1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <charconv>
25 #include <memory>
26 #include <numeric>
27 #include <vector>
28
29 #include "android-base/strings.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/callee_save_type.h"
33 #include "base/globals.h"
34 #include "base/logging.h" // For VLOG.
35 #include "base/pointer_size.h"
36 #include "base/stl_util.h"
37 #include "base/unix_file/fd_file.h"
38 #include "class_linker-inl.h"
39 #include "class_root-inl.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "entrypoints/entrypoint_utils-inl.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "imt_conflict_table.h"
57 #include "indirect_reference_table-inl.h"
58 #include "intern_table-inl.h"
59 #include "jni/java_vm_ext-inl.h"
60 #include "jni/jni_internal.h"
61 #include "linear_alloc.h"
62 #include "lock_word.h"
63 #include "mirror/array-inl.h"
64 #include "mirror/class-inl.h"
65 #include "mirror/class_ext-inl.h"
66 #include "mirror/class_loader.h"
67 #include "mirror/dex_cache-inl.h"
68 #include "mirror/dex_cache.h"
69 #include "mirror/executable.h"
70 #include "mirror/method.h"
71 #include "mirror/object-inl.h"
72 #include "mirror/object-refvisitor-inl.h"
73 #include "mirror/object_array-alloc-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/string-inl.h"
76 #include "mirror/var_handle.h"
77 #include "nterp_helpers-inl.h"
78 #include "nterp_helpers.h"
79 #include "oat/elf_file.h"
80 #include "oat/image-inl.h"
81 #include "oat/jni_stub_hash_map-inl.h"
82 #include "oat/oat.h"
83 #include "oat/oat_file.h"
84 #include "oat/oat_file_manager.h"
85 #include "optimizing/intrinsic_objects.h"
86 #include "runtime.h"
87 #include "scoped_thread_state_change-inl.h"
88 #include "subtype_check.h"
89 #include "thread-current-inl.h" // For AssertOnly1Thread.
90 #include "thread_list.h" // For AssertOnly1Thread.
91 #include "well_known_classes-inl.h"
92
93 using ::art::mirror::Class;
94 using ::art::mirror::DexCache;
95 using ::art::mirror::Object;
96 using ::art::mirror::ObjectArray;
97 using ::art::mirror::String;
98
99 namespace art {
100 namespace linker {
101
102 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
103 // are never resized, but we still need to pass a reasonable value to the constructor.
104 constexpr double kImageClassTableMinLoadFactor = 0.5;
105 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
106 // to make them full. We never insert additional elements to them, so we do not want to waste
107 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
108 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
109 constexpr double kImageClassTableMaxLoadFactor = 0.6;
110
111 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
112 // are never resized, but we still need to pass a reasonable value to the constructor.
113 constexpr double kImageInternTableMinLoadFactor = 0.5;
114 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
115 // to make them full. We never insert additional elements to them, so we do not want to waste
116 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
117 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
118 constexpr double kImageInternTableMaxLoadFactor = 0.6;
119
120 // Separate objects into multiple bins to optimize dirty memory use.
121 static constexpr bool kBinObjects = true;
122
123 namespace {
124
125 // Dirty object data from dirty-image-objects.
126 struct DirtyEntry {
127 // Reference field name and type.
128 struct RefInfo {
129 std::string_view name;
130 std::string_view type;
131 };
132
133 std::string_view class_descriptor;
134 // A "path" from class object to the dirty object. If empty -- the class itself is dirty.
135 std::vector<RefInfo> reference_path;
136 uint32_t sort_key = std::numeric_limits<uint32_t>::max();
137 };
138
139 // Parse dirty-image-object line of the format:
140 // <class_descriptor>[.<reference_field_name>:<reference_field_type>]* [<sort_key>]
ParseDirtyEntry(std::string_view entry_str)141 std::optional<DirtyEntry> ParseDirtyEntry(std::string_view entry_str) {
142 DirtyEntry entry;
143 std::vector<std::string_view> tokens;
144 Split(entry_str, ' ', &tokens);
145 if (tokens.empty()) {
146 // entry_str is empty.
147 return std::nullopt;
148 }
149
150 std::string_view path_to_root = tokens[0];
151 // Parse sort_key if present, otherwise it will be uint32::max by default.
152 if (tokens.size() > 1) {
153 std::from_chars_result res =
154 std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), entry.sort_key);
155 if (res.ec != std::errc()) {
156 LOG(WARNING) << "Failed to parse dirty object sort key: \"" << entry_str << "\"";
157 return std::nullopt;
158 }
159 }
160
161 std::vector<std::string_view> path_components;
162 Split(path_to_root, '.', &path_components);
163 if (path_components.empty()) {
164 return std::nullopt;
165 }
166 entry.class_descriptor = path_components[0];
167 for (size_t i = 1; i < path_components.size(); ++i) {
168 std::string_view name_and_type = path_components[i];
169 std::vector<std::string_view> ref_data;
170 Split(name_and_type, ':', &ref_data);
171 if (ref_data.size() != 2) {
172 LOG(WARNING) << "Failed to parse dirty object reference field: \"" << entry_str << "\"";
173 return std::nullopt;
174 }
175
176 std::string_view field_name = ref_data[0];
177 std::string_view field_type = ref_data[1];
178 entry.reference_path.push_back({field_name, field_type});
179 }
180
181 return entry;
182 }
183
184 // Calls VisitFunc for each non-null (reference)Object/ArtField pair.
185 // Doesn't work with ObjectArray instances, because array elements don't have ArtField.
186 class ReferenceFieldVisitor {
187 public:
188 using VisitFunc = std::function<void(mirror::Object&, ArtField&)>;
189
ReferenceFieldVisitor(VisitFunc visit_func)190 explicit ReferenceFieldVisitor(VisitFunc visit_func) : visit_func_(std::move(visit_func)) {}
191
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const192 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static) const
193 REQUIRES_SHARED(Locks::mutator_lock_) {
194 CHECK(!obj->IsObjectArray());
195 mirror::Object* field_obj =
196 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
197 // Skip fields that contain null.
198 if (field_obj == nullptr) {
199 return;
200 }
201 // Skip self references.
202 if (field_obj == obj.Ptr()) {
203 return;
204 }
205
206 ArtField* field = nullptr;
207 // Don't use Object::FindFieldByOffset, because it can't find instance fields in classes.
208 // field = obj->FindFieldByOffset(offset);
209 if (is_static) {
210 CHECK(obj->IsClass());
211 field = ArtField::FindStaticFieldWithOffset(obj->AsClass(), offset.Uint32Value());
212 } else {
213 field = ArtField::
214 FindInstanceFieldWithOffset</*kExactOffset*/ true, kVerifyNone, kWithoutReadBarrier>(
215 obj->GetClass<kVerifyNone, kWithoutReadBarrier>(), offset.Uint32Value());
216 }
217 DCHECK(field != nullptr);
218 visit_func_(*field_obj, *field);
219 }
220
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const221 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
222 REQUIRES_SHARED(Locks::mutator_lock_) {
223 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
224 }
225
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const226 void VisitRootIfNonNull([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
227 REQUIRES_SHARED(Locks::mutator_lock_) {
228 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
229 }
230
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const231 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
232 REQUIRES_SHARED(Locks::mutator_lock_) {
233 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
234 }
235
236 private:
237 VisitFunc visit_func_;
238 };
239
240 // Finds Class objects for descriptors of dirty entries.
241 // Map keys are string_views, that point to strings from `dirty_image_objects`.
242 // If there is no Class for a descriptor, the result map will have an entry with nullptr value.
FindClassesByDescriptor(const std::vector<std::string> & dirty_image_objects)243 static HashMap<std::string_view, mirror::Object*> FindClassesByDescriptor(
244 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
245 HashMap<std::string_view, mirror::Object*> descriptor_to_class;
246 // Collect class descriptors that are used in dirty-image-objects.
247 for (const std::string& entry : dirty_image_objects) {
248 auto it = std::find_if(entry.begin(), entry.end(), [](char c) { return c == '.' || c == ' '; });
249 size_t descriptor_len = std::distance(entry.begin(), it);
250
251 std::string_view descriptor = std::string_view(entry).substr(0, descriptor_len);
252 descriptor_to_class.insert(std::make_pair(descriptor, nullptr));
253 }
254
255 // Find Class objects for collected descriptors.
256 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
257 DCHECK(obj != nullptr);
258 if (obj->IsClass()) {
259 std::string temp;
260 const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
261 auto it = descriptor_to_class.find(descriptor);
262 if (it != descriptor_to_class.end()) {
263 it->second = obj;
264 }
265 }
266 };
267 Runtime::Current()->GetHeap()->VisitObjects(visitor);
268
269 return descriptor_to_class;
270 }
271
272 // Get all objects that match dirty_entries by path from class.
273 // Map values are sort_keys from DirtyEntry.
MatchDirtyObjectPaths(const std::vector<std::string> & dirty_image_objects)274 HashMap<mirror::Object*, uint32_t> MatchDirtyObjectPaths(
275 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
276 auto get_array_element = [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
277 REQUIRES_SHARED(Locks::mutator_lock_) -> mirror::Object* {
278 if (!cur_obj->IsObjectArray()) {
279 return nullptr;
280 }
281 int32_t idx = 0;
282 std::from_chars_result idx_parse_res =
283 std::from_chars(ref_info.name.data(), ref_info.name.data() + ref_info.name.size(), idx);
284 if (idx_parse_res.ec != std::errc()) {
285 return nullptr;
286 }
287
288 ObjPtr<ObjectArray<mirror::Object>> array = cur_obj->AsObjectArray<mirror::Object>();
289 if (idx < 0 || idx >= array->GetLength()) {
290 return nullptr;
291 }
292
293 ObjPtr<mirror::Object> next_obj =
294 array->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(idx);
295 if (next_obj == nullptr) {
296 return nullptr;
297 }
298
299 std::string temp;
300 if (next_obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->GetDescriptor(&temp) !=
301 ref_info.type) {
302 return nullptr;
303 }
304 return next_obj.Ptr();
305 };
306 auto get_object_field =
307 [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
308 REQUIRES_SHARED(Locks::mutator_lock_) {
309 mirror::Object* next_obj = nullptr;
310 ReferenceFieldVisitor::VisitFunc visit_func =
311 [&](mirror::Object& ref_obj, ArtField& ref_field)
312 REQUIRES_SHARED(Locks::mutator_lock_) {
313 if (ref_field.GetName() == ref_info.name &&
314 ref_field.GetTypeDescriptor() == ref_info.type) {
315 next_obj = &ref_obj;
316 }
317 };
318 ReferenceFieldVisitor visitor(visit_func);
319 cur_obj->VisitReferences</*kVisitNativeRoots=*/false, kVerifyNone, kWithoutReadBarrier>(
320 visitor, visitor);
321
322 return next_obj;
323 };
324
325 HashMap<mirror::Object*, uint32_t> dirty_objects;
326 const HashMap<std::string_view, mirror::Object*> descriptor_to_class =
327 FindClassesByDescriptor(dirty_image_objects);
328 for (const std::string& entry_str : dirty_image_objects) {
329 const std::optional<DirtyEntry> entry = ParseDirtyEntry(entry_str);
330 if (entry == std::nullopt) {
331 continue;
332 }
333
334 auto root_it = descriptor_to_class.find(entry->class_descriptor);
335 if (root_it == descriptor_to_class.end() || root_it->second == nullptr) {
336 LOG(WARNING) << "Class not found: \"" << entry->class_descriptor << "\"";
337 continue;
338 }
339
340 mirror::Object* cur_obj = root_it->second;
341 for (const DirtyEntry::RefInfo& ref_info : entry->reference_path) {
342 if (std::all_of(
343 ref_info.name.begin(), ref_info.name.end(), [](char c) { return std::isdigit(c); })) {
344 cur_obj = get_array_element(cur_obj, ref_info);
345 } else {
346 cur_obj = get_object_field(cur_obj, ref_info);
347 }
348 if (cur_obj == nullptr) {
349 LOG(WARNING) << ART_FORMAT("Failed to find field \"{}:{}\", entry: \"{}\"",
350 ref_info.name,
351 ref_info.type,
352 entry_str);
353 break;
354 }
355 }
356 if (cur_obj == nullptr) {
357 continue;
358 }
359
360 dirty_objects.insert(std::make_pair(cur_obj, entry->sort_key));
361 }
362
363 return dirty_objects;
364 }
365
366 } // namespace
367
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)368 static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
369 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
370 ClassLinker* class_linker = runtime->GetClassLinker();
371 // The objects used for intrinsics must remain live even if references
372 // to them are removed using reflection. Image roots are not accessible through reflection,
373 // so the array we construct here shall keep them alive.
374 StackHandleScope<1> hs(self);
375 size_t live_objects_size =
376 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
377 IntrinsicObjects::GetNumberOfIntrinsicObjects();
378 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
379 mirror::ObjectArray<mirror::Object>::Alloc(
380 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
381 if (live_objects == nullptr) {
382 return nullptr;
383 }
384 int32_t index = 0u;
385 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
386 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
387 DCHECK_EQ(index, enum_cast<int32_t>(entry));
388 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
389 ++index;
390 };
391 set_entry(ImageHeader::kOomeWhenThrowingException,
392 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
393 set_entry(ImageHeader::kOomeWhenThrowingOome,
394 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
395 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
396 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
397 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
398 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
399
400 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
401 IntrinsicObjects::FillIntrinsicObjects(live_objects, index);
402 return live_objects;
403 }
404
405 template <typename MirrorType>
DecodeGlobalWithoutRB(JavaVMExt * vm,jobject obj)406 ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
407 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
408 return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
409 }
410
411 template <typename MirrorType>
DecodeWeakGlobalWithoutRB(JavaVMExt * vm,Thread * self,jobject obj)412 ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
413 JavaVMExt* vm, Thread* self, jobject obj) {
414 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
415 DCHECK(vm->MayAccessWeakGlobals(self));
416 return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
417 }
418
GetAppClassLoader() const419 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
420 REQUIRES_SHARED(Locks::mutator_lock_) {
421 return compiler_options_.IsAppImage()
422 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
423 : nullptr;
424 }
425
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const426 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
427 // For boot image, we keep all dex caches.
428 if (compiler_options_.IsBootImage()) {
429 return true;
430 }
431 // Dex caches already in the boot image do not belong to the image being written.
432 if (IsInBootImage(dex_cache.Ptr())) {
433 return false;
434 }
435 // Dex caches for the boot class path components that are not part of the boot image
436 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
437 // include them in the app image.
438 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
439 return false;
440 }
441 return true;
442 }
443
ClearDexFileCookies()444 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
445 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
446 DCHECK(obj != nullptr);
447 Class* klass = obj->GetClass();
448 if (klass == WellKnownClasses::dalvik_system_DexFile) {
449 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
450 // Null out the cookie to enable determinism. b/34090128
451 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
452 }
453 };
454 Runtime::Current()->GetHeap()->VisitObjects(visitor);
455 }
456
PrepareImageAddressSpace(TimingLogger * timings)457 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
458 Thread* const self = Thread::Current();
459
460 gc::Heap* const heap = Runtime::Current()->GetHeap();
461 {
462 ScopedObjectAccess soa(self);
463 {
464 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
465 PruneNonImageClasses(); // Remove junk
466 }
467
468 if (UNLIKELY(!CreateImageRoots())) {
469 self->AssertPendingOOMException();
470 self->ClearException();
471 return false;
472 }
473
474 if (compiler_options_.IsAppImage()) {
475 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
476 // Clear dex file cookies for app images to enable app image determinism. This is required
477 // since the cookie field contains long pointers to DexFiles which are not deterministic.
478 // b/34090128
479 ClearDexFileCookies();
480 }
481 }
482
483 {
484 TimingLogger::ScopedTiming t("CollectGarbage", timings);
485 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
486 }
487
488 if (kIsDebugBuild) {
489 ScopedObjectAccess soa(self);
490 CheckNonImageClassesRemoved();
491 }
492
493 // From this point on, there should be no GC, so we should not use unnecessary read barriers.
