• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc. All rights reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef FLATBUFFERS_FLEXBUFFERS_H_
18 #define FLATBUFFERS_FLEXBUFFERS_H_
19 
20 #include <algorithm>
21 #include <map>
22 // Used to select STL variant.
23 #include "flatbuffers/base.h"
24 // We use the basic binary writing functions from the regular FlatBuffers.
25 #include "flatbuffers/util.h"
26 
27 #ifdef _MSC_VER
28 #  include <intrin.h>
29 #endif
30 
31 #if defined(_MSC_VER)
32 #  pragma warning(push)
33 #  pragma warning(disable : 4127)  // C4127: conditional expression is constant
34 #endif
35 
36 namespace flexbuffers {
37 
38 class Reference;
39 class Map;
40 
41 // These are used in the lower 2 bits of a type field to determine the size of
42 // the elements (and or size field) of the item pointed to (e.g. vector).
43 enum BitWidth {
44   BIT_WIDTH_8 = 0,
45   BIT_WIDTH_16 = 1,
46   BIT_WIDTH_32 = 2,
47   BIT_WIDTH_64 = 3,
48 };
49 
50 // These are used as the upper 6 bits of a type field to indicate the actual
51 // type.
52 enum Type {
53   FBT_NULL = 0,
54   FBT_INT = 1,
55   FBT_UINT = 2,
56   FBT_FLOAT = 3,
57   // Types above stored inline, types below (except FBT_BOOL) store an offset.
58   FBT_KEY = 4,
59   FBT_STRING = 5,
60   FBT_INDIRECT_INT = 6,
61   FBT_INDIRECT_UINT = 7,
62   FBT_INDIRECT_FLOAT = 8,
63   FBT_MAP = 9,
64   FBT_VECTOR = 10,      // Untyped.
65   FBT_VECTOR_INT = 11,  // Typed any size (stores no type table).
66   FBT_VECTOR_UINT = 12,
67   FBT_VECTOR_FLOAT = 13,
68   FBT_VECTOR_KEY = 14,
69   // DEPRECATED, use FBT_VECTOR or FBT_VECTOR_KEY instead.
70   // Read test.cpp/FlexBuffersDeprecatedTest() for details on why.
71   FBT_VECTOR_STRING_DEPRECATED = 15,
72   FBT_VECTOR_INT2 = 16,  // Typed tuple (no type table, no size field).
73   FBT_VECTOR_UINT2 = 17,
74   FBT_VECTOR_FLOAT2 = 18,
75   FBT_VECTOR_INT3 = 19,  // Typed triple (no type table, no size field).
76   FBT_VECTOR_UINT3 = 20,
77   FBT_VECTOR_FLOAT3 = 21,
78   FBT_VECTOR_INT4 = 22,  // Typed quad (no type table, no size field).
79   FBT_VECTOR_UINT4 = 23,
80   FBT_VECTOR_FLOAT4 = 24,
81   FBT_BLOB = 25,
82   FBT_BOOL = 26,
83   FBT_VECTOR_BOOL =
84       36,  // To Allow the same type of conversion of type to vector type
85 
86   FBT_MAX_TYPE = 37
87 };
88 
IsInline(Type t)89 inline bool IsInline(Type t) { return t <= FBT_FLOAT || t == FBT_BOOL; }
90 
IsTypedVectorElementType(Type t)91 inline bool IsTypedVectorElementType(Type t) {
92   return (t >= FBT_INT && t <= FBT_STRING) || t == FBT_BOOL;
93 }
94 
IsTypedVector(Type t)95 inline bool IsTypedVector(Type t) {
96   return (t >= FBT_VECTOR_INT && t <= FBT_VECTOR_STRING_DEPRECATED) ||
97          t == FBT_VECTOR_BOOL;
98 }
99 
IsFixedTypedVector(Type t)100 inline bool IsFixedTypedVector(Type t) {
101   return t >= FBT_VECTOR_INT2 && t <= FBT_VECTOR_FLOAT4;
102 }
103 
104 inline Type ToTypedVector(Type t, size_t fixed_len = 0) {
105   FLATBUFFERS_ASSERT(IsTypedVectorElementType(t));
106   switch (fixed_len) {
107     case 0: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT);
108     case 2: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT2);
109     case 3: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT3);
110     case 4: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT4);
111     default: FLATBUFFERS_ASSERT(0); return FBT_NULL;
112   }
113 }
114 
ToTypedVectorElementType(Type t)115 inline Type ToTypedVectorElementType(Type t) {
116   FLATBUFFERS_ASSERT(IsTypedVector(t));
117   return static_cast<Type>(t - FBT_VECTOR_INT + FBT_INT);
118 }
119 
ToFixedTypedVectorElementType(Type t,uint8_t * len)120 inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) {
121   FLATBUFFERS_ASSERT(IsFixedTypedVector(t));
122   auto fixed_type = t - FBT_VECTOR_INT2;
123   *len = static_cast<uint8_t>(fixed_type / 3 +
124                               2);  // 3 types each, starting from length 2.
125   return static_cast<Type>(fixed_type % 3 + FBT_INT);
126 }
127 
128 // TODO: implement proper support for 8/16bit floats, or decide not to
129 // support them.
130 typedef int16_t half;
131 typedef int8_t quarter;
132 
133 // TODO: can we do this without conditionals using intrinsics or inline asm
134 // on some platforms? Given branch prediction the method below should be
135 // decently quick, but it is the most frequently executed function.
136 // We could do an (unaligned) 64-bit read if we ifdef out the platforms for
137 // which that doesn't work (or where we'd read into un-owned memory).
138 template<typename R, typename T1, typename T2, typename T4, typename T8>
ReadSizedScalar(const uint8_t * data,uint8_t byte_width)139 R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) {
140   return byte_width < 4
141              ? (byte_width < 2
142                     ? static_cast<R>(flatbuffers::ReadScalar<T1>(data))
143                     : static_cast<R>(flatbuffers::ReadScalar<T2>(data)))
144              : (byte_width < 8
145                     ? static_cast<R>(flatbuffers::ReadScalar<T4>(data))
146                     : static_cast<R>(flatbuffers::ReadScalar<T8>(data)));
147 }
148 
ReadInt64(const uint8_t * data,uint8_t byte_width)149 inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) {
150   return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>(
151       data, byte_width);
152 }
153 
ReadUInt64(const uint8_t * data,uint8_t byte_width)154 inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) {
155   // This is the "hottest" function (all offset lookups use this), so worth
156   // optimizing if possible.
157   // TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a
158   // constant, which here it isn't. Test if memcpy is still faster than
159   // the conditionals in ReadSizedScalar. Can also use inline asm.
160 
161   // clang-format off
162   #if defined(_MSC_VER) && defined(_M_X64) && !defined(_M_ARM64EC)
163   // This is 64-bit Windows only, __movsb does not work on 32-bit Windows.
164     uint64_t u = 0;
165     __movsb(reinterpret_cast<uint8_t *>(&u),
166             reinterpret_cast<const uint8_t *>(data), byte_width);
167     return flatbuffers::EndianScalar(u);
168   #else
169     return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>(
170              data, byte_width);
171   #endif
172   // clang-format on
173 }
174 
ReadDouble(const uint8_t * data,uint8_t byte_width)175 inline double ReadDouble(const uint8_t *data, uint8_t byte_width) {
176   return ReadSizedScalar<double, quarter, half, float, double>(data,
177                                                                byte_width);
178 }
179 
Indirect(const uint8_t * offset,uint8_t byte_width)180 inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) {
181   return offset - ReadUInt64(offset, byte_width);
182 }
183 
Indirect(const uint8_t * offset)184 template<typename T> const uint8_t *Indirect(const uint8_t *offset) {
185   return offset - flatbuffers::ReadScalar<T>(offset);
186 }
187 
WidthU(uint64_t u)188 inline BitWidth WidthU(uint64_t u) {
189 #define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width)                   \
190   {                                                                     \
191     if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \
192   }
193   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8);
194   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16);
195   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32);
196 #undef FLATBUFFERS_GET_FIELD_BIT_WIDTH
197   return BIT_WIDTH_64;
198 }
199 
WidthI(int64_t i)200 inline BitWidth WidthI(int64_t i) {
201   auto u = static_cast<uint64_t>(i) << 1;
202   return WidthU(i >= 0 ? u : ~u);
203 }
204 
WidthF(double f)205 inline BitWidth WidthF(double f) {
206   return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32
207                                                          : BIT_WIDTH_64;
208 }
209 
210 // Base class of all types below.
211 // Points into the data buffer and allows access to one type.
212 class Object {
213  public:
Object(const uint8_t * data,uint8_t byte_width)214   Object(const uint8_t *data, uint8_t byte_width)
215       : data_(data), byte_width_(byte_width) {}
216 
217  protected:
218   const uint8_t *data_;
219   uint8_t byte_width_;
220 };
221 
222 // Object that has a size, obtained either from size prefix, or elsewhere.
223 class Sized : public Object {
224  public:
225   // Size prefix.
Sized(const uint8_t * data,uint8_t byte_width)226   Sized(const uint8_t *data, uint8_t byte_width)
227       : Object(data, byte_width), size_(read_size()) {}
228   // Manual size.
Sized(const uint8_t * data,uint8_t byte_width,size_t sz)229   Sized(const uint8_t *data, uint8_t byte_width, size_t sz)
230       : Object(data, byte_width), size_(sz) {}
size()231   size_t size() const { return size_; }
232   // Access size stored in `byte_width_` bytes before data_ pointer.
read_size()233   size_t read_size() const {
234     return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_));
235   }
236 
237  protected:
238   size_t size_;
239 };
240 
241 class String : public Sized {
242  public:
243   // Size prefix.
String(const uint8_t * data,uint8_t byte_width)244   String(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
245   // Manual size.
