1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18 #include "base/globals.h"
19 #include "mirror/method_type.h"
20
21 #ifdef ART_ENABLE_CODEGEN_arm
22 #include "code_generator_arm_vixl.h"
23 #endif
24
25 #ifdef ART_ENABLE_CODEGEN_arm64
26 #include "code_generator_arm64.h"
27 #endif
28
29 #ifdef ART_ENABLE_CODEGEN_riscv64
30 #include "code_generator_riscv64.h"
31 #endif
32
33 #ifdef ART_ENABLE_CODEGEN_x86
34 #include "code_generator_x86.h"
35 #endif
36
37 #ifdef ART_ENABLE_CODEGEN_x86_64
38 #include "code_generator_x86_64.h"
39 #endif
40
41 #include "art_method-inl.h"
42 #include "base/bit_utils.h"
43 #include "base/bit_utils_iterator.h"
44 #include "base/casts.h"
45 #include "base/leb128.h"
46 #include "class_linker.h"
47 #include "class_root-inl.h"
48 #include "code_generation_data.h"
49 #include "dex/bytecode_utils.h"
50 #include "dex/code_item_accessors-inl.h"
51 #include "graph_visualizer.h"
52 #include "gc/space/image_space.h"
53 #include "intern_table.h"
54 #include "intrinsics.h"
55 #include "mirror/array-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/object_reference.h"
58 #include "mirror/reference.h"
59 #include "mirror/string.h"
60 #include "parallel_move_resolver.h"
61 #include "scoped_thread_state_change-inl.h"
62 #include "ssa_liveness_analysis.h"
63 #include "oat/image.h"
64 #include "oat/stack_map.h"
65 #include "stack_map_stream.h"
66 #include "string_builder_append.h"
67 #include "thread-current-inl.h"
68 #include "utils/assembler.h"
69
70 namespace art HIDDEN {
71
72 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)73 static bool CheckType(DataType::Type type, Location location) {
74 if (location.IsFpuRegister()
75 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
76 return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
77 } else if (location.IsRegister() ||
78 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
79 return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
80 } else if (location.IsRegisterPair()) {
81 return type == DataType::Type::kInt64;
82 } else if (location.IsFpuRegisterPair()) {
83 return type == DataType::Type::kFloat64;
84 } else if (location.IsStackSlot()) {
85 return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
86 || (type == DataType::Type::kFloat32)
87 || (type == DataType::Type::kReference);
88 } else if (location.IsDoubleStackSlot()) {
89 return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
90 } else if (location.IsConstant()) {
91 if (location.GetConstant()->IsIntConstant()) {
92 return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
93 } else if (location.GetConstant()->IsNullConstant()) {
94 return type == DataType::Type::kReference;
95 } else if (location.GetConstant()->IsLongConstant()) {
96 return type == DataType::Type::kInt64;
97 } else if (location.GetConstant()->IsFloatConstant()) {
98 return type == DataType::Type::kFloat32;
99 } else {
100 return location.GetConstant()->IsDoubleConstant()
101 && (type == DataType::Type::kFloat64);
102 }
103 } else {
104 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
105 }
106 }
107
108 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)109 static bool CheckTypeConsistency(HInstruction* instruction) {
110 LocationSummary* locations = instruction->GetLocations();
111 if (locations == nullptr) {
112 return true;
113 }
114
115 if (locations->Out().IsUnallocated()
116 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
117 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
118 << instruction->GetType()
119 << " " << locations->InAt(0);
120 } else {
121 DCHECK(CheckType(instruction->GetType(), locations->Out()))
122 << instruction->GetType()
123 << " " << locations->Out();
124 }
125
126 HConstInputsRef inputs = instruction->GetInputs();
127 for (size_t i = 0; i < inputs.size(); ++i) {
128 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
129 << inputs[i]->GetType() << " " << locations->InAt(i);
130 }
131
132 HEnvironment* environment = instruction->GetEnvironment();
133 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
134 if (environment->GetInstructionAt(i) != nullptr) {
135 DataType::Type type = environment->GetInstructionAt(i)->GetType();
136 DCHECK(CheckType(type, environment->GetLocationAt(i)))
137 << type << " " << environment->GetLocationAt(i);
138 } else {
139 DCHECK(environment->GetLocationAt(i).IsInvalid())
140 << environment->GetLocationAt(i);
141 }
142 }
143 return true;
144 }
145
EmitReadBarrier() const146 bool CodeGenerator::EmitReadBarrier() const {
147 return GetCompilerOptions().EmitReadBarrier();
148 }
149
EmitBakerReadBarrier() const150 bool CodeGenerator::EmitBakerReadBarrier() const {
151 return kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier();
152 }
153
EmitNonBakerReadBarrier() const154 bool CodeGenerator::EmitNonBakerReadBarrier() const {
155 return !kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier();
156 }
157
GetCompilerReadBarrierOption() const158 ReadBarrierOption CodeGenerator::GetCompilerReadBarrierOption() const {
159 return EmitReadBarrier() ? kWithReadBarrier : kWithoutReadBarrier;
160 }
161
ShouldCheckGCCard(DataType::Type type,HInstruction * value,WriteBarrierKind write_barrier_kind) const162 bool CodeGenerator::ShouldCheckGCCard(DataType::Type type,
163 HInstruction* value,
164 WriteBarrierKind write_barrier_kind) const {
165 const CompilerOptions& options = GetCompilerOptions();
166 const bool result =
167 // Check the GC card in debug mode,
168 options.EmitRunTimeChecksInDebugMode() &&
169 // only for CC GC,
170 options.EmitReadBarrier() &&
171 // and if we eliminated the write barrier in WBE.
172 !StoreNeedsWriteBarrier(type, value, write_barrier_kind) &&
173 CodeGenerator::StoreNeedsWriteBarrier(type, value);
174
175 DCHECK_IMPLIES(result, write_barrier_kind == WriteBarrierKind::kDontEmit);
176 DCHECK_IMPLIES(
177 result, !(GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches()));
178
179 return result;
180 }
181
GetScopedAllocator()182 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
183 DCHECK(code_generation_data_ != nullptr);
184 return code_generation_data_->GetScopedAllocator();
185 }
186
GetStackMapStream()187 StackMapStream* CodeGenerator::GetStackMapStream() {
188 DCHECK(code_generation_data_ != nullptr);
189 return code_generation_data_->GetStackMapStream();
190 }
191
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)192 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
193 Handle<mirror::String> string) {
194 DCHECK(code_generation_data_ != nullptr);
195 code_generation_data_->ReserveJitStringRoot(string_reference, string);
196 }
197
GetJitStringRootIndex(StringReference string_reference)198 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
199 DCHECK(code_generation_data_ != nullptr);
200 return code_generation_data_->GetJitStringRootIndex(string_reference);
201 }
202
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)203 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
204 DCHECK(code_generation_data_ != nullptr);
205 code_generation_data_->ReserveJitClassRoot(type_reference, klass);
206 }
207
GetJitClassRootIndex(TypeReference type_reference)208 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
209 DCHECK(code_generation_data_ != nullptr);
210 return code_generation_data_->GetJitClassRootIndex(type_reference);
211 }
212
ReserveJitMethodTypeRoot(ProtoReference proto_reference,Handle<mirror::MethodType> method_type)213 void CodeGenerator::ReserveJitMethodTypeRoot(ProtoReference proto_reference,
214 Handle<mirror::MethodType> method_type) {
215 DCHECK(code_generation_data_ != nullptr);
216 code_generation_data_->ReserveJitMethodTypeRoot(proto_reference, method_type);
217 }
218
GetJitMethodTypeRootIndex(ProtoReference proto_reference)219 uint64_t CodeGenerator::GetJitMethodTypeRootIndex(ProtoReference proto_reference) {
220 DCHECK(code_generation_data_ != nullptr);
221 return code_generation_data_->GetJitMethodTypeRootIndex(proto_reference);
222 }
223
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)224 void CodeGenerator::EmitJitRootPatches([[maybe_unused]] uint8_t* code,
225 [[maybe_unused]] const uint8_t* roots_data) {
226 DCHECK(code_generation_data_ != nullptr);
227 DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
228 DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
229 DCHECK_EQ(code_generation_data_->GetNumberOfJitMethodTypeRoots(), 0u);
230 }
231
GetArrayLengthOffset(HArrayLength * array_length)232 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
233 return array_length->IsStringLength()
234 ? mirror::String::CountOffset().Uint32Value()
235 : mirror::Array::LengthOffset().Uint32Value();
236 }
237
GetArrayDataOffset(HArrayGet * array_get)238 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
239 DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
240 return array_get->IsStringCharAt()
241 ? mirror::String::ValueOffset().Uint32Value()
242 : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
243 }
244
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const245 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
246 DCHECK_EQ((*block_order_)[current_block_index_], current);
247 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
248 }
249
GetNextBlockToEmit() const250 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
251 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
252 HBasicBlock* block = (*block_order_)[i];
253 if (!block->IsSingleJump()) {
254 return block;
255 }
256 }
257 return nullptr;
258 }
259
FirstNonEmptyBlock(HBasicBlock * block) const260 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
261 while (block->IsSingleJump()) {
262 block = block->GetSuccessors()[0];
263 }
264 return block;
265 }
266
267 class DisassemblyScope {
268 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)269 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
270 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
271 if (codegen_.GetDisassemblyInformation() != nullptr) {
272 start_offset_ = codegen_.GetAssembler().CodeSize();
273 }
274 }
275
~DisassemblyScope()276 ~DisassemblyScope() {
277 // We avoid building this data when we know it will not be used.
