1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime.h"
18
19 #include <optional>
20 #include <utility>
21
22 #ifdef __linux__
23 #include <sys/prctl.h>
24 #endif
25
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/mount.h>
29 #include <sys/syscall.h>
30
31 #if defined(__APPLE__)
32 #include <crt_externs.h> // for _NSGetEnviron
33 #endif
34
35 #include <android-base/properties.h>
36 #include <android-base/strings.h>
37 #include <string.h>
38
39 #include <cstdio>
40 #include <cstdlib>
41 #include <limits>
42 #include <thread>
43 #include <unordered_set>
44 #include <vector>
45
46 #include "arch/arm/registers_arm.h"
47 #include "arch/arm64/registers_arm64.h"
48 #include "arch/context.h"
49 #include "arch/instruction_set_features.h"
50 #include "arch/x86/registers_x86.h"
51 #include "arch/x86_64/registers_x86_64.h"
52 #include "art_field-inl.h"
53 #include "art_method-inl.h"
54 #include "asm_support.h"
55 #include "base/aborting.h"
56 #include "base/arena_allocator.h"
57 #include "base/atomic.h"
58 #include "base/dumpable.h"
59 #include "base/file_utils.h"
60 #include "base/flags.h"
61 #include "base/malloc_arena_pool.h"
62 #include "base/mem_map_arena_pool.h"
63 #include "base/memory_tool.h"
64 #include "base/mutex.h"
65 #include "base/os.h"
66 #include "base/pointer_size.h"
67 #include "base/quasi_atomic.h"
68 #include "base/sdk_version.h"
69 #include "base/stl_util.h"
70 #include "base/systrace.h"
71 #include "base/unix_file/fd_file.h"
72 #include "base/utils.h"
73 #include "class_linker-inl.h"
74 #include "class_root-inl.h"
75 #include "compiler_callbacks.h"
76 #include "debugger.h"
77 #include "dex/art_dex_file_loader.h"
78 #include "dex/dex_file_loader.h"
79 #include "entrypoints/entrypoint_utils-inl.h"
80 #include "entrypoints/runtime_asm_entrypoints.h"
81 #include "experimental_flags.h"
82 #include "fault_handler.h"
83 #include "gc/accounting/card_table-inl.h"
84 #include "gc/heap.h"
85 #include "gc/scoped_gc_critical_section.h"
86 #include "gc/space/image_space.h"
87 #include "gc/space/space-inl.h"
88 #include "gc/system_weak.h"
89 #include "gc/task_processor.h"
90 #include "handle_scope-inl.h"
91 #include "hidden_api.h"
92 #include "indirect_reference_table.h"
93 #include "instrumentation.h"
94 #include "intern_table-inl.h"
95 #include "interpreter/interpreter.h"
96 #include "jit/jit.h"
97 #include "jit/jit_code_cache.h"
98 #include "jit/profile_saver.h"
99 #include "jni/java_vm_ext.h"
100 #include "jni/jni_id_manager.h"
101 #include "jni_id_type.h"
102 #include "linear_alloc.h"
103 #include "memory_representation.h"
104 #include "metrics/statsd.h"
105 #include "mirror/array.h"
106 #include "mirror/class-alloc-inl.h"
107 #include "mirror/class-inl.h"
108 #include "mirror/class_ext.h"
109 #include "mirror/class_loader-inl.h"
110 #include "mirror/emulated_stack_frame.h"
111 #include "mirror/field.h"
112 #include "mirror/method.h"
113 #include "mirror/method_handle_impl.h"
114 #include "mirror/method_handles_lookup.h"
115 #include "mirror/method_type.h"
116 #include "mirror/stack_trace_element.h"
117 #include "mirror/throwable.h"
118 #include "mirror/var_handle.h"
119 #include "monitor.h"
120 #include "native/dalvik_system_BaseDexClassLoader.h"
121 #include "native/dalvik_system_DexFile.h"
122 #include "native/dalvik_system_VMDebug.h"
123 #include "native/dalvik_system_VMRuntime.h"
124 #include "native/dalvik_system_VMStack.h"
125 #include "native/dalvik_system_ZygoteHooks.h"
126 #include "native/java_lang_Class.h"
127 #include "native/java_lang_Object.h"
128 #include "native/java_lang_StackStreamFactory.h"
129 #include "native/java_lang_String.h"
130 #include "native/java_lang_StringFactory.h"
131 #include "native/java_lang_System.h"
132 #include "native/java_lang_Thread.h"
133 #include "native/java_lang_Throwable.h"
134 #include "native/java_lang_VMClassLoader.h"
135 #include "native/java_lang_invoke_MethodHandle.h"
136 #include "native/java_lang_invoke_MethodHandleImpl.h"
137 #include "native/java_lang_ref_FinalizerReference.h"
138 #include "native/java_lang_ref_Reference.h"
139 #include "native/java_lang_reflect_Array.h"
140 #include "native/java_lang_reflect_Constructor.h"
141 #include "native/java_lang_reflect_Executable.h"
142 #include "native/java_lang_reflect_Field.h"
143 #include "native/java_lang_reflect_Method.h"
144 #include "native/java_lang_reflect_Parameter.h"
145 #include "native/java_lang_reflect_Proxy.h"
146 #include "native/java_util_concurrent_atomic_AtomicLong.h"
147 #include "native/jdk_internal_misc_Unsafe.h"
148 #include "native/libcore_io_Memory.h"
149 #include "native/libcore_util_CharsetUtils.h"
150 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
151 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
152 #include "native/sun_misc_Unsafe.h"
153 #include "native_bridge_art_interface.h"
154 #include "native_stack_dump.h"
155 #include "nativehelper/scoped_local_ref.h"
156 #include "nterp_helpers.h"
157 #include "oat/elf_file.h"
158 #include "oat/image-inl.h"
159 #include "oat/oat.h"
160 #include "oat/oat_file_manager.h"
161 #include "oat/oat_quick_method_header.h"
162 #include "object_callbacks.h"
163 #include "odr_statslog/odr_statslog.h"
164 #include "parsed_options.h"
165 #include "quick/quick_method_frame_info.h"
166 #include "reflection.h"
167 #include "runtime_callbacks.h"
168 #include "runtime_common.h"
169 #include "runtime_image.h"
170 #include "runtime_intrinsics.h"
171 #include "runtime_options.h"
172 #include "scoped_thread_state_change-inl.h"
173 #include "sigchain.h"
174 #include "signal_catcher.h"
175 #include "signal_set.h"
176 #include "thread.h"
177 #include "thread_list.h"
178 #include "ti/agent.h"
179 #include "trace.h"
180 #include "vdex_file.h"
181 #include "verifier/class_verifier.h"
182 #include "well_known_classes-inl.h"
183
184 #ifdef ART_TARGET_ANDROID
185 #include <android/api-level.h>
186 #include <android/set_abort_message.h>
187 #include "com_android_apex.h"
188 namespace apex = com::android::apex;
189
190 #endif
191
192 // Static asserts to check the values of generated assembly-support macros.
193 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
194 #include "asm_defines.def"
195 #undef ASM_DEFINE
196
197 namespace art HIDDEN {
198
199 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
200 static constexpr bool kEnableJavaStackTraceHandler = false;
201 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
202 // linking.
203 static constexpr double kLowMemoryMinLoadFactor = 0.5;
204 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
205 static constexpr double kNormalMinLoadFactor = 0.4;
206 static constexpr double kNormalMaxLoadFactor = 0.7;
207
208 #ifdef ART_PAGE_SIZE_AGNOSTIC
209 // Declare the constant as ALWAYS_HIDDEN to ensure it isn't visible from outside libart.so.
210 const size_t PageSize::value_ ALWAYS_HIDDEN = GetPageSizeSlow();
211 PageSize gPageSize ALWAYS_HIDDEN;
212 #endif
213
214 Runtime* Runtime::instance_ = nullptr;
215
216 struct TraceConfig {
217 Trace::TraceMode trace_mode;
218 TraceOutputMode trace_output_mode;
219 std::string trace_file;
220 size_t trace_file_size;
221 TraceClockSource clock_source;
222 };
223
224 extern bool ShouldUseGenerationalGC();
225
226 namespace {
227
228 #ifdef __APPLE__
GetEnviron()229 inline char** GetEnviron() {
230 // When Google Test is built as a framework on MacOS X, the environ variable
231 // is unavailable. Apple's documentation (man environ) recommends using
232 // _NSGetEnviron() instead.
233 return *_NSGetEnviron();
234 }
235 #else
236 // Some POSIX platforms expect you to declare environ. extern "C" makes
237 // it reside in the global namespace.
238 EXPORT extern "C" char** environ;
239 inline char** GetEnviron() { return environ; }
240 #endif
241
CheckConstants()242 void CheckConstants() {
243 CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
244 }
245
246 } // namespace
247
Runtime()248 Runtime::Runtime()
249 : resolution_method_(nullptr),
250 imt_conflict_method_(nullptr),
251 imt_unimplemented_method_(nullptr),
252 instruction_set_(InstructionSet::kNone),
253 compiler_callbacks_(nullptr),
254 is_zygote_(false),
255 is_primary_zygote_(false),
256 is_system_server_(false),
257 must_relocate_(false),
258 is_concurrent_gc_enabled_(true),
259 is_explicit_gc_disabled_(false),
260 is_eagerly_release_explicit_gc_disabled_(false),
261 image_dex2oat_enabled_(true),
262 default_stack_size_(0),
263 heap_(nullptr),
264 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
265 monitor_list_(nullptr),
266 monitor_pool_(nullptr),
267 thread_list_(nullptr),
268 intern_table_(nullptr),
269 class_linker_(nullptr),
270 signal_catcher_(nullptr),
271 java_vm_(nullptr),
272 thread_pool_ref_count_(0u),
273 fault_message_(nullptr),
274 threads_being_born_(0),
275 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
276 shutting_down_(false),
277 shutting_down_started_(false),
278 started_(false),
279 finished_starting_(false),
280 vfprintf_(nullptr),
281 exit_(nullptr),
282 abort_(nullptr),
283 stats_enabled_(false),
284 is_running_on_memory_tool_(kRunningOnMemoryTool),
285 instrumentation_(new instrumentation::Instrumentation()),
286 main_thread_group_(nullptr),
287 system_thread_group_(nullptr),
288 system_class_loader_(nullptr),
289 dump_gc_performance_on_shutdown_(false),
290 active_transaction_(false),
291 verify_(verifier::VerifyMode::kNone),
292 target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
293 compat_framework_(),
294 implicit_null_checks_(false),
295 implicit_so_checks_(false),
296 implicit_suspend_checks_(false),
297 no_sig_chain_(false),
298 force_native_bridge_(false),
299 is_native_bridge_loaded_(false),
300 is_native_debuggable_(false),
301 async_exceptions_thrown_(false),
302 non_standard_exits_enabled_(false),
303 runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable),
304 monitor_timeout_enable_(false),
305 monitor_timeout_ns_(0),
306 zygote_max_failed_boots_(0),
307 experimental_flags_(ExperimentalFlags::kNone),
308 oat_file_manager_(nullptr),
309 is_low_memory_mode_(false),
310 madvise_willneed_total_dex_size_(0),
311 madvise_willneed_odex_filesize_(0),
312 madvise_willneed_art_filesize_(0),
313 safe_mode_(false),
314 hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
315 core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
316 test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
317 dedupe_hidden_api_warnings_(true),
318 hidden_api_access_event_log_rate_(0),
319 dump_native_stack_on_sig_quit_(true),
320 // Initially assume we perceive jank in case the process state is never updated.
321 process_state_(kProcessStateJankPerceptible),
322 zygote_no_threads_(false),
323 verifier_logging_threshold_ms_(100),
324 verifier_missing_kthrow_fatal_(false),
325 perfetto_hprof_enabled_(false),
326 perfetto_javaheapprof_enabled_(false),
327 out_of_memory_error_hook_(nullptr) {
328 static_assert(Runtime::kCalleeSaveSize ==
329 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
330 CheckConstants();
331
332 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
333 interpreter::CheckInterpreterAsmConstants();
334 callbacks_.reset(new RuntimeCallbacks());
335 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
336 deoptimization_counts_[i] = 0u;
337 }
338 }
339
~Runtime()340 Runtime::~Runtime() {
341 ScopedTrace trace("Runtime shutdown");
342 if (is_native_bridge_loaded_) {
343 UnloadNativeBridge();
344 }
345
346 Thread* self = Thread::Current();
347 const bool attach_shutdown_thread = self == nullptr;
348 if (attach_shutdown_thread) {
349 // We can only create a peer if the runtime is actually started. This is only not true during
350 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
351 // In this case we will just try again without allocating a peer so that shutdown can continue.
352 // Very few things are actually capable of distinguishing between the peer & peerless states so
353 // this should be fine.
354 // Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to
355 // process any event. We also need to enter a GCCriticalSection when processing certain events
356 // (for ex: removing the last breakpoint). These two restrictions together make the tear down
357 // of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback.
358 // (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection.
359 bool thread_attached = AttachCurrentThread("Shutdown thread",
360 /* as_daemon= */ false,
361 GetSystemThreadGroup(),
362 /* create_peer= */ IsStarted(),
363 /* should_run_callbacks= */ false);
364 if (UNLIKELY(!thread_attached)) {
365 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
366 CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
367 /* as_daemon= */ false,
368 /* thread_group=*/ nullptr,
369 /* create_peer= */ false));
370 }
371 self = Thread::Current();
372 } else {
373 LOG(WARNING) << "Current thread not detached in Runtime shutdown";
374 }
375
376 if (dump_gc_performance_on_shutdown_) {
377 heap_->CalculatePreGcWeightedAllocatedBytes();
378 uint64_t process_cpu_end_time = ProcessCpuNanoTime();
379 ScopedLogSeverity sls(LogSeverity::INFO);
380 // This can't be called from the Heap destructor below because it
381 // could call RosAlloc::InspectAll() which needs the thread_list
382 // to be still alive.
383 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
384
385 uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
386 uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
387 float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
388 LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
389 << " out of process CPU time " << PrettyDuration(process_cpu_time)
390 << " (" << ratio << ")"
391 << "\n";
392 double pre_gc_weighted_allocated_bytes =
393 heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
394 // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
395 // GC. Both numerator and denominator take into account until the end of the last GC,
396 // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
397 double post_gc_weighted_allocated_bytes =
398 heap_->GetPostGcWeightedAllocatedBytes() /
399 (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
400
401 LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
402 << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
403 << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
404 LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
405 << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
406 << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
407 << "\n";
408 }
409
410 // Wait for the workers of thread pools to be created since there can't be any
411 // threads attaching during shutdown.
412 WaitForThreadPoolWorkersToStart();
413 if (jit_ != nullptr) {
414 jit_->WaitForWorkersToBeCreated();
415 // Stop the profile saver thread before marking the runtime as shutting down.
416 // The saver will try to dump the profiles before being sopped and that
417 // requires holding the mutator lock.
418 jit_->StopProfileSaver();
419 // Delete thread pool before the thread list since we don't want to wait forever on the
420 // JIT compiler threads. Also this should be run before marking the runtime
421 // as shutting down as some tasks may require mutator access.
422 jit_->DeleteThreadPool();
423 }
424 if (oat_file_manager_ != nullptr) {
425 oat_file_manager_->WaitForWorkersToBeCreated();
426 }
427 // Disable GC before deleting the thread-pool and shutting down runtime as it
428 // restricts attaching new threads.
