                            deoptimize);
1116       if (deoptimize) {
1117         MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1118       } else {
1119         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1120       }
1121     }
1122   }
1123 
1124   if (!one_target_inlined) {
1125     LOG_FAIL_NO_STAT()
1126         << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
1127         << " from inline cache is not inlined because none"
1128         << " of its targets could be inlined";
1129     return false;
1130   }
1131 
1132   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1133 
1134   // Lazily run type propagation to get the guards typed.
1135   run_extra_type_propagation_ = true;
1136   return true;
1137 }
1138 
CreateDiamondPatternForPolymorphicInline(HInstruction * compare,HInstruction * return_replacement,HInstruction * invoke_instruction)1139 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
1140                                                         HInstruction* return_replacement,
1141                                                         HInstruction* invoke_instruction) {
1142   uint32_t dex_pc = invoke_instruction->GetDexPc();
1143   HBasicBlock* cursor_block = compare->GetBlock();
1144   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
1145   ArenaAllocator* allocator = graph_->GetAllocator();
1146 
1147   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
1148   // and the returned block is the start of the then branch (that could contain multiple blocks).
1149   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
1150 
1151   // Split the block containing the invoke before and after the invoke. The returned block
1152   // of the split before will contain the invoke and will be the otherwise branch of
1153   // the diamond. The returned block of the split after will be the merge block
1154   // of the diamond.
1155   HBasicBlock* end_then = invoke_instruction->GetBlock();
1156   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
1157   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
1158 
1159   // If the methods we are inlining return a value, we create a phi in the merge block
1160   // that will have the `invoke_instruction and the `return_replacement` as inputs.
1161   if (return_replacement != nullptr) {
1162     HPhi* phi = new (allocator) HPhi(
1163         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
1164     merge->AddPhi(phi);
1165     invoke_instruction->ReplaceWith(phi);
1166     phi->AddInput(return_replacement);
1167     phi->AddInput(invoke_instruction);
1168   }
1169 
1170   // Add the control flow instructions.
1171   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
1172   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
1173   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
1174 
1175   // Add the newly created blocks to the graph.
1176   graph_->AddBlock(then);
1177   graph_->AddBlock(otherwise);
1178   graph_->AddBlock(merge);
1179 
1180   // Set up successor (and implictly predecessor) relations.
1181   cursor_block->AddSuccessor(otherwise);
1182   cursor_block->AddSuccessor(then);
1183   end_then->AddSuccessor(merge);
1184   otherwise->AddSuccessor(merge);
1185 
1186   // Set up dominance information.
1187   then->SetDominator(cursor_block);
1188   cursor_block->AddDominatedBlock(then);
1189   otherwise->SetDominator(cursor_block);
1190   cursor_block->AddDominatedBlock(otherwise);
1191   merge->SetDominator(cursor_block);
1192   cursor_block->AddDominatedBlock(merge);
1193 
1194   // Update the revert post order.
1195   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
1196   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
1197   graph_->reverse_post_order_[++index] = then;
1198   index = IndexOfElement(graph_->reverse_post_order_, end_then);
1199   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
1200   graph_->reverse_post_order_[++index] = otherwise;
1201   graph_->reverse_post_order_[++index] = merge;
1202 
1203 
1204   graph_->UpdateLoopAndTryInformationOfNewBlock(
1205       then, original_invoke_block, /* replace_if_back_edge= */ false);
1206   graph_->UpdateLoopAndTryInformationOfNewBlock(
1207       otherwise, original_invoke_block, /* replace_if_back_edge= */ false);
1208 
1209   // In case the original invoke location was a back edge, we need to update
1210   // the loop to now have the merge block as a back edge.
1211   graph_->UpdateLoopAndTryInformationOfNewBlock(
1212       merge, original_invoke_block, /* replace_if_back_edge= */ true);
1213 }
1214 
TryInlinePolymorphicCallToSameTarget(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)1215 bool HInliner::TryInlinePolymorphicCallToSameTarget(
1216     HInvoke* invoke_instruction,
1217     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
1218   // This optimization only works under JIT for now.
1219   if (!codegen_->GetCompilerOptions().IsJitCompiler()) {
1220     return false;
1221   }
1222 
1223   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1224   PointerSize pointer_size = class_linker->GetImagePointerSize();
1225 
1226   ArtMethod* actual_method = nullptr;
1227   size_t method_index = invoke_instruction->IsInvokeVirtual()
1228       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
1229       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
1230 
1231   // Check whether we are actually calling the same method among
1232   // the different types seen.
1233   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
1234   uint8_t number_of_types = classes.Size();
1235   for (size_t i = 0; i != number_of_types; ++i) {
1236     DCHECK(classes.GetReference(i) != nullptr);
1237     ArtMethod* new_method = nullptr;
1238     if (invoke_instruction->IsInvokeInterface()) {
1239       new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get(
1240           method_index, pointer_size);
1241       if (new_method->IsRuntimeMethod()) {
1242         // Bail out as soon as we see a conflict trampoline in one of the target's
1243         // interface table.
1244         return false;
1245       }
1246     } else {
1247       DCHECK(invoke_instruction->IsInvokeVirtual());
1248       new_method =
1249           classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size);
1250     }
1251     DCHECK(new_method != nullptr);
1252     if (actual_method == nullptr) {
1253       actual_method = new_method;
1254     } else if (actual_method != new_method) {
1255       // Different methods, bailout.
1256       return false;
1257     }
1258   }
1259 
1260   HInstruction* receiver = invoke_instruction->InputAt(0);
1261   HInstruction* cursor = invoke_instruction->GetPrevious();
1262   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1263 
1264   HInstruction* return_replacement = nullptr;
1265   Handle<mirror::Class> cls =
1266       graph_->GetHandleCache()->NewHandle(actual_method->GetDeclaringClass());
1267   if (!TryBuildAndInline(invoke_instruction,
1268                          actual_method,
1269                          ReferenceTypeInfo::Create(cls),
1270                          &return_replacement,
1271                          /* is_speculative= */ true)) {
1272     return false;
1273   }
1274 
1275   // We successfully inlined, now add a guard.