String(const uint8_t * data,uint8_t byte_width,size_t sz)246   String(const uint8_t *data, uint8_t byte_width, size_t sz)
247       : Sized(data, byte_width, sz) {}
248 
length()249   size_t length() const { return size(); }
c_str()250   const char *c_str() const { return reinterpret_cast<const char *>(data_); }
str()251   std::string str() const { return std::string(c_str(), size()); }
252 
EmptyString()253   static String EmptyString() {
254     static const char *empty_string = "";
255     return String(reinterpret_cast<const uint8_t *>(empty_string), 1, 0);
256   }
IsTheEmptyString()257   bool IsTheEmptyString() const { return data_ == EmptyString().data_; }
258 };
259 
260 class Blob : public Sized {
261  public:
Blob(const uint8_t * data_buf,uint8_t byte_width)262   Blob(const uint8_t *data_buf, uint8_t byte_width)
263       : Sized(data_buf, byte_width) {}
264 
EmptyBlob()265   static Blob EmptyBlob() {
266     static const uint8_t empty_blob[] = { 0 /*len*/ };
267     return Blob(empty_blob + 1, 1);
268   }
IsTheEmptyBlob()269   bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; }
data()270   const uint8_t *data() const { return data_; }
271 };
272 
273 class Vector : public Sized {
274  public:
Vector(const uint8_t * data,uint8_t byte_width)275   Vector(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
276 
277   Reference operator[](size_t i) const;
278 
EmptyVector()279   static Vector EmptyVector() {
280     static const uint8_t empty_vector[] = { 0 /*len*/ };
281     return Vector(empty_vector + 1, 1);
282   }
IsTheEmptyVector()283   bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; }
284 };
285 
286 class TypedVector : public Sized {
287  public:
TypedVector(const uint8_t * data,uint8_t byte_width,Type element_type)288   TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type)
289       : Sized(data, byte_width), type_(element_type) {}
290 
291   Reference operator[](size_t i) const;
292 
EmptyTypedVector()293   static TypedVector EmptyTypedVector() {
294     static const uint8_t empty_typed_vector[] = { 0 /*len*/ };
295     return TypedVector(empty_typed_vector + 1, 1, FBT_INT);
296   }
IsTheEmptyVector()297   bool IsTheEmptyVector() const {
298     return data_ == TypedVector::EmptyTypedVector().data_;
299   }
300 
ElementType()301   Type ElementType() { return type_; }
302 
303   friend Reference;
304 
305  private:
306   Type type_;
307 
308   friend Map;
309 };
310 
311 class FixedTypedVector : public Object {
312  public:
FixedTypedVector(const uint8_t * data,uint8_t byte_width,Type element_type,uint8_t len)313   FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type,
314                    uint8_t len)
315       : Object(data, byte_width), type_(element_type), len_(len) {}
316 
317   Reference operator[](size_t i) const;
318 
EmptyFixedTypedVector()319   static FixedTypedVector EmptyFixedTypedVector() {
320     static const uint8_t fixed_empty_vector[] = { 0 /* unused */ };
321     return FixedTypedVector(fixed_empty_vector, 1, FBT_INT, 0);
322   }
IsTheEmptyFixedTypedVector()323   bool IsTheEmptyFixedTypedVector() const {
324     return data_ == FixedTypedVector::EmptyFixedTypedVector().data_;
325   }
326 
ElementType()327   Type ElementType() const { return type_; }
size()328   uint8_t size() const { return len_; }
329 
330  private:
331   Type type_;
332   uint8_t len_;
333 };
334 
335 class Map : public Vector {
336  public:
Map(const uint8_t * data,uint8_t byte_width)337   Map(const uint8_t *data, uint8_t byte_width) : Vector(data, byte_width) {}
338 
339   Reference operator[](const char *key) const;
340   Reference operator[](const std::string &key) const;
341 
Values()342   Vector Values() const { return Vector(data_, byte_width_); }
343 
Keys()344   TypedVector Keys() const {
345     const size_t num_prefixed_fields = 3;
346     auto keys_offset = data_ - byte_width_ * num_prefixed_fields;
347     return TypedVector(Indirect(keys_offset, byte_width_),
348                        static_cast<uint8_t>(
349                            ReadUInt64(keys_offset + byte_width_, byte_width_)),
350                        FBT_KEY);
351   }
352 
EmptyMap()353   static Map EmptyMap() {
354     static const uint8_t empty_map[] = {
355       0 /*keys_len*/, 0 /*keys_offset*/, 1 /*keys_width*/, 0 /*len*/
356     };
357     return Map(empty_map + 4, 1);
358   }
359 
IsTheEmptyMap()360   bool IsTheEmptyMap() const { return data_ == EmptyMap().data_; }
361 };
362 
IndentString(std::string & s,int indent,const char * indent_string)363 inline void IndentString(std::string &s, int indent,
364                          const char *indent_string) {
365   for (int i = 0; i < indent; i++) s += indent_string;
366 }
367 
368 template<typename T>
AppendToString(std::string & s,T && v,bool keys_quoted,bool indented,int cur_indent,const char * indent_string,bool natural_utf8)369 void AppendToString(std::string &s, T &&v, bool keys_quoted, bool indented,
370                     int cur_indent, const char *indent_string,
371                     bool natural_utf8) {
372   s += "[";
373   s += indented ? "\n" : " ";
374   for (size_t i = 0; i < v.size(); i++) {
375     if (i) {
376       s += ",";
377       s += indented ? "\n" : " ";
378     }
379     if (indented) IndentString(s, cur_indent, indent_string);
380     v[i].ToString(true, keys_quoted, s, indented, cur_indent,
381                   indent_string, natural_utf8);
382   }
383   if (indented) {
384     s += "\n";
385     IndentString(s, cur_indent - 1, indent_string);
386   } else {
387     s += " ";
388   }
389   s += "]";
390 }
391 
392 template<typename T>
AppendToString(std::string & s,T && v,bool keys_quoted)393 void AppendToString(std::string &s, T &&v, bool keys_quoted) {
394   AppendToString(s, v, keys_quoted);
395 }
396 
397 
398 class Reference {
399  public:
Reference()400   Reference()
401       : data_(nullptr), parent_width_(0), byte_width_(0), type_(FBT_NULL) {}
402 
Reference(const uint8_t * data,uint8_t parent_width,uint8_t byte_width,Type type)403   Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width,
404             Type type)
405       : data_(data),
406         parent_width_(parent_width),
407         byte_width_(byte_width),
408         type_(type) {}
409 
Reference(const uint8_t * data,uint8_t parent_width,uint8_t packed_type)410   Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type)
411       : data_(data),
412         parent_width_(parent_width),
413         byte_width_(static_cast<uint8_t>(1 << (packed_type & 3))),
414         type_(static_cast<Type>(packed_type >> 2)) {}
415 
GetType()416   Type GetType() const { return type_; }
417 
IsNull()418   bool IsNull() const { return type_ == FBT_NULL; }
IsBool()419   bool IsBool() const { return type_ == FBT_BOOL; }
IsInt()420   bool IsInt() const { return type_ == FBT_INT || type_ == FBT_INDIRECT_INT; }
IsUInt()421   bool IsUInt() const {
422     return type_ == FBT_UINT || type_ == FBT_INDIRECT_UINT;
423   }
IsIntOrUint()424   bool IsIntOrUint() const { return IsInt() || IsUInt(); }
IsFloat()425   bool IsFloat() const {
426     return type_ == FBT_FLOAT || type_ == FBT_INDIRECT_FLOAT;
427   }
IsNumeric()428   bool IsNumeric() const { return IsIntOrUint() || IsFloat(); }
IsString()429   bool IsString() const { return type_ == FBT_STRING; }
IsKey()430   bool IsKey() const { return type_ == FBT_KEY; }
IsVector()431   bool IsVector() const { return type_ == FBT_VECTOR || type_ == FBT_MAP; }
IsUntypedVector()432   bool IsUntypedVector() const { return type_ == FBT_VECTOR; }
IsTypedVector()433   bool IsTypedVector() const { return flexbuffers::IsTypedVector(type_); }
IsFixedTypedVector()434   bool IsFixedTypedVector() const {
435     return flexbuffers::IsFixedTypedVector(type_);
436   }
IsAnyVector()437   bool IsAnyVector() const {
438     return (IsTypedVector() || IsFixedTypedVector() || IsVector());
439   }
IsMap()440   bool IsMap() const { return type_ == FBT_MAP; }
IsBlob()441   bool IsBlob() const { return type_ == FBT_BLOB; }
AsBool()442   bool AsBool() const {
443     return (type_ == FBT_BOOL ? ReadUInt64(data_, parent_width_)
444                               : AsUInt64()) != 0;
445   }
446 
447   // Reads any type as a int64_t. Never fails, does most sensible conversion.
448   // Truncates floats, strings are attempted to be parsed for a number,
449   // vectors/maps return their size. Returns 0 if all else fails.
AsInt64()450   int64_t AsInt64() const {
451     if (type_ == FBT_INT) {
452       // A fast path for the common case.
453       return ReadInt64(data_, parent_width_);
454     } else
455       switch (type_) {
456         case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
457         case FBT_UINT: return ReadUInt64(data_, parent_width_);
458         case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
459         case FBT_FLOAT:
460           return static_cast<int64_t>(ReadDouble(data_, parent_width_));
461         case FBT_INDIRECT_FLOAT:
462           return static_cast<int64_t>(ReadDouble(Indirect(), byte_width_));
463         case FBT_NULL: return 0;
464         case FBT_STRING: return flatbuffers::StringToInt(AsString().c_str());
465         case FBT_VECTOR: return static_cast<int64_t>(AsVector().size());
466         case FBT_BOOL: return ReadInt64(data_, parent_width_);
467         default:
468           // Convert other things to int.
469           return 0;
470       }
471   }
472 
473   // TODO: could specialize these to not use AsInt64() if that saves
474   // extension ops in generated code, and use a faster op than ReadInt64.
AsInt32()475   int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); }
AsInt16()476   int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); }
AsInt8()477   int8_t AsInt8() const { return static_cast<int8_t>(AsInt64()); }
478 
AsUInt64()479   uint64_t AsUInt64() const {
480     if (type_ == FBT_UINT) {
481       // A fast path for the common case.
482       return ReadUInt64(data_, parent_width_);
483     } else
484       switch (type_) {
485         case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
486         case FBT_INT: return ReadInt64(data_, parent_width_);
487         case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
488         case FBT_FLOAT:
489           return static_cast<uint64_t>(ReadDouble(data_, parent_width_));
490         case FBT_INDIRECT_FLOAT:
491           return static_cast<uint64_t>(ReadDouble(Indirect(), byte_width_));
492         case FBT_NULL: return 0;
493         case FBT_STRING: return flatbuffers::StringToUInt(AsString().c_str());
494         case FBT_VECTOR: return static_cast<uint64_t>(AsVector().size());
495         case FBT_BOOL: return ReadUInt64(data_, parent_width_);
496         default:
497           // Convert other things to uint.