494 ScopedDebugDisallowReadBarriers sddrb(self);
495
496 {
497 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
498 // string was strongly or weakly interned, we shall make it strongly interned in the image.
499 TimingLogger::ScopedTiming t("PromoteInterns", timings);
500 ScopedObjectAccess soa(self);
501 PromoteWeakInternsToStrong(self);
502 }
503
504 {
505 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
506 ScopedObjectAccess soa(self);
507 CalculateNewObjectOffsets();
508 }
509
510 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
511 // bin size sums being calculated.
512 TimingLogger::ScopedTiming t("AllocMemory", timings);
513 return AllocMemory();
514 }
515
CopyMetadata()516 void ImageWriter::CopyMetadata() {
517 DCHECK(compiler_options_.IsAppImage());
518 CHECK_EQ(image_infos_.size(), 1u);
519
520 const ImageInfo& image_info = image_infos_.back();
521 dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
522
523 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
524 image_info.image_.Begin() +
525 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
526
527 std::copy(image_info.string_reference_offsets_.begin(),
528 image_info.string_reference_offsets_.end(),
529 sfo_section_base);
530 }
531
532 // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
IsStronglyInternedString(ObjPtr<mirror::String> str)533 bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
534 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
535 if (hash == 0u && str->ComputeHashCode() != 0) {
536 // A string with uninitialized hash code cannot be interned.
537 return false;
538 }
539 InternTable* intern_table = Runtime::Current()->GetInternTable();
540 for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
541 auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
542 if (it != table.set_.end()) {
543 return it->Read<kWithoutReadBarrier>() == str;
544 }
545 }
546 return false;
547 }
548
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const549 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
550 return referred_obj != nullptr &&
551 !IsInBootImage(referred_obj.Ptr()) &&
552 referred_obj->IsString() &&
553 IsStronglyInternedString(referred_obj->AsString());
554 }
555
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)556 bool ImageWriter::Write(int image_fd,
557 const std::vector<std::string>& image_filenames,
558 size_t component_count) {
559 // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
560 // image_filenames or oat_filenames.
561 CHECK(!image_filenames.empty());
562 if (image_fd != File::kInvalidFd) {
563 CHECK_EQ(image_filenames.size(), 1u);
564 }
565 DCHECK(!oat_filenames_.empty());
566 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
567
568 Thread* const self = Thread::Current();
569 ScopedDebugDisallowReadBarriers sddrb(self);
570 {
571 ScopedObjectAccess soa(self);
572 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
573 CreateHeader(i, component_count);
574 CopyAndFixupNativeData(i);
575 CopyAndFixupJniStubMethods(i);
576 }
577 }
578
579 {
580 // TODO: heap validation can't handle these fix up passes.
581 ScopedObjectAccess soa(self);
582 Runtime::Current()->GetHeap()->DisableObjectValidation();
583 CopyAndFixupObjects();
584 }
585
586 if (compiler_options_.IsAppImage()) {
587 CopyMetadata();
588 }
589
590 // Primary image header shall be written last for two reasons. First, this ensures
591 // that we shall not end up with a valid primary image and invalid secondary image.
592 // Second, its checksum shall include the checksums of the secondary images (XORed).
593 // This way only the primary image checksum needs to be checked to determine whether
594 // any of the images or oat files are out of date. (Oat file checksums are included
595 // in the image checksum calculation.)
596 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
597 ImageFileGuard primary_image_file;
598 for (size_t i = 0; i < image_filenames.size(); ++i) {
599 const std::string& image_filename = image_filenames[i];
600 ImageInfo& image_info = GetImageInfo(i);
601 ImageFileGuard image_file;
602 if (image_fd != File::kInvalidFd) {
603 // Ignore image_filename, it is supplied only for better diagnostic.
604 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
605 // Empty the file in case it already exists.
606 if (image_file != nullptr) {
607 TEMP_FAILURE_RETRY(image_file->SetLength(0));
608 TEMP_FAILURE_RETRY(image_file->Flush());
609 }
610 } else {
611 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
612 }
613
614 if (image_file == nullptr) {
615 LOG(ERROR) << "Failed to open image file " << image_filename;
616 return false;
617 }
618
619 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
620 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
621 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
622 return false;
623 }
624
625 // Image data size excludes the bitmap and the header.
626 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
627 std::string error_msg;
628 if (!image_header->WriteData(image_file,
629 image_info.image_.Begin(),
630 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
631 image_storage_mode_,
632 compiler_options_.MaxImageBlockSize(),
633 /* update_checksum= */ true,
634 &error_msg)) {
635 LOG(ERROR) << error_msg;
636 return false;
637 }
638
639 // Write header last in case the compiler gets killed in the middle of image writing.
640 // We do not want to have a corrupted image with a valid header.
641 // Delay the writing of the primary image header until after writing secondary images.
642 if (i == 0u) {
643 primary_image_file = std::move(image_file);
644 } else {
645 if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) {
646 LOG(ERROR) << error_msg;
647 return false;
648 }
649 // Update the primary image checksum with the secondary image checksum.
650 primary_header->SetImageChecksum(
651 primary_header->GetImageChecksum() ^ image_header->GetImageChecksum());
652 }
653 }
654 DCHECK(primary_image_file != nullptr);
655 std::string error_msg;
656 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) {
657 LOG(ERROR) << error_msg;
658 return false;
659 }
660
661 return true;
662 }
663
GetImageOffset(mirror::Object * object,size_t oat_index) const664 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
665 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
666 const ImageInfo& image_info = GetImageInfo(oat_index);
667 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
668 DCHECK_LT(offset, image_info.image_end_);
669 return offset;
670 }
671
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)672 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
673 DCHECK(object != nullptr);
674 DCHECK(!IsImageBinSlotAssigned(object));
675
676 // Before we stomp over the lock word, save the hash code for later.
677 LockWord lw(object->GetLockWord(false));
678 switch (lw.GetState()) {
679 case LockWord::kFatLocked:
680 FALLTHROUGH_INTENDED;
681 case LockWord::kThinLocked: {
682 std::ostringstream oss;
683 bool thin = (lw.GetState() == LockWord::kThinLocked);
684 oss << (thin ? "Thin" : "Fat")
685 << " locked object " << object << "(" << object->PrettyTypeOf()
686 << ") found during object copy";
687 if (thin) {
688 oss << ". Lock owner:" << lw.ThinLockOwner();
689 }
690 LOG(FATAL) << oss.str();
691 UNREACHABLE();
692 }
693 case LockWord::kUnlocked:
694 // No hash, don't need to save it.
695 break;
696 case LockWord::kHashCode:
697 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
698 saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
699 break;
700 default:
701 LOG(FATAL) << "UNREACHABLE";
702 UNREACHABLE();
703 }
704 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
705 /*as_volatile=*/ false);
706 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
707 DCHECK(IsImageBinSlotAssigned(object));
708 }
709
GetImageBin(mirror::Object * object)710 ImageWriter::Bin ImageWriter::GetImageBin(mirror::Object* object) {
711 DCHECK(object != nullptr);
712
713 // The magic happens here. We segregate objects into different bins based
714 // on how likely they are to get dirty at runtime.
715 //
716 // Likely-to-dirty objects get packed together into the same bin so that
717 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
718 // maximized.
719 //
720 // This means more pages will stay either clean or shared dirty (with zygote) and
721 // the app will use less of its own (private) memory.
722 Bin bin = Bin::kRegular;
723
724 if (kBinObjects) {
725 //
726 // Changing the bin of an object is purely a memory-use tuning.
727 // It has no change on runtime correctness.
728 //
729 // Memory analysis has determined that the following types of objects get dirtied
730 // the most:
731 //
732 // * Class'es which are verified [their clinit runs only at runtime]
733 // - classes in general [because their static fields get overwritten]
734 // - initialized classes with all-final statics are unlikely to be ever dirty,
735 // so bin them separately
736 // * Art Methods that are:
737 // - native [their native entry point is not looked up until runtime]
738 // - have declaring classes that aren't initialized
739 // [their interpreter/quick entry points are trampolines until the class
740 // becomes initialized]
741 //
742 // We also assume the following objects get dirtied either never or extremely rarely:
743 // * Strings (they are immutable)
744 // * Art methods that aren't native and have initialized declared classes
745 //
746 // We assume that "regular" bin objects are highly unlikely to become dirtied,
747 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
748 //
749 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
750 if (klass->IsStringClass<kVerifyNone>()) {
751 // Assign strings to their bin before checking dirty objects, because
752 // string intern processing expects strings to be in Bin::kString.
753 bin = Bin::kString; // Strings are almost always immutable (except for object header).
754 } else if (dirty_objects_.find(object) != dirty_objects_.end()) {
755 bin = Bin::kKnownDirty;
756 } else if (klass->IsClassClass()) {
757 bin = Bin::kClassVerified;
758 ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
759 if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
760 bin = Bin::kClassInitialized;
761
762 // If the class's static fields are all final, put it into a separate bin
763 // since it's very likely it will stay clean.
764 auto fields = as_klass->GetFields();
765 bool all_final = std::all_of(fields.begin(),
766 fields.end(),
767 [](ArtField& f) { return !f.IsStatic() || f.IsFinal(); });
768 if (all_final) {
769 bin = Bin::kClassInitializedFinalStatics;
770 }
771 }
772 } else if (!klass->HasSuperClass()) {
773 // Only `j.l.Object` and primitive classes lack the superclass and
774 // there are no instances of primitive classes.
775 DCHECK(klass->IsObjectClass());
776 // Instance of java lang object, probably a lock object. This means it will be dirty when we
777 // synchronize on it.
778 bin = Bin::kMiscDirty;
779 } else if (klass->IsDexCacheClass<kVerifyNone>()) {
780 // Dex file field becomes dirty when the image is loaded.
781 bin = Bin::kMiscDirty;
782 }
783 // else bin = kBinRegular
784 }
785
786 return bin;
787 }
788
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)789 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
790 DCHECK(object != nullptr);
791 size_t object_size = object->SizeOf();
792
793 // Assign the oat index too.
794 if (IsMultiImage()) {
795 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
796 oat_index_map_.insert(std::make_pair(object, oat_index));
797 } else {
798 DCHECK(oat_index_map_.empty());
799 }
800
801 ImageInfo& image_info = GetImageInfo(oat_index);
802
803 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
804 // How many bytes the current bin is at (aligned).
805 size_t current_offset = image_info.GetBinSlotSize(bin);
806 // Move the current bin size up to accommodate the object we just assigned a bin slot.
807 image_info.IncrementBinSlotSize(bin, offset_delta);
808
809 BinSlot new_bin_slot(bin, current_offset);
810 SetImageBinSlot(object, new_bin_slot);
811
812 image_info.IncrementBinSlotCount(bin, 1u);
813
814 // Grow the image closer to the end by the object we just assigned.
815 image_info.image_end_ += offset_delta;
816 }
817
WillMethodBeDirty(ArtMethod * m) const818 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
819 if (m->IsNative()) {
820 return true;
821 }
822 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
823 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
824 return declaring_class == nullptr ||
825 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
826 }
827
IsImageBinSlotAssigned(mirror::Object * object) const828 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
829 DCHECK(object != nullptr);
830
831 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
832 // If it's in some other state, then we haven't yet assigned an image bin slot.
833 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
834 return false;
835 } else if (kIsDebugBuild) {
836 LockWord lock_word = object->GetLockWord(false);
837 size_t offset = lock_word.ForwardingAddress();
838 BinSlot bin_slot(offset);
839 size_t oat_index = GetOatIndex(object);
840 const ImageInfo& image_info = GetImageInfo(oat_index);
841 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
842 << "bin slot offset should not exceed the size of that bin";
843 }
844 return true;
845 }
846
GetImageBinSlot(mirror::Object * object,size_t oat_index) const847 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
848 DCHECK(object != nullptr);
849 DCHECK(IsImageBinSlotAssigned(object));
850
851 LockWord lock_word = object->GetLockWord(false);
852 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
853 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
854
855 BinSlot bin_slot(static_cast<uint32_t>(offset));
856 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
857
858 return bin_slot;
859 }
860
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)861 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
862 size_t oat_index,
863 size_t new_offset) {
864 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
865 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
866 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
867 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
868 /*as_volatile=*/ false);
869 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
870 DCHECK(IsImageBinSlotAssigned(object));
871 }
872
AllocMemory()873 bool ImageWriter::AllocMemory() {
874 for (ImageInfo& image_info : image_infos_) {
875 const size_t length = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
876
877 std::string error_msg;
878 image_info.image_ = MemMap::MapAnonymous("image writer image",
879 length,
880 PROT_READ | PROT_WRITE,
881 /*low_4gb=*/ false,
882 &error_msg);
883 if (UNLIKELY(!image_info.image_.IsValid())) {
884 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
885 return false;
886 }
887
888 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
889 // The covered size is rounded up to kCardSize to match the bitmap size expected by Loader::Init
890 // at art::gc::space::ImageSpace.
891 CHECK_LE(image_info.image_end_, length);
892 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create("image bitmap",
893 image_info.image_.Begin(),
894 RoundUp(image_info.image_end_, gc::accounting::CardTable::kCardSize));
895 if (!image_info.image_bitmap_.IsValid()) {
896 LOG(ERROR) << "Failed to allocate memory for image bitmap";
897 return false;
898 }
899 }
900 return true;
901 }
902
903 // This visitor follows the references of an instance, recursively then prune this class
904 // if a type of any field is pruned.
905 class ImageWriter::PruneObjectReferenceVisitor {
906 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)907 PruneObjectReferenceVisitor(ImageWriter* image_writer,
908 bool* early_exit,
909 HashSet<mirror::Object*>* visited,
910 bool* result)
911 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
912
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const913 ALWAYS_INLINE void VisitRootIfNonNull(
914 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
915 REQUIRES_SHARED(Locks::mutator_lock_) {}
916
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const917 ALWAYS_INLINE void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root)
918 const REQUIRES_SHARED(Locks::mutator_lock_) {}
919
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const920 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
921 MemberOffset offset,
922 [[maybe_unused]] bool is_static) const
923 REQUIRES_SHARED(Locks::mutator_lock_) {
924 mirror::Object* ref =
925 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
926 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
927 return;
928 }
929
930 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
931 Runtime::Current()->GetClassLinker()->GetClassRoots();
932 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
933 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
934 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
935 // Prune all classes using reflection because the content they held will not be fixup.
936 *result_ = true;
937 }
938
939 if (ref->IsClass()) {
940 *result_ = *result_ ||
941 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
942 } else {
943 // Record the object visited in case of circular reference.
944 visited_->insert(ref);
945 *result_ = *result_ ||
946 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
947 ref->VisitReferences(*this, *this);
948 // Clean up before exit for next call of this function.
949 auto it = visited_->find(ref);
950 DCHECK(it != visited_->end());
951 visited_->erase(it);
952 }
953 }
954
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const955 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
956 ObjPtr<mirror::Reference> ref) const
957 REQUIRES_SHARED(Locks::mutator_lock_) {
958 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
959 }
960
961 private:
962 ImageWriter* image_writer_;
963 bool* early_exit_;
964 HashSet<mirror::Object*>* visited_;
965 bool* const result_;
966 };
967
968
PruneImageClass(ObjPtr<mirror::Class> klass)969 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
970 bool early_exit = false;
971 HashSet<mirror::Object*> visited;
972 return PruneImageClassInternal(klass, &early_exit, &visited);
973 }
974
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)975 bool ImageWriter::PruneImageClassInternal(
976 ObjPtr<mirror::Class> klass,
977 bool* early_exit,
978 HashSet<mirror::Object*>* visited) {
979 DCHECK(early_exit != nullptr);
980 DCHECK(visited != nullptr);
981 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
982 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
983 return false;
984 }
985 auto found = prune_class_memo_.find(klass.Ptr());
986 if (found != prune_class_memo_.end()) {
987 // Already computed, return the found value.
988 return found->second;
989 }
990 // Circular dependencies, return false but do not store the result in the memoization table.