1276   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
1277       receiver, invoke_instruction->GetDexPc());
1278 
1279   DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
1280       ? DataType::Type::kInt64
1281       : DataType::Type::kInt32;
1282   HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
1283       receiver_class,
1284       type,
1285       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
1286                                             : HClassTableGet::TableKind::kIMTable,
1287       method_index,
1288       invoke_instruction->GetDexPc());
1289 
1290   HConstant* constant;
1291   if (type == DataType::Type::kInt64) {
1292     constant = graph_->GetLongConstant(reinterpret_cast<intptr_t>(actual_method));
1293   } else {
1294     constant = graph_->GetIntConstant(reinterpret_cast<intptr_t>(actual_method));
1295   }
1296 
1297   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
1298   if (cursor != nullptr) {
1299     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
1300   } else {
1301     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
1302   }
1303   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
1304   bb_cursor->InsertInstructionAfter(compare, class_table_get);
1305 
1306   if (outermost_graph_->IsCompilingOsr()) {
1307     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1308   } else {
1309     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1310         graph_->GetAllocator(),
1311         compare,
1312         receiver,
1313         DeoptimizationKind::kJitSameTarget,
1314         invoke_instruction->GetDexPc());
1315     bb_cursor->InsertInstructionAfter(deoptimize, compare);
1316     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1317     MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1318     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1319     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1320   }
1321 
1322   // Lazily run type propagation to get the guard typed.
1323   run_extra_type_propagation_ = true;
1324   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1325 
1326   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
1327   return true;
1328 }
1329 
MaybeRunReferenceTypePropagation(HInstruction * replacement,HInvoke * invoke_instruction)1330 void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement,
1331                                                 HInvoke* invoke_instruction) {
1332   if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) {
1333     // Actual return value has a more specific type than the method's declared
1334     // return type. Run RTP again on the outer graph to propagate it.
1335     ReferenceTypePropagation(graph_,
1336                              outer_compilation_unit_.GetDexCache(),
1337                              /* is_first_run= */ false).Run();
1338   }
1339 }
1340 
TryDevirtualize(HInvoke * invoke_instruction,ArtMethod * method,HInvoke ** replacement)1341 bool HInliner::TryDevirtualize(HInvoke* invoke_instruction,
1342                                ArtMethod* method,
1343                                HInvoke** replacement) {
1344   DCHECK(invoke_instruction != *replacement);
1345   if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) {
1346     return false;
1347   }
1348 
1349   // Don't devirtualize to an intrinsic invalid after the builder phase. The ArtMethod might be an
1350   // intrinsic even when the HInvoke isn't e.g. java.lang.CharSequence.isEmpty (not an intrinsic)
1351   // can get devirtualized into java.lang.String.isEmpty (which is an intrinsic).
1352   if (method->IsIntrinsic() && !IsValidIntrinsicAfterBuilder(method->GetIntrinsic())) {
1353     return false;
1354   }
1355 
1356   // Don't bother trying to call directly a default conflict method. It
1357   // doesn't have a proper MethodReference, but also `GetCanonicalMethod`
1358   // will return an actual default implementation.
1359   if (method->IsDefaultConflicting()) {
1360     return false;
1361   }
1362   DCHECK(!method->IsProxyMethod());
1363   ClassLinker* cl = Runtime::Current()->GetClassLinker();
1364   PointerSize pointer_size = cl->GetImagePointerSize();
1365   // The sharpening logic assumes the caller isn't passing a copied method.
1366   method = method->GetCanonicalMethod(pointer_size);
1367   uint32_t dex_method_index = FindMethodIndexIn(
1368       method,
1369       *invoke_instruction->GetMethodReference().dex_file,
1370       invoke_instruction->GetMethodReference().index);
1371   if (dex_method_index == dex::kDexNoIndex) {
1372     return false;
1373   }
1374   HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1375       HSharpening::SharpenLoadMethod(method,
1376                                      /* has_method_id= */ true,
1377                                      /* for_interface_call= */ false,
1378                                      codegen_);
1379   DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative);
1380   if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) {
1381     // If sharpening returns that we need to load the method at runtime, keep
1382     // the virtual/interface call which will be faster.
1383     // Also, the entrypoints for runtime calls do not handle devirtualized
1384     // calls.
1385     return false;
1386   }
1387 
1388   HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect(
1389       graph_->GetAllocator(),
1390       invoke_instruction->GetNumberOfArguments(),
1391       invoke_instruction->GetNumberOfOutVRegs(),
1392       invoke_instruction->GetType(),
1393       invoke_instruction->GetDexPc(),
1394       MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index),
1395       method,
1396       dispatch_info,
1397       kDirect,
1398       MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1399       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone,
1400       !graph_->IsDebuggable());
1401   HInputsRef inputs = invoke_instruction->GetInputs();
1402   DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments());
1403   for (size_t index = 0; index != inputs.size(); ++index) {
1404     new_invoke->SetArgumentAt(index, inputs[index]);
1405   }
1406   if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) {
1407     new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(),
1408                               graph_->GetCurrentMethod());
1409   }
1410   invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1411   new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1412   if (invoke_instruction->GetType() == DataType::Type::kReference) {
1413     new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
1414   }
1415   *replacement = new_invoke;
1416 
1417   MaybeReplaceAndRemove(*replacement, invoke_instruction);
1418   // No need to call MaybeRunReferenceTypePropagation, as we know the return type
1419   // cannot be more specific.
1420   DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction));
1421   return true;
1422 }
1423 
1424 
TryInlineAndReplace(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,bool do_rtp,bool is_speculative)1425 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
1426                                    ArtMethod* method,
1427                                    ReferenceTypeInfo receiver_type,
1428                                    bool do_rtp,
1429                                    bool is_speculative) {
1430   DCHECK(!codegen_->IsImplementedIntrinsic(invoke_instruction));
1431   HInstruction* return_replacement = nullptr;
1432 
1433   if (!TryBuildAndInline(
1434           invoke_instruction, method, receiver_type, &return_replacement, is_speculative)) {
1435     return false;
1436   }
1437 
1438   MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1439   FixUpReturnReferenceType(method, return_replacement);
1440   if (do_rtp) {
1441     MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction);
1442   }
1443   return true;
1444 }
1445 
CountRecursiveCallsOf(ArtMethod * method) const1446 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
1447   const HInliner* current = this;
1448   size_t count = 0;
1449   do {
1450     if (current->graph_->GetArtMethod() == method) {
1451       ++count;
1452     }
1453     current = current->parent_;
1454   } while (current != nullptr);
1455   return count;
1456 }
1457 
MayInline(const CompilerOptions & compiler_options,const DexFile & inlined_from,const DexFile & inlined_into)1458 static inline bool MayInline(const CompilerOptions& compiler_options,
1459                              const DexFile& inlined_from,
1460                              const DexFile& inlined_into) {
1461   // We're not allowed to inline across dex files if we're the no-inline-from dex file.
1462   if (!IsSameDexFile(inlined_from, inlined_into) &&
1463       ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
1464     return false;
1465   }
1466 
1467   return true;
1468 }
1469 
1470 // Returns whether inlining is allowed based on ART semantics.