429 heap_->DisableGCForShutdown();
430 heap_->WaitForWorkersToBeCreated();
431 // Make sure to let the GC complete if it is running.
432 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
433
434 // Shutdown any trace before SetShuttingDown. Trace uses thread pool workers to flush entries
435 // and we want to make sure they are fully created. Threads cannot attach while shutting down.
436 Trace::Shutdown();
437
438 {
439 ScopedTrace trace2("Wait for shutdown cond");
440 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
441 shutting_down_started_ = true;
442 while (threads_being_born_ > 0) {
443 shutdown_cond_->Wait(self);
444 }
445 SetShuttingDown();
446 }
447 // Shutdown and wait for the daemons.
448 CHECK(self != nullptr);
449 if (IsFinishedStarting()) {
450 ScopedTrace trace2("Waiting for Daemons");
451 self->ClearException();
452 ScopedObjectAccess soa(self);
453 WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self);
454 }
455
456 // Report death. Clients may require a working thread, still, so do it before GC completes and
457 // all non-daemon threads are done.
458 {
459 ScopedObjectAccess soa(self);
460 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
461 }
462
463 // Delete thread pools before detaching the current thread in case tasks
464 // getting deleted need to have access to Thread::Current.
465 heap_->DeleteThreadPool();
466 if (oat_file_manager_ != nullptr) {
467 oat_file_manager_->DeleteThreadPool();
468 }
469 DeleteThreadPool();
470 CHECK(thread_pool_ == nullptr);
471
472 if (attach_shutdown_thread) {
473 DetachCurrentThread(/* should_run_callbacks= */ false);
474 self = nullptr;
475 }
476
477 // Make sure our internal threads are dead before we start tearing down things they're using.
478 GetRuntimeCallbacks()->StopDebugger();
479 // Deletion ordering is tricky. Null out everything we've deleted.
480 delete signal_catcher_;
481 signal_catcher_ = nullptr;
482
483 // Shutdown metrics reporting.
484 metrics_reporter_.reset();
485
486 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
487 // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
488 // no longer access monitor and thread list data structures. We leak user daemon threads
489 // themselves, since we have no mechanism for shutting them down.
490 {
491 ScopedTrace trace2("Delete thread list");
492 thread_list_->ShutDown();
493 }
494
495 // TODO Maybe do some locking.
496 for (auto& agent : agents_) {
497 agent->Unload();
498 }
499
500 // TODO Maybe do some locking
501 for (auto& plugin : plugins_) {
502 plugin.Unload();
503 }
504
505 // Finally delete the thread list.
506 // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
507 // We assume that by this point, we've waited long enough for things to quiesce.
508 delete thread_list_;
509 thread_list_ = nullptr;
510
511 // Delete the JIT after thread list to ensure that there is no remaining threads which could be
512 // accessing the instrumentation when we delete it.
513 if (jit_ != nullptr) {
514 VLOG(jit) << "Deleting jit";
515 jit_.reset(nullptr);
516 jit_code_cache_.reset(nullptr);
517 }
518
519 // Shutdown the fault manager if it was initialized.
520 fault_manager.Shutdown();
521
522 ScopedTrace trace2("Delete state");
523 delete monitor_list_;
524 monitor_list_ = nullptr;
525 delete monitor_pool_;
526 monitor_pool_ = nullptr;
527 delete class_linker_;
528 class_linker_ = nullptr;
529 delete small_lrt_allocator_;
530 small_lrt_allocator_ = nullptr;
531 delete heap_;
532 heap_ = nullptr;
533 delete intern_table_;
534 intern_table_ = nullptr;
535 delete oat_file_manager_;
536 oat_file_manager_ = nullptr;
537 Thread::Shutdown();
538 QuasiAtomic::Shutdown();
539
540 // Destroy allocators before shutting down the MemMap because they may use it.
541 java_vm_.reset();
542 linear_alloc_.reset();
543 delete ReleaseStartupLinearAlloc();
544 linear_alloc_arena_pool_.reset();
545 arena_pool_.reset();
546 jit_arena_pool_.reset();
547 protected_fault_page_.Reset();
548 MemMap::Shutdown();
549
550 // TODO: acquire a static mutex on Runtime to avoid racing.
551 CHECK(instance_ == nullptr || instance_ == this);
552 instance_ = nullptr;
553
554 // Well-known classes must be deleted or it is impossible to successfully start another Runtime
555 // instance. We rely on a small initialization order issue in Runtime::Start() that requires
556 // elements of WellKnownClasses to be null, see b/65500943.
557 WellKnownClasses::Clear();
558
559 #ifdef ART_PAGE_SIZE_AGNOSTIC
560 // This is added to ensure no test is able to access gPageSize prior to initializing Runtime just
561 // because a Runtime instance was created (and subsequently destroyed) by another test.
562 gPageSize.DisallowAccess();
563 #endif
564 }
565
566 struct AbortState {
Dumpart::AbortState567 void Dump(std::ostream& os) const {
568 if (gAborting > 1) {
569 os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
570 DumpRecursiveAbort(os);
571 return;
572 }
573 gAborting++;
574 os << "Runtime aborting...\n";
575 if (Runtime::Current() == nullptr) {
576 os << "(Runtime does not yet exist!)\n";
577 DumpNativeStack(os, GetTid(), " native: ", nullptr);
578 return;
579 }
580 Thread* self = Thread::Current();
581
582 // Dump all threads first and then the aborting thread. While this is counter the logical flow,
583 // it improves the chance of relevant data surviving in the Android logs.
584
585 DumpAllThreads(os, self);
586
587 if (self == nullptr) {
588 os << "(Aborting thread was not attached to runtime!)\n";
589 DumpNativeStack(os, GetTid(), " native: ", nullptr);
590 } else {
591 os << "Aborting thread:\n";
592 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
593 DumpThread(os, self);
594 } else {
595 if (Locks::mutator_lock_->SharedTryLock(self)) {
596 DumpThread(os, self);
597 Locks::mutator_lock_->SharedUnlock(self);
598 }
599 }
600 }
601 }
602
603 // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState604 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
605 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
606 self->Dump(os);
607 if (self->IsExceptionPending()) {
608 mirror::Throwable* exception = self->GetException();
609 os << "Pending exception " << exception->Dump();
610 }
611 }
612
DumpAllThreadsart::AbortState613 void DumpAllThreads(std::ostream& os, Thread* self) const {
614 Runtime* runtime = Runtime::Current();
615 if (runtime != nullptr) {
616 ThreadList* thread_list = runtime->GetThreadList();
617 if (thread_list != nullptr) {
618 // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
619 // grabbed).
620 // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
621 // acquiring the locks.
622 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
623 bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
624 if (tll_already_held || tscl_already_held) {
625 os << "Skipping all-threads dump as locks are held:"
626 << (tll_already_held ? "" : " thread_list_lock")
627 << (tscl_already_held ? "" : " thread_suspend_count_lock")
628 << "\n";
629 return;
630 }
631 bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
632 if (ml_already_exlusively_held) {
633 os << "Skipping all-threads dump as mutator lock is exclusively held.";
634 return;
635 }
636 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
637 if (!ml_already_held) {
638 os << "Dumping all threads without mutator lock held\n";
639 }
640 os << "All threads:\n";
641 thread_list->Dump(os);
642 }
643 }
644 }
645
646 // For recursive aborts.
DumpRecursiveAbortart::AbortState647 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
648 // The only thing we'll attempt is dumping the native stack of the current thread. We will only
649 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
650 // die.
651 // Note: as we're using a global counter for the recursive abort detection, there is a potential
652 // race here and it is not OK to just print when the counter is "2" (one from
653 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
654 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
655 if (gAborting < kOnlyPrintWhenRecursionLessThan) {
656 gAborting++;
657 DumpNativeStack(os, GetTid());
658 }
659 }
660 };
661
SetAbortMessage(const char * msg)662 void Runtime::SetAbortMessage(const char* msg) {
663 auto old_value = gAborting.fetch_add(1); // set before taking any locks
664
665 // Only set the first abort message.
666 if (old_value == 0) {
667 #ifdef ART_TARGET_ANDROID
668 android_set_abort_message(msg);
669 #endif
670 // Set the runtime fault message in case our unexpected-signal code will run.
671 Runtime* current = Runtime::Current();
672 if (current != nullptr) {
673 current->SetFaultMessage(msg);
674 }
675 }
676 }
677
Abort(const char * msg)678 void Runtime::Abort(const char* msg) {
679 SetAbortMessage(msg);
680
681 // May be coming from an unattached thread.
682 if (Thread::Current() == nullptr) {
683 Runtime* current = Runtime::Current();
684 if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
685 // We do not flag this to the unexpected-signal handler so that that may dump the stack.
686 abort();
687 UNREACHABLE();
688 }
689 }
690
691 {
692 // Ensure that we don't have multiple threads trying to abort at once,
693 // which would result in significantly worse diagnostics.
694 ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort);
695 Locks::abort_lock_->ExclusiveLock(Thread::Current());
696 }
697
698 // Get any pending output out of the way.
699 fflush(nullptr);
700
701 // Many people have difficulty distinguish aborts from crashes,
702 // so be explicit.
703 // Note: use cerr on the host to print log lines immediately, so we get at least some output
704 // in case of recursive aborts. We lose annotation with the source file and line number
705 // here, which is a minor issue. The same is significantly more complicated on device,
706 // which is why we ignore the issue there.
707 AbortState state;
708 if (kIsTargetBuild) {
709 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
710 } else {
711 std::cerr << Dumpable<AbortState>(state);
712 }
713
714 // Sometimes we dump long messages, and the Android abort message only retains the first line.
715 // In those cases, just log the message again, to avoid logcat limits.
716 if (msg != nullptr && strchr(msg, '\n') != nullptr) {
717 LOG(FATAL_WITHOUT_ABORT) << msg;
718 }
719
720 FlagRuntimeAbort();
721
722 // Call the abort hook if we have one.
723 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
724 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
725 Runtime::Current()->abort_();
726 // notreached
727 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
728 }
729
730 abort();
731 // notreached
732 }
733
734 /**
735 * Update entrypoints of methods before the first fork. This
736 * helps sharing pages where ArtMethods are allocated between the zygote and
737 * forked apps.
738 */
739 class UpdateMethodsPreFirstForkVisitor : public ClassVisitor {
740 public:
UpdateMethodsPreFirstForkVisitor(ClassLinker * class_linker)741 explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker)
742 : class_linker_(class_linker),
743 can_use_nterp_(interpreter::CanRuntimeUseNterp()) {}
744
operator ()(ObjPtr<mirror::Class> klass)745 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
746 bool is_initialized = klass->IsVisiblyInitialized();
747 for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) {
748 if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) {
749 const void* existing = method.GetEntryPointFromQuickCompiledCode();
750 if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) {
751 method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint());
752 }
753 }
754 }
755 return true;
756 }
757
758 private:
759 ClassLinker* const class_linker_;
760 const bool can_use_nterp_;
761
762 DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor);
763 };
764
765 // Wait until the kernel thinks we are single-threaded again.
WaitUntilSingleThreaded()766 static void WaitUntilSingleThreaded() {
767 #if defined(__linux__)
768 // Read num_threads field from /proc/self/stat, avoiding higher-level IO libraries that may
769 // break atomicity of the read.
770 static constexpr size_t kNumTries = 2000;
771 static constexpr size_t kNumThreadsIndex = 20;
772 static constexpr size_t BUF_SIZE = 500;
773 static constexpr size_t BUF_PRINT_SIZE = 150; // Only log this much on failure to limit length.
774 static_assert(BUF_SIZE > BUF_PRINT_SIZE);
775 char buf[BUF_SIZE];
776 size_t bytes_read = 0;
777 uint64_t millis = 0;
778 for (size_t tries = 0; tries < kNumTries; ++tries) {
779 bytes_read = GetOsThreadStat(getpid(), buf, BUF_SIZE);
780 CHECK_NE(bytes_read, 0u);
781 size_t pos = 0;
782 while (pos < bytes_read && buf[pos++] != ')') {}
783 ++pos;
784 // We're now positioned at the beginning of the third field. Don't count blanks embedded in
785 // second (command) field.
786 size_t blanks_seen = 2;
787 while (pos < bytes_read && blanks_seen < kNumThreadsIndex - 1) {
788 if (buf[pos++] == ' ') {
789 ++blanks_seen;
790 }
791 }
792 CHECK(pos < bytes_read - 2);
793 // pos is first character of num_threads field.
794 CHECK_EQ(buf[pos + 1], ' '); // We never have more than single-digit threads here.
795 if (buf[pos] == '1') {
796 return; // num_threads == 1; success.
797 }
798 if (millis == 0) {
799 millis = MilliTime();
800 }
801 usleep(tries < 10 ? 1000 : 2000);
802 }
803 buf[std::min(BUF_PRINT_SIZE, bytes_read)] = '\0'; // Truncate buf before printing.
804 LOG(ERROR) << "Not single threaded: bytes_read = " << bytes_read << " stat contents = \"" << buf
805 << "...\"";
806 LOG(ERROR) << "Other threads' abbreviated stats: " << GetOtherThreadOsStats();
807 bytes_read = GetOsThreadStat(getpid(), buf, BUF_PRINT_SIZE);
808 CHECK_NE(bytes_read, 0u);
809 LOG(ERROR) << "After re-read: bytes_read = " << bytes_read << " stat contents = \"" << buf
810 << "...\"";
811 LOG(FATAL) << "Failed to reach single-threaded state: wait_time = " << MilliTime() - millis;
812 #else // Not Linux; shouldn't matter, but this has a high probability of working slowly.
813 usleep(20'000);
814 #endif
815 }
816
PreZygoteFork()817 void Runtime::PreZygoteFork() {
818 if (GetJit() != nullptr) {
819 GetJit()->PreZygoteFork();
820 }
821 // All other threads have already been joined, but they may not have finished
822 // removing themselves from the thread list. Wait until the other threads have completely
823 // finished, and are no longer in the thread list.
824 // TODO: Since the threads Unregister() themselves before exiting, the first wait should be
825 // unnecessary. But since we're reading from a /proc entry that's concurrently changing, for
826 // now we play this as safe as possible.
827 ThreadList* tl = GetThreadList();
828 {
829 Thread* self = Thread::Current();
830 MutexLock mu(self, *Locks::thread_list_lock_);
831 tl->WaitForUnregisterToComplete(self);
832 if (kIsDebugBuild) {
833 auto list = tl->GetList();
834 if (list.size() != 1) {
835 for (Thread* t : list) {
836 std::string name;
837 t->GetThreadName(name);
838 LOG(ERROR) << "Remaining pre-fork thread: " << name;
839 }
840 }
841 }
842 CHECK_EQ(tl->Size(), 1u);
843 // And then wait until the kernel thinks the threads are gone.
844 WaitUntilSingleThreaded();
845 }
846
847 if (!heap_->HasZygoteSpace()) {
848 Thread* self = Thread::Current();
849 // This is the first fork. Update ArtMethods in the boot classpath now to
850 // avoid having forked apps dirty the memory.
851
852 // Ensure we call FixupStaticTrampolines on all methods that are
853 // initialized.