991 if (visited->find(klass.Ptr()) != visited->end()) {
992 *early_exit = true;
993 return false;
994 }
995 visited->insert(klass.Ptr());
996 bool result = klass->IsBootStrapClassLoaded();
997 std::string temp;
998 // Prune if not an image class, this handles any broken sets of image classes such as having a
999 // class in the set but not it's superclass.
1000 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1001 bool my_early_exit = false; // Only for ourselves, ignore caller.
1002 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1003 // app image.
1004 if (klass->IsErroneous()) {
1005 result = true;
1006 } else {
1007 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1008 CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
1009 }
1010 if (!result) {
1011 // Check interfaces since these wont be visited through VisitReferences.)
1012 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1013 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1014 result = result || PruneImageClassInternal(if_table->GetInterface(i),
1015 &my_early_exit,
1016 visited);
1017 }
1018 }
1019 if (klass->IsObjectArrayClass()) {
1020 result = result || PruneImageClassInternal(klass->GetComponentType(),
1021 &my_early_exit,
1022 visited);
1023 }
1024 // Check static fields and their classes.
1025 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1026 size_t num_static_fields = klass->NumReferenceStaticFields();
1027 // Presumably GC can happen when we are cross compiling, it should not cause performance
1028 // problems to do pointer size logic.
1029 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1030 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1031 for (size_t i = 0u; i < num_static_fields; ++i) {
1032 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1033 if (ref != nullptr) {
1034 if (ref->IsClass()) {
1035 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
1036 } else {
1037 mirror::Class* type = ref->GetClass();
1038 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
1039 if (!result) {
1040 // For non-class case, also go through all the types mentioned by it's fields'
1041 // references recursively to decide whether to keep this class.
1042 bool tmp = false;
1043 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1044 ref->VisitReferences(visitor, visitor);
1045 result = result || tmp;
1046 }
1047 }
1048 }
1049 field_offset = MemberOffset(field_offset.Uint32Value() +
1050 sizeof(mirror::HeapReference<mirror::Object>));
1051 }
1052 }
1053 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
1054 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1055 // are from uses-library if there is no profile. b/30688277
1056 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1057 if (dex_cache != nullptr) {
1058 result = result ||
1059 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1060 }
1061 // Erase the element we stored earlier since we are exiting the function.
1062 auto it = visited->find(klass.Ptr());
1063 DCHECK(it != visited->end());
1064 visited->erase(it);
1065 // Only store result if it is true or none of the calls early exited due to circular
1066 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1067 // a child call and we can remember the result.
1068 if (result == true || !my_early_exit || visited->empty()) {
1069 prune_class_memo_.Overwrite(klass.Ptr(), result);
1070 }
1071 *early_exit |= my_early_exit;
1072 return result;
1073 }
1074
KeepClass(ObjPtr<mirror::Class> klass)1075 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1076 if (klass == nullptr) {
1077 return false;
1078 }
1079 if (IsInBootImage(klass.Ptr())) {
1080 // Already in boot image, return true.
1081 DCHECK(!compiler_options_.IsBootImage());
1082 return true;
1083 }
1084 std::string temp;
1085 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1086 return false;
1087 }
1088 if (compiler_options_.IsAppImage()) {
1089 // For app images, we need to prune classes that
1090 // are defined by the boot class path we're compiling against but not in
1091 // the boot image spaces since these may have already been loaded at
1092 // run time when this image is loaded. Keep classes in the boot image
1093 // spaces we're compiling against since we don't want to re-resolve these.
1094 // FIXME: Update image classes in the `CompilerOptions` after initializing classes
1095 // with `--initialize-app-image-classes=true`. This experimental flag can currently
1096 // cause an inconsistency between `CompilerOptions::IsImageClass()` and what actually
1097 // ends up in the app image as seen in the run-test `660-clinit` where the class
1098 // `ObjectRef` is considered an app image class during compilation but in the end
1099 // it's pruned here. This inconsistency should be fixed if we want to properly
1100 // initialize app image classes. b/38313278
1101 bool keep = !PruneImageClass(klass);
1102 CHECK_IMPLIES(!compiler_options_.InitializeAppImageClasses(), keep)
1103 << klass->PrettyDescriptor();
1104 return keep;
1105 }
1106 return true;
1107 }
1108
1109 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1110 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1111 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1112 : image_writer_(image_writer),
1113 class_loader_(class_loader),
1114 classes_to_prune_(),
1115 defined_class_count_(0u) { }
1116
operator ()(ObjPtr<mirror::Class> klass)1117 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1118 if (!image_writer_->KeepClass(klass.Ptr())) {
1119 classes_to_prune_.insert(klass.Ptr());
1120 if (klass->GetClassLoader() == class_loader_) {
1121 ++defined_class_count_;
1122 }
1123 }
1124 return true;
1125 }
1126
Prune()1127 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1128 ClassTable* class_table =
1129 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1130 WriterMutexLock mu(Thread::Current(), class_table->lock_);
1131 // App class loader class tables contain only one internal set. The boot class path class
1132 // table also contains class sets from boot images we're compiling against but we are not
1133 // pruning these boot image classes, so all classes to remove are in the last set.
1134 DCHECK(!class_table->classes_.empty());
1135 ClassTable::ClassSet& last_class_set = class_table->classes_.back();
1136 for (mirror::Class* klass : classes_to_prune_) {
1137 uint32_t hash = klass->DescriptorHash();
1138 auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
1139 DCHECK(it != last_class_set.end());
1140 last_class_set.erase(it);
1141 DCHECK(std::none_of(class_table->classes_.begin(),
1142 class_table->classes_.end(),
1143 [klass, hash](ClassTable::ClassSet& class_set)
1144 REQUIRES_SHARED(Locks::mutator_lock_) {
1145 ClassTable::TableSlot slot(klass, hash);
1146 return class_set.FindWithHash(slot, hash) != class_set.end();
1147 }));
1148 }
1149 return defined_class_count_;
1150 }
1151
1152 private:
1153 ImageWriter* const image_writer_;
1154 const ObjPtr<mirror::ClassLoader> class_loader_;
1155 HashSet<mirror::Class*> classes_to_prune_;
1156 size_t defined_class_count_;
1157 };
1158
1159 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1160 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1161 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1162 : image_writer_(image_writer), removed_class_count_(0) {}
1163
Visit(ObjPtr<mirror::ClassLoader> class_loader)1164 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1165 REQUIRES_SHARED(Locks::mutator_lock_) {
1166 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1167 ClassTable* class_table =
1168 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1169 class_table->Visit(classes_visitor);
1170 removed_class_count_ += classes_visitor.Prune();
1171 }
1172
GetRemovedClassCount() const1173 size_t GetRemovedClassCount() const {
1174 return removed_class_count_;
1175 }
1176
1177 private:
1178 ImageWriter* const image_writer_;
1179 size_t removed_class_count_;
1180 };
1181
VisitClassLoaders(ClassLoaderVisitor * visitor)1182 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1183 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1184 visitor->Visit(nullptr); // Visit boot class loader.
1185 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1186 }
1187
PruneNonImageClasses()1188 void ImageWriter::PruneNonImageClasses() {
1189 Runtime* runtime = Runtime::Current();
1190 ClassLinker* class_linker = runtime->GetClassLinker();
1191 Thread* self = Thread::Current();
1192 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1193
1194 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1195 // sure the other ones don't get unloaded before the OatWriter runs.
1196 class_linker->VisitClassTables(
1197 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1198 table->RemoveStrongRoots(
1199 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1200 ObjPtr<mirror::Object> obj = root.Read();
1201 if (obj->IsDexCache()) {
1202 // Return true if the dex file is not one of the ones in the map.
1203 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1204 dex_file_oat_index_map_.end();
1205 }
1206 // Return false to avoid removing.
1207 return false;
1208 });
1209 });
1210
1211 // Remove the undesired classes from the class roots.
1212 {
1213 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1214 VisitClassLoaders(&class_loader_visitor);
1215 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1216 }
1217
1218 // Completely clear DexCaches.
1219 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1220 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1221 dex_cache->ResetNativeArrays();
1222 }
1223
1224 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1225 class_linker->DropFindArrayClassCache();
1226
1227 // Clear to save RAM.
1228 prune_class_memo_.clear();
1229 }
1230
FindDexCaches(Thread * self)1231 dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1232 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
1233 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1234 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1235 dex_caches.reserve(class_linker->GetDexCachesData().size());
1236 for (const auto& entry : class_linker->GetDexCachesData()) {
1237 const ClassLinker::DexCacheData& data = entry.second;
1238 if (self->IsJWeakCleared(data.weak_root)) {
1239 continue;
1240 }
1241 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1242 }
1243 return dex_caches;
1244 }
1245
CheckNonImageClassesRemoved()1246 void ImageWriter::CheckNonImageClassesRemoved() {
1247 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1248 if (obj->IsClass() && !IsInBootImage(obj)) {
1249 ObjPtr<Class> klass = obj->AsClass();
1250 if (!KeepClass(klass)) {
1251 DumpImageClasses();
1252 CHECK(KeepClass(klass))
1253 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1254 }
1255 }
1256 };
1257 gc::Heap* heap = Runtime::Current()->GetHeap();
1258 heap->VisitObjects(visitor);
1259 }
1260
PromoteWeakInternsToStrong(Thread * self)1261 void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
1262 InternTable* intern_table = Runtime::Current()->GetInternTable();
1263 MutexLock mu(self, *Locks::intern_table_lock_);
1264 DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
1265 for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
1266 ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
1267 DCHECK(!IsStronglyInternedString(s));
1268 uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
1269 intern_table->InsertStrong(s, hash);
1270 }
1271 intern_table->weak_interns_.tables_.front().set_.clear();
1272 }
1273
DumpImageClasses()1274 void ImageWriter::DumpImageClasses() {
1275 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1276 LOG(INFO) << " " << image_class;
1277 }
1278 }
1279
CreateImageRoots()1280 bool ImageWriter::CreateImageRoots() {
1281 Runtime* runtime = Runtime::Current();
1282 ClassLinker* class_linker = runtime->GetClassLinker();
1283 Thread* self = Thread::Current();
1284 VariableSizedHandleScope handles(self);
1285
1286 // Prepare boot image live objects if we're compiling a boot image or boot image extension.
1287 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
1288 if (compiler_options_.IsBootImage()) {
1289 boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
1290 if (boot_image_live_objects == nullptr) {
1291 return false;
1292 }
1293 } else if (compiler_options_.IsBootImageExtension()) {
1294 gc::Heap* heap = runtime->GetHeap();
1295 DCHECK(!heap->GetBootImageSpaces().empty());
1296 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
1297 boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
1298 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
1299 DCHECK(boot_image_live_objects != nullptr);
1300 }
1301
1302 // Collect dex caches and the sizes of dex cache arrays.
1303 struct DexCacheRecord {
1304 uint64_t registration_index;
1305 Handle<mirror::DexCache> dex_cache;
1306 size_t oat_index;
1307 };
1308 size_t num_oat_files = oat_filenames_.size();
1309 dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
1310 dchecked_vector<DexCacheRecord> dex_cache_records;
1311 dex_cache_records.reserve(dex_file_oat_index_map_.size());
1312 {
1313 ReaderMutexLock mu(self, *Locks::dex_lock_);
1314 // Count number of dex caches not in the boot image.
1315 for (const auto& entry : class_linker->GetDexCachesData()) {
1316 const ClassLinker::DexCacheData& data = entry.second;
1317 ObjPtr<mirror::DexCache> dex_cache =
1318 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1319 if (dex_cache == nullptr) {
1320 continue;
1321 }
1322 const DexFile* dex_file = dex_cache->GetDexFile();
1323 auto it = dex_file_oat_index_map_.find(dex_file);
1324 if (it != dex_file_oat_index_map_.end()) {
1325 size_t oat_index = it->second;
1326 DCHECK(IsImageDexCache(dex_cache));
1327 ++dex_cache_counts[oat_index];
1328 Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
1329 dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
1330 }
1331 }
1332 }
1333
1334 // Allocate dex cache arrays.
1335 dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
1336 dex_cache_arrays.reserve(num_oat_files);
1337 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1338 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1339 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
1340 if (dex_caches == nullptr) {
1341 return false;
1342 }
1343 dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below.
1344 dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
1345 }
1346
1347 // Sort dex caches by registration index to make output deterministic.
1348 std::sort(dex_cache_records.begin(),
1349 dex_cache_records.end(),
1350 [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
1351 return lhs.registration_index < rhs.registration_index;
1352 });
1353
1354 // Fill dex cache arrays.
1355 for (const DexCacheRecord& record : dex_cache_records) {
1356 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
1357 dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
1358 dex_cache_counts[record.oat_index], record.dex_cache.Get());
1359 ++dex_cache_counts[record.oat_index];
1360 }
1361
1362 // Create image roots with empty dex cache arrays.
1363 image_roots_.reserve(num_oat_files);
1364 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1365 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1366 // Build an Object[] of the roots needed to restore the runtime.
1367 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1368 ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
1369 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
1370 if (image_roots == nullptr) {
1371 return false;
1372 }
1373 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
1374 CHECK_EQ(dex_cache_counts[oat_index],
1375 dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
1376 << "The number of non-image dex caches changed.";
1377 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1378 ImageHeader::kDexCaches, dex_caches);
1379 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1380 ImageHeader::kClassRoots, class_linker->GetClassRoots());
1381 if (!compiler_options_.IsAppImage()) {
1382 DCHECK(boot_image_live_objects != nullptr);
1383 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1384 ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1385 } else {
1386 DCHECK(boot_image_live_objects.GetReference() == nullptr);
1387 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1388 ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1389 }
1390 for (int32_t i = 0; i != image_roots_size; ++i) {
1391 CHECK(image_roots->Get(i) != nullptr);
1392 }
1393 image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
1394 }
1395
1396 return true;
1397 }
1398
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1399 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1400 // Visit and assign offsets for fields and field arrays.
1401 DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1402 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1403 if (compiler_options_.IsAppImage()) {
1404 // Extra consistency check: no boot loader classes should be left!
1405 CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
1406 }
1407 ImageInfo& image_info = GetImageInfo(oat_index);
1408 LengthPrefixedArray<ArtField>* fields = klass->GetFieldsPtr();
1409 // Total array length including header.
1410 if (fields != nullptr) {
1411 // Forward the entire array at once.
1412 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1413 DCHECK(!IsInBootImage(fields));
1414 bool inserted =
1415 native_object_relocations_.insert(std::make_pair(
1416 fields,
1417 NativeObjectRelocation{
1418 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1419 })).second;
1420 CHECK(inserted) << "Field array " << fields << " already forwarded";
1421 const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(fields->size());
1422 offset += size;
1423 image_info.IncrementBinSlotSize(Bin::kArtField, size);
1424 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1425 }
1426 // Visit and assign offsets for methods.
1427 size_t num_methods = klass->NumMethods();
1428 if (num_methods != 0) {
1429 bool any_dirty = false;
1430 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1431 if (WillMethodBeDirty(&m)) {
1432 any_dirty = true;
1433 break;
1434 }
1435 }
1436 NativeObjectRelocationType type = any_dirty
1437 ? NativeObjectRelocationType::kArtMethodDirty
1438 : NativeObjectRelocationType::kArtMethodClean;
1439 Bin bin_type = BinTypeForNativeRelocationType(type);
1440 // Forward the entire array at once, but header first.
1441 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1442 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1443 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1444 method_size,
1445 method_alignment);
1446 LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1447 size_t offset = image_info.GetBinSlotSize(bin_type);
1448 DCHECK(!IsInBootImage(array));
1449 bool inserted =
1450 native_object_relocations_.insert(std::make_pair(
1451 array,
1452 NativeObjectRelocation{
1453 oat_index,
1454 offset,
1455 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1456 : NativeObjectRelocationType::kArtMethodArrayClean
1457 })).second;
1458 CHECK(inserted) << "Method array " << array << " already forwarded";
1459 image_info.IncrementBinSlotSize(bin_type, header_size);
1460 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1461 AssignMethodOffset(&m, type, oat_index);
1462 }
1463 // Only write JNI stub methods in boot images, but not in boot image extensions and app images.