278 if (codegen_.GetDisassemblyInformation() != nullptr) {
279 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
280 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
281 }
282 }
283
284 private:
285 const CodeGenerator& codegen_;
286 HInstruction* instruction_;
287 size_t start_offset_;
288 };
289
290
GenerateSlowPaths()291 void CodeGenerator::GenerateSlowPaths() {
292 DCHECK(code_generation_data_ != nullptr);
293 size_t code_start = 0;
294 for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
295 SlowPathCode* slow_path = slow_path_ptr.get();
296 current_slow_path_ = slow_path;
297 if (disasm_info_ != nullptr) {
298 code_start = GetAssembler()->CodeSize();
299 }
300 // Record the dex pc at start of slow path (required for java line number mapping).
301 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
302 slow_path->EmitNativeCode(this);
303 if (disasm_info_ != nullptr) {
304 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
305 }
306 }
307 current_slow_path_ = nullptr;
308 }
309
InitializeCodeGenerationData()310 void CodeGenerator::InitializeCodeGenerationData() {
311 DCHECK(code_generation_data_ == nullptr);
312 code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
313 }
314
Compile()315 void CodeGenerator::Compile() {
316 InitializeCodeGenerationData();
317
318 // The register allocator already called `InitializeCodeGeneration`,
319 // where the frame size has been computed.
320 DCHECK(block_order_ != nullptr);
321 Initialize();
322
323 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
324 DCHECK_EQ(current_block_index_, 0u);
325
326 GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
327 core_spill_mask_,
328 fpu_spill_mask_,
329 GetGraph()->GetNumberOfVRegs(),
330 GetGraph()->IsCompilingBaseline(),
331 GetGraph()->IsDebuggable(),
332 GetGraph()->HasShouldDeoptimizeFlag());
333
334 size_t frame_start = GetAssembler()->CodeSize();
335 GenerateFrameEntry();
336 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
337 if (disasm_info_ != nullptr) {
338 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
339 }
340
341 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
342 HBasicBlock* block = (*block_order_)[current_block_index_];
343 // Don't generate code for an empty block. Its predecessors will branch to its successor
344 // directly. Also, the label of that block will not be emitted, so this helps catch
345 // errors where we reference that label.
346 if (block->IsSingleJump()) continue;
347 Bind(block);
348 // This ensures that we have correct native line mapping for all native instructions.
349 // It is necessary to make stepping over a statement work. Otherwise, any initial
350 // instructions (e.g. moves) would be assumed to be the start of next statement.
351 MaybeRecordNativeDebugInfoForBlockEntry(block->GetDexPc());
352 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
353 HInstruction* current = it.Current();
354 if (current->HasEnvironment()) {
355 // Catch StackMaps are dealt with later on in `RecordCatchBlockInfo`.
356 if (block->IsCatchBlock() && block->GetFirstInstruction() == current) {
357 DCHECK(current->IsNop());
358 continue;
359 }
360
361 // Create stackmap for HNop or any instruction which calls native code.
362 // Note that we need correct mapping for the native PC of the call instruction,
363 // so the runtime's stackmap is not sufficient since it is at PC after the call.
364 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
365 }
366 DisassemblyScope disassembly_scope(current, *this);
367 DCHECK(CheckTypeConsistency(current));
368 current->Accept(instruction_visitor);
369 }
370 }
371
372 GenerateSlowPaths();
373
374 // Emit catch stack maps at the end of the stack map stream as expected by the
375 // runtime exception handler.
376 if (graph_->HasTryCatch()) {
377 RecordCatchBlockInfo();
378 }
379
380 // Finalize instructions in the assembler.
381 Finalize();
382
383 GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());
384 }
385
Finalize()386 void CodeGenerator::Finalize() {
387 GetAssembler()->FinalizeCode();
388 }
389
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)390 void CodeGenerator::EmitLinkerPatches(
391 [[maybe_unused]] ArenaVector<linker::LinkerPatch>* linker_patches) {
392 // No linker patches by default.
393 }
394
NeedsThunkCode(const linker::LinkerPatch & patch) const395 bool CodeGenerator::NeedsThunkCode([[maybe_unused]] const linker::LinkerPatch& patch) const {
396 // Code generators that create patches requiring thunk compilation should override this function.
397 return false;
398 }
399
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)400 void CodeGenerator::EmitThunkCode([[maybe_unused]] const linker::LinkerPatch& patch,
401 [[maybe_unused]] /*out*/ ArenaVector<uint8_t>* code,
402 [[maybe_unused]] /*out*/ std::string* debug_name) {
403 // Code generators that create patches requiring thunk compilation should override this function.
404 LOG(FATAL) << "Unexpected call to EmitThunkCode().";
405 }
406
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)407 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
408 size_t maximum_safepoint_spill_size,
409 size_t number_of_out_slots,
410 const ArenaVector<HBasicBlock*>& block_order) {
411 block_order_ = &block_order;
412 DCHECK(!block_order.empty());
413 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
414 ComputeSpillMask();
415 first_register_slot_in_slow_path_ = RoundUp(
416 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
417
418 if (number_of_spill_slots == 0
419 && !HasAllocatedCalleeSaveRegisters()
420 && IsLeafMethod()
421 && !RequiresCurrentMethod()) {
422 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
423 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
424 } else {
425 SetFrameSize(RoundUp(
426 first_register_slot_in_slow_path_
427 + maximum_safepoint_spill_size
428 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
429 + FrameEntrySpillSize(),
430 kStackAlignment));
431 }
432 }
433
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)434 void CodeGenerator::CreateCommonInvokeLocationSummary(
435 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
436 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
437 LocationSummary* locations = new (allocator) LocationSummary(invoke,
438 LocationSummary::kCallOnMainOnly);
439
440 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
441 HInstruction* input = invoke->InputAt(i);
442 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
443 }
444
445 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
446
447 if (invoke->IsInvokeStaticOrDirect()) {
448 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
449 MethodLoadKind method_load_kind = call->GetMethodLoadKind();
450 CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
451 if (code_ptr_location == CodePtrLocation::kCallCriticalNative) {
452 locations->AddTemp(Location::RequiresRegister()); // For target method.
453 }
454 if (code_ptr_location == CodePtrLocation::kCallCriticalNative ||
455 method_load_kind == MethodLoadKind::kRecursive) {
456 // For `kCallCriticalNative` we need the current method as the hidden argument
457 // if we reach the dlsym lookup stub for @CriticalNative.