498           return 0;
499       }
500   }
501 
AsUInt32()502   uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); }
AsUInt16()503   uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); }
AsUInt8()504   uint8_t AsUInt8() const { return static_cast<uint8_t>(AsUInt64()); }
505 
AsDouble()506   double AsDouble() const {
507     if (type_ == FBT_FLOAT) {
508       // A fast path for the common case.
509       return ReadDouble(data_, parent_width_);
510     } else
511       switch (type_) {
512         case FBT_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_);
513         case FBT_INT:
514           return static_cast<double>(ReadInt64(data_, parent_width_));
515         case FBT_UINT:
516           return static_cast<double>(ReadUInt64(data_, parent_width_));
517         case FBT_INDIRECT_INT:
518           return static_cast<double>(ReadInt64(Indirect(), byte_width_));
519         case FBT_INDIRECT_UINT:
520           return static_cast<double>(ReadUInt64(Indirect(), byte_width_));
521         case FBT_NULL: return 0.0;
522         case FBT_STRING: {
523           double d;
524           flatbuffers::StringToNumber(AsString().c_str(), &d);
525           return d;
526         }
527         case FBT_VECTOR: return static_cast<double>(AsVector().size());
528         case FBT_BOOL:
529           return static_cast<double>(ReadUInt64(data_, parent_width_));
530         default:
531           // Convert strings and other things to float.
532           return 0;
533       }
534   }
535 
AsFloat()536   float AsFloat() const { return static_cast<float>(AsDouble()); }
537 
AsKey()538   const char *AsKey() const {
539     if (type_ == FBT_KEY || type_ == FBT_STRING) {
540       return reinterpret_cast<const char *>(Indirect());
541     } else {
542       return "";
543     }
544   }
545 
546   // This function returns the empty string if you try to read something that
547   // is not a string or key.
AsString()548   String AsString() const {
549     if (type_ == FBT_STRING) {
550       return String(Indirect(), byte_width_);
551     } else if (type_ == FBT_KEY) {
552       auto key = Indirect();
553       return String(key, byte_width_,
554                     strlen(reinterpret_cast<const char *>(key)));
555     } else {
556       return String::EmptyString();
557     }
558   }
559 
560   // Unlike AsString(), this will convert any type to a std::string.
ToString()561   std::string ToString() const {
562     std::string s;
563     ToString(false, false, s);
564     return s;
565   }
566 
567   // Convert any type to a JSON-like string. strings_quoted determines if
568   // string values at the top level receive "" quotes (inside other values
569   // they always do). keys_quoted determines if keys are quoted, at any level.
ToString(bool strings_quoted,bool keys_quoted,std::string & s)570   void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const {
571     ToString(strings_quoted, keys_quoted, s, false, 0, "", false);
572   }
573 
574   // This version additionally allow you to specify if you want indentation.
575   void ToString(bool strings_quoted, bool keys_quoted, std::string &s,
576                 bool indented, int cur_indent, const char *indent_string,
577                 bool natural_utf8 = false) const {
578     if (type_ == FBT_STRING) {
579       String str(Indirect(), byte_width_);
580       if (strings_quoted) {
581         flatbuffers::EscapeString(str.c_str(), str.length(), &s, true, natural_utf8);
582       } else {
583         s.append(str.c_str(), str.length());
584       }
585     } else if (IsKey()) {
586       auto str = AsKey();
587       if (keys_quoted) {
588         flatbuffers::EscapeString(str, strlen(str), &s, true, natural_utf8);
589       } else {
590         s += str;
591       }
592     } else if (IsInt()) {
593       s += flatbuffers::NumToString(AsInt64());
594     } else if (IsUInt()) {
595       s += flatbuffers::NumToString(AsUInt64());
596     } else if (IsFloat()) {
597       s += flatbuffers::NumToString(AsDouble());
598     } else if (IsNull()) {
599       s += "null";
600     } else if (IsBool()) {
601       s += AsBool() ? "true" : "false";
602     } else if (IsMap()) {
603       s += "{";
604       s += indented ? "\n" : " ";
605       auto m = AsMap();
606       auto keys = m.Keys();
607       auto vals = m.Values();
608       for (size_t i = 0; i < keys.size(); i++) {
609         bool kq = keys_quoted;
610         if (!kq) {
611           // FlexBuffers keys may contain arbitrary characters, only allow
612           // unquoted if it looks like an "identifier":
613           const char *p = keys[i].AsKey();
614           if (!flatbuffers::is_alpha(*p) && *p != '_') {
615             kq = true;
616           } else {
617             while (*++p) {
618               if (!flatbuffers::is_alnum(*p) && *p != '_') {
619                 kq = true;
620                 break;
621               }
622             }
623           }
624         }
625         if (indented) IndentString(s, cur_indent + 1, indent_string);
626         keys[i].ToString(true, kq, s);
627         s += ": ";
628         vals[i].ToString(true, keys_quoted, s, indented, cur_indent + 1, indent_string,
629                          natural_utf8);
630         if (i < keys.size() - 1) {
631           s += ",";
632           if (!indented) s += " ";
633         }
634         if (indented) s += "\n";
635       }
636       if (!indented) s += " ";
637       if (indented) IndentString(s, cur_indent, indent_string);
638       s += "}";
639     } else if (IsVector()) {
640       AppendToString<Vector>(s, AsVector(), keys_quoted, indented,
641                              cur_indent + 1, indent_string, natural_utf8);
642     } else if (IsTypedVector()) {
643       AppendToString<TypedVector>(s, AsTypedVector(), keys_quoted, indented,
644                                   cur_indent + 1, indent_string,
645                                   natural_utf8);
646     } else if (IsFixedTypedVector()) {
647       AppendToString<FixedTypedVector>(s, AsFixedTypedVector(), keys_quoted,
648                                        indented, cur_indent + 1, indent_string,
649                                        natural_utf8);
650     } else if (IsBlob()) {
651       auto blob = AsBlob();
652       flatbuffers::EscapeString(reinterpret_cast<const char *>(blob.data()),
653                                 blob.size(), &s, true, false);
654     } else {
655       s += "(?)";
656     }
657   }
658 
659   // This function returns the empty blob if you try to read a not-blob.
660   // Strings can be viewed as blobs too.
AsBlob()661   Blob AsBlob() const {
662     if (type_ == FBT_BLOB || type_ == FBT_STRING) {
663       return Blob(Indirect(), byte_width_);
664     } else {
665       return Blob::EmptyBlob();
666     }
667   }
668 
669   // This function returns the empty vector if you try to read a not-vector.
670   // Maps can be viewed as vectors too.
AsVector()671   Vector AsVector() const {
672     if (type_ == FBT_VECTOR || type_ == FBT_MAP) {
673       return Vector(Indirect(), byte_width_);
674     } else {
675       return Vector::EmptyVector();
676     }
677   }
678 
AsTypedVector()679   TypedVector AsTypedVector() const {
680     if (IsTypedVector()) {
681       auto tv =
682           TypedVector(Indirect(), byte_width_, ToTypedVectorElementType(type_));
683       if (tv.type_ == FBT_STRING) {
684         // These can't be accessed as strings, since we don't know the bit-width
685         // of the size field, see the declaration of
686         // FBT_VECTOR_STRING_DEPRECATED above for details.
687         // We change the type here to be keys, which are a subtype of strings,
688         // and will ignore the size field. This will truncate strings with
689         // embedded nulls.
690         tv.type_ = FBT_KEY;
691       }
692       return tv;
693     } else {
694       return TypedVector::EmptyTypedVector();
695     }
696   }
697 
AsFixedTypedVector()698   FixedTypedVector AsFixedTypedVector() const {
699     if (IsFixedTypedVector()) {
700       uint8_t len = 0;
701       auto vtype = ToFixedTypedVectorElementType(type_, &len);
702       return FixedTypedVector(Indirect(), byte_width_, vtype, len);
703     } else {
704       return FixedTypedVector::EmptyFixedTypedVector();
705     }
706   }
707 
AsMap()708   Map AsMap() const {
709     if (type_ == FBT_MAP) {
710       return Map(Indirect(), byte_width_);
711     } else {
712       return Map::EmptyMap();
713     }
714   }
715 
716   template<typename T> T As() const;
717 
718   // Experimental: Mutation functions.
719   // These allow scalars in an already created buffer to be updated in-place.
720   // Since by default scalars are stored in the smallest possible space,
721   // the new value may not fit, in which case these functions return false.
722   // To avoid this, you can construct the values you intend to mutate using
723   // Builder::ForceMinimumBitWidth.
MutateInt(int64_t i)724   bool MutateInt(int64_t i) {
725     if (type_ == FBT_INT) {
726       return Mutate(data_, i, parent_width_, WidthI(i));
727     } else if (type_ == FBT_INDIRECT_INT) {
728       return Mutate(Indirect(), i, byte_width_, WidthI(i));
729     } else if (type_ == FBT_UINT) {
730       auto u = static_cast<uint64_t>(i);
731       return Mutate(data_, u, parent_width_, WidthU(u));
732     } else if (type_ == FBT_INDIRECT_UINT) {
733       auto u = static_cast<uint64_t>(i);
734       return Mutate(Indirect(), u, byte_width_, WidthU(u));
735     } else {
736       return false;
737     }
738   }
739 
MutateBool(bool b)740   bool MutateBool(bool b) {
741     return type_ == FBT_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8);
742   }
743 
MutateUInt(uint64_t u)744   bool MutateUInt(uint64_t u) {
745     if (type_ == FBT_UINT) {
746       return Mutate(data_, u, parent_width_, WidthU(u));
747     } else if (type_ == FBT_INDIRECT_UINT) {
748       return Mutate(Indirect(), u, byte_width_, WidthU(u));
749     } else if (type_ == FBT_INT) {
750       auto i = static_cast<int64_t>(u);
751       return Mutate(data_, i, parent_width_, WidthI(i));
752     } else if (type_ == FBT_INDIRECT_INT) {
753       auto i = static_cast<int64_t>(u);
754       return Mutate(Indirect(), i, byte_width_, WidthI(i));
755     } else {
756       return false;
757     }
758   }
759 
MutateFloat(float f)760   bool MutateFloat(float f) {
761     if (type_ == FBT_FLOAT) {
762       return MutateF(data_, f, parent_width_, BIT_WIDTH_32);
763     } else if (type_ == FBT_INDIRECT_FLOAT) {
764       return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32);
765     } else {
766       return false;
767     }
768   }
769 
MutateFloat(double d)770   bool MutateFloat(double d) {
771     if (type_ == FBT_FLOAT) {
772       return MutateF(data_, d, parent_width_, WidthF(d));
773     } else if (type_ == FBT_INDIRECT_FLOAT) {
774       return MutateF(Indirect(), d, byte_width_, WidthF(d));
775     } else {
776       return false;
777     }
778   }
779 
MutateString(const char * str,size_t len)780   bool MutateString(const char *str, size_t len) {
781     auto s = AsString();
782     if (s.IsTheEmptyString()) return false;
783     // This is very strict, could allow shorter strings, but that creates
784     // garbage.