1464 // And the write only happens in non-debuggable since we never use AOT code for debuggable.
1465 if (compiler_options_.IsBootImage() &&
1466 compiler_options_.IsJniCompilationEnabled() &&
1467 !compiler_options_.GetDebuggable()) {
1468 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1469 if (m.IsNative() && !m.IsIntrinsic()) {
1470 AssignJniStubMethodOffset(&m, oat_index);
1471 }
1472 }
1473 }
1474 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1475 }
1476 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1477 // live.
1478 if (klass->ShouldHaveImt()) {
1479 ImTable* imt = klass->GetImt(target_ptr_size_);
1480 if (TryAssignImTableOffset(imt, oat_index)) {
1481 // Since imt's can be shared only do this the first time to not double count imt method
1482 // fixups.
1483 for (size_t i = 0; i < ImTable::kSize; ++i) {
1484 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1485 DCHECK(imt_method != nullptr);
1486 if (imt_method->IsRuntimeMethod() &&
1487 !IsInBootImage(imt_method) &&
1488 !NativeRelocationAssigned(imt_method)) {
1489 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1490 }
1491 }
1492 }
1493 }
1494 }
1495
NativeRelocationAssigned(void * ptr) const1496 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1497 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1498 }
1499
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1500 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1501 // No offset, or already assigned.
1502 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1503 return false;
1504 }
1505 // If the method is a conflict method we also want to assign the conflict table offset.
1506 ImageInfo& image_info = GetImageInfo(oat_index);
1507 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1508 native_object_relocations_.insert(std::make_pair(
1509 imt,
1510 NativeObjectRelocation{
1511 oat_index,
1512 image_info.GetBinSlotSize(Bin::kImTable),
1513 NativeObjectRelocationType::kIMTable
1514 }));
1515 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1516 return true;
1517 }
1518
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1519 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1520 // No offset, or already assigned.
1521 if (table == nullptr || NativeRelocationAssigned(table)) {
1522 return;
1523 }
1524 CHECK(!IsInBootImage(table));
1525 // If the method is a conflict method we also want to assign the conflict table offset.
1526 ImageInfo& image_info = GetImageInfo(oat_index);
1527 const size_t size = table->ComputeSize(target_ptr_size_);
1528 native_object_relocations_.insert(std::make_pair(
1529 table,
1530 NativeObjectRelocation{
1531 oat_index,
1532 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1533 NativeObjectRelocationType::kIMTConflictTable
1534 }));
1535 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1536 }
1537
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1538 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1539 NativeObjectRelocationType type,
1540 size_t oat_index) {
1541 DCHECK(!IsInBootImage(method));
1542 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1543 << ArtMethod::PrettyMethod(method);
1544 if (method->IsRuntimeMethod()) {
1545 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1546 }
1547 ImageInfo& image_info = GetImageInfo(oat_index);
1548 Bin bin_type = BinTypeForNativeRelocationType(type);
1549 size_t offset = image_info.GetBinSlotSize(bin_type);
1550 native_object_relocations_.insert(
1551 std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
1552 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1553 }
1554
AssignJniStubMethodOffset(ArtMethod * method,size_t oat_index)1555 void ImageWriter::AssignJniStubMethodOffset(ArtMethod* method, size_t oat_index) {
1556 CHECK(method->IsNative());
1557 auto it = jni_stub_map_.find(JniStubKey(method));
1558 if (it == jni_stub_map_.end()) {
1559 ImageInfo& image_info = GetImageInfo(oat_index);
1560 constexpr Bin bin_type = Bin::kJniStubMethod;
1561 size_t offset = image_info.GetBinSlotSize(bin_type);
1562 jni_stub_map_.Put(std::make_pair(
1563 JniStubKey(method),
1564 std::make_pair(method, JniStubMethodRelocation{oat_index, offset})));
1565 image_info.IncrementBinSlotSize(bin_type, static_cast<size_t>(target_ptr_size_));
1566 }
1567 }
1568
1569 class ImageWriter::LayoutHelper {
1570 public:
LayoutHelper(ImageWriter * image_writer)1571 explicit LayoutHelper(ImageWriter* image_writer)
1572 : image_writer_(image_writer) {
1573 bin_objects_.resize(image_writer_->image_infos_.size());
1574 for (auto& inner : bin_objects_) {
1575 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1576 }
1577 }
1578
1579 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1580 void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1581 void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1582 // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key.
1583 void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index)
1584 REQUIRES_SHARED(Locks::mutator_lock_);
1585
1586 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1587
1588 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1589
1590 /*
1591 * Collects the string reference info necessary for loading app images.
1592 *
1593 * Because AppImages may contain interned strings that must be deduplicated
1594 * with previously interned strings when loading the app image, we need to
1595 * visit references to these strings and update them to point to the correct
1596 * string. To speed up the visiting of references at load time we include
1597 * a list of offsets to string references in the AppImage.
1598 */
1599 void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1600
1601 private:
1602 class CollectClassesVisitor;
1603 class CollectStringReferenceVisitor;
1604 class VisitReferencesVisitor;
1605
1606 void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1607 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1608
1609 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1610
1611 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1612 REQUIRES_SHARED(Locks::mutator_lock_);
1613 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1614 REQUIRES_SHARED(Locks::mutator_lock_);
1615 ImageWriter::Bin AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index)
1616 REQUIRES_SHARED(Locks::mutator_lock_);
1617 void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
1618 REQUIRES_SHARED(Locks::mutator_lock_);
1619
1620 ImageWriter* const image_writer_;
1621
1622 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1623 // assigned a bin slot.
1624 WorkQueue work_queue_;
1625
1626 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1627 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1628 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1629
1630 // Interns that do not have a corresponding StringId in any of the input dex files.
1631 // These shall be assigned to individual images based on the `oat_index` that we
1632 // see as we visit them during the work queue processing.
1633 dchecked_vector<mirror::String*> non_dex_file_interns_;
1634 };
1635
1636 class ImageWriter::LayoutHelper::CollectClassesVisitor {
1637 public:
CollectClassesVisitor(ImageWriter * image_writer)1638 explicit CollectClassesVisitor(ImageWriter* image_writer)
1639 : image_writer_(image_writer),
1640 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1641
operator ()(ObjPtr<mirror::Class> klass)1642 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1643 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1644 ObjPtr<mirror::Class> component_type = klass;
1645 size_t dimension = 0u;
1646 while (component_type->IsArrayClass<kVerifyNone>()) {
1647 ++dimension;
1648 component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
1649 }
1650 DCHECK(!component_type->IsProxyClass());
1651 size_t dex_file_index;
1652 uint32_t class_def_index = 0u;
1653 if (UNLIKELY(component_type->IsPrimitive())) {
1654 DCHECK(image_writer_->compiler_options_.IsBootImage());
1655 dex_file_index = 0u;
1656 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1657 } else {
1658 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1659 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1660 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1661 class_def_index = component_type->GetDexClassDefIndex();
1662 }
1663 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1664 }
1665 return true;
1666 }
1667
ProcessCollectedClasses(Thread * self)1668 WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1669 std::sort(klasses_.begin(), klasses_.end());
1670
1671 ImageWriter* image_writer = image_writer_;
1672 WorkQueue work_queue;
1673 size_t last_dex_file_index = static_cast<size_t>(-1);
1674 size_t last_oat_index = static_cast<size_t>(-1);
1675 for (const ClassEntry& entry : klasses_) {
1676 if (last_dex_file_index != entry.dex_file_index) {
1677 if (UNLIKELY(entry.dex_file_index == 0u)) {
1678 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1679 } else {
1680 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1681 last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1682 }
1683 last_dex_file_index = entry.dex_file_index;
1684 }
1685 // Count the number of classes for class tables.
1686 image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1687 work_queue.emplace_back(entry.klass, last_oat_index);
1688 }
1689 klasses_.clear();
1690
1691 // Prepare image class tables.
1692 dchecked_vector<mirror::Class*> boot_image_classes;
1693 if (image_writer->compiler_options_.IsAppImage()) {
1694 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1695 ImageInfo& image_info = image_writer->image_infos_[0];
1696 // Log the non-boot image class count for app image for debugging purposes.
1697 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1698 // Collect boot image classes referenced by app class loader's class table.
1699 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1700 auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
1701 vm, image_writer->app_class_loader_);
1702 ClassTable* app_class_table = app_class_loader->GetClassTable();
1703 if (app_class_table != nullptr) {
1704 ReaderMutexLock lock(self, app_class_table->lock_);
1705 DCHECK_EQ(app_class_table->classes_.size(), 1u);
1706 const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1707 DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1708 boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1709 for (const ClassTable::TableSlot& slot : app_class_set) {
1710 mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1711 if (image_writer->IsInBootImage(klass)) {
1712 boot_image_classes.push_back(klass);
1713 }
1714 }
1715 DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1716 // Increase the app class table size to include referenced boot image classes.
1717 image_info.class_table_size_ = app_class_set.size();
1718 }
1719 }
1720 for (ImageInfo& image_info : image_writer->image_infos_) {
1721 if (image_info.class_table_size_ != 0u) {
1722 // Make sure the class table shall be full by allocating a buffer of the right size.
1723 size_t buffer_size = static_cast<size_t>(
1724 ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1725 image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1726 DCHECK(image_info.class_table_buffer_ != nullptr);
1727 image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1728 kImageClassTableMaxLoadFactor,
1729 image_info.class_table_buffer_.get(),
1730 buffer_size);
1731 }
1732 }
1733 for (const auto& pair : work_queue) {
1734 ObjPtr<mirror::Class> klass = pair.first->AsClass();
1735 size_t oat_index = pair.second;
1736 DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1737 ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1738 uint32_t hash = klass->DescriptorHash();
1739 bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1740 DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1741 << " (" << klass.Ptr() << ") already inserted";
1742 }
1743 if (image_writer->compiler_options_.IsAppImage()) {
1744 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1745 ImageInfo& image_info = image_writer->image_infos_[0];
1746 if (image_info.class_table_size_ != 0u) {
1747 // Insert boot image class references to the app class table.
1748 // The order of insertion into the app class loader's ClassTable is non-deterministic,
1749 // so sort the boot image classes by the boot image address to get deterministic table.
1750 std::sort(boot_image_classes.begin(), boot_image_classes.end());
1751 DCHECK(image_info.class_table_.has_value());
1752 ClassTable::ClassSet& table = *image_info.class_table_;
1753 for (mirror::Class* klass : boot_image_classes) {
1754 uint32_t hash = klass->DescriptorHash();
1755 bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1756 DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1757 << " (" << klass << ") already inserted";
1758 }
1759 DCHECK_EQ(table.size(), image_info.class_table_size_);
1760 }
1761 }
1762 for (ImageInfo& image_info : image_writer->image_infos_) {
1763 DCHECK_EQ(image_info.class_table_bytes_, 0u);
1764 if (image_info.class_table_size_ != 0u) {
1765 DCHECK(image_info.class_table_.has_value());
1766 DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1767 image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1768 DCHECK_NE(image_info.class_table_bytes_, 0u);
1769 } else {
1770 DCHECK(!image_info.class_table_.has_value());
1771 }
1772 }
1773
1774 return work_queue;
1775 }
1776
1777 private:
1778 struct ClassEntry {
1779 ObjPtr<mirror::Class> klass;
1780 // We shall sort classes by dex file, class def index and array dimension.
1781 size_t dex_file_index;
1782 uint32_t class_def_index;
1783 size_t dimension;
1784
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1785 bool operator<(const ClassEntry& other) const {
1786 return std::tie(dex_file_index, class_def_index, dimension) <
1787 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1788 }
1789 };
1790
1791 ImageWriter* const image_writer_;
1792 const ArrayRef<const DexFile* const> dex_files_;
1793 std::deque<ClassEntry> klasses_;
1794 };
1795
1796 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1797 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,dchecked_vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1798 explicit CollectStringReferenceVisitor(
1799 const ImageWriter* image_writer,
1800 size_t oat_index,
1801 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1802 ObjPtr<mirror::Object> current_obj)
1803 : image_writer_(image_writer),
1804 oat_index_(oat_index),
1805 string_reference_offsets_(string_reference_offsets),
1806 current_obj_(current_obj) {}
1807
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1808 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1809 REQUIRES_SHARED(Locks::mutator_lock_) {
1810 if (!root->IsNull()) {
1811 VisitRoot(root);
1812 }
1813 }
1814
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1815 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1816 REQUIRES_SHARED(Locks::mutator_lock_) {
1817 // Only dex caches have native String roots. These are collected separately.
1818 DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
1819 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1820 << mirror::Object::PrettyTypeOf(current_obj_);
1821 }
1822
1823 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static) const1824 void operator()(ObjPtr<mirror::Object> obj,
1825 MemberOffset member_offset,
1826 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
1827 ObjPtr<mirror::Object> referred_obj =
1828 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1829
1830 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1831 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1832 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1833 }
1834 }
1835
1836 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1837 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1838 REQUIRES_SHARED(Locks::mutator_lock_) {
1839 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1840 }
1841
1842 private:
1843 const ImageWriter* const image_writer_;
1844 const size_t oat_index_;
1845 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1846 const ObjPtr<mirror::Object> current_obj_;
1847 };
1848
1849 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1850 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1851 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1852 : helper_(helper), oat_index_(oat_index) {}
1853
1854 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1855 void VisitRootIfNonNull(
1856 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1857 LOG(FATAL) << "UNREACHABLE";
1858 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1859 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1860 LOG(FATAL) << "UNREACHABLE";
1861 }
1862
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1863 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1864 MemberOffset offset,
1865 [[maybe_unused]] bool is_static) const
1866 REQUIRES_SHARED(Locks::mutator_lock_) {
1867 mirror::Object* ref =
1868 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1869 VisitReference(ref);
1870 }
1871
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1872 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
1873 ObjPtr<mirror::Reference> ref) const
1874 REQUIRES_SHARED(Locks::mutator_lock_) {
1875 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1876 }
1877
1878 private:
VisitReference(mirror::Object * ref) const1879 void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1880 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1881 // Remember how many objects we're adding at the front of the queue as we want
1882 // to reverse that range to process these references in the order of addition.
1883 helper_->work_queue_.emplace_front(ref, oat_index_);
1884 }
1885 if (ClassLinker::kAppImageMayContainStrings &&
1886 helper_->image_writer_->compiler_options_.IsAppImage() &&
1887 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1888 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1889 }
1890 }
1891
1892 LayoutHelper* const helper_;
1893 const size_t oat_index_;
1894 };
1895
1896 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1897 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1898 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1899 REQUIRES_SHARED(Locks::mutator_lock_) {
1900 ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1901 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1902 if (vtable != nullptr &&
1903 (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1904 visitor(vtable);
1905 }
1906 int32_t iftable_count = klass->GetIfTableCount();
1907 int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1908 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1909 ObjPtr<mirror::IfTable> super_iftable =
1910 (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1911 for (int32_t i = 0; i < iftable_count; ++i) {
1912 ObjPtr<mirror::PointerArray> methods =
1913 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1914 ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1915 ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1916 : nullptr;
1917 if (methods != super_methods) {
1918 DCHECK(methods != nullptr);
1919 if (i < super_iftable_count) {
1920 DCHECK(super_methods != nullptr);
1921 DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1922 }
1923 visitor(methods);
1924 }
1925 }
1926 }
1927
ProcessDexFileObjects(Thread * self)1928 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1929 Runtime* runtime = Runtime::Current();
1930 ClassLinker* class_linker = runtime->GetClassLinker();
1931 const CompilerOptions& compiler_options = image_writer_->compiler_options_;
1932 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1933
1934 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1935 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1936
1937 // Get initial work queue with the image classes and assign their bin slots.
1938 CollectClassesVisitor visitor(image_writer_);
1939 {
1940 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1941 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1942 // No need to filter based on class loader, boot class table contains only
1943 // classes defined by the boot class loader.