458 locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
459 } else {
460 locations->AddTemp(visitor->GetMethodLocation());
461 if (method_load_kind == MethodLoadKind::kRuntimeCall) {
462 locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
463 }
464 }
465 } else if (!invoke->IsInvokePolymorphic()) {
466 locations->AddTemp(visitor->GetMethodLocation());
467 }
468 }
469
PrepareCriticalNativeArgumentMoves(HInvokeStaticOrDirect * invoke,InvokeDexCallingConventionVisitor * visitor,HParallelMove * parallel_move)470 void CodeGenerator::PrepareCriticalNativeArgumentMoves(
471 HInvokeStaticOrDirect* invoke,
472 /*inout*/InvokeDexCallingConventionVisitor* visitor,
473 /*out*/HParallelMove* parallel_move) {
474 LocationSummary* locations = invoke->GetLocations();
475 for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
476 Location in_location = locations->InAt(i);
477 DataType::Type type = invoke->InputAt(i)->GetType();
478 DCHECK_NE(type, DataType::Type::kReference);
479 Location out_location = visitor->GetNextLocation(type);
480 if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
481 // Stack arguments will need to be moved after adjusting the SP.
482 parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
483 } else {
484 // Register arguments should have been assigned their final locations for register allocation.
485 DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
486 }
487 }
488 }
489
FinishCriticalNativeFrameSetup(size_t out_frame_size,HParallelMove * parallel_move)490 void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
491 /*inout*/HParallelMove* parallel_move) {
492 DCHECK_NE(out_frame_size, 0u);
493 IncreaseFrame(out_frame_size);
494 // Adjust the source stack offsets by `out_frame_size`, i.e. the additional
495 // frame size needed for outgoing stack arguments.
496 for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
497 MoveOperands* operands = parallel_move->MoveOperandsAt(i);
498 Location source = operands->GetSource();
499 if (operands->GetSource().IsStackSlot()) {
500 operands->SetSource(Location::StackSlot(source.GetStackIndex() + out_frame_size));
501 } else if (operands->GetSource().IsDoubleStackSlot()) {
502 operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() + out_frame_size));
503 }
504 }
505 // Emit the moves.
506 GetMoveResolver()->EmitNativeCode(parallel_move);
507 }
508
GetCriticalNativeShorty(HInvokeStaticOrDirect * invoke)509 std::string_view CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke) {
510 ScopedObjectAccess soa(Thread::Current());
511 DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
512 return invoke->GetResolvedMethod()->GetShortyView();
513 }
514
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)515 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
516 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
517 MethodReference method_reference(invoke->GetMethodReference());
518 MoveConstant(temp, method_reference.index);
519
520 // The access check is unnecessary but we do not want to introduce
521 // extra entrypoints for the codegens that do not support some
522 // invoke type and fall back to the runtime call.
523
524 // Initialize to anything to silent compiler warnings.
525 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
526 switch (invoke->GetInvokeType()) {
527 case kStatic:
528 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
529 break;
530 case kDirect:
531 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
532 break;
533 case kSuper:
534 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
535 break;
536 case kVirtual:
537 case kInterface:
538 case kPolymorphic:
539 case kCustom:
540 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
541 UNREACHABLE();
542 }
543
544 InvokeRuntime(entrypoint, invoke, slow_path);
545 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)546 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
547 MethodReference method_reference(invoke->GetMethodReference());
548 MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index);
549
550 // Initialize to anything to silent compiler warnings.
551 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
552 switch (invoke->GetInvokeType()) {
553 case kStatic:
554 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
555 break;
556 case kDirect:
557 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
558 break;
559 case kVirtual:
560 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
561 break;
562 case kSuper:
563 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
564 break;
565 case kInterface:
566 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
567 break;
568 case kPolymorphic:
569 case kCustom:
570 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
571 UNREACHABLE();
572 }
573 InvokeRuntime(entrypoint, invoke);
574 }
575
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke,SlowPathCode * slow_path)576 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke,
577 SlowPathCode* slow_path) {
578 // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
579 // method index) since it requires multiple info from the instruction (registers A, B, H). Not
580 // using the reservation has no effect on the registers used in the runtime call.
581 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
582 InvokeRuntime(entrypoint, invoke, slow_path);
583 }
584
GenerateInvokeCustomCall(HInvokeCustom * invoke)585 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
586 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
587 QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
588 InvokeRuntime(entrypoint, invoke);
589 }
590
CreateStringBuilderAppendLocations(HStringBuilderAppend * instruction,Location out)591 void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
592 Location out) {
593 ArenaAllocator* allocator = GetGraph()->GetAllocator();
594 LocationSummary* locations =
595 new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
596 locations->SetOut(out);
597 instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
598 Location::ConstantLocation(instruction->GetFormat()));
599
600 uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
601 uint32_t f = format;
602 PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
603 size_t stack_offset = static_cast<size_t>(pointer_size); // Start after the ArtMethod*.
604 for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
605 StringBuilderAppend::Argument arg_type =
606 static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
607 switch (arg_type) {
608 case StringBuilderAppend::Argument::kStringBuilder:
609 case StringBuilderAppend::Argument::kString:
610 case StringBuilderAppend::Argument::kCharArray:
611 static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
612 FALLTHROUGH_INTENDED;
613 case StringBuilderAppend::Argument::kBoolean:
614 case StringBuilderAppend::Argument::kChar:
615 case StringBuilderAppend::Argument::kInt:
616 case StringBuilderAppend::Argument::kFloat:
617 locations->SetInAt(i, Location::StackSlot(stack_offset));
618 break;
619 case StringBuilderAppend::Argument::kLong:
620 case StringBuilderAppend::Argument::kDouble:
621 stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
622 locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
623 // Skip the low word, let the common code skip the high word.
624 stack_offset += sizeof(uint32_t);
625 break;
626 default:
627 LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
628 << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
629 UNREACHABLE();
630 }
631 f >>= StringBuilderAppend::kBitsPerArg;
632 stack_offset += sizeof(uint32_t);
633 }
634 DCHECK_EQ(f, 0u);
635 DCHECK_EQ(stack_offset,
636 static_cast<size_t>(pointer_size) + kVRegSize * instruction->GetNumberOfOutVRegs());
637 }
638
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)639 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
640 HInstruction* field_access,
641 DataType::Type field_type,
642 const FieldAccessCallingConvention& calling_convention) {
643 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
644 || field_access->IsUnresolvedInstanceFieldSet();
645 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
646 || field_access->IsUnresolvedStaticFieldGet();
647
648 ArenaAllocator* allocator = GetGraph()->GetAllocator();
649 LocationSummary* locations =
650 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
651
652 locations->AddTemp(calling_convention.GetFieldIndexLocation());
653
654 if (is_instance) {
655 // Add the `this` object for instance field accesses.
656 locations->SetInAt(0, calling_convention.GetObjectLocation());
657 }
658
659 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
660 // regardless of the type. Because of that we forced to special case
661 // the access to floating point values.
662 if (is_get) {
663 if (DataType::IsFloatingPointType(field_type)) {
664 // The return value will be stored in regular registers while register
665 // allocator expects it in a floating point register.
666 // Note We don't need to request additional temps because the return
667 // register(s) are already blocked due the call and they may overlap with
668 // the input or field index.
669 // The transfer between the two will be done at codegen level.
670 locations->SetOut(calling_convention.GetFpuLocation(field_type));
671 } else {
672 locations->SetOut(calling_convention.GetReturnLocation(field_type));
673 }
674 } else {
675 size_t set_index = is_instance ? 1 : 0;
676 if (DataType::IsFloatingPointType(field_type)) {
677 // The set value comes from a float location while the calling convention
678 // expects it in a regular register location. Allocate a temp for it and
679 // make the transfer at codegen.
680 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
681 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
682 } else {
683 locations->SetInAt(set_index,
684 calling_convention.GetSetValueLocation(field_type, is_instance));
685 }
686 }
687 }
688
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,const FieldAccessCallingConvention & calling_convention)689 void CodeGenerator::GenerateUnresolvedFieldAccess(
690 HInstruction* field_access,
691 DataType::Type field_type,
692 uint32_t field_index,
693 const FieldAccessCallingConvention& calling_convention) {
694 LocationSummary* locations = field_access->GetLocations();
695
696 MoveConstant(locations->GetTemp(0), field_index);
697
698 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
699 || field_access->IsUnresolvedInstanceFieldSet();
700 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
701 || field_access->IsUnresolvedStaticFieldGet();
702
703 if (!is_get && DataType::IsFloatingPointType(field_type)) {
704 // Copy the float value to be set into the calling convention register.