785     if (s.length() != len) return false;
786     memcpy(const_cast<char *>(s.c_str()), str, len);
787     return true;
788   }
MutateString(const char * str)789   bool MutateString(const char *str) { return MutateString(str, strlen(str)); }
MutateString(const std::string & str)790   bool MutateString(const std::string &str) {
791     return MutateString(str.data(), str.length());
792   }
793 
794  private:
Indirect()795   const uint8_t *Indirect() const {
796     return flexbuffers::Indirect(data_, parent_width_);
797   }
798 
799   template<typename T>
Mutate(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)800   bool Mutate(const uint8_t *dest, T t, size_t byte_width,
801               BitWidth value_width) {
802     auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <=
803                 byte_width;
804     if (fits) {
805       t = flatbuffers::EndianScalar(t);
806       memcpy(const_cast<uint8_t *>(dest), &t, byte_width);
807     }
808     return fits;
809   }
810 
811   template<typename T>
MutateF(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)812   bool MutateF(const uint8_t *dest, T t, size_t byte_width,
813                BitWidth value_width) {
814     if (byte_width == sizeof(double))
815       return Mutate(dest, static_cast<double>(t), byte_width, value_width);
816     if (byte_width == sizeof(float))
817       return Mutate(dest, static_cast<float>(t), byte_width, value_width);
818     FLATBUFFERS_ASSERT(false);
819     return false;
820   }
821 
822   friend class Verifier;
823 
824   const uint8_t *data_;
825   uint8_t parent_width_;
826   uint8_t byte_width_;
827   Type type_;
828 };
829 
830 // Template specialization for As().
831 template<> inline bool Reference::As<bool>() const { return AsBool(); }
832 
833 template<> inline int8_t Reference::As<int8_t>() const { return AsInt8(); }
834 template<> inline int16_t Reference::As<int16_t>() const { return AsInt16(); }
835 template<> inline int32_t Reference::As<int32_t>() const { return AsInt32(); }
836 template<> inline int64_t Reference::As<int64_t>() const { return AsInt64(); }
837 
838 template<> inline uint8_t Reference::As<uint8_t>() const { return AsUInt8(); }
839 template<> inline uint16_t Reference::As<uint16_t>() const {
840   return AsUInt16();
841 }
842 template<> inline uint32_t Reference::As<uint32_t>() const {
843   return AsUInt32();
844 }
845 template<> inline uint64_t Reference::As<uint64_t>() const {
846   return AsUInt64();
847 }
848 
849 template<> inline double Reference::As<double>() const { return AsDouble(); }
850 template<> inline float Reference::As<float>() const { return AsFloat(); }
851 
852 template<> inline String Reference::As<String>() const { return AsString(); }
853 template<> inline std::string Reference::As<std::string>() const {
854   return AsString().str();
855 }
856 
857 template<> inline Blob Reference::As<Blob>() const { return AsBlob(); }
858 template<> inline Vector Reference::As<Vector>() const { return AsVector(); }
859 template<> inline TypedVector Reference::As<TypedVector>() const {
860   return AsTypedVector();
861 }
862 template<> inline FixedTypedVector Reference::As<FixedTypedVector>() const {
863   return AsFixedTypedVector();
864 }
865 template<> inline Map Reference::As<Map>() const { return AsMap(); }
866 
PackedType(BitWidth bit_width,Type type)867 inline uint8_t PackedType(BitWidth bit_width, Type type) {
868   return static_cast<uint8_t>(bit_width | (type << 2));
869 }
870 
NullPackedType()871 inline uint8_t NullPackedType() { return PackedType(BIT_WIDTH_8, FBT_NULL); }
872 
873 // Vector accessors.
874 // Note: if you try to access outside of bounds, you get a Null value back
875 // instead. Normally this would be an assert, but since this is "dynamically
876 // typed" data, you may not want that (someone sends you a 2d vector and you
877 // wanted 3d).
878 // The Null converts seamlessly into a default value for any other type.
879 // TODO(wvo): Could introduce an #ifdef that makes this into an assert?
880 inline Reference Vector::operator[](size_t i) const {
881   auto len = size();
882   if (i >= len) return Reference(nullptr, 1, NullPackedType());
883   auto packed_type = (data_ + len * byte_width_)[i];
884   auto elem = data_ + i * byte_width_;
885   return Reference(elem, byte_width_, packed_type);
886 }
887 
888 inline Reference TypedVector::operator[](size_t i) const {
889   auto len = size();
890   if (i >= len) return Reference(nullptr, 1, NullPackedType());
891   auto elem = data_ + i * byte_width_;
892   return Reference(elem, byte_width_, 1, type_);
893 }
894 
895 inline Reference FixedTypedVector::operator[](size_t i) const {
896   if (i >= len_) return Reference(nullptr, 1, NullPackedType());
897   auto elem = data_ + i * byte_width_;
898   return Reference(elem, byte_width_, 1, type_);
899 }
900 
KeyCompare(const void * key,const void * elem)901 template<typename T> int KeyCompare(const void *key, const void *elem) {
902   auto str_elem = reinterpret_cast<const char *>(
903       Indirect<T>(reinterpret_cast<const uint8_t *>(elem)));
904   auto skey = reinterpret_cast<const char *>(key);
905   return strcmp(skey, str_elem);
906 }
907 
908 inline Reference Map::operator[](const char *key) const {
909   auto keys = Keys();
910   // We can't pass keys.byte_width_ to the comparison function, so we have
911   // to pick the right one ahead of time.
912   int (*comp)(const void *, const void *) = nullptr;
913   switch (keys.byte_width_) {
914     case 1: comp = KeyCompare<uint8_t>; break;
915     case 2: comp = KeyCompare<uint16_t>; break;
916     case 4: comp = KeyCompare<uint32_t>; break;
917     case 8: comp = KeyCompare<uint64_t>; break;
918     default: FLATBUFFERS_ASSERT(false); return Reference();
919   }
920   auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp);
921   if (!res) return Reference(nullptr, 1, NullPackedType());
922   auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_;
923   return (*static_cast<const Vector *>(this))[i];
924 }
925 
926 inline Reference Map::operator[](const std::string &key) const {
927   return (*this)[key.c_str()];
928 }
929 
GetRoot(const uint8_t * buffer,size_t size)930 inline Reference GetRoot(const uint8_t *buffer, size_t size) {
931   // See Finish() below for the serialization counterpart of this.
932   // The root starts at the end of the buffer, so we parse backwards from there.
933   auto end = buffer + size;
934   auto byte_width = *--end;
935   auto packed_type = *--end;
936   end -= byte_width;  // The root data item.
937   return Reference(end, byte_width, packed_type);
938 }
939 
GetRoot(const std::vector<uint8_t> & buffer)940 inline Reference GetRoot(const std::vector<uint8_t> &buffer) {
941   return GetRoot(buffer.data(), buffer.size());
942 }
943 
944 // Flags that configure how the Builder behaves.
945 // The "Share" flags determine if the Builder automatically tries to pool
946 // this type. Pooling can reduce the size of serialized data if there are
947 // multiple maps of the same kind, at the expense of slightly slower
948 // serialization (the cost of lookups) and more memory use (std::set).
949 // By default this is on for keys, but off for strings.
950 // Turn keys off if you have e.g. only one map.
951 // Turn strings on if you expect many non-unique string values.
952 // Additionally, sharing key vectors can save space if you have maps with
953 // identical field populations.
954 enum BuilderFlag {
955   BUILDER_FLAG_NONE = 0,
956   BUILDER_FLAG_SHARE_KEYS = 1,
957   BUILDER_FLAG_SHARE_STRINGS = 2,
958   BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3,
959   BUILDER_FLAG_SHARE_KEY_VECTORS = 4,
960   BUILDER_FLAG_SHARE_ALL = 7,
961 };
962 
963 class Builder FLATBUFFERS_FINAL_CLASS {
964  public:
965   Builder(size_t initial_size = 256,
966           BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS)
buf_(initial_size)967       : buf_(initial_size),
968         finished_(false),
969         has_duplicate_keys_(false),
970         flags_(flags),
971         force_min_bit_width_(BIT_WIDTH_8),
972         key_pool(KeyOffsetCompare(buf_)),
973         string_pool(StringOffsetCompare(buf_)) {
974     buf_.clear();
975   }
976 
977 #ifdef FLATBUFFERS_DEFAULT_DECLARATION
978   Builder(Builder &&) = default;
979   Builder &operator=(Builder &&) = default;
980 #endif
981 
982   /// @brief Get the serialized buffer (after you call `Finish()`).
983   /// @return Returns a vector owned by this class.
GetBuffer()984   const std::vector<uint8_t> &GetBuffer() const {
985     Finished();
986     return buf_;
987   }
988 
989   // Size of the buffer. Does not include unfinished values.
GetSize()990   size_t GetSize() const { return buf_.size(); }
991 
992   // Reset all state so we can re-use the buffer.
Clear()993   void Clear() {
994     buf_.clear();
995     stack_.clear();
996     finished_ = false;
997     // flags_ remains as-is;
998     force_min_bit_width_ = BIT_WIDTH_8;
999     key_pool.clear();
1000     string_pool.clear();
1001   }
1002 
1003   // All value constructing functions below have two versions: one that
1004   // takes a key (for placement inside a map) and one that doesn't (for inside
1005   // vectors and elsewhere).