IsInliningAllowed(ArtMethod * method,const CodeItemDataAccessor & accessor) const1471 bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const {
1472   if (!accessor.HasCodeItem()) {
1473     LOG_FAIL_NO_STAT()
1474         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
1475     return false;
1476   }
1477 
1478   if (!method->IsCompilable()) {
1479     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable)
1480         << "Method " << method->PrettyMethod()
1481         << " has soft failures un-handled by the compiler, so it cannot be inlined";
1482     return false;
1483   }
1484 
1485   if (!IsMethodVerified(method)) {
1486     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1487         << "Method " << method->PrettyMethod()
1488         << " couldn't be verified, so it cannot be inlined";
1489     return false;
1490   }
1491 
1492   if (annotations::MethodIsNeverInline(*method->GetDexFile(),
1493                                        method->GetClassDef(),
1494                                        method->GetDexMethodIndex())) {
1495     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNeverInlineAnnotation)
1496         << "Method " << method->PrettyMethod()
1497         << " has the @NeverInline annotation so it won't be inlined";
1498     return false;
1499   }
1500 
1501   return true;
1502 }
1503 
1504 // Returns whether ART supports inlining this method.
1505 //
1506 // Some methods are not supported because they have features for which inlining
1507 // is not implemented. For example, we do not currently support inlining throw
1508 // instructions into a try block.
IsInliningSupported(const HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor) const1509 bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction,
1510                                    ArtMethod* method,
1511                                    const CodeItemDataAccessor& accessor) const {
1512   if (method->IsProxyMethod()) {
1513     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
1514         << "Method " << method->PrettyMethod()
1515         << " is not inlined because of unimplemented inline support for proxy methods.";
1516     return false;
1517   }
1518 
1519   if (accessor.TriesSize() != 0) {
1520     if (!kInlineTryCatches) {
1521       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchDisabled)
1522           << "Method " << method->PrettyMethod()
1523           << " is not inlined because inlining try catches is disabled globally";
1524       return false;
1525     }
1526     const bool disallowed_try_catch_inlining =
1527         // Direct parent is a try block.
1528         invoke_instruction->GetBlock()->IsTryBlock() ||
1529         // Indirect parent disallows try catch inlining.
1530         !try_catch_inlining_allowed_;
1531     if (disallowed_try_catch_inlining) {
1532       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee)
1533           << "Method " << method->PrettyMethod()
1534           << " is not inlined because it has a try catch and we are not supporting it for this"
1535           << " particular call. This is could be because e.g. it would be inlined inside another"
1536           << " try block, we arrived here from TryInlinePolymorphicCall, etc.";
1537       return false;
1538     }
1539   }
1540 
1541   if (invoke_instruction->IsInvokeStaticOrDirect() &&
1542       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
1543     // Case of a static method that cannot be inlined because it implicitly
1544     // requires an initialization check of its declaring class.
1545     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck)
1546         << "Method " << method->PrettyMethod()
1547         << " is not inlined because it is static and requires a clinit"
1548         << " check that cannot be emitted due to Dex cache limitations";
1549     return false;
1550   }
1551 
1552   return true;
1553 }
1554 
IsInliningEncouraged(const HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor) const1555 bool HInliner::IsInliningEncouraged(const HInvoke* invoke_instruction,
1556                                     ArtMethod* method,
1557                                     const CodeItemDataAccessor& accessor) const {
1558   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
1559     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
1560         << "Method "
1561         << method->PrettyMethod()
1562         << " is not inlined because it has reached its recursive call budget.";
1563     return false;
1564   }
1565 
1566   size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
1567   if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
1568     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
1569         << "Method " << method->PrettyMethod()
1570         << " is not inlined because its code item is too big: "
1571         << accessor.InsnsSizeInCodeUnits()
1572         << " > "
1573         << inline_max_code_units;
1574     return false;
1575   }
1576 
1577   if (graph_->IsCompilingBaseline() &&
1578       accessor.InsnsSizeInCodeUnits() > CompilerOptions::kBaselineInlineMaxCodeUnits) {
1579     LOG_FAIL_NO_STAT() << "Reached baseline maximum code unit for inlining  "
1580                        << method->PrettyMethod();
1581     outermost_graph_->SetUsefulOptimizing();
1582     return false;
1583   }
1584 
1585   if (invoke_instruction->GetBlock()->GetLastInstruction()->IsThrow()) {
1586     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEndsWithThrow)
1587         << "Method " << method->PrettyMethod()
1588         << " is not inlined because its block ends with a throw";
1589     return false;
1590   }
1591 
1592   return true;
1593 }
1594 
TryBuildAndInline(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement,bool is_speculative)1595 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
1596                                  ArtMethod* method,
1597                                  ReferenceTypeInfo receiver_type,
1598                                  HInstruction** return_replacement,
1599                                  bool is_speculative) {
1600   DCHECK_IMPLIES(method->IsStatic(), !receiver_type.IsValid());
1601   DCHECK_IMPLIES(!method->IsStatic(), receiver_type.IsValid());
1602   // If invoke_instruction is devirtualized to a different method, give intrinsics
1603   // another chance before we try to inline it.
1604   if (invoke_instruction->GetResolvedMethod() != method &&
1605       method->IsIntrinsic() &&
1606       IsValidIntrinsicAfterBuilder(method->GetIntrinsic())) {
1607     MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
1608     // For simplicity, always create a new instruction to replace the existing
1609     // invoke.
1610     HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1611         graph_->GetAllocator(),
1612         invoke_instruction->GetNumberOfArguments(),
1613         invoke_instruction->GetNumberOfOutVRegs(),
1614         invoke_instruction->GetType(),
1615         invoke_instruction->GetDexPc(),
1616         invoke_instruction->GetMethodReference(),  // Use existing invoke's method's reference.
1617         method,
1618         MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1619         method->GetMethodIndex(),
1620         !graph_->IsDebuggable());
1621     DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
1622     HInputsRef inputs = invoke_instruction->GetInputs();
1623     for (size_t index = 0; index != inputs.size(); ++index) {
1624       new_invoke->SetArgumentAt(index, inputs[index]);
1625     }
1626     invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1627     new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1628     if (invoke_instruction->GetType() == DataType::Type::kReference) {
1629       new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
1630     }
1631     *return_replacement = new_invoke;
1632     return true;
1633   }
1634 
1635   CodeItemDataAccessor accessor(method->DexInstructionData());
1636 
1637   if (!IsInliningAllowed(method, accessor)) {
1638     return false;
1639   }
1640 
1641   // We have checked above that inlining is "allowed" to make sure that the method has bytecode
1642   // (is not native), is compilable and verified and to enforce the @NeverInline annotation.