705 // Note that using directly the temp location is problematic as we don't
706 // support temp register pairs. To avoid boilerplate conversion code, use
707 // the location from the calling convention.
708 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
709 locations->InAt(is_instance ? 1 : 0),
710 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
711 : DataType::Type::kInt32));
712 }
713
714 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
715 switch (field_type) {
716 case DataType::Type::kBool:
717 entrypoint = is_instance
718 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
719 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
720 break;
721 case DataType::Type::kInt8:
722 entrypoint = is_instance
723 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
724 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
725 break;
726 case DataType::Type::kInt16:
727 entrypoint = is_instance
728 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
729 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
730 break;
731 case DataType::Type::kUint16:
732 entrypoint = is_instance
733 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
734 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
735 break;
736 case DataType::Type::kInt32:
737 case DataType::Type::kFloat32:
738 entrypoint = is_instance
739 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
740 : (is_get ? kQuickGet32Static : kQuickSet32Static);
741 break;
742 case DataType::Type::kReference:
743 entrypoint = is_instance
744 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
745 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
746 break;
747 case DataType::Type::kInt64:
748 case DataType::Type::kFloat64:
749 entrypoint = is_instance
750 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
751 : (is_get ? kQuickGet64Static : kQuickSet64Static);
752 break;
753 default:
754 LOG(FATAL) << "Invalid type " << field_type;
755 }
756 InvokeRuntime(entrypoint, field_access);
757
758 if (is_get && DataType::IsFloatingPointType(field_type)) {
759 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
760 }
761 }
762
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)763 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
764 Location runtime_type_index_location,
765 Location runtime_return_location) {
766 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
767 DCHECK_EQ(cls->InputCount(), 1u);
768 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
769 cls, LocationSummary::kCallOnMainOnly);
770 locations->SetInAt(0, Location::NoLocation());
771 locations->AddTemp(runtime_type_index_location);
772 locations->SetOut(runtime_return_location);
773 }
774
GenerateLoadClassRuntimeCall(HLoadClass * cls)775 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
776 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
777 DCHECK(!cls->MustGenerateClinitCheck());
778 LocationSummary* locations = cls->GetLocations();
779 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
780 if (cls->NeedsAccessCheck()) {
781 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
782 InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls);
783 } else {
784 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
785 InvokeRuntime(kQuickResolveType, cls);
786 }
787 }
788
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)789 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
790 HLoadMethodHandle* method_handle,
791 Location runtime_proto_index_location,
792 Location runtime_return_location) {
793 DCHECK_EQ(method_handle->InputCount(), 1u);
794 LocationSummary* locations =
795 new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
796 method_handle, LocationSummary::kCallOnMainOnly);
797 locations->SetInAt(0, Location::NoLocation());
798 locations->AddTemp(runtime_proto_index_location);
799 locations->SetOut(runtime_return_location);
800 }
801
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)802 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
803 LocationSummary* locations = method_handle->GetLocations();
804 MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
805 CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
806 InvokeRuntime(kQuickResolveMethodHandle, method_handle);
807 }
808
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)809 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
810 HLoadMethodType* method_type,
811 Location runtime_proto_index_location,
812 Location runtime_return_location) {
813 DCHECK_EQ(method_type->InputCount(), 1u);
814 LocationSummary* locations =
815 new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
816 method_type, LocationSummary::kCallOnMainOnly);
817 locations->SetInAt(0, Location::NoLocation());
818 locations->AddTemp(runtime_proto_index_location);
819 locations->SetOut(runtime_return_location);
820 }
821
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)822 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
823 LocationSummary* locations = method_type->GetLocations();
824 MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
825 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
826 InvokeRuntime(kQuickResolveMethodType, method_type);
827 }
828
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)829 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
830 Runtime* runtime = Runtime::Current();
831 const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
832 runtime->GetHeap()->GetBootImageSpaces();
833 // Check that the `object` is in the expected section of one of the boot image files.
834 DCHECK(std::any_of(boot_image_spaces.begin(),
835 boot_image_spaces.end(),
836 [object, section](gc::space::ImageSpace* space) {
837 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
838 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
839 return space->GetImageHeader().GetImageSection(section).Contains(offset);
840 }));
841 uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
842 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
843 return dchecked_integral_cast<uint32_t>(offset);
844 }
845
GetBootImageOffset(ObjPtr<mirror::Object> object)846 uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) {
847 return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects);
848 }
849
850 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)851 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
852 DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
853 ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
854 DCHECK(klass != nullptr);
855 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
856 }
857
858 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)859 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
860 DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
861 ObjPtr<mirror::String> string = load_string->GetString().Get();
862 DCHECK(string != nullptr);
863 return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
864 }
865
GetBootImageOffset(HInvoke * invoke)866 uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) {
867 ArtMethod* method = invoke->GetResolvedMethod();
868 DCHECK(method != nullptr);
869 return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
870 }
871
872 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable.
GetBootImageOffset(ClassRoot class_root)873 uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS {
874 ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root);
875 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
876 }
877
878 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke * invoke)879 uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke)
880 NO_THREAD_SAFETY_ANALYSIS {
881 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
882 ArtMethod* method = invoke->GetResolvedMethod();
883 DCHECK(method != nullptr);
884 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>();
885 return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects);
886 }
887
BlockIfInRegister(Location location,bool is_out) const888 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
889 // The DCHECKS below check that a register is not specified twice in
890 // the summary. The out location can overlap with an input, so we need
891 // to special case it.
892 if (location.IsRegister()) {
893 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
894 blocked_core_registers_[location.reg()] = true;
895 } else if (location.IsFpuRegister()) {
896 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
897 blocked_fpu_registers_[location.reg()] = true;
898 } else if (location.IsFpuRegisterPair()) {
899 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
900 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
901 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
902 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
903 } else if (location.IsRegisterPair()) {
904 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
905 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
906 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
907 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
908 }
909 }
910
AllocateLocations(HInstruction * instruction)911 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
912 ArenaAllocator* allocator = GetGraph()->GetAllocator();
913 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
914 env->AllocateLocations(allocator);
915 }
916 instruction->Accept(GetLocationBuilder());
917 DCHECK(CheckTypeConsistency(instruction));
918 LocationSummary* locations = instruction->GetLocations();
919 if (!instruction->IsSuspendCheckEntry()) {
920 if (locations != nullptr) {
921 if (locations->CanCall()) {
922 MarkNotLeaf();
923 if (locations->NeedsSuspendCheckEntry()) {
924 MarkNeedsSuspendCheckEntry();
925 }
926 } else if (locations->Intrinsified() &&
927 instruction->IsInvokeStaticOrDirect() &&
928 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
929 // A static method call that has been fully intrinsified, and cannot call on the slow
930 // path or refer to the current method directly, no longer needs current method.