1006 
Null()1007   void Null() { stack_.push_back(Value()); }
Null(const char * key)1008   void Null(const char *key) {
1009     Key(key);
1010     Null();
1011   }
1012 
Int(int64_t i)1013   void Int(int64_t i) { stack_.push_back(Value(i, FBT_INT, WidthI(i))); }
Int(const char * key,int64_t i)1014   void Int(const char *key, int64_t i) {
1015     Key(key);
1016     Int(i);
1017   }
1018 
UInt(uint64_t u)1019   void UInt(uint64_t u) { stack_.push_back(Value(u, FBT_UINT, WidthU(u))); }
UInt(const char * key,uint64_t u)1020   void UInt(const char *key, uint64_t u) {
1021     Key(key);
1022     UInt(u);
1023   }
1024 
Float(float f)1025   void Float(float f) { stack_.push_back(Value(f)); }
Float(const char * key,float f)1026   void Float(const char *key, float f) {
1027     Key(key);
1028     Float(f);
1029   }
1030 
Double(double f)1031   void Double(double f) { stack_.push_back(Value(f)); }
Double(const char * key,double d)1032   void Double(const char *key, double d) {
1033     Key(key);
1034     Double(d);
1035   }
1036 
Bool(bool b)1037   void Bool(bool b) { stack_.push_back(Value(b)); }
Bool(const char * key,bool b)1038   void Bool(const char *key, bool b) {
1039     Key(key);
1040     Bool(b);
1041   }
1042 
IndirectInt(int64_t i)1043   void IndirectInt(int64_t i) { PushIndirect(i, FBT_INDIRECT_INT, WidthI(i)); }
IndirectInt(const char * key,int64_t i)1044   void IndirectInt(const char *key, int64_t i) {
1045     Key(key);
1046     IndirectInt(i);
1047   }
1048 
IndirectUInt(uint64_t u)1049   void IndirectUInt(uint64_t u) {
1050     PushIndirect(u, FBT_INDIRECT_UINT, WidthU(u));
1051   }
IndirectUInt(const char * key,uint64_t u)1052   void IndirectUInt(const char *key, uint64_t u) {
1053     Key(key);
1054     IndirectUInt(u);
1055   }
1056 
IndirectFloat(float f)1057   void IndirectFloat(float f) {
1058     PushIndirect(f, FBT_INDIRECT_FLOAT, BIT_WIDTH_32);
1059   }
IndirectFloat(const char * key,float f)1060   void IndirectFloat(const char *key, float f) {
1061     Key(key);
1062     IndirectFloat(f);
1063   }
1064 
IndirectDouble(double f)1065   void IndirectDouble(double f) {
1066     PushIndirect(f, FBT_INDIRECT_FLOAT, WidthF(f));
1067   }
IndirectDouble(const char * key,double d)1068   void IndirectDouble(const char *key, double d) {
1069     Key(key);
1070     IndirectDouble(d);
1071   }
1072 
Key(const char * str,size_t len)1073   size_t Key(const char *str, size_t len) {
1074     auto sloc = buf_.size();
1075     WriteBytes(str, len + 1);
1076     if (flags_ & BUILDER_FLAG_SHARE_KEYS) {
1077       auto it = key_pool.find(sloc);
1078       if (it != key_pool.end()) {
1079         // Already in the buffer. Remove key we just serialized, and use
1080         // existing offset instead.
1081         buf_.resize(sloc);
1082         sloc = *it;
1083       } else {
1084         key_pool.insert(sloc);
1085       }
1086     }
1087     stack_.push_back(Value(static_cast<uint64_t>(sloc), FBT_KEY, BIT_WIDTH_8));
1088     return sloc;
1089   }
1090 
Key(const char * str)1091   size_t Key(const char *str) { return Key(str, strlen(str)); }
Key(const std::string & str)1092   size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); }
1093 
String(const char * str,size_t len)1094   size_t String(const char *str, size_t len) {
1095     auto reset_to = buf_.size();
1096     auto sloc = CreateBlob(str, len, 1, FBT_STRING);
1097     if (flags_ & BUILDER_FLAG_SHARE_STRINGS) {
1098       StringOffset so(sloc, len);
1099       auto it = string_pool.find(so);
1100       if (it != string_pool.end()) {
1101         // Already in the buffer. Remove string we just serialized, and use
1102         // existing offset instead.
1103         buf_.resize(reset_to);
1104         sloc = it->first;
1105         stack_.back().u_ = sloc;
1106       } else {
1107         string_pool.insert(so);
1108       }
1109     }
1110     return sloc;
1111   }
String(const char * str)1112   size_t String(const char *str) { return String(str, strlen(str)); }
String(const std::string & str)1113   size_t String(const std::string &str) {
1114     return String(str.c_str(), str.size());
1115   }
String(const flexbuffers::String & str)1116   void String(const flexbuffers::String &str) {
1117     String(str.c_str(), str.length());
1118   }
1119 
String(const char * key,const char * str)1120   void String(const char *key, const char *str) {
1121     Key(key);
1122     String(str);
1123   }
String(const char * key,const std::string & str)1124   void String(const char *key, const std::string &str) {
1125     Key(key);
1126     String(str);
1127   }
String(const char * key,const flexbuffers::String & str)1128   void String(const char *key, const flexbuffers::String &str) {
1129     Key(key);
1130     String(str);
1131   }
1132 
Blob(const void * data,size_t len)1133   size_t Blob(const void *data, size_t len) {
1134     return CreateBlob(data, len, 0, FBT_BLOB);
1135   }
Blob(const std::vector<uint8_t> & v)1136   size_t Blob(const std::vector<uint8_t> &v) {
1137     return CreateBlob(v.data(), v.size(), 0, FBT_BLOB);
1138   }
1139 
Blob(const char * key,const void * data,size_t len)1140   void Blob(const char *key, const void *data, size_t len) {
1141     Key(key);
1142     Blob(data, len);
1143   }
Blob(const char * key,const std::vector<uint8_t> & v)1144   void Blob(const char *key, const std::vector<uint8_t> &v) {
1145     Key(key);
1146     Blob(v);
1147   }
1148 
1149   // TODO(wvo): support all the FlexBuffer types (like flexbuffers::String),
1150   // e.g. Vector etc. Also in overloaded versions.
1151   // Also some FlatBuffers types?
1152 
StartVector()1153   size_t StartVector() { return stack_.size(); }
StartVector(const char * key)1154   size_t StartVector(const char *key) {
1155     Key(key);
1156     return stack_.size();
1157   }
StartMap()1158   size_t StartMap() { return stack_.size(); }
StartMap(const char * key)1159   size_t StartMap(const char *key) {
1160     Key(key);
1161     return stack_.size();
1162   }
1163 
1164   // TODO(wvo): allow this to specify an alignment greater than the natural
1165   // alignment.
EndVector(size_t start,bool typed,bool fixed)1166   size_t EndVector(size_t start, bool typed, bool fixed) {
1167     auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed);
1168     // Remove temp elements and return vector.
1169     stack_.resize(start);
1170     stack_.push_back(vec);
1171     return static_cast<size_t>(vec.u_);
1172   }
1173 
EndMap(size_t start)1174   size_t EndMap(size_t start) {
1175     // We should have interleaved keys and values on the stack.
1176     auto len = MapElementCount(start);
1177     // Make sure keys are all strings:
1178     for (auto key = start; key < stack_.size(); key += 2) {
1179       FLATBUFFERS_ASSERT(stack_[key].type_ == FBT_KEY);
1180     }
1181     // Now sort values, so later we can do a binary search lookup.
1182     // We want to sort 2 array elements at a time.
1183     struct TwoValue {
1184       Value key;
1185       Value val;
1186     };
1187     // TODO(wvo): strict aliasing?
1188     // TODO(wvo): allow the caller to indicate the data is already sorted
1189     // for maximum efficiency? With an assert to check sortedness to make sure
1190     // we're not breaking binary search.
1191     // Or, we can track if the map is sorted as keys are added which would be
1192     // be quite cheap (cheaper than checking it here), so we can skip this
1193     // step automatically when appliccable, and encourage people to write in
1194     // sorted fashion.
1195     // std::sort is typically already a lot faster on sorted data though.
1196     auto dict = reinterpret_cast<TwoValue *>(stack_.data() + start);
1197     std::sort(
1198         dict, dict + len, [&](const TwoValue &a, const TwoValue &b) -> bool {
1199           auto as = reinterpret_cast<const char *>(buf_.data() + a.key.u_);
1200           auto bs = reinterpret_cast<const char *>(buf_.data() + b.key.u_);
1201           auto comp = strcmp(as, bs);
1202           // We want to disallow duplicate keys, since this results in a
1203           // map where values cannot be found.
1204           // But we can't assert here (since we don't want to fail on
1205           // random JSON input) or have an error mechanism.
1206           // Instead, we set has_duplicate_keys_ in the builder to
1207           // signal this.
1208           // TODO: Have to check for pointer equality, as some sort
1209           // implementation apparently call this function with the same
1210           // element?? Why?
1211           if (!comp && &a != &b) has_duplicate_keys_ = true;
1212           return comp < 0;
1213         });
1214     // First create a vector out of all keys.
1215     // TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share
1216     // the first vector.
1217     auto keys = CreateVector(start, len, 2, true, false);
1218     auto vec = CreateVector(start + 1, len, 2, false, false, &keys);
1219     // Remove temp elements and return map.
1220     stack_.resize(start);
1221     stack_.push_back(vec);
1222     return static_cast<size_t>(vec.u_);
1223   }
1224 
1225   // Call this after EndMap to see if the map had any duplicate keys.
1226   // Any map with such keys won't be able to retrieve all values.
HasDuplicateKeys()1227   bool HasDuplicateKeys() const { return has_duplicate_keys_; }
1228 
Vector(F f)1229   template<typename F> size_t Vector(F f) {
1230     auto start = StartVector();
1231     f();
1232     return EndVector(start, false, false);
1233   }
Vector(F f,T & state)1234   template<typename F, typename T> size_t Vector(F f, T &state) {
1235     auto start = StartVector();
1236     f(state);
1237     return EndVector(start, false, false);
1238   }
Vector(const char * key,F f)1239   template<typename F> size_t Vector(const char *key, F f) {
1240     auto start = StartVector(key);
1241     f();
1242     return EndVector(start, false, false);
1243   }
1244   template<typename F, typename T>
Vector(const char * key,F f,T & state)1245   size_t Vector(const char *key, F f, T &state) {
1246     auto start = StartVector(key);
1247     f(state);
1248     return EndVector(start, false, false);
1249   }
1250 
Vector(const T * elems,size_t len)1251   template<typename T> void Vector(const T *elems, size_t len) {
1252     if (flatbuffers::is_scalar<T>::value) {
1253       // This path should be a lot quicker and use less space.