854 class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true);
855
856 ScopedObjectAccess soa(self);
857 UpdateMethodsPreFirstForkVisitor visitor(class_linker_);
858 class_linker_->VisitClasses(&visitor);
859 }
860 heap_->PreZygoteFork();
861 PreZygoteForkNativeBridge();
862 }
863
PostZygoteFork()864 void Runtime::PostZygoteFork() {
865 jit::Jit* jit = GetJit();
866 if (jit != nullptr) {
867 jit->PostZygoteFork();
868 // Ensure that the threads in the JIT pool have been created with the right
869 // priority.
870 if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
871 jit->GetThreadPool()->CheckPthreadPriority(
872 IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority()
873 : jit->GetThreadPoolPthreadPriority());
874 }
875 }
876 // Reset all stats.
877 ResetStats(0xFFFFFFFF);
878 }
879
CallExitHook(jint status)880 void Runtime::CallExitHook(jint status) {
881 if (exit_ != nullptr) {
882 ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative);
883 exit_(status);
884 LOG(WARNING) << "Exit hook returned instead of exiting!";
885 }
886 }
887
SweepSystemWeaks(IsMarkedVisitor * visitor)888 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
889 // Userfaultfd compaction updates weak intern-table page-by-page via
890 // LinearAlloc.
891 if (!GetHeap()->IsPerformingUffdCompaction()) {
892 GetInternTable()->SweepInternTableWeaks(visitor);
893 }
894 GetMonitorList()->SweepMonitorList(visitor);
895 GetJavaVM()->SweepJniWeakGlobals(visitor);
896 GetHeap()->SweepAllocationRecords(visitor);
897 // Sweep JIT tables only if the GC is moving as in other cases the entries are
898 // not updated.
899 if (GetJit() != nullptr && GetHeap()->IsMovingGc()) {
900 // Visit JIT literal tables. Objects in these tables are classes and strings
901 // and only classes can be affected by class unloading. The strings always
902 // stay alive as they are strongly interned.
903 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
904 // from mutators. See b/32167580.
905 GetJit()->GetCodeCache()->SweepRootTables(visitor);
906 }
907
908 // All other generic system-weak holders.
909 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
910 holder->Sweep(visitor);
911 }
912 }
913
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)914 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
915 bool ignore_unrecognized,
916 RuntimeArgumentMap* runtime_options) {
917 Locks::Init();
918 InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
919 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
920 if (!parsed) {
921 LOG(ERROR) << "Failed to parse options";
922 return false;
923 }
924 return true;
925 }
926
927 // Callback to check whether it is safe to call Abort (e.g., to use a call to
928 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
929 // properly initialized, and has not shut down.
IsSafeToCallAbort()930 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
931 Runtime* runtime = Runtime::Current();
932 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
933 }
934
AddGeneratedCodeRange(const void * start,size_t size)935 void Runtime::AddGeneratedCodeRange(const void* start, size_t size) {
936 if (HandlesSignalsInCompiledCode()) {
937 fault_manager.AddGeneratedCodeRange(start, size);
938 }
939 }
940
RemoveGeneratedCodeRange(const void * start,size_t size)941 void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) {
942 if (HandlesSignalsInCompiledCode()) {
943 fault_manager.RemoveGeneratedCodeRange(start, size);
944 }
945 }
946
Create(RuntimeArgumentMap && runtime_options)947 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
948 // TODO: acquire a static mutex on Runtime to avoid racing.
949 if (Runtime::instance_ != nullptr) {
950 return false;
951 }
952 instance_ = new Runtime;
953 Locks::SetClientCallback(IsSafeToCallAbort);
954 if (!instance_->Init(std::move(runtime_options))) {
955 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
956 // leak memory, instead. Fix the destructor. b/19100793.
957 // delete instance_;
958 instance_ = nullptr;
959 return false;
960 }
961 return true;
962 }
963
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)964 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
965 RuntimeArgumentMap runtime_options;
966 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
967 Create(std::move(runtime_options));
968 }
969
CreateSystemClassLoader(Runtime * runtime)970 static jobject CreateSystemClassLoader(Runtime* runtime) {
971 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
972 return nullptr;
973 }
974
975 ScopedObjectAccess soa(Thread::Current());
976 ClassLinker* cl = runtime->GetClassLinker();
977 auto pointer_size = cl->GetImagePointerSize();
978
979 ObjPtr<mirror::Class> class_loader_class = GetClassRoot<mirror::ClassLoader>(cl);
980 DCHECK(class_loader_class->IsInitialized()); // Class roots have been initialized.
981
982 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
983 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
984 CHECK(getSystemClassLoader != nullptr);
985 CHECK(getSystemClassLoader->IsStatic());
986
987 ObjPtr<mirror::Object> system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self());
988 CHECK(system_class_loader != nullptr)
989 << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "<null>");
990
991 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
992 jobject g_system_class_loader =
993 runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader);
994 soa.Self()->SetClassLoaderOverride(g_system_class_loader);
995
996 ObjPtr<mirror::Class> thread_class = WellKnownClasses::java_lang_Thread.Get();
997 ArtField* contextClassLoader =
998 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
999 CHECK(contextClassLoader != nullptr);
1000
1001 // We can't run in a transaction yet.
1002 contextClassLoader->SetObject<false>(soa.Self()->GetPeer(), system_class_loader);
1003
1004 return g_system_class_loader;
1005 }
1006
GetCompilerExecutable() const1007 std::string Runtime::GetCompilerExecutable() const {
1008 if (!compiler_executable_.empty()) {
1009 return compiler_executable_;
1010 }
1011 std::string compiler_executable = GetArtBinDir() + "/dex2oat";
1012 if (kIsDebugBuild) {
1013 compiler_executable += 'd';
1014 }
1015 if (kIsTargetBuild) {
1016 compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
1017 }
1018 return compiler_executable;
1019 }
1020
RunRootClinits(Thread * self)1021 void Runtime::RunRootClinits(Thread* self) {
1022 class_linker_->RunRootClinits(self);
1023
1024 GcRoot<mirror::Throwable>* exceptions[] = {
1025 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1026 // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
1027 // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
1028 &pre_allocated_NoClassDefFoundError_,
1029 };
1030 for (GcRoot<mirror::Throwable>* exception : exceptions) {
1031 StackHandleScope<1> hs(self);
1032 Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
1033 class_linker_->EnsureInitialized(self, klass, true, true);
1034 self->AssertNoPendingException();
1035 }
1036 }
1037
Start()1038 bool Runtime::Start() {
1039 VLOG(startup) << "Runtime::Start entering";
1040
1041 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
1042
1043 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
1044 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
1045 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
1046 if (kIsDebugBuild) {
1047 if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
1048 PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
1049 }
1050 }
1051 #endif
1052
1053 // Restore main thread state to kNative as expected by native code.
1054 Thread* self = Thread::Current();
1055
1056 started_ = true;
1057
1058 // Before running any clinit, set up the native methods provided by the runtime itself.
1059 RegisterRuntimeNativeMethods(self->GetJniEnv());
1060
1061 class_linker_->RunEarlyRootClinits(self);
1062 InitializeIntrinsics();
1063
1064 self->TransitionFromRunnableToSuspended(ThreadState::kNative);
1065
1066 // InitNativeMethods needs to be after started_ so that the classes
1067 // it touches will have methods linked to the oat file if necessary.
1068 {
1069 ScopedTrace trace2("InitNativeMethods");
1070 InitNativeMethods();
1071 }
1072
1073 // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
1074 // initializtion in InitNativeMethods().
1075 art::hiddenapi::InitializeCorePlatformApiPrivateFields();
1076
1077 // Initialize well known thread group values that may be accessed threads while attaching.
1078 InitThreadGroups(self);
1079
1080 Thread::FinishStartup();
1081
1082 // Create the JIT either if we have to use JIT compilation or save profiling info. This is
1083 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
1084 // ThreadGroup to exist.
1085 //
1086 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
1087 // recoding profiles. Maybe we should consider changing the name to be more clear it's
1088 // not only about compiling. b/28295073.
1089 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
1090 CreateJit();
1091 #ifdef ADDRESS_SANITIZER
1092 // (b/238730394): In older implementations of sanitizer + glibc there is a race between
1093 // pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN
1094 // uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to
1095 // __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a
1096 // deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in
1097 // parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to
1098 // finish before going to the next phase. Creating a system class loader could need a dlopen so
1099 // we wait here till threads are initialized.
1100 // [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408
1101 // See this for more context: https://reviews.llvm.org/D98926
1102 // TODO(b/238730394): Revisit this workaround once we migrate to musl libc.
1103 if (jit_ != nullptr) {
1104 jit_->GetThreadPool()->WaitForWorkersToBeCreated();
1105 }
1106 #endif
1107 }
1108
1109 // Send the start phase event. We have to wait till here as this is when the main thread peer
1110 // has just been generated, important root clinits have been run and JNI is completely functional.
1111 {
1112 ScopedObjectAccess soa(self);
1113 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
1114 }
1115
1116 system_class_loader_ = CreateSystemClassLoader(this);
1117
1118 if (!is_zygote_) {
1119 if (is_native_bridge_loaded_) {
1120 PreInitializeNativeBridge(".");
1121 }
1122 NativeBridgeAction action = force_native_bridge_
1123 ? NativeBridgeAction::kInitialize
1124 : NativeBridgeAction::kUnload;
1125 InitNonZygoteOrPostFork(self->GetJniEnv(),
1126 /* is_system_server= */ false,
1127 /* is_child_zygote= */ false,
1128 action,
1129 GetInstructionSetString(kRuntimeISA));
1130 }
1131
1132 {
1133 ScopedObjectAccess soa(self);
1134 StartDaemonThreads();
1135 self->GetJniEnv()->AssertLocalsEmpty();
1136
1137 // Send the initialized phase event. Send it after starting the Daemon threads so that agents
1138 // cannot delay the daemon threads from starting forever.
1139 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
1140 self->GetJniEnv()->AssertLocalsEmpty();
1141 }
1142
1143 VLOG(startup) << "Runtime::Start exiting";
1144 finished_starting_ = true;
1145
1146 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
1147 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart);
1148 int flags = 0;
1149 if (trace_config_->clock_source == TraceClockSource::kDual) {
1150 flags = Trace::TraceFlag::kTraceClockSourceWallClock |
1151 Trace::TraceFlag::kTraceClockSourceThreadCpu;
1152 } else if (trace_config_->clock_source == TraceClockSource::kWall) {
1153 flags = Trace::TraceFlag::kTraceClockSourceWallClock;
1154 } else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) {
1155 flags = Trace::TraceFlag::kTraceClockSourceThreadCpu;
1156 } else {
1157 LOG(ERROR) << "Unexpected clock source";
1158 }
1159 Trace::Start(trace_config_->trace_file.c_str(),
1160 static_cast<int>(trace_config_->trace_file_size),
1161 flags,
1162 trace_config_->trace_output_mode,
1163 trace_config_->trace_mode,
1164 0);
1165 }
1166
1167 // In case we have a profile path passed as a command line argument,
1168 // register the current class path for profiling now. Note that we cannot do
1169 // this before we create the JIT and having it here is the most convenient way.
1170 // This is used when testing profiles with dalvikvm command as there is no
1171 // framework to register the dex files for profiling.
1172 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
1173 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
1174 std::vector<std::string> dex_filenames;
1175 Split(class_path_string_, ':', &dex_filenames);
1176
1177 // We pass "" as the package name because at this point we don't know it. It could be the
1178 // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
1179 // post-fork or during RegisterAppInfo.
1180 //
1181 // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
1182 // a reference profile.
1183 RegisterAppInfo(
1184 /*package_name=*/ "",
1185 dex_filenames,
1186 jit_options_->GetProfileSaverOptions().GetProfilePath(),
1187 /*ref_profile_filename=*/ "",
1188 kVMRuntimePrimaryApk);
1189 }
1190
1191 return true;
1192 }
1193
EndThreadBirth()1194 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
1195 DCHECK_GT(threads_being_born_, 0U);
1196 threads_being_born_--;
1197 if (shutting_down_started_ && threads_being_born_ == 0) {
1198 shutdown_cond_->Broadcast(Thread::Current());
1199 }
1200 }
1201
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1202 void Runtime::InitNonZygoteOrPostFork(
1203 JNIEnv* env,
1204 bool is_system_server,
1205 // This is true when we are initializing a child-zygote. It requires
1206 // native bridge initialization to be able to run guest native code in
1207 // doPreload().
1208 bool is_child_zygote,
1209 NativeBridgeAction action,
1210 const char* isa,
1211 bool profile_system_server) {
1212 if (is_native_bridge_loaded_) {
1213 switch (action) {
1214 case NativeBridgeAction::kUnload:
1215 UnloadNativeBridge();
1216 is_native_bridge_loaded_ = false;
1217 break;
1218 case NativeBridgeAction::kInitialize:
1219 InitializeNativeBridge(env, isa);
1220 break;
1221 }
1222 }
1223
1224 if (is_child_zygote) {
1225 // If creating a child-zygote we only initialize native bridge. The rest of
1226 // runtime post-fork logic would spin up threads for Binder and JDWP.
1227 // Instead, the Java side of the child process will call a static main in a
1228 // class specified by the parent.
1229 return;
1230 }
1231
1232 DCHECK(!IsZygote());
1233
1234 if (is_system_server) {
1235 // Register the system server code paths.
1236 // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
1237 // the method is only called when we set up the profile. It should be called all the time
1238 // (simillar to the apps). Once that's done this manual registration can be removed.
1239 const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
1240 if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
1241 LOG(WARNING) << "System server class path not set";
1242 } else {
1243 std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
1244 app_info_.RegisterAppInfo("android",
1245 jars,
1246 /*profile_output_filename=*/ "",
1247 /*ref_profile_filename=*/ "",
1248 AppInfo::CodeType::kPrimaryApk);
1249 }
1250
1251 // Set the system server package name to "android".
1252 // This is used to tell the difference between samples provided by system server
1253 // and samples generated by other apps when processing boot image profiles.
1254 SetProcessPackageName("android");
1255 if (profile_system_server) {
1256 jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1257 VLOG(profiler) << "Enabling system server profiles";
1258 }
1259 }
1260
1261 // Create the thread pool for loading app images.
1262 // Avoid creating the runtime thread pool for system server since it will not be used and would
1263 // waste memory.
1264 if (!is_system_server &&
1265 android::base::GetBoolProperty("dalvik.vm.parallel-image-loading", false)) {
1266 ScopedTrace timing("CreateThreadPool");
1267 constexpr size_t kStackSize = 64 * KB;
1268 constexpr size_t kMaxRuntimeWorkers = 4u;
1269 const size_t num_workers =
1270 std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1271 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1272 CHECK(thread_pool_ == nullptr);
1273 thread_pool_.reset(
1274 ThreadPool::Create("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1275 thread_pool_->StartWorkers(Thread::Current());
1276 }
1277
1278 // Reset the gc performance data and metrics at zygote fork so that the events from
1279 // before fork aren't attributed to an app.
1280 heap_->ResetGcPerformanceInfo();
1281 GetMetrics()->Reset();
1282
1283 if (AreMetricsInitialized()) {
1284 // Now that we know if we are an app or system server, reload the metrics reporter config
1285 // in case there are any difference.