931 return;
932 }
933 }
934 if (instruction->NeedsCurrentMethod()) {
935 SetRequiresCurrentMethod();
936 }
937 }
938 }
939
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)940 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
941 const CompilerOptions& compiler_options,
942 OptimizingCompilerStats* stats) {
943 ArenaAllocator* allocator = graph->GetAllocator();
944 switch (compiler_options.GetInstructionSet()) {
945 #ifdef ART_ENABLE_CODEGEN_arm
946 case InstructionSet::kArm:
947 case InstructionSet::kThumb2: {
948 return std::unique_ptr<CodeGenerator>(
949 new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
950 }
951 #endif
952 #ifdef ART_ENABLE_CODEGEN_arm64
953 case InstructionSet::kArm64: {
954 return std::unique_ptr<CodeGenerator>(
955 new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
956 }
957 #endif
958 #ifdef ART_ENABLE_CODEGEN_riscv64
959 case InstructionSet::kRiscv64: {
960 return std::unique_ptr<CodeGenerator>(
961 new (allocator) riscv64::CodeGeneratorRISCV64(graph, compiler_options, stats));
962 }
963 #endif
964 #ifdef ART_ENABLE_CODEGEN_x86
965 case InstructionSet::kX86: {
966 return std::unique_ptr<CodeGenerator>(
967 new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
968 }
969 #endif
970 #ifdef ART_ENABLE_CODEGEN_x86_64
971 case InstructionSet::kX86_64: {
972 return std::unique_ptr<CodeGenerator>(
973 new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
974 }
975 #endif
976 default:
977 UNUSED(allocator);
978 UNUSED(graph);
979 UNUSED(stats);
980 return nullptr;
981 }
982 }
983
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats,const art::ArrayRef<const bool> & unimplemented_intrinsics)984 CodeGenerator::CodeGenerator(HGraph* graph,
985 size_t number_of_core_registers,
986 size_t number_of_fpu_registers,
987 size_t number_of_register_pairs,
988 uint32_t core_callee_save_mask,
989 uint32_t fpu_callee_save_mask,
990 const CompilerOptions& compiler_options,
991 OptimizingCompilerStats* stats,
992 const art::ArrayRef<const bool>& unimplemented_intrinsics)
993 : frame_size_(0),
994 core_spill_mask_(0),
995 fpu_spill_mask_(0),
996 first_register_slot_in_slow_path_(0),
997 allocated_registers_(RegisterSet::Empty()),
998 blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
999 kArenaAllocCodeGenerator)),
1000 blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
1001 kArenaAllocCodeGenerator)),
1002 number_of_core_registers_(number_of_core_registers),
1003 number_of_fpu_registers_(number_of_fpu_registers),
1004 number_of_register_pairs_(number_of_register_pairs),
1005 core_callee_save_mask_(core_callee_save_mask),
1006 fpu_callee_save_mask_(fpu_callee_save_mask),
1007 block_order_(nullptr),
1008 disasm_info_(nullptr),
1009 stats_(stats),
1010 graph_(graph),
1011 compiler_options_(compiler_options),
1012 current_slow_path_(nullptr),
1013 current_block_index_(0),
1014 is_leaf_(true),
1015 needs_suspend_check_entry_(false),
1016 requires_current_method_(false),
1017 code_generation_data_(),
1018 unimplemented_intrinsics_(unimplemented_intrinsics) {
1019 if (GetGraph()->IsCompilingOsr()) {
1020 // Make OSR methods have all registers spilled, this simplifies the logic of
1021 // jumping to the compiled code directly.
1022 for (size_t i = 0; i < number_of_core_registers_; ++i) {
1023 if (IsCoreCalleeSaveRegister(i)) {
1024 AddAllocatedRegister(Location::RegisterLocation(i));
1025 }
1026 }
1027 for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
1028 if (IsFloatingPointCalleeSaveRegister(i)) {
1029 AddAllocatedRegister(Location::FpuRegisterLocation(i));
1030 }
1031 }
1032 }
1033 if (GetGraph()->IsCompilingBaseline()) {
1034 // We need the current method in case we reach the hotness threshold. As a
1035 // side effect this makes the frame non-empty.
1036 SetRequiresCurrentMethod();
1037 }
1038 }
1039
~CodeGenerator()1040 CodeGenerator::~CodeGenerator() {}
1041
GetNumberOfJitRoots() const1042 size_t CodeGenerator::GetNumberOfJitRoots() const {
1043 DCHECK(code_generation_data_ != nullptr);
1044 return code_generation_data_->GetNumberOfJitRoots();
1045 }
1046
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)1047 static void CheckCovers(uint32_t dex_pc,
1048 const HGraph& graph,
1049 const CodeInfo& code_info,
1050 const ArenaVector<HSuspendCheck*>& loop_headers,
1051 ArenaVector<size_t>* covered) {
1052 for (size_t i = 0; i < loop_headers.size(); ++i) {
1053 if (loop_headers[i]->GetDexPc() == dex_pc) {
1054 if (graph.IsCompilingOsr()) {
1055 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
1056 }
1057 ++(*covered)[i];
1058 }
1059 }
1060 }
1061
1062 // Debug helper to ensure loop entries in compiled code are matched by
1063 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)1064 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
1065 const CodeInfo& code_info,
1066 const dex::CodeItem& code_item) {
1067 if (graph.HasTryCatch()) {
1068 // One can write loops through try/catch, which we do not support for OSR anyway.
1069 return;
1070 }
1071 ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
1072 for (HBasicBlock* block : graph.GetReversePostOrder()) {
1073 if (block->IsLoopHeader()) {
1074 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
1075 if (suspend_check != nullptr && !suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
1076 loop_headers.push_back(suspend_check);
1077 }
1078 }
1079 }
1080 ArenaVector<size_t> covered(
1081 loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1082 for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1083 &code_item)) {
1084 const uint32_t dex_pc = pair.DexPc();
1085 const Instruction& instruction = pair.Inst();
1086 if (instruction.IsBranch()) {
1087 uint32_t target = dex_pc + instruction.GetTargetOffset();
1088 CheckCovers(target, graph, code_info, loop_headers, &covered);
1089 } else if (instruction.IsSwitch()) {
1090 DexSwitchTable table(instruction, dex_pc);
1091 uint16_t num_entries = table.GetNumEntries();
1092 size_t offset = table.GetFirstValueIndex();
1093
1094 // Use a larger loop counter type to avoid overflow issues.
1095 for (size_t i = 0; i < num_entries; ++i) {
1096 // The target of the case.
1097 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1098 CheckCovers(target, graph, code_info, loop_headers, &covered);
1099 }
1100 }
1101 }
1102
1103 for (size_t i = 0; i < covered.size(); ++i) {
1104 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1105 }
1106 }
1107
BuildStackMaps(const dex::CodeItem * code_item)1108 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1109 ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1110 if (kIsDebugBuild && code_item != nullptr) {
1111 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1112 }
1113 return stack_map;
1114 }
1115
1116 // Returns whether stackmap dex register info is needed for the instruction.
1117 //
1118 // The following cases mandate having a dex register map:
1119 // * Deoptimization
1120 // when we need to obtain the values to restore actual vregisters for interpreter.
1121 // * Debuggability
1122 // when we want to observe the values / asynchronously deoptimize.
1123 // * Monitor operations
1124 // to allow dumping in a stack trace locked dex registers for non-debuggable code.
1125 // * On-stack-replacement (OSR)
1126 // when entering compiled for OSR code from the interpreter we need to initialize the compiled
1127 // code values with the values from the vregisters.
1128 // * Method local catch blocks
1129 // a catch block must see the environment of the instruction from the same method that can
1130 // throw to this block.
NeedsVregInfo(HInstruction * instruction,bool osr)1131 static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
1132 HGraph* graph = instruction->GetBlock()->GetGraph();
1133 return instruction->IsDeoptimize() ||
1134 graph->IsDebuggable() ||
1135 graph->HasMonitorOperations() ||
1136 osr ||
1137 instruction->CanThrowIntoCatchBlock();
1138 }
1139
RecordPcInfoForFrameOrBlockEntry(uint32_t dex_pc)1140 void CodeGenerator::RecordPcInfoForFrameOrBlockEntry(uint32_t dex_pc) {
1141 StackMapStream* stack_map_stream = GetStackMapStream();
1142 stack_map_stream->BeginStackMapEntry(dex_pc, GetAssembler()->CodePosition());
1143 stack_map_stream->EndStackMapEntry();
1144 }
1145
RecordPcInfo(HInstruction * instruction,SlowPathCode * slow_path,bool native_debug_info)1146 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1147 SlowPathCode* slow_path,
1148 bool native_debug_info) {
1149 // Only for native debuggable apps we take a look at the dex_pc from the instruction itself. For
1150 // the regular case, we retrieve the dex_pc from the instruction's environment.
1151 DCHECK_IMPLIES(native_debug_info, GetCompilerOptions().GetNativeDebuggable());
1152 DCHECK_IMPLIES(!native_debug_info, instruction->HasEnvironment()) << *instruction;
1153 RecordPcInfo(instruction,
1154 native_debug_info ? instruction->GetDexPc() : kNoDexPc,
1155 GetAssembler()->CodePosition(),
1156 slow_path,
1157 native_debug_info);
1158 }
1159
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,uint32_t native_pc,SlowPathCode * slow_path,bool native_debug_info)1160 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1161 uint32_t dex_pc,
1162 uint32_t native_pc,
1163 SlowPathCode* slow_path,
1164 bool native_debug_info) {
1165 DCHECK(instruction != nullptr);
1166 // Only for native debuggable apps we take a look at the dex_pc from the instruction itself. For
1167 // the regular case, we retrieve the dex_pc from the instruction's environment.