1254       ScalarVector(elems, len, false);
1255     } else {
1256       auto start = StartVector();
1257       for (size_t i = 0; i < len; i++) Add(elems[i]);
1258       EndVector(start, false, false);
1259     }
1260   }
1261   template<typename T>
Vector(const char * key,const T * elems,size_t len)1262   void Vector(const char *key, const T *elems, size_t len) {
1263     Key(key);
1264     Vector(elems, len);
1265   }
Vector(const std::vector<T> & vec)1266   template<typename T> void Vector(const std::vector<T> &vec) {
1267     Vector(vec.data(), vec.size());
1268   }
1269 
TypedVector(F f)1270   template<typename F> size_t TypedVector(F f) {
1271     auto start = StartVector();
1272     f();
1273     return EndVector(start, true, false);
1274   }
TypedVector(F f,T & state)1275   template<typename F, typename T> size_t TypedVector(F f, T &state) {
1276     auto start = StartVector();
1277     f(state);
1278     return EndVector(start, true, false);
1279   }
TypedVector(const char * key,F f)1280   template<typename F> size_t TypedVector(const char *key, F f) {
1281     auto start = StartVector(key);
1282     f();
1283     return EndVector(start, true, false);
1284   }
1285   template<typename F, typename T>
TypedVector(const char * key,F f,T & state)1286   size_t TypedVector(const char *key, F f, T &state) {
1287     auto start = StartVector(key);
1288     f(state);
1289     return EndVector(start, true, false);
1290   }
1291 
FixedTypedVector(const T * elems,size_t len)1292   template<typename T> size_t FixedTypedVector(const T *elems, size_t len) {
1293     // We only support a few fixed vector lengths. Anything bigger use a
1294     // regular typed vector.
1295     FLATBUFFERS_ASSERT(len >= 2 && len <= 4);
1296     // And only scalar values.
1297     static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
1298     return ScalarVector(elems, len, true);
1299   }
1300 
1301   template<typename T>
FixedTypedVector(const char * key,const T * elems,size_t len)1302   size_t FixedTypedVector(const char *key, const T *elems, size_t len) {
1303     Key(key);
1304     return FixedTypedVector(elems, len);
1305   }
1306 
Map(F f)1307   template<typename F> size_t Map(F f) {
1308     auto start = StartMap();
1309     f();
1310     return EndMap(start);
1311   }
Map(F f,T & state)1312   template<typename F, typename T> size_t Map(F f, T &state) {
1313     auto start = StartMap();
1314     f(state);
1315     return EndMap(start);
1316   }
Map(const char * key,F f)1317   template<typename F> size_t Map(const char *key, F f) {
1318     auto start = StartMap(key);
1319     f();
1320     return EndMap(start);
1321   }
Map(const char * key,F f,T & state)1322   template<typename F, typename T> size_t Map(const char *key, F f, T &state) {
1323     auto start = StartMap(key);
1324     f(state);
1325     return EndMap(start);
1326   }
Map(const std::map<std::string,T> & map)1327   template<typename T> void Map(const std::map<std::string, T> &map) {
1328     auto start = StartMap();
1329     for (auto it = map.begin(); it != map.end(); ++it)
1330       Add(it->first.c_str(), it->second);
1331     EndMap(start);
1332   }
1333 
MapElementCount(size_t start)1334   size_t MapElementCount(size_t start) {
1335     // Make sure it is an even number:
1336     auto len = stack_.size() - start;
1337     FLATBUFFERS_ASSERT(!(len & 1));
1338     len /= 2;
1339     return len;
1340   }
1341 
1342   // If you wish to share a value explicitly (a value not shared automatically
1343   // through one of the BUILDER_FLAG_SHARE_* flags) you can do so with these
1344   // functions. Or if you wish to turn those flags off for performance reasons
1345   // and still do some explicit sharing. For example:
1346   // builder.IndirectDouble(M_PI);
1347   // auto id = builder.LastValue();  // Remember where we stored it.
1348   // .. more code goes here ..
1349   // builder.ReuseValue(id);  // Refers to same double by offset.
1350   // LastValue works regardless of whether the value has a key or not.
1351   // Works on any data type.
1352   struct Value;
LastValue()1353   Value LastValue() { return stack_.back(); }
ReuseValue(Value v)1354   void ReuseValue(Value v) { stack_.push_back(v); }
ReuseValue(const char * key,Value v)1355   void ReuseValue(const char *key, Value v) {
1356     Key(key);
1357     ReuseValue(v);
1358   }
1359 
1360   // Undo the last element serialized. Call once for a value and once for a
1361   // key.
Undo()1362   void Undo() {
1363       stack_.pop_back();
1364   }
1365 
1366   // Overloaded Add that tries to call the correct function above.
Add(int8_t i)1367   void Add(int8_t i) { Int(i); }
Add(int16_t i)1368   void Add(int16_t i) { Int(i); }
Add(int32_t i)1369   void Add(int32_t i) { Int(i); }
Add(int64_t i)1370   void Add(int64_t i) { Int(i); }
Add(uint8_t u)1371   void Add(uint8_t u) { UInt(u); }
Add(uint16_t u)1372   void Add(uint16_t u) { UInt(u); }
Add(uint32_t u)1373   void Add(uint32_t u) { UInt(u); }
Add(uint64_t u)1374   void Add(uint64_t u) { UInt(u); }
Add(float f)1375   void Add(float f) { Float(f); }
Add(double d)1376   void Add(double d) { Double(d); }
Add(bool b)1377   void Add(bool b) { Bool(b); }
Add(const char * str)1378   void Add(const char *str) { String(str); }
Add(const std::string & str)1379   void Add(const std::string &str) { String(str); }
Add(const flexbuffers::String & str)1380   void Add(const flexbuffers::String &str) { String(str); }
1381 
Add(const std::vector<T> & vec)1382   template<typename T> void Add(const std::vector<T> &vec) { Vector(vec); }
1383 
Add(const char * key,const T & t)1384   template<typename T> void Add(const char *key, const T &t) {
1385     Key(key);
1386     Add(t);
1387   }
1388 
Add(const std::map<std::string,T> & map)1389   template<typename T> void Add(const std::map<std::string, T> &map) {
1390     Map(map);
1391   }
1392 
1393   template<typename T> void operator+=(const T &t) { Add(t); }
1394 
1395   // This function is useful in combination with the Mutate* functions above.
1396   // It forces elements of vectors and maps to have a minimum size, such that
1397   // they can later be updated without failing.
1398   // Call with no arguments to reset.
1399   void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) {
1400     force_min_bit_width_ = bw;
1401   }
1402 
Finish()1403   void Finish() {
1404     // If you hit this assert, you likely have objects that were never included
1405     // in a parent. You need to have exactly one root to finish a buffer.
1406     // Check your Start/End calls are matched, and all objects are inside
1407     // some other object.
1408     FLATBUFFERS_ASSERT(stack_.size() == 1);
1409 
1410     // Write root value.
1411     auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0));
1412     WriteAny(stack_[0], byte_width);
1413     // Write root type.
1414     Write(stack_[0].StoredPackedType(), 1);
1415     // Write root size. Normally determined by parent, but root has no parent :)
1416     Write(byte_width, 1);
1417 
1418     finished_ = true;
1419   }
1420 
1421  private:
Finished()1422   void Finished() const {
1423     // If you get this assert, you're attempting to get access a buffer
1424     // which hasn't been finished yet. Be sure to call
1425     // Builder::Finish with your root object.
1426     FLATBUFFERS_ASSERT(finished_);
1427   }
1428 
1429   // Align to prepare for writing a scalar with a certain size.
Align(BitWidth alignment)1430   uint8_t Align(BitWidth alignment) {
1431     auto byte_width = 1U << alignment;
1432     buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width),
1433                 0);
1434     return static_cast<uint8_t>(byte_width);
1435   }
1436 
WriteBytes(const void * val,size_t size)1437   void WriteBytes(const void *val, size_t size) {
1438     buf_.insert(buf_.end(), reinterpret_cast<const uint8_t *>(val),
1439                 reinterpret_cast<const uint8_t *>(val) + size);
1440   }
1441 
Write(T val,size_t byte_width)1442   template<typename T> void Write(T val, size_t byte_width) {
1443     FLATBUFFERS_ASSERT(sizeof(T) >= byte_width);
1444     val = flatbuffers::EndianScalar(val);
1445     WriteBytes(&val, byte_width);
1446   }
1447 
WriteDouble(double f,uint8_t byte_width)1448   void WriteDouble(double f, uint8_t byte_width) {
1449     switch (byte_width) {
1450       case 8: Write(f, byte_width); break;
1451       case 4: Write(static_cast<float>(f), byte_width); break;
1452       // case 2: Write(static_cast<half>(f), byte_width); break;
1453       // case 1: Write(static_cast<quarter>(f), byte_width); break;
1454       default: FLATBUFFERS_ASSERT(0);
1455     }
1456   }
1457 
WriteOffset(uint64_t o,uint8_t byte_width)1458   void WriteOffset(uint64_t o, uint8_t byte_width) {
1459     auto reloff = buf_.size() - o;
1460     FLATBUFFERS_ASSERT(byte_width == 8 || reloff < 1ULL << (byte_width * 8));
1461     Write(reloff, byte_width);
1462   }
1463 
PushIndirect(T val,Type type,BitWidth bit_width)1464   template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) {
1465     auto byte_width = Align(bit_width);
1466     auto iloc = buf_.size();
1467     Write(val, byte_width);
1468     stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width));
1469   }
1470 
WidthB(size_t byte_width)1471   static BitWidth WidthB(size_t byte_width) {
1472     switch (byte_width) {
1473       case 1: return BIT_WIDTH_8;
1474       case 2: return BIT_WIDTH_16;
1475       case 4: return BIT_WIDTH_32;
1476       case 8: return BIT_WIDTH_64;
1477       default: FLATBUFFERS_ASSERT(false); return BIT_WIDTH_64;
1478     }
1479   }
1480 
GetScalarType()1481   template<typename T> static Type GetScalarType() {
1482     static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
1483     return flatbuffers::is_floating_point<T>::value ? FBT_FLOAT
1484            : flatbuffers::is_same<T, bool>::value
1485                ? FBT_BOOL
1486                : (flatbuffers::is_unsigned<T>::value ? FBT_UINT : FBT_INT);
1487   }
1488 
1489  public:
1490   // This was really intended to be private, except for LastValue/ReuseValue.