1286 metrics::ReportingConfig metrics_config =
1287 metrics::ReportingConfig::FromFlags(is_system_server);
1288
1289 metrics_reporter_->ReloadConfig(metrics_config);
1290
1291 metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
1292 // Start the session id from 1 to avoid clashes with the default value.
1293 // (better for debugability)
1294 session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
1295 // TODO: set session_data.compilation_reason and session_data.compiler_filter
1296 metrics_reporter_->MaybeStartBackgroundThread(session_data);
1297 // Also notify about any updates to the app info.
1298 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
1299 }
1300
1301 StartSignalCatcher();
1302
1303 ScopedObjectAccess soa(Thread::Current());
1304 if (IsPerfettoHprofEnabled() &&
1305 (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1306 Runtime::Current()->IsSystemServer())) {
1307 std::string err;
1308 ScopedTrace tr("perfetto_hprof init.");
1309 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1310 if (!EnsurePerfettoPlugin(&err)) {
1311 LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1312 }
1313 }
1314 if (IsPerfettoJavaHeapStackProfEnabled() &&
1315 (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1316 Runtime::Current()->IsSystemServer())) {
1317 // Marker used for dev tracing similar to above markers.
1318 ScopedTrace tr("perfetto_javaheapprof init.");
1319 }
1320 if (Runtime::Current()->IsSystemServer()) {
1321 std::string err;
1322 ScopedTrace tr("odrefresh and device stats logging");
1323 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1324 // Report stats if available. This should be moved into ART Services when they are ready.
1325 if (!odrefresh::UploadStatsIfAvailable(&err)) {
1326 LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
1327 }
1328 metrics::ReportDeviceMetrics();
1329 }
1330
1331 if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1332 if (IsJavaDebuggable()) {
1333 SetJniIdType(JniIdType::kIndices);
1334 } else {
1335 SetJniIdType(JniIdType::kPointer);
1336 }
1337 }
1338 ATraceIntegerValue(
1339 "profilebootclasspath",
1340 static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
1341 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1342 // this will pause the runtime (in the internal debugger implementation), so we probably want
1343 // this to come last.
1344 GetRuntimeCallbacks()->StartDebugger();
1345 }
1346
StartSignalCatcher()1347 void Runtime::StartSignalCatcher() {
1348 if (!is_zygote_) {
1349 signal_catcher_ = new SignalCatcher();
1350 }
1351 }
1352
IsShuttingDown(Thread * self)1353 bool Runtime::IsShuttingDown(Thread* self) {
1354 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1355 return IsShuttingDownLocked();
1356 }
1357
StartDaemonThreads()1358 void Runtime::StartDaemonThreads() {
1359 ScopedTrace trace(__FUNCTION__);
1360 VLOG(startup) << "Runtime::StartDaemonThreads entering";
1361
1362 Thread* self = Thread::Current();
1363
1364 DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1365
1366 WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self);
1367 if (UNLIKELY(self->IsExceptionPending())) {
1368 LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump();
1369 }
1370
1371 VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1372 }
1373
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,ArrayRef<File> dex_files,std::vector<std::unique_ptr<const DexFile>> * out_dex_files)1374 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1375 ArrayRef<const std::string> dex_locations,
1376 ArrayRef<File> dex_files,
1377 std::vector<std::unique_ptr<const DexFile>>* out_dex_files) {
1378 DCHECK(out_dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1379 size_t failure_count = 0;
1380 for (size_t i = 0; i < dex_filenames.size(); i++) {
1381 const char* dex_filename = dex_filenames[i].c_str();
1382 const char* dex_location = dex_locations[i].c_str();
1383 File noFile;
1384 File* file = i < dex_files.size() ? &dex_files[i] : &noFile;
1385 static constexpr bool kVerifyChecksum = true;
1386 std::string error_msg;
1387 if (!OS::FileExists(dex_filename) && file->IsValid()) {
1388 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1389 continue;
1390 }
1391 bool verify = Runtime::Current()->IsVerificationEnabled();
1392 ArtDexFileLoader dex_file_loader(dex_filename, file, dex_location);
1393 if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, out_dex_files)) {
1394 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << file->Fd()
1395 << ": " << error_msg;
1396 ++failure_count;
1397 }
1398 if (file->IsValid()) {
1399 bool close_ok = file->Close();
1400 DCHECK(close_ok) << dex_filename;
1401 }
1402 }
1403 return failure_count;
1404 }
1405
SetSentinel(ObjPtr<mirror::Object> sentinel)1406 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1407 CHECK(sentinel_.Read() == nullptr);
1408 CHECK(sentinel != nullptr);
1409 CHECK(!heap_->IsMovableObject(sentinel));
1410 sentinel_ = GcRoot<mirror::Object>(sentinel);
1411 }
1412
GetSentinel()1413 GcRoot<mirror::Object> Runtime::GetSentinel() {
1414 return sentinel_;
1415 }
1416
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1417 static inline void CreatePreAllocatedException(Thread* self,
1418 Runtime* runtime,
1419 GcRoot<mirror::Throwable>* exception,
1420 const char* exception_class_descriptor,
1421 const char* msg)
1422 REQUIRES_SHARED(Locks::mutator_lock_) {
1423 DCHECK_EQ(self, Thread::Current());
1424 ClassLinker* class_linker = runtime->GetClassLinker();
1425 // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1426 ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1427 CHECK(klass != nullptr);
1428 gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1429 ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1430 klass->Alloc(self, allocator_type));
1431 CHECK(exception_object != nullptr);
1432 *exception = GcRoot<mirror::Throwable>(exception_object);
1433 // Initialize the "detailMessage" field.
1434 ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1435 CHECK(message != nullptr);
1436 ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1437 ArtField* detailMessageField =
1438 throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1439 CHECK(detailMessageField != nullptr);
1440 detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1441 }
1442
CreatePreAllocatedExceptions(Thread * self)1443 inline void Runtime::CreatePreAllocatedExceptions(Thread* self) {
1444 // Pre-allocate an OutOfMemoryError for the case when we fail to
1445 // allocate the exception to be thrown.
1446 CreatePreAllocatedException(self,
1447 this,
1448 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1449 "Ljava/lang/OutOfMemoryError;",
1450 "OutOfMemoryError thrown while trying to throw an exception; "
1451 "no stack trace available");
1452 // Pre-allocate an OutOfMemoryError for the double-OOME case.
1453 CreatePreAllocatedException(self,
1454 this,
1455 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1456 "Ljava/lang/OutOfMemoryError;",
1457 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1458 "no stack trace available");
1459 // Pre-allocate an OutOfMemoryError for the case when we fail to
1460 // allocate while handling a stack overflow.
1461 CreatePreAllocatedException(self,
1462 this,
1463 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1464 "Ljava/lang/OutOfMemoryError;",
1465 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1466 "no stack trace available");
1467 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1468 // ahead of checking the application's class loader.
1469 CreatePreAllocatedException(self,
1470 this,
1471 &pre_allocated_NoClassDefFoundError_,
1472 "Ljava/lang/NoClassDefFoundError;",
1473 "Class not found using the boot class loader; "
1474 "no stack trace available");
1475 }
1476
GetApexVersions(ArrayRef<const std::string> boot_class_path_locations)1477 std::string Runtime::GetApexVersions(ArrayRef<const std::string> boot_class_path_locations) {
1478 std::vector<std::string_view> bcp_apexes;
1479 for (std::string_view jar : boot_class_path_locations) {
1480 std::string_view apex = ApexNameFromLocation(jar);
1481 if (!apex.empty()) {
1482 bcp_apexes.push_back(apex);
1483 }
1484 }
1485 static const char* kApexFileName = "/apex/apex-info-list.xml";
1486 // Start with empty markers.
1487 std::string empty_apex_versions(bcp_apexes.size(), '/');
1488 // When running on host or chroot, we just use empty markers.
1489 if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
1490 return empty_apex_versions;
1491 }
1492 #ifdef ART_TARGET_ANDROID
1493 if (access(kApexFileName, R_OK) != 0) {
1494 PLOG(WARNING) << "Failed to read " << kApexFileName;
1495 return empty_apex_versions;
1496 }
1497 auto info_list = apex::readApexInfoList(kApexFileName);
1498 if (!info_list.has_value()) {
1499 LOG(WARNING) << "Failed to parse " << kApexFileName;
1500 return empty_apex_versions;
1501 }
1502
1503 std::string result;
1504 std::map<std::string_view, const apex::ApexInfo*> apex_infos;
1505 for (const apex::ApexInfo& info : info_list->getApexInfo()) {
1506 if (info.getIsActive()) {
1507 apex_infos.emplace(info.getModuleName(), &info);
1508 }
1509 }
1510 for (const std::string_view& str : bcp_apexes) {
1511 auto info = apex_infos.find(str);
1512 if (info == apex_infos.end() || info->second->getIsFactory()) {
1513 result += '/';
1514 } else {
1515 // In case lastUpdateMillis field is populated in apex-info-list.xml, we
1516 // prefer to use it as version scheme. If the field is missing we
1517 // fallback to the version code of the APEX.
1518 uint64_t version = info->second->hasLastUpdateMillis()
1519 ? info->second->getLastUpdateMillis()
1520 : info->second->getVersionCode();
1521 android::base::StringAppendF(&result, "/%" PRIu64, version);
1522 }
1523 }
1524 return result;
1525 #else
1526 return empty_apex_versions; // Not an Android build.
1527 #endif
1528 }
1529
InitializeApexVersions()1530 void Runtime::InitializeApexVersions() {
1531 apex_versions_ =
1532 GetApexVersions(ArrayRef<const std::string>(Runtime::Current()->GetBootClassPathLocations()));
1533 }
1534
ReloadAllFlags(const std::string & caller)1535 void Runtime::ReloadAllFlags(const std::string& caller) {
1536 FlagBase::ReloadAllFlags(caller);
1537 }
1538
FileFdsToFileObjects(std::vector<int> && fds)1539 static std::vector<File> FileFdsToFileObjects(std::vector<int>&& fds) {
1540 std::vector<File> files;
1541 files.reserve(fds.size());
1542 for (int fd : fds) {
1543 files.push_back(File(fd, /*check_usage=*/false));
1544 }
1545 return files;
1546 }
1547
GetThreadSuspendTimeout(const RuntimeArgumentMap * runtime_options)1548 inline static uint64_t GetThreadSuspendTimeout(const RuntimeArgumentMap* runtime_options) {
1549 auto suspend_timeout_opt = runtime_options->GetOptional(RuntimeArgumentMap::ThreadSuspendTimeout);
1550 return suspend_timeout_opt.has_value() ?
1551 suspend_timeout_opt.value().GetNanoseconds() :
1552 ThreadList::kDefaultThreadSuspendTimeout *
1553 android::base::GetIntProperty("ro.hw_timeout_multiplier", 1);
1554 }
1555
Init(RuntimeArgumentMap && runtime_options_in)1556 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1557 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1558 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1559 env_snapshot_.TakeSnapshot();
1560
1561 #ifdef ART_PAGE_SIZE_AGNOSTIC
1562 gPageSize.AllowAccess();
1563 #endif
1564
1565 using Opt = RuntimeArgumentMap;
1566 Opt runtime_options(std::move(runtime_options_in));
1567 ScopedTrace trace(__FUNCTION__);
1568 CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), gPageSize);
1569
1570 // Reload all the flags value (from system properties and device configs).
1571 ReloadAllFlags(__FUNCTION__);
1572
1573 deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
1574 if (deny_art_apex_data_files_) {
1575 // We will run slower without those files if the system has taken an ART APEX update.
1576 LOG(WARNING) << "ART APEX data files are untrusted.";
1577 }
1578
1579 // Early override for logging output.
1580 if (runtime_options.Exists(Opt::UseStderrLogger)) {
1581 android::base::SetLogger(android::base::StderrLogger);
1582 }
1583
1584 MemMap::Init();
1585
1586 verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1587 force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
1588 perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1589 perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
1590
1591 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1592 // If we cannot reserve it, log a warning.
1593 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1594 // is out-of-the-way enough that it should not collide with boot image mapping.
1595 // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1596 // leading to logspam.
1597 {
1598 const uintptr_t sentinel_addr =
1599 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), gPageSize);
1600 protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1601 reinterpret_cast<uint8_t*>(sentinel_addr),
1602 gPageSize,
1603 PROT_NONE,
1604 /*low_4gb=*/ true,
1605 /*reuse=*/ false,
1606 /*reservation=*/ nullptr,
1607 /*error_msg=*/ nullptr);
1608 if (!protected_fault_page_.IsValid()) {
1609 LOG(WARNING) << "Could not reserve sentinel fault page";
1610 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != sentinel_addr) {
1611 LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1612 protected_fault_page_.Reset();
1613 }
1614 }
1615
1616 VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1617
1618 QuasiAtomic::Startup();
1619
1620 oat_file_manager_ = new OatFileManager();
1621
1622 jni_id_manager_.reset(new jni::JniIdManager());
1623
1624 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1625 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1626 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1627
1628 image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image);
1629
1630 SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1631 boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1632 boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1633 DCHECK(boot_class_path_locations_.empty() ||
1634 boot_class_path_locations_.size() == boot_class_path_.size());
1635 if (boot_class_path_.empty()) {
1636 LOG(ERROR) << "Boot classpath is empty";
1637 return false;
1638 }
1639
1640 boot_class_path_files_ =
1641 FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathFds));
1642 if (!boot_class_path_files_.empty() && boot_class_path_files_.size() != boot_class_path_.size()) {
1643 LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in "
1644 << "-Xbootclasspath.";
1645 return false;
1646 }
1647
1648 boot_class_path_image_files_ =
1649 FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds));
1650 boot_class_path_vdex_files_ =
1651 FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds));
1652 boot_class_path_oat_files_ =
1653 FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds));
1654 CHECK(boot_class_path_image_files_.empty() ||
1655 boot_class_path_image_files_.size() == boot_class_path_.size());
1656 CHECK(boot_class_path_vdex_files_.empty() ||
1657 boot_class_path_vdex_files_.size() == boot_class_path_.size());
1658 CHECK(boot_class_path_oat_files_.empty() ||
1659 boot_class_path_oat_files_.size() == boot_class_path_.size());
1660
1661 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1662 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1663
1664 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1665 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1666 is_zygote_ = runtime_options.Exists(Opt::Zygote);
1667 is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1668 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1669 is_eagerly_release_explicit_gc_disabled_ =
1670 runtime_options.Exists(Opt::DisableEagerlyReleaseExplicitGC);
1671 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1672 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1673 allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation);
1674
1675 if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
1676 oat_file_manager_->SetOnlyUseTrustedOatFiles();
1677 }
1678
1679 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1680 exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1681 abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1682
1683 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1684
1685 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1686 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1687 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1688 if (option == "--debuggable") {
1689 SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit);
1690 break;
1691 }
1692 }
1693 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1694
1695 finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1696 max_spins_before_thin_lock_inflation_ =
1697 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1698
1699 monitor_list_ = new MonitorList;
1700 monitor_pool_ = MonitorPool::Create();
1701 thread_list_ = new ThreadList(GetThreadSuspendTimeout(&runtime_options));
1702 intern_table_ = new InternTable;
1703
1704 monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
1705 int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
1706 if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
1707 LOG(WARNING) << "Monitor timeout too short: Increasing";
1708 monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
1709 }
1710 if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
1711 LOG(WARNING) << "Monitor timeout too long: Decreasing";
1712 monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
1713 }
1714 monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
1715
1716 verify_ = runtime_options.GetOrDefault(Opt::Verify);
1717
1718 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1719
1720 // Set hidden API enforcement policy. The checks are disabled by default and
1721 // we only enable them if:
1722 // (a) runtime was started with a command line flag that enables the checks, or
1723 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1724 hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1725 DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1726
1727 // Set core platform API enforcement policy. The checks are disabled by default and
1728 // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1729 // a system property is set.