1944 ClassTable* class_table = class_linker->boot_class_table_.get();
1945 class_table->Visit<kWithoutReadBarrier>(visitor);
1946 } else {
1947 // No need to visit boot class table as there are no classes there for the app image.
1948 for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
1949 auto class_loader =
1950 DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
1951 if (class_loader != nullptr) {
1952 ClassTable* class_table = class_loader->GetClassTable();
1953 if (class_table != nullptr) {
1954 // Visit only classes defined in this class loader (avoid visiting multiple times).
1955 auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
1956 REQUIRES_SHARED(Locks::mutator_lock_) {
1957 if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
1958 visitor(klass);
1959 }
1960 return true;
1961 };
1962 class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
1963 }
1964 }
1965 }
1966 }
1967 }
1968 DCHECK(work_queue_.empty());
1969 work_queue_ = visitor.ProcessCollectedClasses(self);
1970 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1971 DCHECK(entry.first != nullptr);
1972 ObjPtr<mirror::Class> klass = entry.first->AsClass();
1973 size_t oat_index = entry.second;
1974 image_writer_->RecordNativeRelocations(klass, oat_index);
1975 AssignImageBinSlot(klass.Ptr(), oat_index);
1976
1977 auto method_pointer_array_visitor =
1978 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1979 constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1980 AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1981 // No need to add to the work queue. The class reference, if not in the boot image
1982 // (that is, when compiling the primary boot image), is already in the work queue.
1983 };
1984 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
1985 }
1986
1987 // Assign bin slots to dex caches.
1988 {
1989 ReaderMutexLock mu(self, *Locks::dex_lock_);
1990 for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
1991 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
1992 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1993 const size_t oat_index = it->second;
1994 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
1995 auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
1996 DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
1997 auto dex_cache =
1998 DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
1999 DCHECK(dex_cache != nullptr);
2000 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
2001 DCHECK(assigned);
2002 work_queue_.emplace_back(dex_cache, oat_index);
2003 }
2004 }
2005
2006 // Assign interns to images depending on the first dex file they appear in.
2007 // Record those that do not have a StringId in any dex file.
2008 ProcessInterns(self);
2009
2010 // Since classes and dex caches have been assigned to their bins, when we process a class
2011 // we do not follow through the class references or dex caches, so we correctly process
2012 // only objects actually belonging to that class before taking a new class from the queue.
2013 // If multiple class statics reference the same object (directly or indirectly), the object
2014 // is treated as belonging to the first encountered referencing class.
2015 ProcessWorkQueue();
2016 }
2017
ProcessRoots(Thread * self)2018 void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
2019 // Assign bin slots to the image roots and boot image live objects, add them to the work queue
2020 // and process the work queue. These objects reference other objects needed for the image, for
2021 // example the array of dex cache references, or the pre-allocated exceptions for the boot image.
2022 DCHECK(work_queue_.empty());
2023
2024 constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
2025 size_t num_oat_files = image_writer_->oat_filenames_.size();
2026 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2027 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
2028 // Put image roots and dex caches into `clean_bin`.
2029 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2030 vm, image_writer_->image_roots_[oat_index]);
2031 AssignImageBinSlot(image_roots, oat_index, clean_bin);
2032 work_queue_.emplace_back(image_roots, oat_index);
2033 // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
2034 ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
2035 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
2036 AssignImageBinSlot(dex_caches, oat_index, clean_bin);
2037 work_queue_.emplace_back(dex_caches, oat_index);
2038 }
2039 // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
2040 if (image_writer_->compiler_options_.IsBootImage()) {
2041 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
2042 image_writer_->boot_image_live_objects_;
2043 AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
2044 work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
2045 }
2046
2047 ProcessWorkQueue();
2048 }
2049
ProcessInterns(Thread * self)2050 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
2051 // String bins are empty at this point.
2052 DCHECK(std::all_of(bin_objects_.begin(),
2053 bin_objects_.end(),
2054 [](const auto& bins) {
2055 return bins[enum_cast<size_t>(Bin::kString)].empty();
2056 }));
2057
2058 // There is only one non-boot image intern table and it's the last one.
2059 InternTable* const intern_table = Runtime::Current()->GetInternTable();
2060 MutexLock mu(self, *Locks::intern_table_lock_);
2061 DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
2062 intern_table->strong_interns_.tables_.end(),
2063 [](const InternTable::Table::InternalTable& table) {
2064 return !table.IsBootImage();
2065 }),
2066 1);
2067 DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
2068 const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
2069
2070 // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
2071 ImageWriter* image_writer = image_writer_;
2072 for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
2073 auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
2074 DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2075 const size_t oat_index = it->second;
2076 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
2077 for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
2078 uint32_t utf16_length;
2079 const char* utf8_data = dex_file->GetStringDataAndUtf16Length(dex::StringIndex(i),
2080 &utf16_length);
2081 uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
2082 auto intern_it =
2083 intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
2084 if (intern_it != intern_set.end()) {
2085 mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
2086 DCHECK(string != nullptr);
2087 DCHECK(!image_writer->IsInBootImage(string));
2088 if (!image_writer->IsImageBinSlotAssigned(string)) {
2089 Bin bin = AssignImageBinSlot(string, oat_index);
2090 DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
2091 } else {
2092 // We have already seen this string in a previous dex file.
2093 DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
2094 }
2095 }
2096 }
2097 }
2098
2099 // String bins have been filled with dex file interns. Record their numbers in image infos.
2100 DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
2101 size_t total_dex_file_interns = 0u;
2102 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2103 size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
2104 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2105 DCHECK_EQ(image_info.intern_table_size_, 0u);
2106 image_info.intern_table_size_ = num_dex_file_interns;
2107 total_dex_file_interns += num_dex_file_interns;
2108 }
2109
2110 // Collect interns that do not have a corresponding StringId in any of the input dex files.
2111 non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
2112 for (const GcRoot<mirror::String>& root : intern_set) {
2113 mirror::String* string = root.Read<kWithoutReadBarrier>();
2114 if (!image_writer->IsImageBinSlotAssigned(string)) {
2115 non_dex_file_interns_.push_back(string);
2116 }
2117 }
2118 DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
2119 }
2120
FinalizeInternTables()2121 void ImageWriter::LayoutHelper::FinalizeInternTables() {
2122 // Remove interns that do not have a bin slot assigned. These correspond
2123 // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
2124 ImageWriter* image_writer = image_writer_;
2125 auto retained_end = std::remove_if(
2126 non_dex_file_interns_.begin(),
2127 non_dex_file_interns_.end(),
2128 [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
2129 return !image_writer->IsImageBinSlotAssigned(string);
2130 });
2131 non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
2132
2133 // Sort `non_dex_file_interns_` based on oat index and bin offset.
2134 ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
2135 std::sort(non_dex_file_interns.begin(),
2136 non_dex_file_interns.end(),
2137 [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
2138 size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
2139 size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
2140 if (lhs_oat_index != rhs_oat_index) {
2141 return lhs_oat_index < rhs_oat_index;
2142 }
2143 BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
2144 BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
2145 return lhs_bin_slot < rhs_bin_slot;
2146 });
2147
2148 // Allocate and fill intern tables.
2149 size_t ndfi_index = 0u;
2150 DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
2151 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2152 // Find the end of `non_dex_file_interns` for this oat file.
2153 size_t ndfi_end = ndfi_index;
2154 while (ndfi_end != non_dex_file_interns.size() &&
2155 image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
2156 ++ndfi_end;
2157 }
2158
2159 // Calculate final intern table size.
2160 ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
2161 DCHECK_EQ(image_info.intern_table_bytes_, 0u);
2162 size_t num_dex_file_interns = image_info.intern_table_size_;
2163 size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
2164 image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
2165 if (image_info.intern_table_size_ != 0u) {
2166 // Make sure the intern table shall be full by allocating a buffer of the right size.
2167 size_t buffer_size = static_cast<size_t>(
2168 ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
2169 image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
2170 DCHECK(image_info.intern_table_buffer_ != nullptr);
2171 image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
2172 kImageInternTableMaxLoadFactor,
2173 image_info.intern_table_buffer_.get(),
2174 buffer_size);
2175
2176 // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
2177 InternTable::UnorderedSet& table = *image_info.intern_table_;
2178 const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
2179 DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
2180 ArrayRef<mirror::Object* const> dex_file_interns(
2181 oat_file_strings.data(), num_dex_file_interns);
2182 for (mirror::Object* string : dex_file_interns) {
2183 bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
2184 DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
2185 }
2186 ArrayRef<mirror::String*> current_non_dex_file_interns =
2187 non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
2188 for (mirror::String* string : current_non_dex_file_interns) {
2189 bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
2190 DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
2191 }
2192
2193 // Record the intern table size in bytes.
2194 image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
2195 }
2196
2197 ndfi_index = ndfi_end;
2198 }
2199 }
2200
ProcessWorkQueue()2201 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
2202 while (!work_queue_.empty()) {
2203 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
2204 work_queue_.pop_front();
2205 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
2206 }
2207 }
2208
SortDirtyObjects(const HashMap<mirror::Object *,uint32_t> & dirty_objects,size_t oat_index)2209 void ImageWriter::LayoutHelper::SortDirtyObjects(
2210 const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) {
2211 constexpr Bin bin = Bin::kKnownDirty;
2212 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2213
2214 dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)];
2215 if (known_dirty.empty()) {
2216 return;
2217 }
2218
2219 // Collect objects and their combined sort_keys.
2220 // Combined key contains sort_key and original offset to ensure deterministic sorting.
2221 using CombinedKey = std::pair<uint32_t, uint32_t>;
2222 using ObjSortPair = std::pair<mirror::Object*, CombinedKey>;
2223 dchecked_vector<ObjSortPair> objects;
2224 objects.reserve(known_dirty.size());
2225 for (mirror::Object* obj : known_dirty) {
2226 const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index);
2227 const uint32_t original_offset = bin_slot.GetOffset();
2228 const auto it = dirty_objects.find(obj);
2229 const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0;
2230 objects.emplace_back(obj, std::make_pair(sort_key, original_offset));
2231 }
2232 // Sort by combined sort_key.
2233 std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) {
2234 return lhs.second < rhs.second;
2235 });
2236
2237 // Fill known_dirty objects in sorted order, update bin offsets.
2238 known_dirty.clear();
2239 size_t offset = 0;
2240 for (const ObjSortPair& entry : objects) {
2241 mirror::Object* obj = entry.first;
2242
2243 known_dirty.push_back(obj);
2244 image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset);
2245
2246 const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment);
2247 offset += aligned_object_size;
2248 }
2249 DCHECK_EQ(offset, image_info.GetBinSlotSize(bin));
2250 }
2251
VerifyImageBinSlotsAssigned()2252 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2253 dchecked_vector<mirror::Object*> carveout;
2254 JavaVMExt* vm = nullptr;
2255 if (image_writer_->compiler_options_.IsAppImage()) {
2256 // Exclude boot class path dex caches that are not part of the boot image.
2257 // Also exclude their locations if they have not been visited through another path.
2258 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2259 Thread* self = Thread::Current();
2260 vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2261 ReaderMutexLock mu(self, *Locks::dex_lock_);
2262 for (const auto& entry : class_linker->GetDexCachesData()) {
2263 const ClassLinker::DexCacheData& data = entry.second;
2264 auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
2265 if (dex_cache == nullptr ||
2266 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2267 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2268 dex_cache->GetDexFile())) {
2269 continue;
2270 }
2271 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2272 carveout.push_back(dex_cache.Ptr());
2273 ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
2274 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2275 carveout.push_back(location.Ptr());
2276 }
2277 }
2278 }
2279
2280 dchecked_vector<mirror::Object*> missed_objects;
2281 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2282 REQUIRES_SHARED(Locks::mutator_lock_) {
2283 if (!image_writer_->IsInBootImage(obj)) {
2284 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2285 // Ignore the `carveout` objects.
2286 if (ContainsElement(carveout, obj)) {
2287 return;
2288 }
2289 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2290 // the app class loader.
2291 ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
2292 if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
2293 ObjPtr<mirror::Class> reference_class =
2294 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
2295 DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
2296 ArtField* ref_field = reference_class->FindDeclaredInstanceField(
2297 "referent", "Ljava/lang/Object;");
2298 CHECK(ref_field != nullptr);
2299 ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
2300 CHECK(ref != nullptr);
2301 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2302 ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2303 CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>());
2304 // Note: The app class loader is used only for checking against the runtime
2305 // class loader, the dex file cookie is cleared and therefore we do not need
2306 // to run the finalizer even if we implement app image objects collection.
2307 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
2308 CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
2309 return;
2310 }
2311 if (klass->IsStringClass()) {
2312 // Ignore interned strings. These may come from reflection interning method names.
2313 // TODO: Make dex file strings weak interns and GC them before writing the image.
2314 if (IsStronglyInternedString(obj->AsString())) {
2315 return;
2316 }
2317 }
2318 missed_objects.push_back(obj);
2319 }
2320 }
2321 };
2322 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2323 if (!missed_objects.empty()) {
2324 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2325 size_t num_missed_objects = missed_objects.size();
2326 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2327 ArrayRef<mirror::Object*> missed_objects_head =
2328 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2329 for (mirror::Object* obj : missed_objects_head) {
2330 LOG(ERROR) << "Image object without assigned bin slot: "
2331 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2332 << " " << v->FirstPathFromRootSet(obj);
2333 }
2334 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2335 }
2336 }
2337
FinalizeBinSlotOffsets()2338 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2339 // Calculate bin slot offsets and adjust for region padding if needed.
2340 const size_t region_size = image_writer_->region_size_;
2341 const size_t num_image_infos = image_writer_->image_infos_.size();
2342 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2343 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2344 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2345
2346 for (size_t i = 0; i != kNumberOfBins; ++i) {
2347 Bin bin = enum_cast<Bin>(i);
2348 switch (bin) {
2349 case Bin::kArtMethodClean:
2350 case Bin::kArtMethodDirty: {
2351 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2352 break;
2353 }
2354 case Bin::kImTable:
2355 case Bin::kIMTConflictTable: {
2356 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2357 break;
2358 }
2359 default: {
2360 // Normal alignment.
2361 }
2362 }
2363 image_info.bin_slot_offsets_[i] = bin_offset;
2364
2365 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2366 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2367 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2368 size_t remaining_space =
2369 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2370 // Exercise the loop below in debug builds to get coverage.
2371 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2372 // The bin crosses a region boundary. Add padding if needed.
2373 size_t object_offset = 0u;
2374 size_t padding = 0u;
2375 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2376 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2377 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2378 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2379 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2380
2381 auto add_padding = [&](bool tail_region) {
2382 DCHECK_NE(remaining_space, 0u);
2383 DCHECK_LT(remaining_space, region_size);
2384 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2385 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2386 if (!tail_region || true) {
2387 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2388 }
2389 image_info.bin_slot_sizes_[i] += remaining_space;
2390 padding += remaining_space;
2391 object_offset += remaining_space;
2392 remaining_space = region_size;
2393 };
2394 if (object_size > remaining_space) {
2395 // Padding needed if we're not at region boundary (with a multi-region object).
2396 if (remaining_space != region_size) {
2397 // TODO: Instead of adding padding, we should consider reordering the bins
2398 // or objects to reduce wasted space.
2399 add_padding(/*tail_region=*/ false);
2400 }
2401 DCHECK_EQ(remaining_space, region_size);
2402 // For huge objects, adjust the remaining space to hold the object and some more.
2403 if (object_size > region_size) {
2404 remaining_space = RoundUp(object_size + 1u, region_size);
2405 }
2406 } else if (remaining_space == object_size) {
2407 // Move to the next region, no padding needed.
2408 remaining_space += region_size;
2409 }
2410 DCHECK_GT(remaining_space, object_size);
2411 remaining_space -= object_size;
2412 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2413 object_offset += object_size;
2414 // Add padding to the tail region of huge objects if not region-aligned.
