• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""The Gamma distribution class."""
16
17import numpy as np
18
19from tensorflow.python.framework import constant_op
20from tensorflow.python.framework import dtypes
21from tensorflow.python.framework import ops
22from tensorflow.python.framework import tensor_shape
23from tensorflow.python.ops import array_ops
24from tensorflow.python.ops import check_ops
25from tensorflow.python.ops import control_flow_ops
26from tensorflow.python.ops import math_ops
27from tensorflow.python.ops import nn
28from tensorflow.python.ops import random_ops
29from tensorflow.python.ops.distributions import distribution
30from tensorflow.python.ops.distributions import kullback_leibler
31from tensorflow.python.ops.distributions import util as distribution_util
32from tensorflow.python.util import deprecation
33from tensorflow.python.util.tf_export import tf_export
34
35
36__all__ = [
37    "Gamma",
38    "GammaWithSoftplusConcentrationRate",
39]
40
41
42@tf_export(v1=["distributions.Gamma"])
43class Gamma(distribution.Distribution):
44  """Gamma distribution.
45
46  The Gamma distribution is defined over positive real numbers using
47  parameters `concentration` (aka "alpha") and `rate` (aka "beta").
48
49  #### Mathematical Details
50
51  The probability density function (pdf) is,
52
53  ```none
54  pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z
55  Z = Gamma(alpha) beta**(-alpha)
56  ```
57
58  where:
59
60  * `concentration = alpha`, `alpha > 0`,
61  * `rate = beta`, `beta > 0`,
62  * `Z` is the normalizing constant, and,
63  * `Gamma` is the [gamma function](
64    https://en.wikipedia.org/wiki/Gamma_function).
65
66  The cumulative density function (cdf) is,
67
68  ```none
69  cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha)
70  ```
71
72  where `GammaInc` is the [lower incomplete Gamma function](
73  https://en.wikipedia.org/wiki/Incomplete_gamma_function).
74
75  The parameters can be intuited via their relationship to mean and stddev,
76
77  ```none
78  concentration = alpha = (mean / stddev)**2
79  rate = beta = mean / stddev**2 = concentration / mean
80  ```
81
82  Distribution parameters are automatically broadcast in all functions; see
83  examples for details.
84
85  Warning: The samples of this distribution are always non-negative. However,
86  the samples that are smaller than `np.finfo(dtype).tiny` are rounded
87  to this value, so it appears more often than it should.
88  This should only be noticeable when the `concentration` is very small, or the
89  `rate` is very large. See note in `tf.random.gamma` docstring.
90
91  Samples of this distribution are reparameterized (pathwise differentiable).
92  The derivatives are computed using the approach described in
93  (Figurnov et al., 2018).
94
95  #### Examples
96
97  ```python
98  import tensorflow_probability as tfp
99  tfd = tfp.distributions
100
101  dist = tfd.Gamma(concentration=3.0, rate=2.0)
102  dist2 = tfd.Gamma(concentration=[3.0, 4.0], rate=[2.0, 3.0])
103  ```
104
105  Compute the gradients of samples w.r.t. the parameters:
106
107  ```python
108  concentration = tf.constant(3.0)
109  rate = tf.constant(2.0)
110  dist = tfd.Gamma(concentration, rate)
111  samples = dist.sample(5)  # Shape [5]
112  loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
113  # Unbiased stochastic gradients of the loss function
114  grads = tf.gradients(loss, [concentration, rate])
115  ```
116
117  References:
118    Implicit Reparameterization Gradients:
119      [Figurnov et al., 2018]
120      (http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients)
121      ([pdf](http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf))
122  """
123
124  @deprecation.deprecated(
125      "2019-01-01",
126      "The TensorFlow Distributions library has moved to "
127      "TensorFlow Probability "
128      "(https://github.com/tensorflow/probability). You "
129      "should update all references to use `tfp.distributions` "
130      "instead of `tf.distributions`.",
131      warn_once=True)
132  def __init__(self,
133               concentration,
134               rate,
135               validate_args=False,
136               allow_nan_stats=True,
137               name="Gamma"):
138    """Construct Gamma with `concentration` and `rate` parameters.
139
140    The parameters `concentration` and `rate` must be shaped in a way that
141    supports broadcasting (e.g. `concentration + rate` is a valid operation).
142
143    Args:
144      concentration: Floating point tensor, the concentration params of the
145        distribution(s). Must contain only positive values.
146      rate: Floating point tensor, the inverse scale params of the
147        distribution(s). Must contain only positive values.
148      validate_args: Python `bool`, default `False`. When `True` distribution
149        parameters are checked for validity despite possibly degrading runtime
150        performance. When `False` invalid inputs may silently render incorrect
151        outputs.
152      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
153        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
154        result is undefined. When `False`, an exception is raised if one or
155        more of the statistic's batch members are undefined.
156      name: Python `str` name prefixed to Ops created by this class.
157
158    Raises:
159      TypeError: if `concentration` and `rate` are different dtypes.
160    """
161    parameters = dict(locals())
162    with ops.name_scope(name, values=[concentration, rate]) as name:
163      with ops.control_dependencies([
164          check_ops.assert_positive(concentration),
165          check_ops.assert_positive(rate),
166      ] if validate_args else []):
167        self._concentration = array_ops.identity(
168            concentration, name="concentration")
169        self._rate = array_ops.identity(rate, name="rate")
170        check_ops.assert_same_float_dtype(
171            [self._concentration, self._rate])
172    super(Gamma, self).__init__(
173        dtype=self._concentration.dtype,
174        validate_args=validate_args,
175        allow_nan_stats=allow_nan_stats,
176        reparameterization_type=distribution.FULLY_REPARAMETERIZED,
177        parameters=parameters,
178        graph_parents=[self._concentration,
179                       self._rate],
180        name=name)
181
182  @staticmethod
183  def _param_shapes(sample_shape):
184    return dict(
185        zip(("concentration", "rate"), ([ops.convert_to_tensor(
186            sample_shape, dtype=dtypes.int32)] * 2)))
187
188  @property
189  def concentration(self):
190    """Concentration parameter."""