1730 core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1731 if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1732 LOG(INFO) << "Core platform API reporting enabled, enforcing="
1733 << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1734 }
1735
1736 // Dex2Oat's Runtime does not need the signal chain or the fault handler
1737 // and it passes the `NoSigChain` option to `Runtime` to indicate this.
1738 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1739 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1740
1741 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1742
1743 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1744
1745 if (runtime_options.GetOrDefault(Opt::Interpret)) {
1746 GetInstrumentation()->ForceInterpretOnly();
1747 }
1748
1749 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1750 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1751 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1752 madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
1753 madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
1754 madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
1755
1756 jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1757 automatically_set_jni_ids_indirection_ =
1758 runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1759
1760 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1761 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1762 // TODO Add back in -agentlib
1763 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1764 // agents_.push_back(lib);
1765 // }
1766
1767 float foreground_heap_growth_multiplier;
1768 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1769 // If low memory mode, use 1.0 as the multiplier by default.
1770 foreground_heap_growth_multiplier = 1.0f;
1771 } else {
1772 // Extra added to the default heap growth multiplier for concurrent GC
1773 // compaction algorithms. This is done for historical reasons.
1774 // TODO: remove when we revisit heap configurations.
1775 foreground_heap_growth_multiplier =
1776 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f;
1777 }
1778 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1779
1780 // Generational CC collection is currently only compatible with Baker read barriers.
1781 bool use_generational_gc = (kUseBakerReadBarrier || gUseUserfaultfd) &&
1782 xgc_option.generational_gc && ShouldUseGenerationalGC();
1783
1784 // Cache the apex versions.
1785 InitializeApexVersions();
1786
1787 BackgroundGcOption background_gc =
1788 gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) :
1789 (gUseUserfaultfd ? BackgroundGcOption(gc::kCollectorTypeCMCBackground) :
1790 runtime_options.GetOrDefault(Opt::BackgroundGc));
1791
1792 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1793 runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1794 runtime_options.GetOrDefault(Opt::HeapMinFree),
1795 runtime_options.GetOrDefault(Opt::HeapMaxFree),
1796 runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1797 foreground_heap_growth_multiplier,
1798 runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1799 runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1800 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1801 GetBootClassPath(),
1802 GetBootClassPathLocations(),
1803 GetBootClassPathFiles(),
1804 GetBootClassPathImageFiles(),
1805 GetBootClassPathVdexFiles(),
1806 GetBootClassPathOatFiles(),
1807 image_locations_,
1808 instruction_set_,
1809 // Override the collector type to CC if the read barrier config.
1810 gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1811 background_gc,
1812 runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1813 runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1814 runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1815 runtime_options.GetOrDefault(Opt::ConcGCThreads),
1816 runtime_options.Exists(Opt::LowMemoryMode),
1817 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1818 runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1819 runtime_options.Exists(Opt::IgnoreMaxFootprint),
1820 runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1821 runtime_options.GetOrDefault(Opt::UseTLAB),
1822 xgc_option.verify_pre_gc_heap_,
1823 xgc_option.verify_pre_sweeping_heap_,
1824 xgc_option.verify_post_gc_heap_,
1825 xgc_option.verify_pre_gc_rosalloc_,
1826 xgc_option.verify_pre_sweeping_rosalloc_,
1827 xgc_option.verify_post_gc_rosalloc_,
1828 xgc_option.gcstress_,
1829 xgc_option.measure_,
1830 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1831 use_generational_gc,
1832 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1833 runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1834 runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
1835
1836 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1837
1838 bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
1839 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1840 jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1841 IsJavaDebuggable());
1842 switch (jdwp_provider_) {
1843 case JdwpProvider::kNone: {
1844 VLOG(jdwp) << "Disabling all JDWP support.";
1845 if (!jdwp_options_.empty()) {
1846 bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1847 std::string adb_connection_args =
1848 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1849 if (has_explicit_jdwp_options) {
1850 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1851 << "jdwp with one of:" << std::endl
1852 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1853 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1854 << (has_transport ? "" : adb_connection_args);
1855 }
1856 }
1857 break;
1858 }
1859 case JdwpProvider::kAdbConnection: {
1860 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1861 : "libadbconnection.so";
1862 plugins_.push_back(Plugin::Create(plugin_name));
1863 break;
1864 }
1865 case JdwpProvider::kUnset: {
1866 LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1867 }
1868 }
1869 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1870
1871 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1872 if (IsAotCompiler()) {
1873 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1874 // this case.
1875 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1876 // null and we don't create the jit.
1877 jit_options_->SetUseJitCompilation(false);
1878 jit_options_->SetSaveProfilingInfo(false);
1879 }
1880
1881 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1882 // can't be trimmed as easily.
1883 const bool use_malloc = IsAotCompiler();
1884 if (use_malloc) {
1885 arena_pool_.reset(new MallocArenaPool());
1886 jit_arena_pool_.reset(new MallocArenaPool());
1887 } else {
1888 arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1889 jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1890 }
1891
1892 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
1893 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
1894 // when we have 64 bit ArtMethod pointers.
1895 const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA);
1896 if (gUseUserfaultfd) {
1897 linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote()));
1898 } else if (low_4gb) {
1899 linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb));
1900 }
1901 linear_alloc_.reset(CreateLinearAlloc());
1902 startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed);
1903
1904 small_lrt_allocator_ = new jni::SmallLrtAllocator();
1905
1906 BlockSignals();
1907 InitPlatformSignalHandlers();
1908
1909 // Change the implicit checks flags based on runtime architecture.
1910 switch (kRuntimeQuickCodeISA) {
1911 case InstructionSet::kArm64:
1912 implicit_suspend_checks_ = true;
1913 FALLTHROUGH_INTENDED;
1914 case InstructionSet::kArm:
1915 case InstructionSet::kThumb2:
1916 case InstructionSet::kRiscv64:
1917 case InstructionSet::kX86:
1918 case InstructionSet::kX86_64:
1919 implicit_null_checks_ = true;
1920 // Historical note: Installing stack protection was not playing well with Valgrind.
1921 implicit_so_checks_ = true;
1922 break;
1923 default:
1924 // Keep the defaults.
1925 break;
1926 }
1927
1928 #ifdef ART_USE_RESTRICTED_MODE
1929 // TODO(Simulator): support signal handling and implicit checks.
1930 implicit_suspend_checks_ = false;
1931 implicit_null_checks_ = false;
1932 #endif // ART_USE_RESTRICTED_MODE
1933
1934 fault_manager.Init(!no_sig_chain_);
1935 if (!no_sig_chain_) {
1936 if (HandlesSignalsInCompiledCode()) {
1937 // These need to be in a specific order. The null point check handler must be
1938 // after the suspend check and stack overflow check handlers.
1939 //
1940 // Note: the instances attach themselves to the fault manager and are handled by it. The
1941 // manager will delete the instance on Shutdown().
1942 if (implicit_suspend_checks_) {
1943 new SuspensionHandler(&fault_manager);
1944 }
1945
1946 if (implicit_so_checks_) {
1947 new StackOverflowHandler(&fault_manager);
1948 }
1949
1950 if (implicit_null_checks_) {
1951 new NullPointerHandler(&fault_manager);
1952 }
1953
1954 if (kEnableJavaStackTraceHandler) {
1955 new JavaStackTraceHandler(&fault_manager);
1956 }
1957
1958 if (interpreter::CanRuntimeUseNterp()) {
1959 // Nterp code can use signal handling just like the compiled managed code.
1960 OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader;
1961 fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize());
1962 }
1963 }
1964 }
1965
1966 verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1967
1968 std::string error_msg;
1969 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1970 if (java_vm_.get() == nullptr) {
1971 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1972 return false;
1973 }
1974
1975 // Add the JniEnv handler.
1976 // TODO Refactor this stuff.
1977 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1978
1979 Thread::Startup();
1980
1981 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1982 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1983 // thread, we do not get a java peer.
1984 Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true);
1985 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1986 CHECK(self != nullptr);
1987
1988 self->SetIsRuntimeThread(IsAotCompiler());
1989
1990 // Set us to runnable so tools using a runtime can allocate and GC by default
1991 self->TransitionFromSuspendedToRunnable();
1992
1993 // Now we're attached, we can take the heap locks and validate the heap.
1994 GetHeap()->EnableObjectValidation();
1995
1996 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1997
1998 if (UNLIKELY(IsAotCompiler())) {
1999 class_linker_ = compiler_callbacks_->CreateAotClassLinker(intern_table_);
2000 } else {
2001 class_linker_ = new ClassLinker(
2002 intern_table_,
2003 runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
2004 }
2005 if (GetHeap()->HasBootImageSpace()) {
2006 bool result = class_linker_->InitFromBootImage(&error_msg);
2007 if (!result) {
2008 LOG(ERROR) << "Could not initialize from image: " << error_msg;
2009 return false;
2010 }
2011 if (kIsDebugBuild) {
2012 for (auto image_space : GetHeap()->GetBootImageSpaces()) {
2013 image_space->VerifyImageAllocations();
2014 }
2015 }
2016 {
2017 ScopedTrace trace2("AddImageStringsToTable");
2018 for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
2019 GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
2020 }
2021 }
2022
2023 const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
2024 ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
2025 if (total_components != GetBootClassPath().size()) {
2026 // The boot image did not contain all boot class path components. Load the rest.
2027 CHECK_LT(total_components, GetBootClassPath().size());
2028 size_t start = total_components;
2029 DCHECK_LT(start, GetBootClassPath().size());
2030 std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
2031 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
2032 extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
2033 } else {
2034 ArrayRef<File> bcp_files = start < GetBootClassPathFiles().size() ?
2035 ArrayRef<File>(GetBootClassPathFiles()).SubArray(start) :
2036 ArrayRef<File>();
2037 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
2038 ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
2039 bcp_files,
2040 &extra_boot_class_path);
2041 }
2042 class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
2043 }
2044 if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
2045 // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
2046 // Also deoptimize if we are profiling the boot class path.
2047 ScopedThreadSuspension sts(self, ThreadState::kNative);
2048 ScopedSuspendAll ssa(__FUNCTION__);
2049 DeoptimizeBootImage();
2050 }
2051 } else {
2052 std::vector<std::unique_ptr<const DexFile>> boot_class_path;
2053 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
2054 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
2055 } else {
2056 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
2057 ArrayRef<const std::string>(GetBootClassPathLocations()),
2058 ArrayRef<File>(GetBootClassPathFiles()),
2059 &boot_class_path);
2060 }
2061 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
2062 LOG(ERROR) << "Could not initialize without image: " << error_msg;
2063 return false;
2064 }
2065
2066 // TODO: Should we move the following to InitWithoutImage?
2067 SetInstructionSet(instruction_set_);
2068 for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
2069 CalleeSaveType type = CalleeSaveType(i);
2070 if (!HasCalleeSaveMethod(type)) {
2071 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
2072 }
2073 }
2074 }
2075
2076 // Now that the boot image space is set, cache the boot classpath checksums,
2077 // to be used when validating oat files.
2078 ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
2079 ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
2080 boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
2081 bcp_dex_files);
2082
2083 CHECK(class_linker_ != nullptr);
2084
2085 if (runtime_options.Exists(Opt::MethodTrace)) {
2086 trace_config_.reset(new TraceConfig());
2087 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
2088 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
2089 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
2090 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
2091 TraceOutputMode::kStreaming :
2092 TraceOutputMode::kFile;
2093 trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock);
2094 }
2095
2096 if (GetHeap()->HasBootImageSpace()) {
2097 const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
2098 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
2099 ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
2100 image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
2101 pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
2102 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
2103 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
2104 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2105 pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
2106 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
2107 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
2108 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2109 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
2110 boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
2111 DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
2112 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2113 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
2114 boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
2115 DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
2116 ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
2117 } else {
2118 CreatePreAllocatedExceptions(self);
2119 }
2120
2121 // Class-roots are setup, we can now finish initializing the JniIdManager.
2122 GetJniIdManager()->Init(self);
2123
2124 // Initialize metrics only for the Zygote process or
2125 // if explicitly enabled via command line argument.
2126 if (IsZygote() || gFlags.MetricsForceEnable.GetValue()) {
2127 LOG(INFO) << "Initializing ART runtime metrics";
2128 InitMetrics();
2129 }
2130
2131 // Runtime initialization is largely done now.
2132 // We load plugins first since that can modify the runtime state slightly.
2133 // Load all plugins
2134 {
2135 // The init method of plugins expect the state of the thread to be non runnable.
2136 ScopedThreadSuspension sts(self, ThreadState::kNative);
2137 for (auto& plugin : plugins_) {
2138 std::string err;
2139 if (!plugin.Load(&err)) {
2140 LOG(FATAL) << plugin << " failed to load: " << err;
2141 }
2142 }
2143 }
2144
2145 // Look for a native bridge.
2146 //
2147 // The intended flow here is, in the case of a running system:
2148 //
2149 // Runtime::Init() (zygote):
2150 // LoadNativeBridge -> dlopen from cmd line parameter.
2151 // |
2152 // V
2153 // Runtime::Start() (zygote):
2154 // No-op wrt native bridge.
2155 // |
2156 // | start app
2157 // V
2158 // DidForkFromZygote(action)
2159 // action = kUnload -> dlclose native bridge.
2160 // action = kInitialize -> initialize library
2161 //
2162 //
2163 // The intended flow here is, in the case of a simple dalvikvm call:
2164 //
2165 // Runtime::Init():
2166 // LoadNativeBridge -> dlopen from cmd line parameter.
2167 // |
2168 // V
2169 // Runtime::Start():
2170 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
2171 // No-op wrt native bridge.
2172 {
2173 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
2174 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
2175 }
2176
2177 // Startup agents
2178 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
2179 for (auto& agent_spec : agent_specs_) {
2180 // TODO Check err
2181 int res = 0;
2182 std::string err = "";
2183 ti::LoadError error;
2184 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
2185
2186 if (agent != nullptr) {
2187 agents_.push_back(std::move(agent));
2188 continue;
2189 }
2190
2191 switch (error) {
2192 case ti::LoadError::kInitializationError:
2193 LOG(FATAL) << "Unable to initialize agent!";
2194 UNREACHABLE();
2195
2196 case ti::LoadError::kLoadingError:
2197 LOG(ERROR) << "Unable to load an agent: " << err;
2198 continue;
2199
2200 case ti::LoadError::kNoError:
2201 break;
2202 }
2203 LOG(FATAL) << "Unreachable";
2204 UNREACHABLE();
2205 }
2206 {
2207 ScopedObjectAccess soa(self);
2208 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
2209 }
2210
2211 if (IsZygote() && IsPerfettoHprofEnabled()) {
2212 constexpr const char* plugin_name = kIsDebugBuild ?
2213 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2214 // Load eagerly in Zygote to improve app startup times. This will make
2215 // subsequent dlopens for the library no-ops.