1643   // However, the pattern substitution is always preferable, so we do it before the check if
1644   // inlining is "encouraged". It also has an exception to the `MayInline()` restriction.
1645   if (TryPatternSubstitution(invoke_instruction, method, accessor, return_replacement)) {
1646     LOG_SUCCESS() << "Successfully replaced pattern of invoke "
1647                   << method->PrettyMethod();
1648     MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
1649     return true;
1650   }
1651 
1652   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
1653   // dex file here (though the transitivity of an inline chain would allow checking the caller).
1654   if (!MayInline(codegen_->GetCompilerOptions(),
1655                  *method->GetDexFile(),
1656                  *outer_compilation_unit_.GetDexFile())) {
1657     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
1658         << "Won't inline " << method->PrettyMethod() << " in "
1659         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
1660         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
1661         << method->GetDexFile()->GetLocation();
1662     return false;
1663   }
1664 
1665   if (!IsInliningSupported(invoke_instruction, method, accessor)) {
1666     return false;
1667   }
1668 
1669   if (!IsInliningEncouraged(invoke_instruction, method, accessor)) {
1670     return false;
1671   }
1672 
1673   if (!TryBuildAndInlineHelper(
1674           invoke_instruction, method, receiver_type, return_replacement, is_speculative)) {
1675     return false;
1676   }
1677 
1678   LOG_SUCCESS() << method->PrettyMethod();
1679   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
1680   if (outermost_graph_ == graph_) {
1681     MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke);
1682   }
1683   return true;
1684 }
1685 
GetInvokeInputForArgVRegIndex(HInvoke * invoke_instruction,size_t arg_vreg_index)1686 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
1687                                                    size_t arg_vreg_index)
1688     REQUIRES_SHARED(Locks::mutator_lock_) {
1689   size_t input_index = 0;
1690   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
1691     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1692     if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
1693       ++i;
1694       DCHECK_NE(i, arg_vreg_index);
1695     }
1696   }
1697   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1698   return invoke_instruction->InputAt(input_index);
1699 }
1700 
1701 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
TryPatternSubstitution(HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor,HInstruction ** return_replacement)1702 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
1703                                       ArtMethod* method,
1704                                       const CodeItemDataAccessor& accessor,
1705                                       HInstruction** return_replacement) {
1706   InlineMethod inline_method;
1707   if (!InlineMethodAnalyser::AnalyseMethodCode(method, &accessor, &inline_method)) {
1708     return false;
1709   }
1710 
1711   size_t number_of_instructions = 0u;  // Note: We do not count constants.
1712   switch (inline_method.opcode) {
1713     case kInlineOpNop:
1714       DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
1715       *return_replacement = nullptr;
1716       break;
1717     case kInlineOpReturnArg:
1718       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
1719                                                           inline_method.d.return_data.arg);
1720       break;
1721     case kInlineOpNonWideConst: {
1722       char shorty0 = method->GetShorty()[0];
1723       if (shorty0 == 'L') {
1724         DCHECK_EQ(inline_method.d.data, 0u);
1725         *return_replacement = graph_->GetNullConstant();
1726       } else if (shorty0 == 'F') {
1727         *return_replacement = graph_->GetFloatConstant(
1728             bit_cast<float, int32_t>(static_cast<int32_t>(inline_method.d.data)));
1729       } else {
1730         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
1731       }
1732       break;
1733     }
1734     case kInlineOpIGet: {
1735       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1736       if (data.method_is_static || data.object_arg != 0u) {
1737         // TODO: Needs null check.
1738         return false;
1739       }
1740       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1741       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj);
1742       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
1743       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
1744       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
1745       *return_replacement = iget;
1746       number_of_instructions = 1u;
1747       break;
1748     }
1749     case kInlineOpIPut: {
1750       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1751       if (data.method_is_static || data.object_arg != 0u) {
1752         // TODO: Needs null check.
1753         return false;
1754       }
1755       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1756       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
1757       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value);
1758       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
1759       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
1760       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1761       if (data.return_arg_plus1 != 0u) {
1762         size_t return_arg = data.return_arg_plus1 - 1u;
1763         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
1764       }
1765       number_of_instructions = 1u;
1766       break;
1767     }
1768     case kInlineOpConstructor: {
1769       const InlineConstructorData& data = inline_method.d.constructor_data;
1770       // Get the indexes to arrays for easier processing.
1771       uint16_t iput_field_indexes[] = {
1772           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
1773       };
1774       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
1775       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
1776       // Count valid field indexes.
1777       for (size_t i = 0, end = data.iput_count; i < end; i++) {
1778         // Check that there are no duplicate valid field indexes.
1779         DCHECK_EQ(0, std::count(iput_field_indexes + i + 1,
1780                                 iput_field_indexes + end,
1781                                 iput_field_indexes[i]));
1782       }
1783       // Check that there are no valid field indexes in the rest of the array.
1784       DCHECK_EQ(0, std::count_if(iput_field_indexes + data.iput_count,
1785                                  iput_field_indexes + arraysize(iput_field_indexes),
1786                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
1787 
1788       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
1789       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
1790                                                         /* arg_vreg_index= */ 0u);
1791       bool needs_constructor_barrier = false;
1792       for (size_t i = 0, end = data.iput_count; i != end; ++i) {
1793         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
1794         if (!IsZeroBitPattern(value)) {
1795           uint16_t field_index = iput_field_indexes[i];
1796           bool is_final;
1797           HInstanceFieldSet* iput =
1798               CreateInstanceFieldSet(field_index, method, obj, value, &is_final);
1799           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1800 
1801           // Check whether the field is final. If it is, we need to add a barrier.
1802           if (is_final) {
1803             needs_constructor_barrier = true;
1804           }
1805         }
1806       }
1807       if (needs_constructor_barrier) {
1808         // See DexCompilationUnit::RequiresConstructorBarrier for more details.