2415 if (object_size > region_size && remaining_space != region_size) {
2416 DCHECK(!IsAlignedParam(object_size, region_size));
2417 add_padding(/*tail_region=*/ true);
2418 }
2419 }
2420 image_writer_->region_alignment_wasted_ += padding;
2421 image_info.image_end_ += padding;
2422 }
2423 }
2424 bin_offset += image_info.bin_slot_sizes_[i];
2425 }
2426 // NOTE: There may be additional padding between the bin slots and the intern table.
2427 DCHECK_EQ(
2428 image_info.image_end_,
2429 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2430 }
2431
2432 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2433 }
2434
CollectStringReferenceInfo()2435 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2436 size_t total_string_refs = 0u;
2437
2438 const size_t num_image_infos = image_writer_->image_infos_.size();
2439 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2440 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2441 DCHECK(image_info.string_reference_offsets_.empty());
2442 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2443
2444 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2445 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2446 CollectStringReferenceVisitor visitor(image_writer_,
2447 oat_index,
2448 &image_info.string_reference_offsets_,
2449 obj);
2450 /*
2451 * References to managed strings can occur either in the managed heap or in
2452 * native memory regions. Information about managed references is collected
2453 * by the CollectStringReferenceVisitor and directly added to the image info.
2454 *
2455 * Native references to managed strings can only occur through DexCache
2456 * objects. This is verified by the visitor in debug mode and the references
2457 * are collected separately below.
2458 */
2459 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2460 kVerifyNone,
2461 kWithoutReadBarrier>(visitor, visitor);
2462 }
2463 }
2464
2465 total_string_refs += image_info.string_reference_offsets_.size();
2466
2467 // Check that we collected the same number of string references as we saw in the previous pass.
2468 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2469 }
2470
2471 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2472 }
2473
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2474 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2475 size_t old_work_queue_size = work_queue_.size();
2476 VisitReferencesVisitor visitor(this, oat_index);
2477 // Walk references and assign bin slots for them.
2478 obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
2479 visitor,
2480 visitor);
2481 // Put the added references in the queue in the order in which they were added.
2482 // The visitor just pushes them to the front as it visits them.
2483 DCHECK_LE(old_work_queue_size, work_queue_.size());
2484 size_t num_added = work_queue_.size() - old_work_queue_size;
2485 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2486 }
2487
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2488 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2489 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2490 // Object is null or already in the image, there is no work to do.
2491 return false;
2492 }
2493 bool assigned = false;
2494 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2495 AssignImageBinSlot(obj.Ptr(), oat_index);
2496 assigned = true;
2497 }
2498 return assigned;
2499 }
2500
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index)2501 ImageWriter::Bin ImageWriter::LayoutHelper::AssignImageBinSlot(ObjPtr<mirror::Object> object,
2502 size_t oat_index) {
2503 DCHECK(object != nullptr);
2504 Bin bin = image_writer_->GetImageBin(object.Ptr());
2505 AssignImageBinSlot(object.Ptr(), oat_index, bin);
2506 return bin;
2507 }
2508
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index,Bin bin)2509 void ImageWriter::LayoutHelper::AssignImageBinSlot(
2510 ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
2511 DCHECK(object != nullptr);
2512 DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
2513 DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
2514 image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
2515 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
2516 }
2517
AssertOnly1Thread()2518 static inline void AssertOnly1Thread() REQUIRES(!Locks::thread_list_lock_) {
2519 if (kIsDebugBuild) {
2520 Runtime::Current()->GetThreadList()->CheckOnly1Thread(Thread::Current());
2521 }
2522 }
2523
CalculateNewObjectOffsets()2524 void ImageWriter::CalculateNewObjectOffsets() {
2525 Thread* const self = Thread::Current();
2526 Runtime* const runtime = Runtime::Current();
2527 gc::Heap* const heap = runtime->GetHeap();
2528
2529 AssertOnly1Thread();
2530 // Leave space for the header, but do not write it yet, we need to
2531 // know where image_roots is going to end up
2532 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2533
2534 // Write the image runtime methods.
2535 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2536 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2537 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2538 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2539 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2540 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2541 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2542 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2543 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2544 image_methods_[ImageHeader::kSaveEverythingMethod] =
2545 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2546 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2547 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2548 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2549 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2550 // Visit image methods first to have the main runtime methods in the first image.
2551 for (auto* m : image_methods_) {
2552 CHECK(m != nullptr);
2553 CHECK(m->IsRuntimeMethod());
2554 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2555 << "Trampolines should be in boot image";
2556 if (!IsInBootImage(m)) {
2557 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2558 }
2559 }
2560
2561 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2562 // this lock while holding other locks may cause lock order violations.
2563 {
2564 auto deflate_monitor =
2565 // NO_THREAD_SAFETY_ANALYSIS: We don't really hold mutator_lock_ exclusively.
2566 [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2567 NO_THREAD_SAFETY_ANALYSIS { Monitor::Deflate(Thread::Current(), obj); };
2568 heap->VisitObjects(deflate_monitor);
2569 // This does not update the MonitorList, which is thus rendered invalid, and is no longer used.
2570 }
2571
2572 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2573 // We can now assign a BitSlot to each object and store it in its lockword.
2574
2575 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2576 if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
2577 // Record the address of boot image live objects.
2578 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2579 vm, image_roots_[0]);
2580 boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
2581 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
2582 ImageHeader::kBootImageLiveObjects)).Ptr();
2583 }
2584
2585 // If dirty_image_objects_ is present - try optimizing object layout.
2586 // Parse dirty-image-objects entries and put them in dirty_objects_ map, which is then used in
2587 // `AssignImageBinSlot` method to put the objects in dirty bin.
2588 if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) {
2589 dirty_objects_ = MatchDirtyObjectPaths(*dirty_image_objects_);
2590 LOG(INFO) << ART_FORMAT("Matched {} out of {} dirty-image-objects",
2591 dirty_objects_.size(),
2592 dirty_image_objects_->size());
2593 }
2594
2595 LayoutHelper layout_helper(this);
2596 layout_helper.ProcessDexFileObjects(self);
2597 layout_helper.ProcessRoots(self);
2598 layout_helper.FinalizeInternTables();
2599
2600 // Sort objects in dirty bin.
2601 if (!dirty_objects_.empty()) {
2602 for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2603 layout_helper.SortDirtyObjects(dirty_objects_, oat_index);
2604 }
2605 }
2606
2607 // Verify that all objects have assigned image bin slots.
2608 layout_helper.VerifyImageBinSlotsAssigned();
2609
2610 // Finalize bin slot offsets. This may add padding for regions.
2611 layout_helper.FinalizeBinSlotOffsets();
2612
2613 // Collect string reference info for app images.
2614 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2615 layout_helper.CollectStringReferenceInfo();
2616 }
2617
2618 // Calculate image offsets.
2619 size_t image_offset = 0;
2620 for (ImageInfo& image_info : image_infos_) {
2621 image_info.image_begin_ = global_image_begin_ + image_offset;
2622 image_info.image_offset_ = image_offset;
2623 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
2624 // There should be no gaps until the next image.
2625 image_offset += image_info.image_size_;
2626 }
2627
2628 size_t oat_index = 0;
2629 for (ImageInfo& image_info : image_infos_) {
2630 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2631 vm, image_roots_[oat_index]);
2632 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
2633 ++oat_index;
2634 }
2635
2636 // Update the native relocations by adding their bin sums.
2637 for (auto& pair : native_object_relocations_) {
2638 NativeObjectRelocation& relocation = pair.second;
2639 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2640 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2641 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2642 }
2643
2644 // Update the JNI stub methods by adding their bin sums.
2645 for (auto& pair : jni_stub_map_) {
2646 JniStubMethodRelocation& relocation = pair.second.second;
2647 constexpr Bin bin_type = Bin::kJniStubMethod;
2648 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2649 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2650 }
2651 }
2652
2653 std::pair<size_t, dchecked_vector<ImageSection>>
CreateImageSections() const2654 ImageWriter::ImageInfo::CreateImageSections() const {
2655 dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
2656
2657 // Do not round up any sections here that are represented by the bins since it
2658 // will break offsets.
2659
2660 /*
2661 * Objects section
2662 */
2663 sections[ImageHeader::kSectionObjects] =
2664 ImageSection(0u, image_end_);
2665
2666 /*
2667 * Field section
2668 */
2669 sections[ImageHeader::kSectionArtFields] =
2670 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2671
2672 /*
2673 * Method section
2674 */
2675 sections[ImageHeader::kSectionArtMethods] =
2676 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2677 GetBinSlotSize(Bin::kArtMethodClean) +
2678 GetBinSlotSize(Bin::kArtMethodDirty));
2679
2680 /*
2681 * IMT section
2682 */
2683 sections[ImageHeader::kSectionImTables] =
2684 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2685
2686 /*
2687 * Conflict Tables section
2688 */
2689 sections[ImageHeader::kSectionIMTConflictTables] =
2690 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2691
2692 /*
2693 * Runtime Methods section
2694 */
2695 sections[ImageHeader::kSectionRuntimeMethods] =
2696 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2697
2698 /*
2699 * JNI Stub Methods section
2700 */
2701 sections[ImageHeader::kSectionJniStubMethods] =
2702 ImageSection(GetBinSlotOffset(Bin::kJniStubMethod), GetBinSlotSize(Bin::kJniStubMethod));
2703
2704 /*
2705 * Interned Strings section
2706 */
2707
2708 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2709 size_t cur_pos = RoundUp(sections[ImageHeader::kSectionJniStubMethods].End(), sizeof(uint64_t));
2710
2711 const ImageSection& interned_strings_section =
2712 sections[ImageHeader::kSectionInternedStrings] =
2713 ImageSection(cur_pos, intern_table_bytes_);
2714
2715 /*
2716 * Class Table section
2717 */
2718
2719 // Obtain the new position and round it up to the appropriate alignment.
2720 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2721
2722 const ImageSection& class_table_section =
2723 sections[ImageHeader::kSectionClassTable] =
2724 ImageSection(cur_pos, class_table_bytes_);
2725
2726 /*
2727 * String Field Offsets section
2728 */
2729
2730 // Round up to the alignment of the offsets we are going to store.
2731 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2732
2733 // The size of string_reference_offsets_ can't be used here because it hasn't
2734 // been filled with AppImageReferenceOffsetInfo objects yet. The
2735 // num_string_references_ value is calculated separately, before we can
2736 // compute the actual offsets.
2737 const ImageSection& string_reference_offsets =
2738 sections[ImageHeader::kSectionStringReferenceOffsets] =
2739 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2740
2741 /*
2742 * DexCache arrays section
2743 */
2744
2745 // Round up to the alignment dex caches arrays expects.
2746 cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t));
2747 // We don't generate dex cache arrays in an image generated by dex2oat.
2748 sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u);
2749
2750 /*
2751 * Metadata section.
2752 */
2753
2754 // Round up to the alignment of the offsets we are going to store.
2755 cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2756
2757 const ImageSection& metadata_section =
2758 sections[ImageHeader::kSectionMetadata] =
2759 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2760
2761 // Return the number of bytes described by these sections, and the sections
2762 // themselves.
2763 return make_pair(metadata_section.End(), std::move(sections));
2764 }
2765
CreateHeader(size_t oat_index,size_t component_count)2766 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2767 ImageInfo& image_info = GetImageInfo(oat_index);
2768 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2769 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2770 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2771
2772 uint32_t image_reservation_size = image_info.image_size_;
2773 DCHECK_ALIGNED(image_reservation_size, kElfSegmentAlignment);
2774 uint32_t current_component_count = 1u;
2775 if (compiler_options_.IsAppImage()) {
2776 DCHECK_EQ(oat_index, 0u);
2777 DCHECK_EQ(component_count, current_component_count);
2778 } else {
2779 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2780 << image_infos_.size() << " " << component_count;
2781 if (oat_index == 0u) {
2782 const ImageInfo& last_info = image_infos_.back();
2783 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2784 DCHECK_ALIGNED(image_info.image_begin_, kElfSegmentAlignment);
2785 image_reservation_size = dchecked_integral_cast<uint32_t>(
2786 RoundUp(end - image_info.image_begin_, kElfSegmentAlignment));
2787 current_component_count = component_count;
2788 } else {
2789 image_reservation_size = 0u;
2790 current_component_count = 0u;
2791 }
2792 }
2793
2794 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2795 uint32_t boot_image_components = 0u;
2796 uint32_t boot_image_checksums = 0u;
2797 if (oat_index == 0u) {
2798 const std::vector<gc::space::ImageSpace*>& image_spaces =
2799 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2800 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2801 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2802 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2803 boot_image_components += header.GetComponentCount();
2804 boot_image_checksums ^= header.GetImageChecksum();
2805 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2806 i += header.GetImageSpaceCount();
2807 }
2808 }
2809
2810 // Create the image sections.
2811 auto section_info_pair = image_info.CreateImageSections();
2812 const size_t image_end = section_info_pair.first;
2813 dchecked_vector<ImageSection>& sections = section_info_pair.second;
2814
2815 // Finally bitmap section.
2816 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2817 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2818 // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping
2819 // the section from file to memory. However the section size doesn't have to be rounded up as it
2820 // is located at the end of the file. When mapping file contents to memory, if the last page of
2821 // the mapping is only partially filled with data, the rest will be zero-filled.
2822 *bitmap_section = ImageSection(RoundUp(image_end, kElfSegmentAlignment), bitmap_bytes);
2823 if (VLOG_IS_ON(compiler)) {
2824 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2825 size_t idx = 0;
2826 for (const ImageSection& section : sections) {
2827 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2828 ++idx;
2829 }
2830 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2831 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2832 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2833 << " Image offset=" << image_info.image_offset_ << std::dec;
2834 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2835 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2836 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2837 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2838 }
2839
2840 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2841 // image.
2842 new (image_info.image_.Begin()) ImageHeader(
2843 image_reservation_size,
2844 current_component_count,
2845 PointerToLowMemUInt32(image_info.image_begin_),
2846 image_end,
2847 sections.data(),
2848 image_info.image_roots_address_,
2849 image_info.oat_checksum_,
2850 PointerToLowMemUInt32(oat_file_begin),
2851 PointerToLowMemUInt32(image_info.oat_data_begin_),
2852 PointerToLowMemUInt32(oat_data_end),
2853 PointerToLowMemUInt32(oat_file_end),
2854 boot_image_begin_,
2855 boot_image_size_,
2856 boot_image_components,
2857 boot_image_checksums,
2858 target_ptr_size_);
2859 }
2860
GetImageMethodAddress(ArtMethod * method) const2861 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) const {
2862 NativeObjectRelocation relocation = GetNativeRelocation(method);
2863 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2864 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2865 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2866 }
2867
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2868 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2869 DCHECK(compiler_options_.IsBootImage());
2870 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2871 case IntrinsicObjects::PatchType::kValueOfArray: {
2872 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2873 const uint8_t* base_address =
2874 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2875 MemberOffset data_offset =
2876 IntrinsicObjects::GetValueOfArrayDataOffset(boot_image_live_objects_, index);
2877 return base_address + data_offset.Uint32Value();
2878 }
2879 case IntrinsicObjects::PatchType::kValueOfObject: {
2880 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2881 ObjPtr<mirror::Object> value = IntrinsicObjects::GetValueOfObject(boot_image_live_objects_,
2882 /* start_index= */ 0u,
2883 index);
2884 return GetImageAddress(value.Ptr());
2885 }
2886 }
2887 LOG(FATAL) << "UNREACHABLE";
2888 UNREACHABLE();
2889 }
2890
2891
2892 class ImageWriter::FixupRootVisitor : public RootVisitor {
2893 public:
FixupRootVisitor(ImageWriter * image_writer)2894 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2895 }
2896
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)2897 void VisitRoots([[maybe_unused]] mirror::Object*** roots,
2898 [[maybe_unused]] size_t count,
2899 [[maybe_unused]] const RootInfo& info) override
2900 REQUIRES_SHARED(Locks::mutator_lock_) {
2901 LOG(FATAL) << "Unsupported";
2902 }
2903
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)2904 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2905 size_t count,
2906 [[maybe_unused]] const RootInfo& info) override
2907 REQUIRES_SHARED(Locks::mutator_lock_) {
2908 for (size_t i = 0; i < count; ++i) {
2909 // Copy the reference. Since we do not have the address for recording the relocation,
2910 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2911 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2912 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2913 }
2914 }
2915
2916 private:
2917 ImageWriter* const image_writer_;
2918 };
2919
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2920 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2921 for (size_t i = 0; i < ImTable::kSize; ++i) {
2922 ArtMethod* method = orig->Get(i, target_ptr_size_);
2923 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2924 CopyAndFixupPointer(address, method);
2925 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2926 }
2927 }
2928
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2929 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2930 const size_t count = orig->NumEntries(target_ptr_size_);
2931 for (size_t i = 0; i < count; ++i) {
2932 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2933 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2934 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2935 CopyAndFixupPointer(
2936 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2937 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2938 NativeLocationInImage(interface_method));
2939 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2940 NativeLocationInImage(implementation_method));
2941 }
2942 }
2943
CopyAndFixupNativeData(size_t oat_index)2944 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2945 const ImageInfo& image_info = GetImageInfo(oat_index);
2946 // Copy ArtFields and methods to their locations and update the array for convenience.