2216 dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
2217 }
2218
2219 VLOG(startup) << "Runtime::Init exiting";
2220
2221 return true;
2222 }
2223
InitMetrics()2224 void Runtime::InitMetrics() {
2225 metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
2226 metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
2227 }
2228
RequestMetricsReport(bool synchronous)2229 void Runtime::RequestMetricsReport(bool synchronous) {
2230 if (AreMetricsInitialized()) {
2231 metrics_reporter_->RequestMetricsReport(synchronous);
2232 }
2233 }
2234
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)2235 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
2236 // Is the plugin already loaded?
2237 for (const Plugin& p : plugins_) {
2238 if (p.GetLibrary() == plugin_name) {
2239 return true;
2240 }
2241 }
2242 Plugin new_plugin = Plugin::Create(plugin_name);
2243
2244 if (!new_plugin.Load(error_msg)) {
2245 return false;
2246 }
2247 plugins_.push_back(std::move(new_plugin));
2248 return true;
2249 }
2250
EnsurePerfettoPlugin(std::string * error_msg)2251 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
2252 constexpr const char* plugin_name = kIsDebugBuild ?
2253 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2254 return EnsurePluginLoaded(plugin_name, error_msg);
2255 }
2256
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)2257 static bool EnsureJvmtiPlugin(Runtime* runtime,
2258 std::string* error_msg) {
2259 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
2260 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
2261 << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
2262 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
2263 // specifically allowed.
2264 if (!Dbg::IsJdwpAllowed()) {
2265 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
2266 return false;
2267 }
2268
2269 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
2270 return runtime->EnsurePluginLoaded(plugin_name, error_msg);
2271 }
2272
2273 // Attach a new agent and add it to the list of runtime agents
2274 //
2275 // TODO: once we decide on the threading model for agents,
2276 // revisit this and make sure we're doing this on the right thread
2277 // (and we synchronize access to any shared data structures like "agents_")
2278 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)2279 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
2280 std::string error_msg;
2281 if (!EnsureJvmtiPlugin(this, &error_msg)) {
2282 LOG(WARNING) << "Could not load plugin: " << error_msg;
2283 ScopedObjectAccess soa(Thread::Current());
2284 ThrowIOException("%s", error_msg.c_str());
2285 return;
2286 }
2287
2288 ti::AgentSpec agent_spec(agent_arg);
2289
2290 int res = 0;
2291 ti::LoadError error;
2292 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
2293
2294 if (agent != nullptr) {
2295 agents_.push_back(std::move(agent));
2296 } else {
2297 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
2298 ScopedObjectAccess soa(Thread::Current());
2299 ThrowIOException("%s", error_msg.c_str());
2300 }
2301 }
2302
InitNativeMethods()2303 void Runtime::InitNativeMethods() {
2304 VLOG(startup) << "Runtime::InitNativeMethods entering";
2305 Thread* self = Thread::Current();
2306 JNIEnv* env = self->GetJniEnv();
2307
2308 // Must be in the kNative state for calling native methods (JNI_OnLoad code).
2309 CHECK_EQ(self->GetState(), ThreadState::kNative);
2310
2311 // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
2312 // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
2313 // just use System.loadLibrary, but libcore can't because it's the library
2314 // that implements System.loadLibrary!
2315 //
2316 // By setting calling class to java.lang.Object, the caller location for these
2317 // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
2318 // com_android_art linker namespace.
2319 jclass java_lang_Object;
2320 {
2321 // Use global JNI reference to keep the local references empty. If we allocated a
2322 // local reference here, the `PushLocalFrame(128)` that these internal libraries do
2323 // in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding.
2324 ScopedObjectAccess soa(self);
2325 java_lang_Object = reinterpret_cast<jclass>(
2326 GetJavaVM()->AddGlobalRef(self, GetClassRoot<mirror::Object>(GetClassLinker())));
2327 }
2328
2329 // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
2330 // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
2331 {
2332 std::string error_msg;
2333 if (!java_vm_->LoadNativeLibrary(
2334 env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) {
2335 LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
2336 }
2337 }
2338 {
2339 std::string error_msg;
2340 if (!java_vm_->LoadNativeLibrary(
2341 env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) {
2342 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
2343 }
2344 }
2345 {
2346 constexpr const char* kOpenJdkLibrary = kIsDebugBuild
2347 ? "libopenjdkd.so"
2348 : "libopenjdk.so";
2349 std::string error_msg;
2350 if (!java_vm_->LoadNativeLibrary(
2351 env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) {
2352 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
2353 }
2354 }
2355 env->DeleteGlobalRef(java_lang_Object);
2356
2357 // Initialize well known classes that may invoke runtime native methods.
2358 WellKnownClasses::LateInit(env);
2359
2360 VLOG(startup) << "Runtime::InitNativeMethods exiting";
2361 }
2362
ReclaimArenaPoolMemory()2363 void Runtime::ReclaimArenaPoolMemory() {
2364 arena_pool_->LockReclaimMemory();
2365 }
2366
InitThreadGroups(Thread * self)2367 void Runtime::InitThreadGroups(Thread* self) {
2368 ScopedObjectAccess soa(self);
2369 ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup;
2370 ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup;
2371 // Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on
2372 // `ThreadGroup` and `Thread` being initialized.
2373 // TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*`
2374 // (and therefore the `WellKnownClasses::Init()` shall not initialize any classes).
2375 StackHandleScope<2u> hs(self);
2376 Handle<mirror::Class> thread_group_class =
2377 hs.NewHandle(main_thread_group_field->GetDeclaringClass());
2378 bool initialized = GetClassLinker()->EnsureInitialized(
2379 self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2380 CHECK(initialized);
2381 Handle<mirror::Class> thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get());
2382 initialized = GetClassLinker()->EnsureInitialized(
2383 self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2384 CHECK(initialized);
2385 main_thread_group_ =
2386 soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get()));
2387 CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2388 system_thread_group_ =
2389 soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get()));
2390 CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2391 }
2392
GetMainThreadGroup() const2393 jobject Runtime::GetMainThreadGroup() const {
2394 CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2395 return main_thread_group_;
2396 }
2397
GetSystemThreadGroup() const2398 jobject Runtime::GetSystemThreadGroup() const {
2399 CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2400 return system_thread_group_;
2401 }
2402
GetSystemClassLoader() const2403 jobject Runtime::GetSystemClassLoader() const {
2404 CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler());
2405 return system_class_loader_;
2406 }
2407
RegisterRuntimeNativeMethods(JNIEnv * env)2408 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
2409 register_dalvik_system_DexFile(env);
2410 register_dalvik_system_BaseDexClassLoader(env);
2411 register_dalvik_system_VMDebug(env);
2412 real_register_dalvik_system_VMRuntime(env);
2413 register_dalvik_system_VMStack(env);
2414 register_dalvik_system_ZygoteHooks(env);
2415 register_java_lang_Class(env);
2416 register_java_lang_Object(env);
2417 register_java_lang_invoke_MethodHandle(env);
2418 register_java_lang_invoke_MethodHandleImpl(env);
2419 register_java_lang_ref_FinalizerReference(env);
2420 register_java_lang_reflect_Array(env);
2421 register_java_lang_reflect_Constructor(env);
2422 register_java_lang_reflect_Executable(env);
2423 register_java_lang_reflect_Field(env);
2424 register_java_lang_reflect_Method(env);
2425 register_java_lang_reflect_Parameter(env);
2426 register_java_lang_reflect_Proxy(env);
2427 register_java_lang_ref_Reference(env);
2428 register_java_lang_StackStreamFactory(env);
2429 register_java_lang_String(env);
2430 register_java_lang_StringFactory(env);
2431 register_java_lang_System(env);
2432 register_java_lang_Thread(env);
2433 register_java_lang_Throwable(env);
2434 register_java_lang_VMClassLoader(env);
2435 register_java_util_concurrent_atomic_AtomicLong(env);
2436 register_jdk_internal_misc_Unsafe(env);
2437 register_libcore_io_Memory(env);
2438 register_libcore_util_CharsetUtils(env);
2439 register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
2440 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
2441 register_sun_misc_Unsafe(env);
2442 }
2443
operator <<(std::ostream & os,const DeoptimizationKind & kind)2444 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
2445 os << GetDeoptimizationKindName(kind);
2446 return os;
2447 }
2448
DumpDeoptimizations(std::ostream & os)2449 void Runtime::DumpDeoptimizations(std::ostream& os) {
2450 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2451 if (deoptimization_counts_[i] != 0) {
2452 os << "Number of "
2453 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2454 << " deoptimizations: "
2455 << deoptimization_counts_[i]
2456 << "\n";
2457 }
2458 }
2459 }
2460
SigQuitNanoTime() const2461 std::optional<uint64_t> Runtime::SigQuitNanoTime() const {
2462 return signal_catcher_ != nullptr ? signal_catcher_->SigQuitNanoTime() : std::nullopt;
2463 }
2464
DumpForSigQuit(std::ostream & os)2465 void Runtime::DumpForSigQuit(std::ostream& os) {
2466 // Print backtraces first since they are important do diagnose ANRs,
2467 // and ANRs can often be trimmed to limit upload size.
2468 thread_list_->DumpForSigQuit(os);
2469 GetClassLinker()->DumpForSigQuit(os);
2470 GetInternTable()->DumpForSigQuit(os);
2471 GetJavaVM()->DumpForSigQuit(os);
2472 GetHeap()->DumpForSigQuit(os);
2473 oat_file_manager_->DumpForSigQuit(os);
2474 if (GetJit() != nullptr) {
2475 GetJit()->DumpForSigQuit(os);
2476 } else {
2477 os << "Running non JIT\n";
2478 }
2479 DumpDeoptimizations(os);
2480 TrackedAllocators::Dump(os);
2481 GetMetrics()->DumpForSigQuit(os);
2482 os << "\n";
2483
2484 BaseMutex::DumpAll(os);
2485
2486 // Inform anyone else who is interested in SigQuit.
2487 {
2488 ScopedObjectAccess soa(Thread::Current());
2489 callbacks_->SigQuit();
2490 }
2491 }
2492
DumpLockHolders(std::ostream & os)2493 void Runtime::DumpLockHolders(std::ostream& os) {
2494 pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2495 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2496 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2497 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2498 if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2499 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2500 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2501 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2502 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2503 }
2504 }
2505
SetStatsEnabled(bool new_state)2506 void Runtime::SetStatsEnabled(bool new_state) {
2507 Thread* self = Thread::Current();
2508 MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2509 if (new_state == true) {
2510 GetStats()->Clear(~0);
2511 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2512 self->GetStats()->Clear(~0);
2513 if (stats_enabled_ != new_state) {
2514 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2515 }
2516 } else if (stats_enabled_ != new_state) {
2517 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2518 }
2519 stats_enabled_ = new_state;
2520 }
2521
ResetStats(int kinds)2522 void Runtime::ResetStats(int kinds) {
2523 GetStats()->Clear(kinds & 0xffff);
2524 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2525 Thread::Current()->GetStats()->Clear(kinds >> 16);
2526 }
2527
GetStat(int kind)2528 uint64_t Runtime::GetStat(int kind) {
2529 RuntimeStats* stats;
2530 if (kind < (1<<16)) {
2531 stats = GetStats();
2532 } else {
2533 stats = Thread::Current()->GetStats();
2534 kind >>= 16;
2535 }
2536 switch (kind) {
2537 case KIND_ALLOCATED_OBJECTS:
2538 return stats->allocated_objects;
2539 case KIND_ALLOCATED_BYTES:
2540 return stats->allocated_bytes;
2541 case KIND_FREED_OBJECTS:
2542 return stats->freed_objects;
2543 case KIND_FREED_BYTES:
2544 return stats->freed_bytes;
2545 case KIND_GC_INVOCATIONS:
2546 return stats->gc_for_alloc_count;
2547 case KIND_CLASS_INIT_COUNT:
2548 return stats->class_init_count;
2549 case KIND_CLASS_INIT_TIME:
2550 return stats->class_init_time_ns;
2551 case KIND_EXT_ALLOCATED_OBJECTS:
2552 case KIND_EXT_ALLOCATED_BYTES:
2553 case KIND_EXT_FREED_OBJECTS:
2554 case KIND_EXT_FREED_BYTES:
2555 return 0; // backward compatibility
2556 default:
2557 LOG(FATAL) << "Unknown statistic " << kind;
2558 UNREACHABLE();
2559 }
2560 }
2561
BlockSignals()2562 void Runtime::BlockSignals() {
2563 SignalSet signals;
2564 signals.Add(SIGPIPE);
2565 // SIGQUIT is used to dump the runtime's state (including stack traces).
2566 signals.Add(SIGQUIT);
2567 // SIGUSR1 is used to initiate a GC.
2568 signals.Add(SIGUSR1);
2569 signals.Block();
2570 }
2571
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)2572 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2573 bool create_peer, bool should_run_callbacks) {
2574 ScopedTrace trace(__FUNCTION__);
2575 Thread* self = Thread::Attach(thread_name,
2576 as_daemon,
2577 thread_group,
2578 create_peer,
2579 should_run_callbacks);
2580 // Run ThreadGroup.add to notify the group that this thread is now started.
2581 if (self != nullptr && create_peer && !IsAotCompiler()) {
2582 ScopedObjectAccess soa(self);
2583 self->NotifyThreadGroup(soa, thread_group);
2584 }
2585 return self != nullptr;
2586 }
2587
DetachCurrentThread(bool should_run_callbacks)2588 void Runtime::DetachCurrentThread(bool should_run_callbacks) {
2589 ScopedTrace trace(__FUNCTION__);
2590 Thread* self = Thread::Current();
2591 if (self == nullptr) {
2592 LOG(FATAL) << "attempting to detach thread that is not attached";
2593 }
2594 if (self->HasManagedStack()) {
2595 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2596 }
2597 thread_list_->Unregister(self, should_run_callbacks);
2598 }
2599
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2600 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2601 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2602 if (oome == nullptr) {
2603 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2604 }
2605 return oome;
2606 }
2607
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2608 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2609 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2610 if (oome == nullptr) {
2611 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2612 }
2613 return oome;
2614 }
2615
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2616 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2617 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2618 if (oome == nullptr) {
2619 LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2620 }
2621 return oome;
2622 }
2623
GetPreAllocatedNoClassDefFoundError()2624 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2625 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2626 if (ncdfe == nullptr) {
2627 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2628 }
2629 return ncdfe;
2630 }
2631
VisitConstantRoots(RootVisitor * visitor)2632 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2633 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2634 // null.
2635 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2636 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2637 if (HasResolutionMethod()) {
2638 resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2639 }
2640 if (HasImtConflictMethod()) {
2641 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2642 }
2643 if (imt_unimplemented_method_ != nullptr) {
2644 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2645 }
2646 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2647 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2648 if (m != nullptr) {
2649 m->VisitRoots(buffered_visitor, pointer_size);
2650 }
2651 }
2652 }
2653
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2654 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2655 // Userfaultfd compaction updates intern-tables and class-tables page-by-page
2656 // via LinearAlloc. So don't visit them here.