1809         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
1810 
1811         HConstructorFence* constructor_fence =
1812             new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
1813         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
1814                                                                 invoke_instruction);
1815       }
1816       *return_replacement = nullptr;
1817       number_of_instructions = data.iput_count + (needs_constructor_barrier ? 1u : 0u);
1818       break;
1819     }
1820   }
1821   if (number_of_instructions != 0u) {
1822     total_number_of_instructions_ += number_of_instructions;
1823     UpdateInliningBudget();
1824   }
1825   return true;
1826 }
1827 
CreateInstanceFieldGet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj)1828 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
1829                                                     ArtMethod* referrer,
1830                                                     HInstruction* obj)
1831     REQUIRES_SHARED(Locks::mutator_lock_) {
1832   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1833   ArtField* resolved_field =
1834       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1835   DCHECK(resolved_field != nullptr);
1836   HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
1837       obj,
1838       resolved_field,
1839       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1840       resolved_field->GetOffset(),
1841       resolved_field->IsVolatile(),
1842       field_index,
1843       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1844       *referrer->GetDexFile(),
1845       // Read barrier generates a runtime call in slow path and we need a valid
1846       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1847       /* dex_pc= */ 0);
1848   if (iget->GetType() == DataType::Type::kReference) {
1849     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
1850     Handle<mirror::DexCache> dex_cache =
1851         graph_->GetHandleCache()->NewHandle(referrer->GetDexCache());
1852     ReferenceTypePropagation rtp(graph_,
1853                                  dex_cache,
1854                                  /* is_first_run= */ false);
1855     rtp.Visit(iget);
1856   }
1857   return iget;
1858 }
1859 
CreateInstanceFieldSet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj,HInstruction * value,bool * is_final)1860 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
1861                                                     ArtMethod* referrer,
1862                                                     HInstruction* obj,
1863                                                     HInstruction* value,
1864                                                     bool* is_final)
1865     REQUIRES_SHARED(Locks::mutator_lock_) {
1866   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1867   ArtField* resolved_field =
1868       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1869   DCHECK(resolved_field != nullptr);
1870   if (is_final != nullptr) {
1871     // This information is needed only for constructors.
1872     DCHECK(referrer->IsConstructor());
1873     *is_final = resolved_field->IsFinal();
1874   }
1875   HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
1876       obj,
1877       value,
1878       resolved_field,
1879       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1880       resolved_field->GetOffset(),
1881       resolved_field->IsVolatile(),
1882       field_index,
1883       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1884       *referrer->GetDexFile(),
1885       // Read barrier generates a runtime call in slow path and we need a valid
1886       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1887       /* dex_pc= */ 0);
1888   return iput;
1889 }
1890 
1891 template <typename T>
NewHandleIfDifferent(ObjPtr<T> object,Handle<T> hint,HGraph * graph)1892 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph)
1893     REQUIRES_SHARED(Locks::mutator_lock_) {
1894   return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint;
1895 }
1896 
CanEncodeInlinedMethodInStackMap(const DexFile & outer_dex_file,ArtMethod * callee,const CodeGenerator * codegen,bool * out_needs_bss_check)1897 static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file,
1898                                              ArtMethod* callee,
1899                                              const CodeGenerator* codegen,
1900                                              bool* out_needs_bss_check)
1901     REQUIRES_SHARED(Locks::mutator_lock_) {
1902   if (!Runtime::Current()->IsAotCompiler()) {
1903     // JIT can always encode methods in stack maps.
1904     return true;
1905   }
1906 
1907   const DexFile* dex_file = callee->GetDexFile();
1908   if (IsSameDexFile(outer_dex_file, *dex_file)) {
1909     return true;
1910   }
1911 
1912   // Inline across dexfiles if the callee's DexFile is:
1913   // 1) in the bootclasspath, or
1914   if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) {
1915     // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with
1916     // each other, we request the BSS check for them.
1917     // TODO(solanes, 154012332): Add .bss support for BCP multi-image.
1918     *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage();
1919     return true;
1920   }
1921 
1922   // 2) is a non-BCP dexfile with the OatFile we are compiling.
1923   if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) {
1924     return true;
1925   }
1926 
1927   // TODO(solanes): Support more AOT cases for inlining:
1928   // - methods in class loader context's DexFiles
1929   return false;
1930 }
1931 
1932   // Substitutes parameters in the callee graph with their values from the caller.
SubstituteArguments(HGraph * callee_graph,HInvoke * invoke_instruction,ReferenceTypeInfo receiver_type,const DexCompilationUnit & dex_compilation_unit)1933 void HInliner::SubstituteArguments(HGraph* callee_graph,
1934                                    HInvoke* invoke_instruction,
1935                                    ReferenceTypeInfo receiver_type,
1936                                    const DexCompilationUnit& dex_compilation_unit) {
1937   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1938   size_t parameter_index = 0;
1939   bool run_rtp = false;
1940   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
1941        !instructions.Done();
1942        instructions.Advance()) {
1943     HInstruction* current = instructions.Current();
1944     if (current->IsParameterValue()) {
1945       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
1946       if (argument->IsNullConstant()) {
1947         current->ReplaceWith(callee_graph->GetNullConstant());
1948       } else if (argument->IsIntConstant()) {
1949         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
1950       } else if (argument->IsLongConstant()) {
1951         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
1952       } else if (argument->IsFloatConstant()) {
1953         current->ReplaceWith(
1954             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
1955       } else if (argument->IsDoubleConstant()) {
1956         current->ReplaceWith(
1957             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
1958       } else if (argument->GetType() == DataType::Type::kReference) {
1959         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
1960           run_rtp = true;
1961           current->SetReferenceTypeInfo(receiver_type);
1962         } else {
1963           current->SetReferenceTypeInfoIfValid(argument->GetReferenceTypeInfo());
1964         }
1965         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
1966       }
1967       ++parameter_index;
1968     }
1969   }
1970 
1971   // We have replaced formal arguments with actual arguments. If actual types
1972   // are more specific than the declared ones, run RTP again on the inner graph.
1973   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
1974     ReferenceTypePropagation(callee_graph,
1975                              dex_compilation_unit.GetDexCache(),
1976                              /* is_first_run= */ false).Run();
1977   }
1978 }
1979 
1980 // Returns whether we can inline the callee_graph into the target_block.
1981 //
1982 // This performs a combination of semantics checks, compiler support checks, and
1983 // resource limit checks.
1984 //
1985 // If this function returns true, it will also set out_number_of_instructions to
1986 // the number of instructions in the inlined body.
CanInlineBody(const HGraph * callee_graph,HInvoke * invoke,size_t * out_number_of_instructions,bool is_speculative) const1987 bool HInliner::CanInlineBody(const HGraph* callee_graph,
1988                              HInvoke* invoke,
1989                              size_t* out_number_of_instructions,
1990                              bool is_speculative) const {
1991   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1992 
1993   HBasicBlock* exit_block = callee_graph->GetExitBlock();
1994   if (exit_block == nullptr) {
1995     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1996         << "Method " << resolved_method->PrettyMethod()
1997         << " could not be inlined because it has an infinite loop";
1998     return false;
1999   }
2000 
2001   bool has_one_return = false;
2002   bool has_try_catch = false;
2003   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
2004     const HInstruction* last_instruction = predecessor->GetLastInstruction();
2005     // On inlinees, we can have Return/ReturnVoid/Throw -> TryBoundary -> Exit. To check for the
2006     // actual last instruction, we have to skip the TryBoundary instruction.