1491   struct Value {
1492     union {
1493       int64_t i_;
1494       uint64_t u_;
1495       double f_;
1496     };
1497 
1498     Type type_;
1499 
1500     // For scalars: of itself, for vector: of its elements, for string: length.
1501     BitWidth min_bit_width_;
1502 
ValueValue1503     Value() : i_(0), type_(FBT_NULL), min_bit_width_(BIT_WIDTH_8) {}
1504 
ValueValue1505     Value(bool b)
1506         : u_(static_cast<uint64_t>(b)),
1507           type_(FBT_BOOL),
1508           min_bit_width_(BIT_WIDTH_8) {}
1509 
ValueValue1510     Value(int64_t i, Type t, BitWidth bw)
1511         : i_(i), type_(t), min_bit_width_(bw) {}
ValueValue1512     Value(uint64_t u, Type t, BitWidth bw)
1513         : u_(u), type_(t), min_bit_width_(bw) {}
1514 
ValueValue1515     Value(float f)
1516         : f_(static_cast<double>(f)),
1517           type_(FBT_FLOAT),
1518           min_bit_width_(BIT_WIDTH_32) {}
ValueValue1519     Value(double f) : f_(f), type_(FBT_FLOAT), min_bit_width_(WidthF(f)) {}
1520 
1521     uint8_t StoredPackedType(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
1522       return PackedType(StoredWidth(parent_bit_width_), type_);
1523     }
1524 
ElemWidthValue1525     BitWidth ElemWidth(size_t buf_size, size_t elem_index) const {
1526       if (IsInline(type_)) {
1527         return min_bit_width_;
1528       } else {
1529         // We have an absolute offset, but want to store a relative offset
1530         // elem_index elements beyond the current buffer end. Since whether
1531         // the relative offset fits in a certain byte_width depends on
1532         // the size of the elements before it (and their alignment), we have
1533         // to test for each size in turn.
1534         for (size_t byte_width = 1;
1535              byte_width <= sizeof(flatbuffers::largest_scalar_t);
1536              byte_width *= 2) {
1537           // Where are we going to write this offset?
1538           auto offset_loc = buf_size +
1539                             flatbuffers::PaddingBytes(buf_size, byte_width) +
1540                             elem_index * byte_width;
1541           // Compute relative offset.
1542           auto offset = offset_loc - u_;
1543           // Does it fit?
1544           auto bit_width = WidthU(offset);
1545           if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) ==
1546               byte_width)
1547             return bit_width;
1548         }
1549         FLATBUFFERS_ASSERT(false);  // Must match one of the sizes above.
1550         return BIT_WIDTH_64;
1551       }
1552     }
1553 
1554     BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
1555       if (IsInline(type_)) {
1556         return (std::max)(min_bit_width_, parent_bit_width_);
1557       } else {
1558         return min_bit_width_;
1559       }
1560     }
1561   };
1562 
1563  private:
WriteAny(const Value & val,uint8_t byte_width)1564   void WriteAny(const Value &val, uint8_t byte_width) {
1565     switch (val.type_) {
1566       case FBT_NULL:
1567       case FBT_INT: Write(val.i_, byte_width); break;
1568       case FBT_BOOL:
1569       case FBT_UINT: Write(val.u_, byte_width); break;
1570       case FBT_FLOAT: WriteDouble(val.f_, byte_width); break;
1571       default: WriteOffset(val.u_, byte_width); break;
1572     }
1573   }
1574 
CreateBlob(const void * data,size_t len,size_t trailing,Type type)1575   size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) {
1576     auto bit_width = WidthU(len);
1577     auto byte_width = Align(bit_width);
1578     Write<uint64_t>(len, byte_width);
1579     auto sloc = buf_.size();
1580     WriteBytes(data, len + trailing);
1581     stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width));
1582     return sloc;
1583   }
1584 
1585   template<typename T>
ScalarVector(const T * elems,size_t len,bool fixed)1586   size_t ScalarVector(const T *elems, size_t len, bool fixed) {
1587     auto vector_type = GetScalarType<T>();
1588     auto byte_width = sizeof(T);
1589     auto bit_width = WidthB(byte_width);
1590     // If you get this assert, you're trying to write a vector with a size
1591     // field that is bigger than the scalars you're trying to write (e.g. a
1592     // byte vector > 255 elements). For such types, write a "blob" instead.
1593     // TODO: instead of asserting, could write vector with larger elements
1594     // instead, though that would be wasteful.
1595     FLATBUFFERS_ASSERT(WidthU(len) <= bit_width);
1596     Align(bit_width);
1597     if (!fixed) Write<uint64_t>(len, byte_width);
1598     auto vloc = buf_.size();
1599     for (size_t i = 0; i < len; i++) Write(elems[i], byte_width);
1600     stack_.push_back(Value(static_cast<uint64_t>(vloc),
1601                            ToTypedVector(vector_type, fixed ? len : 0),
1602                            bit_width));
1603     return vloc;
1604   }
1605 
1606   Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed,
1607                      bool fixed, const Value *keys = nullptr) {
1608     FLATBUFFERS_ASSERT(
1609         !fixed ||
1610         typed);  // typed=false, fixed=true combination is not supported.
1611     // Figure out smallest bit width we can store this vector with.
1612     auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len));
1613     auto prefix_elems = 1;
1614     if (keys) {
1615       // If this vector is part of a map, we will pre-fix an offset to the keys
1616       // to this vector.
1617       bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0));
1618       prefix_elems += 2;
1619     }
1620     Type vector_type = FBT_KEY;
1621     // Check bit widths and types for all elements.
1622     for (size_t i = start; i < stack_.size(); i += step) {
1623       auto elem_width =
1624           stack_[i].ElemWidth(buf_.size(), i - start + prefix_elems);
1625       bit_width = (std::max)(bit_width, elem_width);
1626       if (typed) {
1627         if (i == start) {
1628           vector_type = stack_[i].type_;
1629         } else {
1630           // If you get this assert, you are writing a typed vector with
1631           // elements that are not all the same type.
1632           FLATBUFFERS_ASSERT(vector_type == stack_[i].type_);
1633         }
1634       }
1635     }
1636     // If you get this assert, your typed types are not one of:
1637     // Int / UInt / Float / Key.
1638     FLATBUFFERS_ASSERT(!typed || IsTypedVectorElementType(vector_type));
1639     auto byte_width = Align(bit_width);
1640     // Write vector. First the keys width/offset if available, and size.
1641     if (keys) {
1642       WriteOffset(keys->u_, byte_width);
1643       Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width);
1644     }
1645     if (!fixed) Write<uint64_t>(vec_len, byte_width);
1646     // Then the actual data.
1647     auto vloc = buf_.size();
1648     for (size_t i = start; i < stack_.size(); i += step) {
1649       WriteAny(stack_[i], byte_width);
1650     }
1651     // Then the types.
1652     if (!typed) {
1653       for (size_t i = start; i < stack_.size(); i += step) {
1654         buf_.push_back(stack_[i].StoredPackedType(bit_width));
1655       }
1656     }
1657     return Value(static_cast<uint64_t>(vloc),
1658                  keys ? FBT_MAP
1659                       : (typed ? ToTypedVector(vector_type, fixed ? vec_len : 0)
1660                                : FBT_VECTOR),
1661                  bit_width);
1662   }
1663 
1664   // You shouldn't really be copying instances of this class.
1665   Builder(const Builder &);
1666   Builder &operator=(const Builder &);
1667 
1668   std::vector<uint8_t> buf_;
1669   std::vector<Value> stack_;
1670 
1671   bool finished_;
1672   bool has_duplicate_keys_;
1673 
1674   BuilderFlag flags_;
1675 
1676   BitWidth force_min_bit_width_;
1677 
1678   struct KeyOffsetCompare {
KeyOffsetCompareKeyOffsetCompare1679     explicit KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
operatorKeyOffsetCompare1680     bool operator()(size_t a, size_t b) const {
1681       auto stra = reinterpret_cast<const char *>(buf_->data() + a);
1682       auto strb = reinterpret_cast<const char *>(buf_->data() + b);
1683       return strcmp(stra, strb) < 0;
1684     }
1685     const std::vector<uint8_t> *buf_;
1686   };
1687 
1688   typedef std::pair<size_t, size_t> StringOffset;
1689   struct StringOffsetCompare {
StringOffsetCompareStringOffsetCompare1690     explicit StringOffsetCompare(const std::vector<uint8_t> &buf)
1691         : buf_(&buf) {}
operatorStringOffsetCompare1692     bool operator()(const StringOffset &a, const StringOffset &b) const {
1693       auto stra = buf_->data() + a.first;
1694       auto strb = buf_->data() + b.first;
1695       auto cr = memcmp(stra, strb, (std::min)(a.second, b.second) + 1);
1696       return cr < 0 || (cr == 0 && a.second < b.second);
1697     }
1698     const std::vector<uint8_t> *buf_;
1699   };
1700 
1701   typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap;
1702   typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap;
1703 
1704   KeyOffsetMap key_pool;
1705   StringOffsetMap string_pool;
1706 
1707   friend class Verifier;
1708 };
1709 
1710 // Helper class to verify the integrity of a FlexBuffer
1711 class Verifier FLATBUFFERS_FINAL_CLASS {
1712  public:
1713   Verifier(const uint8_t *buf, size_t buf_len,
1714            // Supplying this vector likely results in faster verification
1715            // of larger buffers with many shared keys/strings, but
1716            // comes at the cost of using additional memory the same size of
1717            // the buffer being verified, so it is by default off.
1718            std::vector<uint8_t> *reuse_tracker = nullptr,
1719            bool _check_alignment = true, size_t max_depth = 64)
buf_(buf)1720       : buf_(buf),
1721         size_(buf_len),
1722         depth_(0),
1723         max_depth_(max_depth),
1724         num_vectors_(0),
1725         max_vectors_(buf_len),
1726         check_alignment_(_check_alignment),
1727         reuse_tracker_(reuse_tracker) {
1728     FLATBUFFERS_ASSERT(static_cast<int32_t>(size_) < FLATBUFFERS_MAX_BUFFER_SIZE);
1729     if (reuse_tracker_) {
1730       reuse_tracker_->clear();
1731       reuse_tracker_->resize(size_, PackedType(BIT_WIDTH_8, FBT_NULL));
1732     }
1733   }
1734 
1735  private:
1736   // Central location where any verification failures register.