1168 DCHECK_IMPLIES(native_debug_info, GetCompilerOptions().GetNativeDebuggable());
1169 DCHECK_IMPLIES(!native_debug_info, instruction->HasEnvironment()) << *instruction;
1170
1171 LocationSummary* locations = instruction->GetLocations();
1172 uint32_t register_mask = locations->GetRegisterMask();
1173 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1174 if (locations->OnlyCallsOnSlowPath()) {
1175 // In case of slow path, we currently set the location of caller-save registers
1176 // to register (instead of their stack location when pushed before the slow-path
1177 // call). Therefore register_mask contains both callee-save and caller-save
1178 // registers that hold objects. We must remove the spilled caller-save from the
1179 // mask, since they will be overwritten by the callee.
1180 uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1181 register_mask &= ~spills;
1182 } else {
1183 // The register mask must be a subset of callee-save registers.
1184 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1185 }
1186
1187 uint32_t outer_dex_pc = dex_pc;
1188 uint32_t inlining_depth = 0;
1189 HEnvironment* const environment = instruction->GetEnvironment();
1190 if (environment != nullptr) {
1191 HEnvironment* outer_environment = environment;
1192 while (outer_environment->GetParent() != nullptr) {
1193 outer_environment = outer_environment->GetParent();
1194 ++inlining_depth;
1195 }
1196 outer_dex_pc = outer_environment->GetDexPc();
1197 }
1198
1199 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1200 bool osr =
1201 instruction->IsSuspendCheck() &&
1202 (info != nullptr) &&
1203 graph_->IsCompilingOsr() &&
1204 (inlining_depth == 0);
1205 StackMap::Kind kind = native_debug_info
1206 ? StackMap::Kind::Debug
1207 : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1208 bool needs_vreg_info = NeedsVregInfo(instruction, osr);
1209 StackMapStream* stack_map_stream = GetStackMapStream();
1210 stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1211 native_pc,
1212 register_mask,
1213 locations->GetStackMask(),
1214 kind,
1215 needs_vreg_info);
1216
1217 EmitEnvironment(environment, slow_path, needs_vreg_info);
1218 stack_map_stream->EndStackMapEntry();
1219
1220 if (osr) {
1221 DCHECK_EQ(info->GetSuspendCheck(), instruction);
1222 DCHECK(info->IsIrreducible());
1223 DCHECK(environment != nullptr);
1224 if (kIsDebugBuild) {
1225 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1226 HInstruction* in_environment = environment->GetInstructionAt(i);
1227 if (in_environment != nullptr) {
1228 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1229 Location location = environment->GetLocationAt(i);
1230 DCHECK(location.IsStackSlot() ||
1231 location.IsDoubleStackSlot() ||
1232 location.IsConstant() ||
1233 location.IsInvalid());
1234 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1235 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1236 }
1237 }
1238 }
1239 }
1240 }
1241 }
1242
HasStackMapAtCurrentPc()1243 bool CodeGenerator::HasStackMapAtCurrentPc() {
1244 uint32_t pc = GetAssembler()->CodeSize();
1245 StackMapStream* stack_map_stream = GetStackMapStream();
1246 size_t count = stack_map_stream->GetNumberOfStackMaps();
1247 if (count == 0) {
1248 return false;
1249 }
1250 return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1251 }
1252
MaybeRecordNativeDebugInfoForBlockEntry(uint32_t dex_pc)1253 void CodeGenerator::MaybeRecordNativeDebugInfoForBlockEntry(uint32_t dex_pc) {
1254 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1255 if (HasStackMapAtCurrentPc()) {
1256 // Ensure that we do not collide with the stack map of the previous instruction.
1257 GenerateNop();
1258 }
1259 RecordPcInfoForFrameOrBlockEntry(dex_pc);
1260 }
1261 }
1262
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1263 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1264 uint32_t dex_pc,
1265 SlowPathCode* slow_path) {
1266 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1267 if (HasStackMapAtCurrentPc()) {
1268 // Ensure that we do not collide with the stack map of the previous instruction.
1269 GenerateNop();
1270 }
1271 RecordPcInfo(instruction, slow_path, /* native_debug_info= */ true);
1272 }
1273 }
1274
RecordCatchBlockInfo()1275 void CodeGenerator::RecordCatchBlockInfo() {
1276 StackMapStream* stack_map_stream = GetStackMapStream();
1277
1278 for (HBasicBlock* block : *block_order_) {
1279 if (!block->IsCatchBlock()) {
1280 continue;
1281 }
1282
1283 // Get the outer dex_pc. We save the full environment list for DCHECK purposes in kIsDebugBuild.
1284 std::vector<uint32_t> dex_pc_list_for_verification;
1285 if (kIsDebugBuild) {
1286 dex_pc_list_for_verification.push_back(block->GetDexPc());
1287 }
1288 DCHECK(block->GetFirstInstruction()->IsNop());
1289 DCHECK(block->GetFirstInstruction()->AsNop()->NeedsEnvironment());
1290 HEnvironment* const environment = block->GetFirstInstruction()->GetEnvironment();
1291 DCHECK(environment != nullptr);
1292 HEnvironment* outer_environment = environment;
1293 while (outer_environment->GetParent() != nullptr) {
1294 outer_environment = outer_environment->GetParent();
1295 if (kIsDebugBuild) {
1296 dex_pc_list_for_verification.push_back(outer_environment->GetDexPc());
1297 }
1298 }
1299
1300 if (kIsDebugBuild) {
1301 // dex_pc_list_for_verification is set from innnermost to outermost. Let's reverse it
1302 // since we are expected to pass from outermost to innermost.
1303 std::reverse(dex_pc_list_for_verification.begin(), dex_pc_list_for_verification.end());
1304 DCHECK_EQ(dex_pc_list_for_verification.front(), outer_environment->GetDexPc());
1305 }
1306
1307 uint32_t native_pc = GetAddressOf(block);
1308 stack_map_stream->BeginStackMapEntry(outer_environment->GetDexPc(),
1309 native_pc,
1310 /* register_mask= */ 0,
1311 /* sp_mask= */ nullptr,
1312 StackMap::Kind::Catch,
1313 /* needs_vreg_info= */ true,
1314 dex_pc_list_for_verification);
1315
1316 EmitEnvironment(environment,
1317 /* slow_path= */ nullptr,
1318 /* needs_vreg_info= */ true,
1319 /* is_for_catch_handler= */ true);
1320
1321 stack_map_stream->EndStackMapEntry();
1322 }
1323 }
1324
AddSlowPath(SlowPathCode * slow_path)1325 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1326 DCHECK(code_generation_data_ != nullptr);
1327 code_generation_data_->AddSlowPath(slow_path);
1328 }
1329
EmitVRegInfo(HEnvironment * environment,SlowPathCode * slow_path,bool is_for_catch_handler)1330 void CodeGenerator::EmitVRegInfo(HEnvironment* environment,
1331 SlowPathCode* slow_path,
1332 bool is_for_catch_handler) {
1333 StackMapStream* stack_map_stream = GetStackMapStream();
1334 // Walk over the environment, and record the location of dex registers.