2007     if (last_instruction->IsTryBoundary()) {
2008       has_try_catch = true;
2009       predecessor = predecessor->GetSinglePredecessor();
2010       last_instruction = predecessor->GetLastInstruction();
2011 
2012       // If the last instruction chain is Return/ReturnVoid -> TryBoundary -> Exit we will have to
2013       // split a critical edge in InlineInto and might recompute loop information, which is
2014       // unsupported for irreducible loops.
2015       if (!last_instruction->IsThrow() && graph_->HasIrreducibleLoops()) {
2016         DCHECK(last_instruction->IsReturn() || last_instruction->IsReturnVoid());
2017         // TODO(ngeoffray): Support re-computing loop information to graphs with
2018         // irreducible loops?
2019         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
2020             << "Method " << resolved_method->PrettyMethod()
2021             << " could not be inlined because we will have to recompute the loop information and"
2022             << " the caller has irreducible loops";
2023         return false;
2024       }
2025     }
2026 
2027     if (last_instruction->IsThrow()) {
2028       if (graph_->GetExitBlock() == nullptr) {
2029         // TODO(ngeoffray): Support adding HExit in the caller graph.
2030         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
2031             << "Method " << resolved_method->PrettyMethod()
2032             << " could not be inlined because one branch always throws and"
2033             << " caller does not have an exit block";
2034         return false;
2035       } else if (graph_->HasIrreducibleLoops()) {
2036         // TODO(ngeoffray): Support re-computing loop information to graphs with
2037         // irreducible loops?
2038         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
2039             << "Method " << resolved_method->PrettyMethod()
2040             << " could not be inlined because one branch always throws and"
2041             << " the caller has irreducible loops";
2042         return false;
2043       }
2044     } else {
2045       has_one_return = true;
2046     }
2047   }
2048 
2049   if (!has_one_return) {
2050     // If a method has a try catch, all throws are potentially caught. We are conservative and
2051     // don't assume a method always throws unless we can guarantee that.
2052     if (!is_speculative && !has_try_catch) {
2053       // If we know that the method always throws with the particular parameters, set it as such.
2054       // This is better than using the dex instructions as we have more information about this
2055       // particular call. We don't mark speculative inlines (e.g. the ones from the inline cache) as
2056       // always throwing since they might not throw when executed.
2057       invoke->SetAlwaysThrows(/* always_throws= */ true);
2058       graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
2059     }
2060 
2061     // Methods that contain infinite loops with try catches fall into this line too as we construct
2062     // an Exit block for them. This will mean that the stat `kNotInlinedAlwaysThrows` might not be
2063     // 100% correct but:
2064     // 1) This is a very small fraction of methods, and
2065     // 2) It is not easy to disambiguate between those.
2066     // Since we want to avoid inlining methods with infinite loops anyway, we return false for these
2067     // cases too.
2068     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
2069         << "Method " << resolved_method->PrettyMethod()
2070         << " could not be inlined because it always throws";
2071     return false;
2072   }
2073 
2074   const bool too_many_registers =
2075       total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters;
2076   bool needs_bss_check = false;
2077   const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap(
2078       *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check);
2079   size_t number_of_instructions = 0;
2080   // Skip the entry block, it does not contain instructions that prevent inlining.
2081   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
2082     if (block->IsLoopHeader()) {
2083       if (block->GetLoopInformation()->IsIrreducible()) {
2084         // Don't inline methods with irreducible loops, they could prevent some
2085         // optimizations to run.
2086         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCallee)
2087             << "Method " << resolved_method->PrettyMethod()
2088             << " could not be inlined because it contains an irreducible loop";
2089         return false;
2090       }
2091       if (!block->GetLoopInformation()->HasExitEdge()) {
2092         // Don't inline methods with loops without exit, since they cause the
2093         // loop information to be computed incorrectly when updating after
2094         // inlining.
2095         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
2096             << "Method " << resolved_method->PrettyMethod()
2097             << " could not be inlined because it contains a loop with no exit";
2098         return false;
2099       }
2100     }
2101 
2102     for (HInstructionIterator instr_it(block->GetInstructions());
2103          !instr_it.Done();
2104          instr_it.Advance()) {
2105       if (++number_of_instructions > inlining_budget_) {
2106         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
2107             << "Method " << resolved_method->PrettyMethod()
2108             << " is not inlined because the outer method has reached"
2109             << " its instruction budget limit.";
2110         return false;
2111       }
2112       HInstruction* current = instr_it.Current();
2113       if (current->NeedsEnvironment()) {
2114         if (too_many_registers) {
2115           LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
2116               << "Method " << resolved_method->PrettyMethod()
2117               << " is not inlined because its caller has reached"
2118               << " its environment budget limit.";
2119           return false;
2120         }
2121 
2122         if (!can_encode_in_stack_map) {
2123           LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
2124               << "Method " << resolved_method->PrettyMethod() << " could not be inlined because "
2125               << current->DebugName() << " needs an environment, is in a different dex file"
2126               << ", and cannot be encoded in the stack maps.";
2127           return false;
2128         }
2129       }
2130 
2131       if (current->IsUnresolvedStaticFieldGet() ||
2132           current->IsUnresolvedInstanceFieldGet() ||
2133           current->IsUnresolvedStaticFieldSet() ||
2134           current->IsUnresolvedInstanceFieldSet() ||
2135           current->IsInvokeUnresolved()) {
2136         // Unresolved invokes / field accesses are expensive at runtime when decoding inlining info,
2137         // so don't inline methods that have them.
2138         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
2139             << "Method " << resolved_method->PrettyMethod()
2140             << " could not be inlined because it is using an unresolved"
2141             << " entrypoint";
2142         return false;
2143       }
2144 
2145       // We currently don't have support for inlining across dex files if we are:
2146       // 1) In AoT,
2147       // 2) cross-dex inlining,
2148       // 3) the callee is a BCP DexFile,
2149       // 4) we are compiling multi image, and
2150       // 5) have an instruction that needs a bss entry, which will always be
2151       // 5)b) an instruction that needs an environment.
2152       // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap).