191    return self._concentration
192
193  @property
194  def rate(self):
195    """Rate parameter."""
196    return self._rate
197
198  def _batch_shape_tensor(self):
199    return array_ops.broadcast_dynamic_shape(
200        array_ops.shape(self.concentration),
201        array_ops.shape(self.rate))
202
203  def _batch_shape(self):
204    return array_ops.broadcast_static_shape(
205        self.concentration.get_shape(),
206        self.rate.get_shape())
207
208  def _event_shape_tensor(self):
209    return constant_op.constant([], dtype=dtypes.int32)
210
211  def _event_shape(self):
212    return tensor_shape.TensorShape([])
213
214  @distribution_util.AppendDocstring(
215      """Note: See `tf.random.gamma` docstring for sampling details and
216      caveats.""")
217  def _sample_n(self, n, seed=None):
218    return random_ops.random_gamma(
219        shape=[n],
220        alpha=self.concentration,
221        beta=self.rate,
222        dtype=self.dtype,
223        seed=seed)
224
225  def _log_prob(self, x):
226    return self._log_unnormalized_prob(x) - self._log_normalization()
227
228  def _cdf(self, x):
229    x = self._maybe_assert_valid_sample(x)
230    # Note that igamma returns the regularized incomplete gamma function,
231    # which is what we want for the CDF.
232    return math_ops.igamma(self.concentration, self.rate * x)
233
234  def _log_unnormalized_prob(self, x):
235    x = self._maybe_assert_valid_sample(x)
236    return math_ops.xlogy(self.concentration - 1., x) - self.rate * x
237
238  def _log_normalization(self):
239    return (math_ops.lgamma(self.concentration)
240            - self.concentration * math_ops.log(self.rate))
241
242  def _entropy(self):
243    return (self.concentration
244            - math_ops.log(self.rate)
245            + math_ops.lgamma(self.concentration)
246            + ((1. - self.concentration) *
247               math_ops.digamma(self.concentration)))
248
249  def _mean(self):
250    return self.concentration / self.rate
251
252  def _variance(self):
253    return self.concentration / math_ops.square(self.rate)
254
255  def _stddev(self):
256    return math_ops.sqrt(self.concentration) / self.rate
257
258  @distribution_util.AppendDocstring(
259      """The mode of a gamma distribution is `(shape - 1) / rate` when
260      `shape > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is `False`,
261      an exception will be raised rather than returning `NaN`.""")
262  def _mode(self):
263    mode = (self.concentration - 1.) / self.rate
264    if self.allow_nan_stats:
265      nan = array_ops.fill(
266          self.batch_shape_tensor(),
267          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
268          name="nan")
269      return array_ops.where_v2(self.concentration > 1., mode, nan)
270    else:
271      return control_flow_ops.with_dependencies([
272          check_ops.assert_less(
273              array_ops.ones([], self.dtype),
274              self.concentration,
275              message="mode not defined when any concentration <= 1"),
276          ], mode)
277
278  def _maybe_assert_valid_sample(self, x):
279    check_ops.assert_same_float_dtype(tensors=[x], dtype=self.dtype)
280    if not self.validate_args:
281      return x
282    return control_flow_ops.with_dependencies([
283        check_ops.assert_positive(x),
284    ], x)
285
286
287class GammaWithSoftplusConcentrationRate(Gamma):
288  """`Gamma` with softplus of `concentration` and `rate`."""
289
290  @deprecation.deprecated(
291      "2019-01-01",
292      "Use `tfd.Gamma(tf.nn.softplus(concentration), "
293      "tf.nn.softplus(rate))` instead.",
294      warn_once=True)
295  def __init__(self,
296               concentration,
297               rate,
298               validate_args=False,
299               allow_nan_stats=True,
300               name="GammaWithSoftplusConcentrationRate"):
301    parameters = dict(locals())
302    with ops.name_scope(name, values=[concentration, rate]) as name:
303      super(GammaWithSoftplusConcentrationRate, self).__init__(
304          concentration=nn.softplus(concentration,
305                                    name="softplus_concentration"),
306          rate=nn.softplus(rate, name="softplus_rate"),
307          validate_args=validate_args,
308          allow_nan_stats=allow_nan_stats,
309          name=name)
310    self._parameters = parameters
311
312
313@kullback_leibler.RegisterKL(Gamma, Gamma)
314def _kl_gamma_gamma(g0, g1, name=None):
315  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.
316
317  Args:
318    g0: instance of a Gamma distribution object.
319    g1: instance of a Gamma distribution object.
320    name: (optional) Name to use for created operations.
321      Default is "kl_gamma_gamma".
322
323  Returns:
324    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
325  """
326  with ops.name_scope(name, "kl_gamma_gamma", values=[
327      g0.concentration, g0.rate, g1.concentration, g1.rate]):
328    # Result from:
329    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
330    # For derivation see:
331    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
332    return (((g0.concentration - g1.concentration)
333             * math_ops.digamma(g0.concentration))
334            + math_ops.lgamma(g1.concentration)
335            - math_ops.lgamma(g0.concentration)
336            + g1.concentration * math_ops.log(g0.rate)
337            - g1.concentration * math_ops.log(g1.rate)
338            + g0.concentration * (g1.rate / g0.rate - 1.))
339