2657 if (GetHeap()->IsPerformingUffdCompaction()) {
2658 class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/false);
2659 } else {
2660 intern_table_->VisitRoots(visitor, flags);
2661 class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/true);
2662 }
2663 jni_id_manager_->VisitRoots(visitor);
2664 heap_->VisitAllocationRecords(visitor);
2665 if (jit_ != nullptr) {
2666 jit_->VisitRoots(visitor);
2667 }
2668 if ((flags & kVisitRootFlagNewRoots) == 0) {
2669 // Guaranteed to have no new roots in the constant roots.
2670 VisitConstantRoots(visitor);
2671 }
2672 }
2673
VisitNonThreadRoots(RootVisitor * visitor)2674 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2675 java_vm_->VisitRoots(visitor);
2676 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2677 pre_allocated_OutOfMemoryError_when_throwing_exception_
2678 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2679 pre_allocated_OutOfMemoryError_when_throwing_oome_
2680 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2681 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2682 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2683 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2684 VisitImageRoots(visitor);
2685 class_linker_->VisitTransactionRoots(visitor);
2686 }
2687
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2688 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2689 VisitThreadRoots(visitor, flags);
2690 VisitNonThreadRoots(visitor);
2691 }
2692
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2693 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2694 thread_list_->VisitRoots(visitor, flags);
2695 }
2696
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2697 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2698 VisitNonConcurrentRoots(visitor, flags);
2699 VisitConcurrentRoots(visitor, flags);
2700 }
2701
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2702 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2703 thread_list_->VisitReflectiveTargets(visitor);
2704 heap_->VisitReflectiveTargets(visitor);
2705 jni_id_manager_->VisitReflectiveTargets(visitor);
2706 callbacks_->VisitReflectiveTargets(visitor);
2707 }
2708
VisitImageRoots(RootVisitor * visitor)2709 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2710 // We only confirm that image roots are unchanged.
2711 if (kIsDebugBuild) {
2712 for (auto* space : GetHeap()->GetContinuousSpaces()) {
2713 if (space->IsImageSpace()) {
2714 auto* image_space = space->AsImageSpace();
2715 const auto& image_header = image_space->GetImageHeader();
2716 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2717 mirror::Object* obj =
2718 image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2719 if (obj != nullptr) {
2720 mirror::Object* after_obj = obj;
2721 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2722 CHECK_EQ(after_obj, obj);
2723 }
2724 }
2725 }
2726 }
2727 }
2728 }
2729
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2730 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2731 REQUIRES_SHARED(Locks::mutator_lock_) {
2732 const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2733 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2734 const size_t method_size = ArtMethod::Size(image_pointer_size);
2735 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2736 Thread::Current(),
2737 linear_alloc,
2738 1);
2739 ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2740 CHECK(method != nullptr);
2741 method->SetDexMethodIndex(dex::kDexNoIndex);
2742 CHECK(method->IsRuntimeMethod());
2743 return method;
2744 }
2745
CreateImtConflictMethod(LinearAlloc * linear_alloc)2746 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2747 ClassLinker* const class_linker = GetClassLinker();
2748 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2749 // When compiling, the code pointer will get set later when the image is loaded.
2750 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2751 if (IsAotCompiler()) {
2752 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2753 } else {
2754 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2755 }
2756 // Create empty conflict table.
2757 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2758 pointer_size);
2759 return method;
2760 }
2761
SetImtConflictMethod(ArtMethod * method)2762 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2763 CHECK(method != nullptr);
2764 CHECK(method->IsRuntimeMethod());
2765 imt_conflict_method_ = method;
2766 }
2767
CreateResolutionMethod()2768 ArtMethod* Runtime::CreateResolutionMethod() {
2769 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2770 // When compiling, the code pointer will get set later when the image is loaded.
2771 if (IsAotCompiler()) {
2772 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2773 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2774 method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2775 } else {
2776 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2777 method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2778 }
2779 return method;
2780 }
2781
CreateCalleeSaveMethod()2782 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2783 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2784 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2785 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2786 DCHECK_NE(instruction_set_, InstructionSet::kNone);
2787 DCHECK(method->IsRuntimeMethod());
2788 return method;
2789 }
2790
DisallowNewSystemWeaks()2791 void Runtime::DisallowNewSystemWeaks() {
2792 CHECK(!gUseReadBarrier);
2793 monitor_list_->DisallowNewMonitors();
2794 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2795 java_vm_->DisallowNewWeakGlobals();
2796 heap_->DisallowNewAllocationRecords();
2797 if (GetJit() != nullptr) {
2798 GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2799 }
2800
2801 // All other generic system-weak holders.
2802 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2803 holder->Disallow();
2804 }
2805 }
2806
AllowNewSystemWeaks()2807 void Runtime::AllowNewSystemWeaks() {
2808 CHECK(!gUseReadBarrier);
2809 monitor_list_->AllowNewMonitors();
2810 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
2811 java_vm_->AllowNewWeakGlobals();
2812 heap_->AllowNewAllocationRecords();
2813 if (GetJit() != nullptr) {
2814 GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2815 }
2816
2817 // All other generic system-weak holders.
2818 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2819 holder->Allow();
2820 }
2821 }
2822
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2823 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2824 // This is used for the read barrier case that uses the thread-local
2825 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2826 // (see ThreadList::RunCheckpoint).
2827 monitor_list_->BroadcastForNewMonitors();
2828 intern_table_->BroadcastForNewInterns();
2829 java_vm_->BroadcastForNewWeakGlobals();
2830 heap_->BroadcastForNewAllocationRecords();
2831 if (GetJit() != nullptr) {
2832 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2833 }
2834
2835 // All other generic system-weak holders.
2836 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2837 holder->Broadcast(broadcast_for_checkpoint);
2838 }
2839 }
2840
SetInstructionSet(InstructionSet instruction_set)2841 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2842 instruction_set_ = instruction_set;
2843 switch (instruction_set) {
2844 case InstructionSet::kThumb2:
2845 // kThumb2 is the same as kArm, use the canonical value.
2846 instruction_set_ = InstructionSet::kArm;
2847 break;
2848 case InstructionSet::kArm:
2849 case InstructionSet::kArm64:
2850 case InstructionSet::kRiscv64:
2851 case InstructionSet::kX86:
2852 case InstructionSet::kX86_64:
2853 break;
2854 default:
2855 UNIMPLEMENTED(FATAL) << instruction_set_;
2856 UNREACHABLE();
2857 }
2858 }
2859
ClearInstructionSet()2860 void Runtime::ClearInstructionSet() {
2861 instruction_set_ = InstructionSet::kNone;
2862 }
2863
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2864 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2865 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2866 CHECK(method != nullptr);
2867 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2868 }
2869
ClearCalleeSaveMethods()2870 void Runtime::ClearCalleeSaveMethods() {
2871 for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2872 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2873 }
2874 }
2875
RegisterAppInfo(const std::string & package_name,const std::vector<std::string> & code_paths,const std::string & profile_output_filename,const std::string & ref_profile_filename,int32_t code_type)2876 void Runtime::RegisterAppInfo(const std::string& package_name,
2877 const std::vector<std::string>& code_paths,
2878 const std::string& profile_output_filename,
2879 const std::string& ref_profile_filename,
2880 int32_t code_type) {
2881 app_info_.RegisterAppInfo(
2882 package_name,
2883 code_paths,
2884 profile_output_filename,
2885 ref_profile_filename,
2886 AppInfo::FromVMRuntimeConstants(code_type));
2887
2888 if (AreMetricsInitialized()) {
2889 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
2890 }
2891
2892 if (jit_.get() == nullptr) {
2893 // We are not JITing. Nothing to do.
2894 return;
2895 }
2896
2897 VLOG(profiler) << "Register app with " << profile_output_filename
2898 << " " << android::base::Join(code_paths, ':');
2899 VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
2900
2901 if (profile_output_filename.empty()) {
2902 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2903 return;
2904 }
2905 if (code_paths.empty()) {
2906 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2907 return;
2908 }
2909
2910 // Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code
2911 // so that we don't unnecessarily create profiles for them or write bootclasspath profiling info
2912 // to those profiles.
2913 bool has_code = false;
2914 for (const std::string& path : code_paths) {
2915 std::string error_msg;
2916 std::optional<uint32_t> checksum;
2917 std::vector<std::string> dex_locations;
2918 DexFileLoader loader(path);
2919 if (!loader.GetMultiDexChecksum(&checksum, &error_msg)) {
2920 LOG(WARNING) << error_msg;
2921 continue;
2922 }
2923 if (checksum.has_value()) {
2924 has_code = true;
2925 break;
2926 }
2927 }
2928 if (!has_code) {
2929 VLOG(profiler) << ART_FORMAT(
2930 "JIT profile information will not be recorded: no dex code in '{}'.",
2931 android::base::Join(code_paths, ','));
2932 return;
2933 }
2934
2935 jit_->StartProfileSaver(profile_output_filename,
2936 code_paths,
2937 ref_profile_filename,
2938 AppInfo::FromVMRuntimeConstants(code_type));
2939 }
2940
SetFaultMessage(const std::string & message)2941 void Runtime::SetFaultMessage(const std::string& message) {
2942 std::string* new_msg = new std::string(message);
2943 std::string* cur_msg = fault_message_.exchange(new_msg);
2944 delete cur_msg;
2945 }
2946
GetFaultMessage()2947 std::string Runtime::GetFaultMessage() {
2948 // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2949 // the string in parallel.
2950 std::string* cur_msg = fault_message_.exchange(nullptr);
2951
2952 // Make a copy of the string.
2953 std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2954
2955 // Put the message back if it hasn't been updated.
2956 std::string* null_str = nullptr;
2957 if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2958 // Already replaced.
2959 delete cur_msg;
2960 }
2961
2962 return ret;
2963 }
2964
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2965 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2966 const {
2967 if (GetInstrumentation()->InterpretOnly()) {
2968 argv->push_back("--compiler-filter=verify");
2969 }
2970
2971 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2972 // architecture support, dex2oat may be compiled as a different instruction-set than that
2973 // currently being executed.
2974 std::string instruction_set("--instruction-set=");
2975 // The dex2oat instruction set should match the runtime's target ISA.
2976 instruction_set += GetInstructionSetString(kRuntimeQuickCodeISA);
2977 argv->push_back(instruction_set);
2978
2979 if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2980 argv->push_back("--instruction-set-features=runtime");
2981 } else {
2982 std::unique_ptr<const InstructionSetFeatures> features(
2983 InstructionSetFeatures::FromCppDefines());
2984 std::string feature_string("--instruction-set-features=");
2985 feature_string += features->GetFeatureString();
2986 argv->push_back(feature_string);
2987 }
2988 }
2989
CreateJit()2990 void Runtime::CreateJit() {
2991 DCHECK(jit_code_cache_ == nullptr);
2992 DCHECK(jit_ == nullptr);
2993 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2994 DCHECK(!jit_options_->UseJitCompilation());
2995 }
2996
2997 if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2998 return;
2999 }
3000
3001 if (IsSafeMode()) {
3002 LOG(INFO) << "Not creating JIT because of SafeMode.";
3003 return;
3004 }
3005
3006 std::string error_msg;
3007 bool profiling_only = !jit_options_->UseJitCompilation();
3008 jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
3009 /*rwx_memory_allowed=*/ true,
3010 IsZygote(),
3011 &error_msg));
3012 if (jit_code_cache_.get() == nullptr) {
3013 LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
3014 return;
3015 }
3016
3017 jit_ = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
3018 jit_->CreateThreadPool();
3019 }
3020
CanRelocate() const3021 bool Runtime::CanRelocate() const {
3022 return !IsAotCompiler();
3023 }
3024
IsCompilingBootImage() const3025 bool Runtime::IsCompilingBootImage() const {
3026 return IsCompiler() && compiler_callbacks_->IsBootImage();
3027 }
3028
SetResolutionMethod(ArtMethod * method)3029 void Runtime::SetResolutionMethod(ArtMethod* method) {
3030 CHECK(method != nullptr);
3031 CHECK(method->IsRuntimeMethod()) << method;
3032 resolution_method_ = method;
3033 }
3034
SetImtUnimplementedMethod(ArtMethod * method)3035 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
3036 CHECK(method != nullptr);
3037 CHECK(method->IsRuntimeMethod());
3038 imt_unimplemented_method_ = method;
3039 }
3040
FixupConflictTables()3041 void Runtime::FixupConflictTables() {
3042 // We can only do this after the class linker is created.
3043 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
3044 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
3045 imt_unimplemented_method_->SetImtConflictTable(
3046 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3047 pointer_size);
3048 }
3049 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
3050 imt_conflict_method_->SetImtConflictTable(
3051 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3052 pointer_size);
3053 }
3054 }
3055
DisableVerifier()3056 void Runtime::DisableVerifier() {
3057 verify_ = verifier::VerifyMode::kNone;
3058 }
3059
IsVerificationEnabled() const3060 bool Runtime::IsVerificationEnabled() const {
3061 return verify_ == verifier::VerifyMode::kEnable ||
3062 verify_ == verifier::VerifyMode::kSoftFail;
3063 }
3064
IsVerificationSoftFail() const3065 bool Runtime::IsVerificationSoftFail() const {
3066 return verify_ == verifier::VerifyMode::kSoftFail;
3067 }
3068
IsAsyncDeoptimizeable(ArtMethod * method,uintptr_t code) const3069 bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const {
3070 if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
3071 if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
3072 return true;
3073 }
3074 }
3075
3076 // We only support async deopt (ie the compiled code is not explicitly asking for
3077 // deopt, but something else like the debugger) in debuggable JIT code.
3078 // We could look at the oat file where `code` is being defined,
3079 // and check whether it's been compiled debuggable, but we decided to
3080 // only rely on the JIT for debuggable apps.
3081 // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
3082 // region as well.
3083 if (GetJit() != nullptr &&
3084 GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code))) {
3085 // If the code is JITed code then check if it was compiled as debuggable.
3086 const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code);
3087 return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr());
3088 }
3089
3090 return false;
3091 }
3092
3093
CreateLinearAlloc()3094 LinearAlloc* Runtime::CreateLinearAlloc() {
3095 ArenaPool* pool = linear_alloc_arena_pool_.get();
3096 return pool != nullptr
3097 ? new LinearAlloc(pool, gUseUserfaultfd)
3098 : new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false);
3099 }
3100
3101 class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor {
3102 public:
SetupLinearAllocForZygoteFork(Thread * self)3103 explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {}
3104
Visit(LinearAlloc * alloc)3105 bool Visit(LinearAlloc* alloc) override {
3106 alloc->SetupForPostZygoteFork(self_);
3107 return true;
3108 }
3109
3110 private:
3111 Thread* self_;
3112 };
3113
SetupLinearAllocForPostZygoteFork(Thread * self)3114 void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) {
3115 if (gUseUserfaultfd) {
3116 // Setup all the linear-allocs out there for post-zygote fork. This will
3117 // basically force the arena allocator to ask for a new arena for the next
3118 // allocation. All arenas allocated from now on will be in the userfaultfd
3119 // visited space.