2153       if (needs_bss_check && current->NeedsBss()) {
2154         DCHECK(current->NeedsEnvironment());
2155         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss)
2156             << "Method " << resolved_method->PrettyMethod()
2157             << " could not be inlined because it needs a BSS check";
2158         return false;
2159       }
2160 
2161       if (outermost_graph_->IsCompilingBaseline() &&
2162           (current->IsInvokeVirtual() || current->IsInvokeInterface()) &&
2163           ProfilingInfoBuilder::IsInlineCacheUseful(current->AsInvoke(), codegen_)) {
2164         uint32_t maximum_inlining_depth_for_baseline =
2165             InlineCache::MaxDexPcEncodingDepth(
2166                 outermost_graph_->GetArtMethod(),
2167                 codegen_->GetCompilerOptions().GetInlineMaxCodeUnits());
2168         if (depth_ + 1 > maximum_inlining_depth_for_baseline) {
2169           LOG_FAIL_NO_STAT() << "Reached maximum depth for inlining in baseline compilation: "
2170                              << depth_ << " for " << callee_graph->GetArtMethod()->PrettyMethod();
2171           outermost_graph_->SetUsefulOptimizing();
2172           return false;
2173         }
2174       }
2175     }
2176   }
2177 
2178   *out_number_of_instructions = number_of_instructions;
2179   return true;
2180 }
2181 
TryBuildAndInlineHelper(HInvoke * invoke_instruction,ArtMethod * resolved_method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement,bool is_speculative)2182 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
2183                                        ArtMethod* resolved_method,
2184                                        ReferenceTypeInfo receiver_type,
2185                                        HInstruction** return_replacement,
2186                                        bool is_speculative) {
2187   DCHECK_IMPLIES(resolved_method->IsStatic(), !receiver_type.IsValid());
2188   DCHECK_IMPLIES(!resolved_method->IsStatic(), receiver_type.IsValid());
2189   const dex::CodeItem* code_item = resolved_method->GetCodeItem();
2190   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
2191   uint32_t method_index = resolved_method->GetDexMethodIndex();
2192   CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
2193   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
2194   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
2195                                                             caller_compilation_unit_.GetDexCache(),
2196                                                             graph_);
2197   Handle<mirror::ClassLoader> class_loader =
2198       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
2199                            caller_compilation_unit_.GetClassLoader(),
2200                            graph_);
2201 
2202   Handle<mirror::Class> compiling_class =
2203       graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass());
2204   DexCompilationUnit dex_compilation_unit(
2205       class_loader,
2206       class_linker,
2207       callee_dex_file,
2208       code_item,
2209       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
2210       method_index,
2211       resolved_method->GetAccessFlags(),
2212       /* verified_method= */ nullptr,
2213       dex_cache,
2214       compiling_class);
2215 
2216   InvokeType invoke_type = invoke_instruction->GetInvokeType();
2217   if (invoke_type == kInterface) {
2218     // We have statically resolved the dispatch. To please the class linker
2219     // at runtime, we change this call as if it was a virtual call.
2220     invoke_type = kVirtual;
2221   }
2222 
2223   bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
2224   const dex::ClassDef& callee_class = resolved_method->GetClassDef();
2225   // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
2226   // is currently rarely true.
2227   bool callee_dead_reference_safe =
2228       annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
2229       && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);
2230 
2231   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
2232   HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
2233       graph_->GetAllocator(),
2234       graph_->GetArenaStack(),
2235       graph_->GetHandleCache()->GetHandles(),
2236       callee_dex_file,
2237       method_index,
2238       codegen_->GetCompilerOptions().GetInstructionSet(),
2239       invoke_type,
2240       callee_dead_reference_safe,
2241       graph_->IsDebuggable(),
2242       graph_->GetCompilationKind(),
2243       /* start_instruction_id= */ caller_instruction_counter);
2244   callee_graph->SetArtMethod(resolved_method);
2245 
2246   ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current());
2247   if (Runtime::Current()->GetJit() != nullptr) {
2248     callee_graph->SetProfilingInfo(spiu.GetProfilingInfo());
2249   }
2250 
2251   // When they are needed, allocate `inline_stats_` on the Arena instead
2252   // of on the stack, as Clang might produce a stack frame too large
2253   // for this function, that would not fit the requirements of the
2254   // `-Wframe-larger-than` option.
2255   if (stats_ != nullptr) {
2256     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
2257     if (inline_stats_ == nullptr) {
2258       void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
2259       inline_stats_ = new (storage) OptimizingCompilerStats;
2260     } else {
2261       inline_stats_->Reset();
2262     }
2263   }
2264   HGraphBuilder builder(callee_graph,
2265                         code_item_accessor,
2266                         &dex_compilation_unit,
2267                         &outer_compilation_unit_,
2268                         codegen_,
2269                         inline_stats_);
2270 
2271   if (builder.BuildGraph() != kAnalysisSuccess) {
2272     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
2273         << "Method " << callee_dex_file.PrettyMethod(method_index)
2274         << " could not be built, so cannot be inlined";
2275     return false;
2276   }
2277 
2278   SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit);
2279 
2280   const bool try_catch_inlining_allowed_for_recursive_inline =
2281       // It was allowed previously.
2282       try_catch_inlining_allowed_ &&
2283       // The current invoke is not a try block.
2284       !invoke_instruction->GetBlock()->IsTryBlock();
2285   RunOptimizations(callee_graph,
2286                    invoke_instruction->GetEnvironment(),
2287                    code_item,
2288                    dex_compilation_unit,
2289                    try_catch_inlining_allowed_for_recursive_inline);
2290 
2291   size_t number_of_instructions = 0;
2292   if (!CanInlineBody(callee_graph, invoke_instruction, &number_of_instructions, is_speculative)) {
2293     return false;
2294   }
2295 
2296   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
2297       << "No instructions can be added to the outer graph while inner graph is being built";
2298 
2299   // Inline the callee graph inside the caller graph.
2300   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
2301   graph_->SetCurrentInstructionId(callee_instruction_counter);
2302   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
2303   // Update our budget for other inlining attempts in `caller_graph`.
2304   total_number_of_instructions_ += number_of_instructions;
2305   UpdateInliningBudget();
2306 
2307   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
2308       << "No instructions can be added to the inner graph during inlining into the outer graph";
2309 
2310   if (stats_ != nullptr) {
2311     DCHECK(inline_stats_ != nullptr);
2312     inline_stats_->AddTo(stats_);
2313   }
2314 
2315   if (caller_dead_reference_safe && !callee_dead_reference_safe) {
2316     // Caller was dead reference safe, but is not anymore, since we inlined dead
2317     // reference unsafe code. Prior transformations remain valid, since they did not
2318     // affect the inlined code.