1335 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1336 HInstruction* current = environment->GetInstructionAt(i);
1337 if (current == nullptr) {
1338 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1339 continue;
1340 }
1341
1342 using Kind = DexRegisterLocation::Kind;
1343 Location location = environment->GetLocationAt(i);
1344 switch (location.GetKind()) {
1345 case Location::kConstant: {
1346 DCHECK_EQ(current, location.GetConstant());
1347 if (current->IsLongConstant()) {
1348 int64_t value = current->AsLongConstant()->GetValue();
1349 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1350 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1351 ++i;
1352 DCHECK_LT(i, environment_size);
1353 } else if (current->IsDoubleConstant()) {
1354 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1355 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1356 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1357 ++i;
1358 DCHECK_LT(i, environment_size);
1359 } else if (current->IsIntConstant()) {
1360 int32_t value = current->AsIntConstant()->GetValue();
1361 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1362 } else if (current->IsNullConstant()) {
1363 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1364 } else {
1365 DCHECK(current->IsFloatConstant()) << current->DebugName();
1366 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1367 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1368 }
1369 break;
1370 }
1371
1372 case Location::kStackSlot: {
1373 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1374 break;
1375 }
1376
1377 case Location::kDoubleStackSlot: {
1378 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1379 stack_map_stream->AddDexRegisterEntry(
1380 Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1381 ++i;
1382 DCHECK_LT(i, environment_size);
1383 break;
1384 }
1385
1386 case Location::kRegister : {
1387 DCHECK(!is_for_catch_handler);
1388 int id = location.reg();
1389 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1390 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1391 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1392 if (current->GetType() == DataType::Type::kInt64) {
1393 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1394 ++i;
1395 DCHECK_LT(i, environment_size);
1396 }
1397 } else {
1398 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1399 if (current->GetType() == DataType::Type::kInt64) {
1400 stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1401 ++i;
1402 DCHECK_LT(i, environment_size);
1403 }
1404 }
1405 break;
1406 }
1407
1408 case Location::kFpuRegister : {
1409 DCHECK(!is_for_catch_handler);
1410 int id = location.reg();
1411 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1412 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1413 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1414 if (current->GetType() == DataType::Type::kFloat64) {
1415 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1416 ++i;
1417 DCHECK_LT(i, environment_size);
1418 }
1419 } else {
1420 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1421 if (current->GetType() == DataType::Type::kFloat64) {
1422 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1423 ++i;
1424 DCHECK_LT(i, environment_size);
1425 }
1426 }
1427 break;
1428 }
1429
1430 case Location::kFpuRegisterPair : {
1431 DCHECK(!is_for_catch_handler);
1432 int low = location.low();
1433 int high = location.high();
1434 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1435 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1436 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1437 } else {
1438 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1439 }
1440 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1441 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1442 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1443 ++i;
1444 } else {
1445 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1446 ++i;
1447 }
1448 DCHECK_LT(i, environment_size);
1449 break;
1450 }
1451
1452 case Location::kRegisterPair : {
1453 DCHECK(!is_for_catch_handler);
1454 int low = location.low();
1455 int high = location.high();
1456 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1457 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1458 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1459 } else {
1460 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1461 }
1462 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1463 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1464 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1465 } else {
1466 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1467 }
1468 ++i;
1469 DCHECK_LT(i, environment_size);
1470 break;
1471 }
1472
1473 case Location::kInvalid: {
1474 stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1475 break;
1476 }
1477
1478 default:
1479 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1480 }
1481 }
1482 }
1483
EmitVRegInfoOnlyCatchPhis(HEnvironment * environment)1484 void CodeGenerator::EmitVRegInfoOnlyCatchPhis(HEnvironment* environment) {
1485 StackMapStream* stack_map_stream = GetStackMapStream();
1486 DCHECK(environment->GetHolder()->GetBlock()->IsCatchBlock());
1487 DCHECK_EQ(environment->GetHolder()->GetBlock()->GetFirstInstruction(), environment->GetHolder());
1488 HInstruction* current_phi = environment->GetHolder()->GetBlock()->GetFirstPhi();
1489 for (size_t vreg = 0; vreg < environment->Size(); ++vreg) {
1490 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1491 HInstruction* next_phi = current_phi->GetNext();
1492 DCHECK(next_phi == nullptr ||
1493 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1494 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1495 current_phi = next_phi;
1496 }
1497
1498 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1499 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1500 } else {
1501 Location location = current_phi->GetLocations()->Out();
1502 switch (location.GetKind()) {
1503 case Location::kStackSlot: {
1504 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1505 location.GetStackIndex());
1506 break;
1507 }
1508 case Location::kDoubleStackSlot: {
1509 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1510 location.GetStackIndex());
1511 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1512 location.GetHighStackIndex(kVRegSize));
1513 ++vreg;
1514 DCHECK_LT(vreg, environment->Size());
1515 break;
1516 }
1517 default: {
1518 LOG(FATAL) << "All catch phis must be allocated to a stack slot. Unexpected kind "
1519 << location.GetKind();
1520 UNREACHABLE();
1521 }
1522 }
1523 }
1524 }
1525 }
1526
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path,bool needs_vreg_info,bool is_for_catch_handler,bool innermost_environment)1527 void CodeGenerator::EmitEnvironment(HEnvironment* environment,
1528 SlowPathCode* slow_path,
1529 bool needs_vreg_info,
1530 bool is_for_catch_handler,
1531 bool innermost_environment) {
1532 if (environment == nullptr) return;
1533
1534 StackMapStream* stack_map_stream = GetStackMapStream();
1535 bool emit_inline_info = environment->GetParent() != nullptr;
1536
1537 if (emit_inline_info) {
1538 // We emit the parent environment first.
1539 EmitEnvironment(environment->GetParent(),
1540 slow_path,
1541 needs_vreg_info,
1542 is_for_catch_handler,
1543 /* innermost_environment= */ false);
1544 stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1545 environment->GetDexPc(),
1546 needs_vreg_info ? environment->Size() : 0,
1547 &graph_->GetDexFile(),
1548 this);
1549 }
1550
1551 // If a dex register map is not required we just won't emit it.
1552 if (needs_vreg_info) {
1553 if (innermost_environment && is_for_catch_handler) {
1554 EmitVRegInfoOnlyCatchPhis(environment);
1555 } else {
1556 EmitVRegInfo(environment, slow_path, is_for_catch_handler);
1557 }
1558 }
1559
1560 if (emit_inline_info) {
1561 stack_map_stream->EndInlineInfoEntry();
1562 }
1563 }
1564
CanMoveNullCheckToUser(HNullCheck * null_check)1565 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1566 return null_check->IsEmittedAtUseSite();
1567 }
1568
MaybeRecordImplicitNullCheck(HInstruction * instr)1569 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1570 HNullCheck* null_check = instr->GetImplicitNullCheck();
1571 if (null_check != nullptr) {
1572 DCHECK(compiler_options_.GetImplicitNullChecks());
1573 RecordPcInfo(null_check);
1574 }
1575 }
1576
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1577 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1578 RegisterSet caller_saves) {
1579 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1580 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1581 // because the HNullCheck needs an environment.
1582 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1583 // When throwing from a try block, we may need to retrieve dalvik registers from
1584 // physical registers and we also need to set up stack mask for GC. This is
1585 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1586 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1587 if (can_throw_into_catch_block) {
1588 call_kind = LocationSummary::kCallOnSlowPath;
1589 }
1590 LocationSummary* locations =
1591 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1592 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1593 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1594 }
1595 DCHECK(!instruction->HasUses());
1596 return locations;
1597 }
1598
GenerateNullCheck(HNullCheck * instruction)1599 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1600 if (compiler_options_.GetImplicitNullChecks()) {
1601 MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1602 GenerateImplicitNullCheck(instruction);
1603 } else {
1604 MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1605 GenerateExplicitNullCheck(instruction);
1606 }
1607 }
1608
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1609 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1610 HParallelMove* spills) const {
1611 LocationSummary* locations = suspend_check->GetLocations();
1612 HBasicBlock* block = suspend_check->GetBlock();
1613 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1614 DCHECK(block->IsLoopHeader());
1615 DCHECK(block->GetFirstInstruction() == spills);
1616
1617 for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1618 Location dest = spills->MoveOperandsAt(i)->GetDestination();
1619 // All parallel moves in loop headers are spills.
1620 DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1621 // Clear the stack bit marking a reference. Do not bother to check if the spill is
1622 // actually a reference spill, clearing bits that are already zero is harmless.
1623 locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1624 }
1625 }
1626
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1627 void CodeGenerator::EmitParallelMoves(Location from1,
1628 Location to1,
1629 DataType::Type type1,
1630 Location from2,
1631 Location to2,
1632 DataType::Type type2) {
1633 HParallelMove parallel_move(GetGraph()->GetAllocator());
1634 parallel_move.AddMove(from1, to1, type1, nullptr);
1635 parallel_move.AddMove(from2, to2, type2, nullptr);
1636 GetMoveResolver()->EmitNativeCode(¶llel_move);
1637 }
1638
StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value,WriteBarrierKind write_barrier_kind) const1639 bool CodeGenerator::StoreNeedsWriteBarrier(DataType::Type type,
1640 HInstruction* value,
1641 WriteBarrierKind write_barrier_kind) const {
1642 // Check that null value is not represented as an integer constant.