3120 if (GetLinearAlloc() != nullptr) {
3121 GetLinearAlloc()->SetupForPostZygoteFork(self);
3122 }
3123 if (GetStartupLinearAlloc() != nullptr) {
3124 GetStartupLinearAlloc()->SetupForPostZygoteFork(self);
3125 }
3126 {
3127 Locks::mutator_lock_->AssertNotHeld(self);
3128 ReaderMutexLock mu2(self, *Locks::mutator_lock_);
3129 ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_);
3130 SetupLinearAllocForZygoteFork visitor(self);
3131 GetClassLinker()->VisitAllocators(&visitor);
3132 }
3133 static_cast<GcVisitedArenaPool*>(GetLinearAllocArenaPool())->SetupPostZygoteMode();
3134 }
3135 }
3136
GetHashTableMinLoadFactor() const3137 double Runtime::GetHashTableMinLoadFactor() const {
3138 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
3139 }
3140
GetHashTableMaxLoadFactor() const3141 double Runtime::GetHashTableMaxLoadFactor() const {
3142 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
3143 }
3144
UpdateProcessState(ProcessState process_state)3145 void Runtime::UpdateProcessState(ProcessState process_state) {
3146 ProcessState old_process_state = process_state_;
3147 process_state_ = process_state;
3148 GetHeap()->UpdateProcessState(old_process_state, process_state);
3149 }
3150
RegisterSensitiveThread() const3151 void Runtime::RegisterSensitiveThread() const {
3152 Thread::SetJitSensitiveThread();
3153 }
3154
3155 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const3156 bool Runtime::UseJitCompilation() const {
3157 return (jit_ != nullptr) && jit_->UseJitCompilation();
3158 }
3159
TakeSnapshot()3160 void Runtime::EnvSnapshot::TakeSnapshot() {
3161 char** env = GetEnviron();
3162 for (size_t i = 0; env[i] != nullptr; ++i) {
3163 name_value_pairs_.emplace_back(new std::string(env[i]));
3164 }
3165 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
3166 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
3167 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
3168 for (size_t i = 0; env[i] != nullptr; ++i) {
3169 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
3170 }
3171 c_env_vector_[name_value_pairs_.size()] = nullptr;
3172 }
3173
GetSnapshot() const3174 char** Runtime::EnvSnapshot::GetSnapshot() const {
3175 return c_env_vector_.get();
3176 }
3177
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3178 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3179 gc::ScopedGCCriticalSection gcs(Thread::Current(),
3180 gc::kGcCauseAddRemoveSystemWeakHolder,
3181 gc::kCollectorTypeAddRemoveSystemWeakHolder);
3182 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
3183 // a critical section.
3184 system_weak_holders_.push_back(holder);
3185 }
3186
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3187 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3188 gc::ScopedGCCriticalSection gcs(Thread::Current(),
3189 gc::kGcCauseAddRemoveSystemWeakHolder,
3190 gc::kCollectorTypeAddRemoveSystemWeakHolder);
3191 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
3192 if (it != system_weak_holders_.end()) {
3193 system_weak_holders_.erase(it);
3194 }
3195 }
3196
GetRuntimeCallbacks()3197 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
3198 return callbacks_.get();
3199 }
3200
3201 // Used to update boot image to not use AOT code. This is used when transitioning the runtime to
3202 // java debuggable. This visitor re-initializes the entry points without using AOT code. This also
3203 // disables shared hotness counters so the necessary methods can be JITed more efficiently.
3204 class DeoptimizeBootImageClassVisitor : public ClassVisitor {
3205 public:
DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation * instrumentation)3206 explicit DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation* instrumentation)
3207 : instrumentation_(instrumentation) {}
3208
operator ()(ObjPtr<mirror::Class> klass)3209 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
3210 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
3211 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
3212 for (auto& m : klass->GetMethods(pointer_size)) {
3213 const void* code = m.GetEntryPointFromQuickCompiledCode();
3214 if (!m.IsInvokable()) {
3215 continue;
3216 }
3217 // For java debuggable runtimes we also deoptimize native methods. For other cases (boot
3218 // image profiling) we don't need to deoptimize native methods. If this changes also
3219 // update Instrumentation::CanUseAotCode.
3220 bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable();
3221 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
3222 (!m.IsNative() || deoptimize_native_methods) &&
3223 !m.IsProxyMethod()) {
3224 instrumentation_->ReinitializeMethodsCode(&m);
3225 }
3226
3227 if (Runtime::Current()->GetJit() != nullptr &&
3228 Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
3229 (!m.IsNative() || deoptimize_native_methods)) {
3230 DCHECK(!m.IsProxyMethod());
3231 instrumentation_->ReinitializeMethodsCode(&m);
3232 }
3233
3234 if (m.IsPreCompiled()) {
3235 // Precompilation is incompatible with debuggable, so clear the flag
3236 // and update the entrypoint in case it has been compiled.
3237 m.ClearPreCompiled();
3238 instrumentation_->ReinitializeMethodsCode(&m);
3239 }
3240
3241 // Clear MemorySharedAccessFlags so the boot class methods can be JITed better.
3242 m.ClearMemorySharedMethod();
3243 }
3244 return true;
3245 }
3246
3247 private:
3248 instrumentation::Instrumentation* const instrumentation_;
3249 };
3250
SetRuntimeDebugState(RuntimeDebugState state)3251 void Runtime::SetRuntimeDebugState(RuntimeDebugState state) {
3252 if (state != RuntimeDebugState::kJavaDebuggableAtInit) {
3253 // We never change the state if we started as a debuggable runtime.
3254 DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit);
3255 }
3256 runtime_debug_state_ = state;
3257 }
3258
DeoptimizeBootImage()3259 void Runtime::DeoptimizeBootImage() {
3260 // If we've already started and we are setting this runtime to debuggable,
3261 // we patch entry points of methods in boot image to interpreter bridge, as
3262 // boot image code may be AOT compiled as not debuggable.
3263 DeoptimizeBootImageClassVisitor visitor(GetInstrumentation());
3264 GetClassLinker()->VisitClasses(&visitor);
3265 jit::Jit* jit = GetJit();
3266 if (jit != nullptr) {
3267 // Code previously compiled may not be compiled debuggable.
3268 jit->GetCodeCache()->TransitionToDebuggable();
3269 }
3270 }
3271
ScopedThreadPoolUsage()3272 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
3273 : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
3274
~ScopedThreadPoolUsage()3275 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
3276 Runtime::Current()->ReleaseThreadPool();
3277 }
3278
DeleteThreadPool()3279 bool Runtime::DeleteThreadPool() {
3280 // Make sure workers are started to prevent thread shutdown errors.
3281 WaitForThreadPoolWorkersToStart();
3282 std::unique_ptr<ThreadPool> thread_pool;
3283 {
3284 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3285 if (thread_pool_ref_count_ == 0) {
3286 thread_pool = std::move(thread_pool_);
3287 }
3288 }
3289 return thread_pool != nullptr;
3290 }
3291
AcquireThreadPool()3292 ThreadPool* Runtime::AcquireThreadPool() {
3293 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3294 ++thread_pool_ref_count_;
3295 return thread_pool_.get();
3296 }
3297
ReleaseThreadPool()3298 void Runtime::ReleaseThreadPool() {
3299 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3300 CHECK_GT(thread_pool_ref_count_, 0u);
3301 --thread_pool_ref_count_;
3302 }
3303
WaitForThreadPoolWorkersToStart()3304 void Runtime::WaitForThreadPoolWorkersToStart() {
3305 // Need to make sure workers are created before deleting the pool.
3306 ScopedThreadPoolUsage stpu;
3307 if (stpu.GetThreadPool() != nullptr) {
3308 stpu.GetThreadPool()->WaitForWorkersToBeCreated();
3309 }
3310 }
3311
ResetStartupCompleted()3312 void Runtime::ResetStartupCompleted() {
3313 startup_completed_.store(false, std::memory_order_seq_cst);
3314 }
3315
NotifyStartupCompleted()3316 bool Runtime::NotifyStartupCompleted() {
3317 DCHECK(!IsZygote());
3318 bool expected = false;
3319 if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3320 // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3321 // once externally. For this reason there are no asserts.
3322 return false;
3323 }
3324
3325 VLOG(startup) << app_info_;
3326
3327 ProfileSaver::NotifyStartupCompleted();
3328
3329 if (AreMetricsInitialized()) {
3330 metrics_reporter_->NotifyStartupCompleted();
3331 }
3332 return true;
3333 }
3334
NotifyDexFileLoaded()3335 void Runtime::NotifyDexFileLoaded() {
3336 if (AreMetricsInitialized()) {
3337 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
3338 }
3339 }
3340
GetStartupCompleted() const3341 bool Runtime::GetStartupCompleted() const {
3342 return startup_completed_.load(std::memory_order_seq_cst);
3343 }
3344
SetSignalHookDebuggable(bool value)3345 void Runtime::SetSignalHookDebuggable(bool value) {
3346 SkipAddSignalHandler(value);
3347 }
3348
SetJniIdType(JniIdType t)3349 void Runtime::SetJniIdType(JniIdType t) {
3350 CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3351 if (t == GetJniIdType()) {
3352 return;
3353 }
3354 jni_ids_indirection_ = t;
3355 JNIEnvExt::ResetFunctionTable();
3356 WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3357 }
3358
IsSystemServerProfiled() const3359 bool Runtime::IsSystemServerProfiled() const {
3360 return IsSystemServer() && jit_options_->GetSaveProfilingInfo();
3361 }
3362
GetOatFilesExecutable() const3363 bool Runtime::GetOatFilesExecutable() const {
3364 return !IsAotCompiler() && !IsSystemServerProfiled();
3365 }
3366
MadviseFileForRange(size_t madvise_size_limit_bytes,size_t map_size_bytes,const uint8_t * map_begin,const uint8_t * map_end,const std::string & file_name)3367 void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
3368 size_t map_size_bytes,
3369 const uint8_t* map_begin,
3370 const uint8_t* map_end,
3371 const std::string& file_name) {
3372 map_begin = AlignDown(map_begin, gPageSize);
3373 map_size_bytes = RoundUp(map_size_bytes, gPageSize);
3374 #ifdef ART_TARGET_ANDROID
3375 // Short-circuit the madvise optimization for background processes. This
3376 // avoids IO and memory contention with foreground processes, particularly
3377 // those involving app startup.
3378 // Note: We can only safely short-circuit the madvise on T+, as it requires
3379 // the framework to always immediately notify ART of process states.
3380 static const int kApiLevel = android_get_device_api_level();
3381 const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__;
3382 if (accurate_process_state_at_startup) {
3383 const Runtime* runtime = Runtime::Current();
3384 if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) {
3385 return;
3386 }
3387 }
3388 #endif // ART_TARGET_ANDROID
3389
3390 // Ideal blockTransferSize for madvising files (128KiB)
3391 static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
3392
3393 size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
3394
3395 if (target_size_bytes > 0) {
3396 ScopedTrace madvising_trace("madvising "
3397 + file_name
3398 + " size="
3399 + std::to_string(target_size_bytes));
3400
3401 // Based on requested size (target_size_bytes)
3402 const uint8_t* target_pos = map_begin + target_size_bytes;
3403
3404 // Clamp endOfFile if its past map_end
3405 if (target_pos > map_end) {
3406 target_pos = map_end;
3407 }
3408
3409 // Madvise the whole file up to target_pos in chunks of
3410 // kIdealIoTransferSizeBytes (to MADV_WILLNEED)
3411 // Note:
3412 // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
3413 // block size for device) per call, hence the need for chunks. (128KB is a
3414 // good default.)
3415 for (const uint8_t* madvise_start = map_begin;
3416 madvise_start < target_pos;
3417 madvise_start += kIdealIoTransferSizeBytes) {
3418 void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
3419 size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
3420 static_cast<size_t>(target_pos - madvise_start));
3421 int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
3422 // In case of error we stop madvising rest of the file
3423 if (status < 0) {
3424 LOG(ERROR) << "Failed to madvise file " << file_name
3425 << " for size:" << map_size_bytes
3426 << ": " << strerror(errno);
3427 break;
3428 }
3429 }
3430 }
3431 }
3432
3433 // Return whether a boot image has a profile. This means we'll need to pre-JIT
3434 // methods in that profile for performance.
HasImageWithProfile() const3435 bool Runtime::HasImageWithProfile() const {
3436 for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) {
3437 if (!space->GetProfileFiles().empty()) {
3438 return true;
3439 }
3440 }
3441 return false;
3442 }
3443
AppendToBootClassPath(const std::string & filename,const std::string & location)3444 void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) {
3445 DCHECK(!DexFileLoader::IsMultiDexLocation(filename));
3446 boot_class_path_.push_back(filename);
3447 if (!boot_class_path_locations_.empty()) {
3448 DCHECK(!DexFileLoader::IsMultiDexLocation(location));
3449 boot_class_path_locations_.push_back(location);
3450 }
3451 }
3452
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::unique_ptr<const art::DexFile>> & dex_files)3453 void Runtime::AppendToBootClassPath(
3454 const std::string& filename,
3455 const std::string& location,
3456 const std::vector<std::unique_ptr<const art::DexFile>>& dex_files) {
3457 AppendToBootClassPath(filename, location);
3458 ScopedObjectAccess soa(Thread::Current());
3459 for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3460 // The first element must not be at a multi-dex location, while other elements must be.
3461 DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3462 dex_file.get() == dex_files.begin()->get());
3463 GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get());
3464 }
3465 }
3466
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<const art::DexFile * > & dex_files)3467 void Runtime::AppendToBootClassPath(const std::string& filename,
3468 const std::string& location,
3469 const std::vector<const art::DexFile*>& dex_files) {
3470 AppendToBootClassPath(filename, location);
3471 ScopedObjectAccess soa(Thread::Current());
3472 for (const art::DexFile* dex_file : dex_files) {
3473 // The first element must not be at a multi-dex location, while other elements must be.
3474 DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3475 dex_file == *dex_files.begin());
3476 GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file);
3477 }
3478 }
3479
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::pair<const art::DexFile *,ObjPtr<mirror::DexCache>>> & dex_files_and_cache)3480 void Runtime::AppendToBootClassPath(
3481 const std::string& filename,
3482 const std::string& location,
3483 const std::vector<std::pair<const art::DexFile*, ObjPtr<mirror::DexCache>>>&
3484 dex_files_and_cache) {
3485 AppendToBootClassPath(filename, location);
3486 ScopedObjectAccess soa(Thread::Current());
3487 for (const auto& [dex_file, dex_cache] : dex_files_and_cache) {
3488 // The first element must not be at a multi-dex location, while other elements must be.
3489 DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3490 dex_file == dex_files_and_cache.begin()->first);
3491 GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache);
3492 }
3493 }
3494
AddExtraBootDexFiles(const std::string & filename,const std::string & location,std::vector<std::unique_ptr<const art::DexFile>> && dex_files)3495 void Runtime::AddExtraBootDexFiles(const std::string& filename,
3496 const std::string& location,
3497 std::vector<std::unique_ptr<const art::DexFile>>&& dex_files) {
3498 AppendToBootClassPath(filename, location);
3499 ScopedObjectAccess soa(Thread::Current());
3500 if (kIsDebugBuild) {
3501 for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3502 // The first element must not be at a multi-dex location, while other elements must be.
3503 DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3504 dex_file.get() == dex_files.begin()->get());
3505 }
3506 }
3507 GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files));
3508 }
3509
DCheckNoTransactionCheckAllowed()3510 void Runtime::DCheckNoTransactionCheckAllowed() {
3511 if (kIsDebugBuild) {
3512 Thread* self = Thread::Current();
3513 if (self != nullptr) {
3514 self->AssertNoTransactionCheckAllowed();
3515 }
3516 }
3517 }
3518
3519 } // namespace art
3520