2319     graph_->MarkDeadReferenceUnsafe();
2320   }
2321 
2322   return true;
2323 }
2324 
RunOptimizations(HGraph * callee_graph,HEnvironment * caller_environment,const dex::CodeItem * code_item,const DexCompilationUnit & dex_compilation_unit,bool try_catch_inlining_allowed_for_recursive_inline)2325 void HInliner::RunOptimizations(HGraph* callee_graph,
2326                                 HEnvironment* caller_environment,
2327                                 const dex::CodeItem* code_item,
2328                                 const DexCompilationUnit& dex_compilation_unit,
2329                                 bool try_catch_inlining_allowed_for_recursive_inline) {
2330   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
2331   // optimization that could lead to a HDeoptimize. The following optimizations do not.
2332   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
2333   HConstantFolding fold(callee_graph, inline_stats_, "constant_folding$inliner");
2334   InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);
2335 
2336   HOptimization* optimizations[] = {
2337     &fold,
2338     &simplify,
2339     &dce,
2340   };
2341 
2342   for (size_t i = 0; i < arraysize(optimizations); ++i) {
2343     HOptimization* optimization = optimizations[i];
2344     optimization->Run();
2345   }
2346 
2347   // Bail early for pathological cases on the environment (for example recursive calls,
2348   // or too large environment).
2349   if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) {
2350     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2351              << " will not be inlined because the outer method has reached"
2352              << " its environment budget limit.";
2353     return;
2354   }
2355 
2356   // Bail early if we know we already are over the limit.
2357   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
2358   if (number_of_instructions > inlining_budget_) {
2359     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2360              << " will not be inlined because the outer method has reached"
2361              << " its instruction budget limit. " << number_of_instructions;
2362     return;
2363   }
2364 
2365   CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
2366   HInliner inliner(callee_graph,
2367                    outermost_graph_,
2368                    codegen_,
2369                    outer_compilation_unit_,
2370                    dex_compilation_unit,
2371                    inline_stats_,
2372                    total_number_of_dex_registers_ + accessor.RegistersSize(),
2373                    total_number_of_instructions_ + number_of_instructions,
2374                    this,
2375                    caller_environment,
2376                    depth_ + 1,
2377                    try_catch_inlining_allowed_for_recursive_inline);
2378   inliner.Run();
2379 }
2380 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_is_exact,bool declared_can_be_null,HInstruction * actual_obj)2381 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2382                                       bool declared_is_exact,
2383                                       bool declared_can_be_null,
2384                                       HInstruction* actual_obj)
2385     REQUIRES_SHARED(Locks::mutator_lock_) {
2386   if (declared_can_be_null && !actual_obj->CanBeNull()) {
2387     return true;
2388   }
2389 
2390   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
2391   if (!actual_rti.IsValid()) {
2392     return false;
2393   }
2394 
2395   ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get();
2396   return (actual_rti.IsExact() && !declared_is_exact) ||
2397          (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class));
2398 }
2399 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_can_be_null,HInstruction * actual_obj)2400 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2401                                       bool declared_can_be_null,
2402                                       HInstruction* actual_obj)
2403     REQUIRES_SHARED(Locks::mutator_lock_) {
2404   bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class);
2405   return IsReferenceTypeRefinement(
2406       admissible ? declared_class : GetClassRoot<mirror::Class>(),
2407       /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(),
2408       declared_can_be_null,
2409       actual_obj);
2410 }
2411 
ArgumentTypesMoreSpecific(HInvoke * invoke_instruction,ArtMethod * resolved_method)2412 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
2413   // If this is an instance call, test whether the type of the `this` argument
2414   // is more specific than the class which declares the method.
2415   if (!resolved_method->IsStatic()) {
2416     if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(),
2417                                   /*declared_can_be_null=*/ false,
2418                                   invoke_instruction->InputAt(0u))) {
2419       return true;
2420     }
2421   }
2422 
2423   // Iterate over the list of parameter types and test whether any of the
2424   // actual inputs has a more specific reference type than the type declared in
2425   // the signature.
2426   const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
2427   for (size_t param_idx = 0,
2428               input_idx = resolved_method->IsStatic() ? 0 : 1,
2429               e = (param_list == nullptr ? 0 : param_list->Size());
2430        param_idx < e;
2431        ++param_idx, ++input_idx) {
2432     HInstruction* input = invoke_instruction->InputAt(input_idx);
2433     if (input->GetType() == DataType::Type::kReference) {
2434       ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
2435           param_list->GetTypeItem(param_idx).type_idx_);
2436       if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) {
2437         return true;
2438       }
2439     }
2440   }
2441 
2442   return false;
2443 }
2444 
ReturnTypeMoreSpecific(HInstruction * return_replacement,HInvoke * invoke_instruction)2445 bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement,
2446                                       HInvoke* invoke_instruction) {
2447   // Check the integrity of reference types and run another type propagation if needed.
2448   if (return_replacement != nullptr) {
2449     if (return_replacement->GetType() == DataType::Type::kReference) {
2450       // Test if the return type is a refinement of the declared return type.
2451       ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo();
2452       if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(),
2453                                     invoke_rti.IsExact(),
2454                                     invoke_instruction->CanBeNull(),
2455                                     return_replacement)) {
2456         return true;
2457       } else if (return_replacement->IsInstanceFieldGet()) {
2458         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
2459         ArtField* cls_field = WellKnownClasses::java_lang_Object_shadowKlass;
2460         if (field_get->GetFieldInfo().GetField() == cls_field) {
2461           return true;
2462         }
2463       }
2464     } else if (return_replacement->IsInstanceOf()) {
2465       // Inlining InstanceOf into an If may put a tighter bound on reference types.
2466       return true;
2467     }
2468   }
2469 
2470   return false;
2471 }
2472 
FixUpReturnReferenceType(ArtMethod * resolved_method,HInstruction * return_replacement)2473 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
2474                                         HInstruction* return_replacement) {
2475   if (return_replacement != nullptr) {
2476     if (return_replacement->GetType() == DataType::Type::kReference) {
2477       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
2478         // Make sure that we have a valid type for the return. We may get an invalid one when
2479         // we inline invokes with multiple branches and create a Phi for the result.
2480         // TODO: we could be more precise by merging the phi inputs but that requires
2481         // some functionality from the reference type propagation.
2482         DCHECK(return_replacement->IsPhi());
2483         ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
2484         ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls)
2485             ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls))
2486             : graph_->GetInexactObjectRti();
2487         return_replacement->SetReferenceTypeInfo(rti);
2488       }
2489     }
2490   }
2491 }
2492 
2493 }  // namespace art
2494