Check(bool ok)1737   bool Check(bool ok) const {
1738     // clang-format off
1739     #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
1740       FLATBUFFERS_ASSERT(ok);
1741     #endif
1742     // clang-format on
1743     return ok;
1744   }
1745 
1746   // Verify any range within the buffer.
VerifyFrom(size_t elem,size_t elem_len)1747   bool VerifyFrom(size_t elem, size_t elem_len) const {
1748     return Check(elem_len < size_ && elem <= size_ - elem_len);
1749   }
VerifyBefore(size_t elem,size_t elem_len)1750   bool VerifyBefore(size_t elem, size_t elem_len) const {
1751     return Check(elem_len <= elem);
1752   }
1753 
VerifyFromPointer(const uint8_t * p,size_t len)1754   bool VerifyFromPointer(const uint8_t *p, size_t len) {
1755     auto o = static_cast<size_t>(p - buf_);
1756     return VerifyFrom(o, len);
1757   }
VerifyBeforePointer(const uint8_t * p,size_t len)1758   bool VerifyBeforePointer(const uint8_t *p, size_t len) {
1759     auto o = static_cast<size_t>(p - buf_);
1760     return VerifyBefore(o, len);
1761   }
1762 
VerifyByteWidth(size_t width)1763   bool VerifyByteWidth(size_t width) {
1764     return Check(width == 1 || width == 2 || width == 4 || width == 8);
1765   }
1766 
VerifyType(int type)1767   bool VerifyType(int type) { return Check(type >= 0 && type < FBT_MAX_TYPE); }
1768 
VerifyOffset(uint64_t off,const uint8_t * p)1769   bool VerifyOffset(uint64_t off, const uint8_t *p) {
1770     return Check(off <= static_cast<uint64_t>(size_)) &&
1771            off <= static_cast<uint64_t>(p - buf_);
1772   }
1773 
VerifyAlignment(const uint8_t * p,size_t size)1774   bool VerifyAlignment(const uint8_t *p, size_t size) const {
1775     auto o = static_cast<size_t>(p - buf_);
1776     return Check((o & (size - 1)) == 0 || !check_alignment_);
1777   }
1778 
1779 // Macro, since we want to escape from parent function & use lazy args.
1780 #define FLEX_CHECK_VERIFIED(P, PACKED_TYPE)                     \
1781   if (reuse_tracker_) {                                         \
1782     auto packed_type = PACKED_TYPE;                             \
1783     auto existing = (*reuse_tracker_)[P - buf_];                \
1784     if (existing == packed_type) return true;                   \
1785     /* Fail verification if already set with different type! */ \
1786     if (!Check(existing == 0)) return false;                    \
1787     (*reuse_tracker_)[P - buf_] = packed_type;                  \
1788   }
1789 
VerifyVector(Reference r,const uint8_t * p,Type elem_type)1790   bool VerifyVector(Reference r, const uint8_t *p, Type elem_type) {
1791     // Any kind of nesting goes thru this function, so guard against that
1792     // here, both with simple nesting checks, and the reuse tracker if on.
1793     depth_++;
1794     num_vectors_++;
1795     if (!Check(depth_ <= max_depth_ && num_vectors_ <= max_vectors_))
1796       return false;
1797     auto size_byte_width = r.byte_width_;
1798     if (!VerifyBeforePointer(p, size_byte_width)) return false;
1799     FLEX_CHECK_VERIFIED(p - size_byte_width,
1800                         PackedType(Builder::WidthB(size_byte_width), r.type_));
1801     auto sized = Sized(p, size_byte_width);
1802     auto num_elems = sized.size();
1803     auto elem_byte_width = r.type_ == FBT_STRING || r.type_ == FBT_BLOB
1804                                ? uint8_t(1)
1805                                : r.byte_width_;
1806     auto max_elems = SIZE_MAX / elem_byte_width;
1807     if (!Check(num_elems < max_elems))
1808       return false;  // Protect against byte_size overflowing.
1809     auto byte_size = num_elems * elem_byte_width;
1810     if (!VerifyFromPointer(p, byte_size)) return false;
1811     if (elem_type == FBT_NULL) {
1812       // Verify type bytes after the vector.
1813       if (!VerifyFromPointer(p + byte_size, num_elems)) return false;
1814       auto v = Vector(p, size_byte_width);
1815       for (size_t i = 0; i < num_elems; i++)
1816         if (!VerifyRef(v[i])) return false;
1817     } else if (elem_type == FBT_KEY) {
1818       auto v = TypedVector(p, elem_byte_width, FBT_KEY);
1819       for (size_t i = 0; i < num_elems; i++)
1820         if (!VerifyRef(v[i])) return false;
1821     } else {
1822       FLATBUFFERS_ASSERT(IsInline(elem_type));
1823     }
1824     depth_--;
1825     return true;
1826   }
1827 
VerifyKeys(const uint8_t * p,uint8_t byte_width)1828   bool VerifyKeys(const uint8_t *p, uint8_t byte_width) {
1829     // The vector part of the map has already been verified.
1830     const size_t num_prefixed_fields = 3;
1831     if (!VerifyBeforePointer(p, byte_width * num_prefixed_fields)) return false;
1832     p -= byte_width * num_prefixed_fields;
1833     auto off = ReadUInt64(p, byte_width);
1834     if (!VerifyOffset(off, p)) return false;
1835     auto key_byte_with =
1836         static_cast<uint8_t>(ReadUInt64(p + byte_width, byte_width));
1837     if (!VerifyByteWidth(key_byte_with)) return false;
1838     return VerifyVector(Reference(p, byte_width, key_byte_with, FBT_VECTOR_KEY),
1839                         p - off, FBT_KEY);
1840   }
1841 
VerifyKey(const uint8_t * p)1842   bool VerifyKey(const uint8_t *p) {
1843     FLEX_CHECK_VERIFIED(p, PackedType(BIT_WIDTH_8, FBT_KEY));
1844     while (p < buf_ + size_)
1845       if (*p++) return true;
1846     return false;
1847   }
1848 
1849 #undef FLEX_CHECK_VERIFIED
1850 
VerifyTerminator(const String & s)1851   bool VerifyTerminator(const String &s) {
1852     return VerifyFromPointer(reinterpret_cast<const uint8_t *>(s.c_str()),
1853                              s.size() + 1);
1854   }
1855 
VerifyRef(Reference r)1856   bool VerifyRef(Reference r) {
1857     // r.parent_width_ and r.data_ already verified.
1858     if (!VerifyByteWidth(r.byte_width_) || !VerifyType(r.type_)) {
1859       return false;
1860     }
1861     if (IsInline(r.type_)) {
1862       // Inline scalars, don't require further verification.
1863       return true;
1864     }
1865     // All remaining types are an offset.
1866     auto off = ReadUInt64(r.data_, r.parent_width_);
1867     if (!VerifyOffset(off, r.data_)) return false;
1868     auto p = r.Indirect();
1869     if (!VerifyAlignment(p, r.byte_width_)) return false;
1870     switch (r.type_) {
1871       case FBT_INDIRECT_INT:
1872       case FBT_INDIRECT_UINT:
1873       case FBT_INDIRECT_FLOAT: return VerifyFromPointer(p, r.byte_width_);
1874       case FBT_KEY: return VerifyKey(p);
1875       case FBT_MAP:
1876         return VerifyVector(r, p, FBT_NULL) && VerifyKeys(p, r.byte_width_);
1877       case FBT_VECTOR: return VerifyVector(r, p, FBT_NULL);
1878       case FBT_VECTOR_INT: return VerifyVector(r, p, FBT_INT);
1879       case FBT_VECTOR_BOOL:
1880       case FBT_VECTOR_UINT: return VerifyVector(r, p, FBT_UINT);
1881       case FBT_VECTOR_FLOAT: return VerifyVector(r, p, FBT_FLOAT);
1882       case FBT_VECTOR_KEY: return VerifyVector(r, p, FBT_KEY);
1883       case FBT_VECTOR_STRING_DEPRECATED:
1884         // Use of FBT_KEY here intentional, see elsewhere.
1885         return VerifyVector(r, p, FBT_KEY);
1886       case FBT_BLOB: return VerifyVector(r, p, FBT_UINT);
1887       case FBT_STRING:
1888         return VerifyVector(r, p, FBT_UINT) &&
1889                VerifyTerminator(String(p, r.byte_width_));
1890       case FBT_VECTOR_INT2:
1891       case FBT_VECTOR_UINT2:
1892       case FBT_VECTOR_FLOAT2:
1893       case FBT_VECTOR_INT3:
1894       case FBT_VECTOR_UINT3:
1895       case FBT_VECTOR_FLOAT3:
1896       case FBT_VECTOR_INT4:
1897       case FBT_VECTOR_UINT4:
1898       case FBT_VECTOR_FLOAT4: {
1899         uint8_t len = 0;
1900         auto vtype = ToFixedTypedVectorElementType(r.type_, &len);
1901         if (!VerifyType(vtype)) return false;
1902         return VerifyFromPointer(p, static_cast<size_t>(r.byte_width_) * len);
1903       }
1904       default: return false;
1905     }
1906   }
1907 
1908  public:
VerifyBuffer()1909   bool VerifyBuffer() {
1910     if (!Check(size_ >= 3)) return false;
1911     auto end = buf_ + size_;
1912     auto byte_width = *--end;
1913     auto packed_type = *--end;
1914     return VerifyByteWidth(byte_width) && Check(end - buf_ >= byte_width) &&
1915            VerifyRef(Reference(end - byte_width, byte_width, packed_type));
1916   }
1917 
1918  private:
1919   const uint8_t *buf_;
1920   size_t size_;
1921   size_t depth_;
1922   const size_t max_depth_;
1923   size_t num_vectors_;
1924   const size_t max_vectors_;
1925   bool check_alignment_;
1926   std::vector<uint8_t> *reuse_tracker_;
1927 };
1928 
1929 // Utility function that constructs the Verifier for you, see above for
1930 // parameters.
1931 inline bool VerifyBuffer(const uint8_t *buf, size_t buf_len,
1932                          std::vector<uint8_t> *reuse_tracker = nullptr) {
1933   Verifier verifier(buf, buf_len, reuse_tracker);
1934   return verifier.VerifyBuffer();
1935 }
1936 
1937 }  // namespace flexbuffers
1938 
1939 #if defined(_MSC_VER)
1940 #  pragma warning(pop)
1941 #endif
1942 
1943 #endif  // FLATBUFFERS_FLEXBUFFERS_H_
1944