2947 for (auto& pair : native_object_relocations_) {
2948 NativeObjectRelocation& relocation = pair.second;
2949 // Only work with fields and methods that are in the current oat file.
2950 if (relocation.oat_index != oat_index) {
2951 continue;
2952 }
2953 auto* dest = image_info.image_.Begin() + relocation.offset;
2954 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2955 DCHECK(!IsInBootImage(pair.first));
2956 switch (relocation.type) {
2957 case NativeObjectRelocationType::kRuntimeMethod:
2958 case NativeObjectRelocationType::kArtMethodClean:
2959 case NativeObjectRelocationType::kArtMethodDirty: {
2960 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2961 reinterpret_cast<ArtMethod*>(dest),
2962 oat_index);
2963 break;
2964 }
2965 case NativeObjectRelocationType::kArtFieldArray: {
2966 // Copy and fix up the entire field array.
2967 auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2968 auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2969 size_t size = src_array->size();
2970 memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2971 for (size_t i = 0; i != size; ++i) {
2972 CopyAndFixupReference(
2973 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2974 src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
2975 }
2976 break;
2977 }
2978 case NativeObjectRelocationType::kArtMethodArrayClean:
2979 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2980 // For method arrays, copy just the header since the elements will
2981 // get copied by their corresponding relocations.
2982 size_t size = ArtMethod::Size(target_ptr_size_);
2983 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2984 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2985 // Clear padding to avoid non-deterministic data in the image.
2986 // Historical note: We also did that to placate Valgrind.
2987 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2988 break;
2989 }
2990 case NativeObjectRelocationType::kIMTable: {
2991 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2992 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2993 CopyAndFixupImTable(orig_imt, dest_imt);
2994 break;
2995 }
2996 case NativeObjectRelocationType::kIMTConflictTable: {
2997 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2998 CopyAndFixupImtConflictTable(
2999 orig_table,
3000 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
3001 break;
3002 }
3003 case NativeObjectRelocationType::kGcRootPointer: {
3004 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
3005 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
3006 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
3007 break;
3008 }
3009 }
3010 }
3011 // Fixup the image method roots.
3012 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
3013 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
3014 ArtMethod* method = image_methods_[i];
3015 CHECK(method != nullptr);
3016 CopyAndFixupPointer(
3017 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
3018 }
3019 FixupRootVisitor root_visitor(this);
3020
3021 // Write the intern table into the image.
3022 if (image_info.intern_table_bytes_ > 0) {
3023 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
3024 DCHECK(image_info.intern_table_.has_value());
3025 const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
3026 uint8_t* const intern_table_memory_ptr =
3027 image_info.image_.Begin() + intern_table_section.Offset();
3028 const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
3029 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
3030 // Fixup the pointers in the newly written intern table to contain image addresses.
3031 InternTable temp_intern_table;
3032 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
3033 // that the VisitRoots() will update the memory directly rather than the copies.
3034 // This also relies on visit roots not doing any verification which could fail after we update
3035 // the roots to be the image addresses.
3036 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
3037 VoidFunctor(),
3038 /*is_boot_image=*/ false);
3039 CHECK_EQ(temp_intern_table.Size(), intern_table.size());
3040 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
3041
3042 if (kIsDebugBuild) {
3043 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
3044 CHECK(!temp_intern_table.strong_interns_.tables_.empty());
3045 // The UnorderedSet was inserted at the beginning.
3046 CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
3047 }
3048 }
3049
3050 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
3051 // class loaders. Writing multiple class tables into the image is currently unsupported.
3052 if (image_info.class_table_bytes_ > 0u) {
3053 const ImageSection& class_table_section = image_header->GetClassTableSection();
3054 uint8_t* const class_table_memory_ptr =
3055 image_info.image_.Begin() + class_table_section.Offset();
3056
3057 DCHECK(image_info.class_table_.has_value());
3058 const ClassTable::ClassSet& table = *image_info.class_table_;
3059 CHECK_EQ(table.size(), image_info.class_table_size_);
3060 const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
3061 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
3062
3063 // Fixup the pointers in the newly written class table to contain image addresses. See
3064 // above comment for intern tables.
3065 ClassTable temp_class_table;
3066 temp_class_table.ReadFromMemory(class_table_memory_ptr);
3067 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
3068 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
3069 temp_class_table.VisitRoots(visitor);
3070
3071 if (kIsDebugBuild) {
3072 ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
3073 CHECK(!temp_class_table.classes_.empty());
3074 // The ClassSet was inserted at the beginning.
3075 CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
3076 }
3077 }
3078 }
3079
CopyAndFixupJniStubMethods(size_t oat_index)3080 void ImageWriter::CopyAndFixupJniStubMethods(size_t oat_index) {
3081 const ImageInfo& image_info = GetImageInfo(oat_index);
3082 // Copy method's address to JniStubMethods section.
3083 for (auto& pair : jni_stub_map_) {
3084 JniStubMethodRelocation& relocation = pair.second.second;
3085 // Only work with JNI stubs that are in the current oat file.
3086 if (relocation.oat_index != oat_index) {
3087 continue;
3088 }
3089 void** address = reinterpret_cast<void**>(image_info.image_.Begin() + relocation.offset);
3090 ArtMethod* method = pair.second.first;
3091 CopyAndFixupPointer(address, method);
3092 }
3093 }
3094
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)3095 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
3096 // Pointer arrays are processed early and each is visited just once.
3097 // Therefore we know that this array has not been copied yet.
3098 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
3099 DCHECK(dst != nullptr);
3100 DCHECK(arr->IsIntArray() || arr->IsLongArray())
3101 << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
3102 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
3103 const size_t num_elements = arr->GetLength();
3104 CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
3105 arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
3106 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
3107 for (size_t i = 0, count = num_elements; i < count; ++i) {
3108 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
3109 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
3110 auto it = native_object_relocations_.find(elem);
3111 if (UNLIKELY(it == native_object_relocations_.end())) {
3112 auto* method = reinterpret_cast<ArtMethod*>(elem);
3113 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
3114 << method << " idx=" << i << "/" << num_elements << " with declaring class "
3115 << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
3116 UNREACHABLE();
3117 }
3118 }
3119 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
3120 }
3121 }
3122
CopyAndFixupObject(Object * obj)3123 void ImageWriter::CopyAndFixupObject(Object* obj) {
3124 if (!IsImageBinSlotAssigned(obj)) {
3125 return;
3126 }
3127 // Some objects (such as method pointer arrays) may have been processed before.
3128 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
3129 if (dst != nullptr) {
3130 FixupObject(obj, dst);
3131 }
3132 }
3133
3134 template <bool kCheckIfDone>
CopyObject(Object * obj)3135 inline Object* ImageWriter::CopyObject(Object* obj) {
3136 size_t oat_index = GetOatIndex(obj);
3137 size_t offset = GetImageOffset(obj, oat_index);
3138 ImageInfo& image_info = GetImageInfo(oat_index);
3139 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
3140 DCHECK_LT(offset, image_info.image_end_);
3141 const auto* src = reinterpret_cast<const uint8_t*>(obj);
3142
3143 bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3144 // Check if the object was already copied, unless the caller indicated that it was not.
3145 if (kCheckIfDone && done) {
3146 return nullptr;
3147 }
3148 DCHECK(!done);
3149
3150 const size_t n = obj->SizeOf();
3151
3152 if (kIsDebugBuild && region_size_ != 0u) {
3153 const size_t offset_after_header = offset - sizeof(ImageHeader);
3154 const size_t next_region = RoundUp(offset_after_header, region_size_);
3155 if (offset_after_header != next_region) {
3156 // If the object is not on a region bondary, it must not be cross region.
3157 CHECK_LT(offset_after_header, next_region)
3158 << "offset_after_header=" << offset_after_header << " size=" << n;
3159 CHECK_LE(offset_after_header + n, next_region)
3160 << "offset_after_header=" << offset_after_header << " size=" << n;
3161 }
3162 }
3163 DCHECK_LE(offset + n, image_info.image_.Size());
3164 memcpy(dst, src, n);
3165
3166 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3167 // word.
3168 const auto it = saved_hashcode_map_.find(obj);
3169 dst->SetLockWord(it != saved_hashcode_map_.end() ?
3170 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3171 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3172 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3173 // safe since we mark all of the objects that may reference non immune objects as gray.
3174 CHECK(dst->AtomicSetMarkBit(0, 1));
3175 }
3176 return dst;
3177 }
3178
3179 // Rewrite all the references in the copied object to point to their image address equivalent
3180 class ImageWriter::FixupVisitor {
3181 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3182 FixupVisitor(ImageWriter* image_writer, Object* copy)
3183 : image_writer_(image_writer), copy_(copy) {
3184 }
3185
3186 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3187 void VisitRootIfNonNull(
3188 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3189 LOG(FATAL) << "UNREACHABLE";
3190 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3191 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3192 LOG(FATAL) << "UNREACHABLE";
3193 }
3194
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3195 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3196 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3197 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
3198 // Copy the reference and record the fixup if necessary.
3199 image_writer_->CopyAndFixupReference(
3200 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3201 }
3202
3203 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3204 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3205 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3206 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3207 }
3208
3209 protected:
3210 ImageWriter* const image_writer_;
3211 mirror::Object* const copy_;
3212 };
3213
CopyAndFixupObjects()3214 void ImageWriter::CopyAndFixupObjects() {
3215 // Copy and fix up pointer arrays first as they require special treatment.
3216 auto method_pointer_array_visitor =
3217 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
3218 CopyAndFixupMethodPointerArray(pointer_array.Ptr());
3219 };
3220 for (ImageInfo& image_info : image_infos_) {
3221 if (image_info.class_table_size_ != 0u) {
3222 DCHECK(image_info.class_table_.has_value());
3223 for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
3224 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
3225 DCHECK(klass != nullptr);
3226 // Do not process boot image classes present in app image class table.
3227 DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
3228 if (!IsInBootImage(klass.Ptr())) {
3229 // Do not fix up method pointer arrays inherited from superclass. If they are part
3230 // of the current image, they were or shall be copied when visiting the superclass.
3231 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
3232 }
3233 }
3234 }
3235 }
3236
3237 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3238 DCHECK(obj != nullptr);
3239 CopyAndFixupObject(obj);
3240 };
3241 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3242
3243 // Fill the padding objects since they are required for in order traversal of the image space.
3244 for (ImageInfo& image_info : image_infos_) {
3245 for (const size_t start_offset : image_info.padding_offsets_) {
3246 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3247 size_t remaining_space =
3248 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3249 DCHECK_NE(remaining_space, 0u);
3250 DCHECK_LT(remaining_space, region_size_);
3251 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3252 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3253 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3254 Object* end = dst + remaining_space / object_class->GetObjectSize();
3255 Class* image_object_class = GetImageAddress(object_class.Ptr());
3256 while (dst != end) {
3257 dst->SetClass<kVerifyNone>(image_object_class);
3258 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3259 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3260 ++dst;
3261 }
3262 }
3263 }
3264
3265 // We no longer need the hashcode map, values have already been copied to target objects.
3266 saved_hashcode_map_.clear();
3267 }
3268
3269 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3270 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3271 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3272 : FixupVisitor(image_writer, copy) {}
3273
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3274 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3275 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3276 DCHECK(obj->IsClass());
3277 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3278 }
3279
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3280 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
3281 [[maybe_unused]] ObjPtr<mirror::Reference> ref) const
3282 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3283 LOG(FATAL) << "Reference not expected here.";
3284 }
3285 };
3286
GetNativeRelocation(void * obj) const3287 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) const {
3288 DCHECK(obj != nullptr);
3289 DCHECK(!IsInBootImage(obj));
3290 auto it = native_object_relocations_.find(obj);
3291 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3292 << Runtime::Current()->GetHeap()->DumpSpaces();
3293 return it->second;
3294 }
3295
3296 template <typename T>
PrettyPrint(T * ptr)3297 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3298 std::ostringstream oss;
3299 oss << ptr;
3300 return oss.str();
3301 }
3302
3303 template <>
PrettyPrint(ArtMethod * method)3304 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3305 return ArtMethod::PrettyMethod(method);
3306 }
3307
3308 template <typename T>
NativeLocationInImage(T * obj)3309 T* ImageWriter::NativeLocationInImage(T* obj) {
3310 if (obj == nullptr || IsInBootImage(obj)) {
3311 return obj;
3312 } else {
3313 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3314 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3315 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3316 }
3317 }
3318
NativeLocationInImage(ArtField * src_field)3319 ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
3320 // Fields are not individually stored in the native relocation map. Use the field array.
3321 ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
3322 LengthPrefixedArray<ArtField>* src_fields = declaring_class->GetFieldsPtr();
3323 DCHECK(src_fields != nullptr);
3324 LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
3325 DCHECK(dst_fields != nullptr);
3326 size_t field_offset =
3327 reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
3328 return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
3329 }
3330
3331 class ImageWriter::NativeLocationVisitor {
3332 public:
NativeLocationVisitor(ImageWriter * image_writer)3333 explicit NativeLocationVisitor(ImageWriter* image_writer)
3334 : image_writer_(image_writer) {}
3335
3336 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3337 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3338 if (ptr != nullptr) {
3339 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3340 }
3341 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3342 // with the value we return here. We should try to avoid the duplicate work.
3343 return image_writer_->NativeLocationInImage(ptr);
3344 }
3345
3346 private:
3347 ImageWriter* const image_writer_;
3348 };
3349
FixupClass(mirror::Class * orig,mirror::Class * copy)3350 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3351 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3352 FixupClassVisitor visitor(this, copy);
3353 ObjPtr<mirror::Object>(orig)->VisitReferences<
3354 /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
3355
3356 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3357 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3358 // values to the parent of that class.
3359 //
3360 // Every time this happens, the parent class has to mutate to increment
3361 // the "Next" value.
3362 //
3363 // If any of these parents are in the boot image, the changes [in the parents]
3364 // would be lost when the app image is reloaded.
3365 //
3366 // To prevent newly loaded classes (not in the app image) from being reassigned
3367 // the same bitstring value as an existing app image class, uninitialize
3368 // all the classes in the app image.
3369 //
3370 // On startup, the class linker will then re-initialize all the app
3371 // image bitstrings. See also ClassLinker::AddImageSpace.
3372 //
3373 // FIXME: Deal with boot image extensions.
3374 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3375 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3376 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3377 }
3378
3379 // Remove the clinitThreadId. This is required for image determinism.
3380 copy->SetClinitThreadId(static_cast<pid_t>(0));
3381 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3382 // resolved and the class will therefore be re-verified at runtime.