1643 DCHECK_IMPLIES(type == DataType::Type::kReference, !value->IsIntConstant());
1644 // Branch profiling currently doesn't support running optimizations.
1645 return (GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches())
1646 ? CodeGenerator::StoreNeedsWriteBarrier(type, value)
1647 : write_barrier_kind != WriteBarrierKind::kDontEmit;
1648 }
1649
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1650 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1651 HInstruction* instruction,
1652 SlowPathCode* slow_path) {
1653 // Ensure that the call kind indication given to the register allocator is
1654 // coherent with the runtime call generated.
1655 if (slow_path == nullptr) {
1656 DCHECK(instruction->GetLocations()->WillCall())
1657 << "instruction->DebugName()=" << instruction->DebugName();
1658 } else {
1659 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1660 << "instruction->DebugName()=" << instruction->DebugName()
1661 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1662 }
1663
1664 // Check that the GC side effect is set when required.
1665 // TODO: Reverse EntrypointCanTriggerGC
1666 if (EntrypointCanTriggerGC(entrypoint)) {
1667 if (slow_path == nullptr) {
1668 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1669 << "instruction->DebugName()=" << instruction->DebugName()
1670 << " instruction->GetSideEffects().ToString()="
1671 << instruction->GetSideEffects().ToString();
1672 } else {
1673 // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1674 // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1675 // if execution never returns to the compiled code from a GC point this restriction is
1676 // unnecessary - in particular for fatal slow paths which might trigger GC.
1677 DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1678 instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1679 // When (non-Baker) read barriers are enabled, some instructions
1680 // use a slow path to emit a read barrier, which does not trigger
1681 // GC.
1682 (EmitNonBakerReadBarrier() &&
1683 (instruction->IsInstanceFieldGet() ||
1684 instruction->IsStaticFieldGet() ||
1685 instruction->IsArrayGet() ||
1686 instruction->IsLoadClass() ||
1687 instruction->IsLoadString() ||
1688 instruction->IsInstanceOf() ||
1689 instruction->IsCheckCast() ||
1690 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1691 << "instruction->DebugName()=" << instruction->DebugName()
1692 << " instruction->GetSideEffects().ToString()="
1693 << instruction->GetSideEffects().ToString()
1694 << " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl
1695 << "Instruction and args: " << instruction->DumpWithArgs();
1696 }
1697 } else {
1698 // The GC side effect is not required for the instruction. But the instruction might still have
1699 // it, for example if it calls other entrypoints requiring it.
1700 }
1701
1702 // Check the coherency of leaf information.
1703 DCHECK(instruction->IsSuspendCheck()
1704 || ((slow_path != nullptr) && slow_path->IsFatal())
1705 || instruction->GetLocations()->CanCall()
1706 || !IsLeafMethod())
1707 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1708 }
1709
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1710 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1711 SlowPathCode* slow_path) {
1712 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1713 << "instruction->DebugName()=" << instruction->DebugName()
1714 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1715 // Only the Baker read barrier marking slow path used by certains
1716 // instructions is expected to invoke the runtime without recording
1717 // PC-related information.
1718 DCHECK(kUseBakerReadBarrier);
1719 DCHECK(instruction->IsInstanceFieldGet() ||
1720 instruction->IsStaticFieldGet() ||
1721 instruction->IsArrayGet() ||
1722 instruction->IsArraySet() ||
1723 instruction->IsLoadClass() ||
1724 instruction->IsLoadMethodType() ||
1725 instruction->IsLoadString() ||
1726 instruction->IsInstanceOf() ||
1727 instruction->IsCheckCast() ||
1728 (instruction->IsInvoke() && instruction->GetLocations()->Intrinsified()))
1729 << "instruction->DebugName()=" << instruction->DebugName()
1730 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1731 }
1732
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1733 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1734 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1735
1736 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1737 for (uint32_t i : LowToHighBits(core_spills)) {
1738 // If the register holds an object, update the stack mask.
1739 if (locations->RegisterContainsObject(i)) {
1740 locations->SetStackBit(stack_offset / kVRegSize);
1741 }
1742 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1743 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1744 saved_core_stack_offsets_[i] = stack_offset;
1745 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1746 }
1747
1748 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1749 for (uint32_t i : LowToHighBits(fp_spills)) {
1750 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1751 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1752 saved_fpu_stack_offsets_[i] = stack_offset;
1753 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1754 }
1755 }
1756
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1757 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1758 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1759
1760 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1761 for (uint32_t i : LowToHighBits(core_spills)) {
1762 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1763 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1764 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1765 }
1766
1767 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1768 for (uint32_t i : LowToHighBits(fp_spills)) {
1769 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1770 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1771 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1772 }
1773 }
1774
CreateSystemArrayCopyLocationSummary(HInvoke * invoke,int32_t length_threshold,size_t num_temps)1775 LocationSummary* CodeGenerator::CreateSystemArrayCopyLocationSummary(
1776 HInvoke* invoke, int32_t length_threshold, size_t num_temps) {
1777 // Check to see if we have known failures that will cause us to have to bail out
1778 // to the runtime, and just generate the runtime call directly.
1779 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstantOrNull();
1780 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstantOrNull();
1781
1782 // The positions must be non-negative.
1783 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1784 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1785 // We will have to fail anyways.
1786 return nullptr;
1787 }
1788
1789 // The length must be >= 0. If a positive `length_threshold` is provided, lengths
1790 // greater or equal to the threshold are also handled by the normal implementation.
1791 HIntConstant* length = invoke->InputAt(4)->AsIntConstantOrNull();
1792 if (length != nullptr) {
1793 int32_t len = length->GetValue();
1794 if (len < 0 || (length_threshold > 0 && len >= length_threshold)) {
1795 // Just call as normal.
1796 return nullptr;
1797 }
1798 }
1799
1800 SystemArrayCopyOptimizations optimizations(invoke);
1801
1802 if (optimizations.GetDestinationIsSource()) {
1803 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1804 // We only support backward copying if source and destination are the same.
1805 return nullptr;
1806 }
1807 }
1808
1809 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1810 // We currently don't intrinsify primitive copying.
1811 return nullptr;
1812 }
1813
1814 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1815 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1816 LocationSummary::kCallOnSlowPath,
1817 kIntrinsified);
1818 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1819 locations->SetInAt(0, Location::RequiresRegister());
1820 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1821 locations->SetInAt(2, Location::RequiresRegister());
1822 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1823 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1824
1825 if (num_temps != 0u) {
1826 locations->AddRegisterTemps(num_temps);
1827 }
1828 return locations;
1829 }
1830
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1831 void CodeGenerator::EmitJitRoots(uint8_t* code,
1832 const uint8_t* roots_data,
1833 /*out*/std::vector<Handle<mirror::Object>>* roots) {
1834 code_generation_data_->EmitJitRoots(roots);
1835 EmitJitRootPatches(code, roots_data);
1836 }
1837
GetArrayAllocationEntrypoint(HNewArray * new_array)1838 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1839 switch (new_array->GetComponentSizeShift()) {
1840 case 0: return kQuickAllocArrayResolved8;
1841 case 1: return kQuickAllocArrayResolved16;
1842 case 2: return kQuickAllocArrayResolved32;
1843 case 3: return kQuickAllocArrayResolved64;
1844 }
1845 LOG(FATAL) << "Unreachable";
1846 UNREACHABLE();
1847 }
1848
ScaleFactorForType(DataType::Type type)1849 ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) {
1850 switch (type) {
1851 case DataType::Type::kBool:
1852 case DataType::Type::kUint8:
1853 case DataType::Type::kInt8:
1854 return TIMES_1;
1855 case DataType::Type::kUint16:
1856 case DataType::Type::kInt16:
1857 return TIMES_2;
1858 case DataType::Type::kInt32:
1859 case DataType::Type::kUint32:
1860 case DataType::Type::kFloat32:
1861 case DataType::Type::kReference:
1862 return TIMES_4;
1863 case DataType::Type::kInt64:
1864 case DataType::Type::kUint64:
1865 case DataType::Type::kFloat64:
1866 return TIMES_8;
1867 case DataType::Type::kVoid:
1868 LOG(FATAL) << "Unreachable type " << type;
1869 UNREACHABLE();
1870 }
1871 }
1872
1873 } // namespace art
1874