3383 if (orig->ShouldVerifyAtRuntime()) {
3384 copy->SetStatusInternal(ClassStatus::kResolved);
3385 }
3386 }
3387
FixupObject(Object * orig,Object * copy)3388 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3389 DCHECK(orig != nullptr);
3390 DCHECK(copy != nullptr);
3391 if (kUseBakerReadBarrier) {
3392 orig->AssertReadBarrierState();
3393 }
3394 ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
3395 if (klass->IsClassClass()) {
3396 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3397 } else {
3398 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3399 Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
3400 if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
3401 // Make sure all image strings have the hash code calculated, even if they are not interned.
3402 down_cast<mirror::String*>(copy)->GetHashCode();
3403 } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
3404 klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
3405 // Need to update the ArtMethod.
3406 auto* dest = down_cast<mirror::Executable*>(copy);
3407 auto* src = down_cast<mirror::Executable*>(orig);
3408 ArtMethod* src_method = src->GetArtMethod();
3409 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3410 } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
3411 klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
3412 // Need to update the ArtField.
3413 auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
3414 auto* src = down_cast<mirror::FieldVarHandle*>(orig);
3415 ArtField* src_field = src->GetArtField();
3416 CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
3417 } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
3418 down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
3419 down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
3420 } else if (klass->IsClassLoaderClass()) {
3421 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3422 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3423 // ClassLinker.
3424 copy_loader->SetClassTable(nullptr);
3425 // Also set allocator to null to be safe. The allocator is created when we create the class
3426 // table. We also never expect to unload things in the image since they are held live as
3427 // roots.
3428 copy_loader->SetAllocator(nullptr);
3429 }
3430 FixupVisitor visitor(this, copy);
3431 orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
3432 visitor, visitor);
3433 }
3434 }
3435
GetOatAddress(StubType type) const3436 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3437 DCHECK_LE(type, StubType::kLast);
3438 // If we are compiling a boot image extension or app image,
3439 // we need to use the stubs of the primary boot image.
3440 if (!compiler_options_.IsBootImage()) {
3441 // Use the current image pointers.
3442 const std::vector<gc::space::ImageSpace*>& image_spaces =
3443 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3444 DCHECK(!image_spaces.empty());
3445 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3446 CHECK(oat_file != nullptr);
3447 const OatHeader& header = oat_file->GetOatHeader();
3448 return header.GetOatAddress(type);
3449 }
3450 const ImageInfo& primary_image_info = GetImageInfo(0);
3451 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3452 }
3453
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3454 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3455 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3456 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3457 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3458 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3459 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3460
3461 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3462 // trampoline.
3463
3464 // Quick entrypoint:
3465 const void* quick_oat_entry_point =
3466 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3467 const uint8_t* quick_code;
3468
3469 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
3470 DCHECK(method->IsCopied());
3471 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3472 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3473 } else {
3474 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3475 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3476 }
3477
3478 bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>();
3479
3480 if (quick_code == nullptr) {
3481 // If we don't have code, use generic jni / interpreter.
3482 if (method->IsNative()) {
3483 // The generic JNI trampolines performs class initialization check if needed.
3484 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3485 } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3486 // The nterp trampoline doesn't do initialization checks, so install the
3487 // resolution stub if needed.
3488 if (still_needs_clinit_check) {
3489 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3490 } else {
3491 quick_code = GetOatAddress(StubType::kNterpTrampoline);
3492 }
3493 } else {
3494 // The interpreter brige performs class initialization check if needed.
3495 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3496 }
3497 } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) {
3498 // If we do have code but the method needs a class initialization check before calling
3499 // that code, install the resolution stub that will perform the check.
3500 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3501 }
3502 return quick_code;
3503 }
3504
ResetNterpFastPathFlags(uint32_t access_flags,ArtMethod * orig,InstructionSet isa)3505 static inline uint32_t ResetNterpFastPathFlags(
3506 uint32_t access_flags, ArtMethod* orig, InstructionSet isa)
3507 REQUIRES_SHARED(Locks::mutator_lock_) {
3508 DCHECK(orig != nullptr);
3509 DCHECK(!orig->IsProxyMethod()); // `UnstartedRuntime` does not support creating proxy classes.
3510 DCHECK(!orig->IsRuntimeMethod());
3511
3512 // Clear old nterp fast path flags.
3513 access_flags = ArtMethod::ClearNterpFastPathFlags(access_flags);
3514
3515 // Check if nterp fast paths are available on the target ISA.
3516 std::string_view shorty = orig->GetShortyView(); // Use orig, copy's class not yet ready.
3517 uint32_t new_nterp_flags = GetNterpFastPathFlags(shorty, access_flags, isa);
3518
3519 // Add the new nterp fast path flags, if any.
3520 return access_flags | new_nterp_flags;
3521 }
3522
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3523 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3524 ArtMethod* copy,
3525 size_t oat_index) {
3526 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3527
3528 CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
3529 orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
3530
3531 if (!orig->IsRuntimeMethod()) {
3532 uint32_t access_flags = orig->GetAccessFlags();
3533 if (ArtMethod::IsAbstract(access_flags)) {
3534 // Ignore the single-implementation info for abstract method.
3535 // TODO: handle fixup of single-implementation method for abstract method.
3536 access_flags = ArtMethod::SetHasSingleImplementation(access_flags, /*single_impl=*/ false);
3537 copy->SetSingleImplementation(nullptr, target_ptr_size_);
3538 } else if (mark_memory_shared_methods_ && LIKELY(!ArtMethod::IsIntrinsic(access_flags))) {
3539 access_flags = ArtMethod::SetMemorySharedMethod(access_flags);
3540 copy->SetHotCounter();
3541 }
3542
3543 InstructionSet isa = compiler_options_.GetInstructionSet();
3544 if (isa != kRuntimeISA) {
3545 access_flags = ResetNterpFastPathFlags(access_flags, orig, isa);
3546 } else {
3547 DCHECK_EQ(access_flags, ResetNterpFastPathFlags(access_flags, orig, isa));
3548 }
3549 copy->SetAccessFlags(access_flags);
3550 }
3551
3552 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3553 // oat_begin_
3554
3555 // The resolution method has a special trampoline to call.
3556 Runtime* runtime = Runtime::Current();
3557 const void* quick_code;
3558 if (orig->IsRuntimeMethod()) {
3559 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3560 if (orig_table != nullptr) {
3561 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3562 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3563 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3564 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3565 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3566 // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3567 const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3568 copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3569 } else {
3570 bool found_one = false;
3571 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3572 auto idx = static_cast<CalleeSaveType>(i);
3573 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3574 found_one = true;
3575 break;
3576 }
3577 }
3578 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3579 CHECK(copy->IsRuntimeMethod());
3580 CHECK(copy->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_) == nullptr);
3581 quick_code = nullptr;
3582 }
3583 } else {
3584 // We assume all methods have code. If they don't currently then we set them to the use the
3585 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3586 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3587 if (UNLIKELY(!orig->IsInvokable())) {
3588 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3589 } else {
3590 const ImageInfo& image_info = image_infos_[oat_index];
3591 quick_code = GetQuickCode(orig, image_info);
3592
3593 // JNI entrypoint:
3594 if (orig->IsNative()) {
3595 // Find boot JNI stub for those methods that skipped AOT compilation and don't need
3596 // clinit check.
3597 bool still_needs_clinit_check = orig->StillNeedsClinitCheck<kWithoutReadBarrier>();
3598 if (!still_needs_clinit_check &&
3599 !compiler_options_.IsBootImage() &&
3600 quick_code == GetOatAddress(StubType::kQuickGenericJNITrampoline)) {
3601 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3602 const void* boot_jni_stub = class_linker->FindBootJniStub(orig);
3603 if (boot_jni_stub != nullptr) {
3604 quick_code = boot_jni_stub;
3605 }
3606 }
3607 // The native method's pointer is set to a stub to lookup via dlsym.
3608 // Note this is not the code_ pointer, that is handled above.
3609 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3610 : StubType::kJNIDlsymLookupTrampoline;
3611 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3612 } else if (!orig->HasCodeItem()) {
3613 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3614 } else {
3615 CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3616 }
3617 }
3618 }
3619 if (quick_code != nullptr) {
3620 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3621 }
3622 }
3623
GetBinSizeSum(Bin up_to) const3624 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3625 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3626 return std::accumulate(&bin_slot_sizes_[0],
3627 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3628 /*init*/ static_cast<size_t>(0));
3629 }
3630
BinSlot(uint32_t lockword)3631 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3632 // These values may need to get updated if more bins are added to the enum Bin
3633 static_assert(kBinBits == 3, "wrong number of bin bits");
3634 static_assert(kBinShift == 27, "wrong number of shift");
3635 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3636
3637 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3638 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3639 }
3640
BinSlot(Bin bin,uint32_t index)3641 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3642 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3643 DCHECK_EQ(index, GetOffset());
3644 }
3645
GetBin() const3646 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3647 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3648 }
3649
GetOffset() const3650 uint32_t ImageWriter::BinSlot::GetOffset() const {
3651 return lockword_ & ~kBinMask;
3652 }
3653
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3654 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3655 switch (type) {
3656 case NativeObjectRelocationType::kArtFieldArray:
3657 return Bin::kArtField;
3658 case NativeObjectRelocationType::kArtMethodClean:
3659 case NativeObjectRelocationType::kArtMethodArrayClean:
3660 return Bin::kArtMethodClean;
3661 case NativeObjectRelocationType::kArtMethodDirty:
3662 case NativeObjectRelocationType::kArtMethodArrayDirty:
3663 return Bin::kArtMethodDirty;
3664 case NativeObjectRelocationType::kRuntimeMethod:
3665 return Bin::kRuntimeMethod;
3666 case NativeObjectRelocationType::kIMTable:
3667 return Bin::kImTable;
3668 case NativeObjectRelocationType::kIMTConflictTable:
3669 return Bin::kIMTConflictTable;
3670 case NativeObjectRelocationType::kGcRootPointer:
3671 return Bin::kMetadata;
3672 }
3673 }
3674
GetOatIndex(mirror::Object * obj) const3675 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3676 if (!IsMultiImage()) {
3677 DCHECK(oat_index_map_.empty());
3678 return GetDefaultOatIndex();
3679 }
3680 auto it = oat_index_map_.find(obj);
3681 DCHECK(it != oat_index_map_.end()) << obj;
3682 return it->second;
3683 }
3684
GetOatIndexForDexFile(const DexFile * dex_file) const3685 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3686 if (!IsMultiImage()) {
3687 return GetDefaultOatIndex();
3688 }
3689 auto it = dex_file_oat_index_map_.find(dex_file);
3690 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3691 return it->second;
3692 }
3693
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3694 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3695 while (klass->IsArrayClass()) {
3696 klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
3697 }
3698 if (UNLIKELY(klass->IsPrimitive())) {
3699 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
3700 return GetDefaultOatIndex();
3701 } else {
3702 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
3703 return GetOatIndexForDexFile(&klass->GetDexFile());
3704 }
3705 }
3706
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3707 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3708 size_t oat_loaded_size,
3709 size_t oat_data_offset,
3710 size_t oat_data_size) {
3711 DCHECK_GE(oat_loaded_size, oat_data_offset);
3712 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3713
3714 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3715 DCHECK(images_end != nullptr); // Image space must be ready.
3716 for (const ImageInfo& info : image_infos_) {
3717 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3718 }
3719
3720 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3721 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3722 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3723 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3724 cur_image_info.oat_size_ = oat_data_size;
3725
3726 if (compiler_options_.IsAppImage()) {
3727 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3728 return;
3729 }
3730
3731 // Update the oat_offset of the next image info.
3732 if (oat_index + 1u != oat_filenames_.size()) {
3733 // There is a following one.
3734 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3735 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3736 }
3737 }
3738
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3739 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3740 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3741 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3742
3743 if (oat_index == GetDefaultOatIndex()) {
3744 // Primary oat file, read the trampolines.
3745 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3746 oat_header.GetJniDlsymLookupTrampolineOffset());
3747 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3748 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3749 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3750 oat_header.GetQuickGenericJniTrampolineOffset());
3751 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3752 oat_header.GetQuickImtConflictTrampolineOffset());
3753 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3754 oat_header.GetQuickResolutionTrampolineOffset());
3755 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3756 oat_header.GetQuickToInterpreterBridgeOffset());
3757 cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3758 oat_header.GetNterpTrampolineOffset());
3759 }
3760 }
3761
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const std::vector<std::string> * dirty_image_objects)3762 ImageWriter::ImageWriter(const CompilerOptions& compiler_options,
3763 uintptr_t image_begin,
3764 ImageHeader::StorageMode image_storage_mode,
3765 const std::vector<std::string>& oat_filenames,
3766 const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3767 jobject class_loader,
3768 const std::vector<std::string>* dirty_image_objects)
3769 : compiler_options_(compiler_options),
3770 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3771 // If we're compiling a boot image and we have a profile, set methods as being shared
3772 // memory (to avoid dirtying them with hotness counter). We expect important methods
3773 // to be AOT, and non-important methods to be run in the interpreter.
3774 mark_memory_shared_methods_(
3775 CompilerFilter::DependsOnProfile(compiler_options_.GetCompilerFilter()) &&
3776 (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())),
3777 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3778 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3779 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3780 image_objects_offset_begin_(0),
3781 image_infos_(oat_filenames.size()),
3782 jni_stub_map_(JniStubKeyHash(compiler_options.GetInstructionSet()),
3783 JniStubKeyEquals(compiler_options.GetInstructionSet())),
3784 dirty_methods_(0u),
3785 clean_methods_(0u),
3786 app_class_loader_(class_loader),
3787 boot_image_live_objects_(nullptr),
3788 image_roots_(),
3789 image_storage_mode_(image_storage_mode),
3790 oat_filenames_(oat_filenames),
3791 dex_file_oat_index_map_(dex_file_oat_index_map),
3792 dirty_image_objects_(dirty_image_objects) {
3793 DCHECK(compiler_options.IsBootImage() ||
3794 compiler_options.IsBootImageExtension() ||
3795 compiler_options.IsAppImage());
3796 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3797 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3798 CHECK_NE(image_begin, 0U);
3799 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3800 CHECK_EQ(compiler_options.IsBootImage(),
3801 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3802 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3803 if (compiler_options_.IsAppImage()) {
3804 // Make sure objects are not crossing region boundaries for app images.
3805 region_size_ = gc::space::RegionSpace::kRegionSize;
3806 }
3807 }
3808
~ImageWriter()3809 ImageWriter::~ImageWriter() {
3810 if (!image_roots_.empty()) {
3811 Thread* self = Thread::Current();
3812 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
3813 for (jobject image_roots : image_roots_) {
3814 vm->DeleteGlobalRef(self, image_roots);
3815 }
3816 }
3817 }
3818
ImageInfo()3819 ImageWriter::ImageInfo::ImageInfo()
3820 : intern_table_(),
3821 class_table_() {}
3822
3823 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3824 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3825 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3826 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3827 "DestType must be a Compressed-/HeapReference<Object>.");
3828 dest->Assign(GetImageAddress(src.Ptr()));
3829 }
3830
3831 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value,PointerSize pointer_size)3832 void ImageWriter::CopyAndFixupPointer(
3833 void** target, ValueType src_value, PointerSize pointer_size) {
3834 DCHECK(src_value != nullptr);
3835 void* new_value = NativeLocationInImage(src_value);
3836 DCHECK(new_value != nullptr);
3837 if (pointer_size == PointerSize::k32) {
3838 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3839 } else {
3840 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3841 }
3842 }
3843
3844 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value)3845 void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
3846 REQUIRES_SHARED(Locks::mutator_lock_) {
3847 CopyAndFixupPointer(target, src_value, target_ptr_size_);
3848 }
3849
3850 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value,PointerSize pointer_size)3851 void ImageWriter::CopyAndFixupPointer(
3852 void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
3853 void** target =
3854 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3855 return CopyAndFixupPointer(target, src_value, pointer_size);
3856 }
3857
3858 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value)3859 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
3860 return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
3861 }
3862
3863 } // namespace linker
3864 } // namespace art
3865