• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* MIT License
2  *
3  * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
4  * Copyright (c) 2022-2023 HACL* Contributors
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 
26 #include "internal/Hacl_Hash_SHA1.h"
27 
28 static uint32_t _h0[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U };
29 
Hacl_Hash_SHA1_init(uint32_t * s)30 void Hacl_Hash_SHA1_init(uint32_t *s)
31 {
32   KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i] = _h0[i];);
33 }
34 
update(uint32_t * h,uint8_t * l)35 static void update(uint32_t *h, uint8_t *l)
36 {
37   uint32_t ha = h[0U];
38   uint32_t hb = h[1U];
39   uint32_t hc = h[2U];
40   uint32_t hd = h[3U];
41   uint32_t he = h[4U];
42   uint32_t _w[80U] = { 0U };
43   for (uint32_t i = 0U; i < 80U; i++)
44   {
45     uint32_t v;
46     if (i < 16U)
47     {
48       uint8_t *b = l + i * 4U;
49       uint32_t u = load32_be(b);
50       v = u;
51     }
52     else
53     {
54       uint32_t wmit3 = _w[i - 3U];
55       uint32_t wmit8 = _w[i - 8U];
56       uint32_t wmit14 = _w[i - 14U];
57       uint32_t wmit16 = _w[i - 16U];
58       v = (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) << 1U | (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) >> 31U;
59     }
60     _w[i] = v;
61   }
62   for (uint32_t i = 0U; i < 80U; i++)
63   {
64     uint32_t _a = h[0U];
65     uint32_t _b = h[1U];
66     uint32_t _c = h[2U];
67     uint32_t _d = h[3U];
68     uint32_t _e = h[4U];
69     uint32_t wmit = _w[i];
70     uint32_t ite0;
71     if (i < 20U)
72     {
73       ite0 = (_b & _c) ^ (~_b & _d);
74     }
75     else if (39U < i && i < 60U)
76     {
77       ite0 = (_b & _c) ^ ((_b & _d) ^ (_c & _d));
78     }
79     else
80     {
81       ite0 = _b ^ (_c ^ _d);
82     }
83     uint32_t ite;
84     if (i < 20U)
85     {
86       ite = 0x5a827999U;
87     }
88     else if (i < 40U)
89     {
90       ite = 0x6ed9eba1U;
91     }
92     else if (i < 60U)
93     {
94       ite = 0x8f1bbcdcU;
95     }
96     else
97     {
98       ite = 0xca62c1d6U;
99     }
100     uint32_t _T = (_a << 5U | _a >> 27U) + ite0 + _e + ite + wmit;
101     h[0U] = _T;
102     h[1U] = _a;
103     h[2U] = _b << 30U | _b >> 2U;
104     h[3U] = _c;
105     h[4U] = _d;
106   }
107   for (uint32_t i = 0U; i < 80U; i++)
108   {
109     _w[i] = 0U;
110   }
111   uint32_t sta = h[0U];
112   uint32_t stb = h[1U];
113   uint32_t stc = h[2U];
114   uint32_t std = h[3U];
115   uint32_t ste = h[4U];
116   h[0U] = sta + ha;
117   h[1U] = stb + hb;
118   h[2U] = stc + hc;
119   h[3U] = std + hd;
120   h[4U] = ste + he;
121 }
122 
pad(uint64_t len,uint8_t * dst)123 static void pad(uint64_t len, uint8_t *dst)
124 {
125   uint8_t *dst1 = dst;
126   dst1[0U] = 0x80U;
127   uint8_t *dst2 = dst + 1U;
128   for (uint32_t i = 0U; i < (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U; i++)
129   {
130     dst2[i] = 0U;
131   }
132   uint8_t *dst3 = dst + 1U + (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U;
133   store64_be(dst3, len << 3U);
134 }
135 
Hacl_Hash_SHA1_finish(uint32_t * s,uint8_t * dst)136 void Hacl_Hash_SHA1_finish(uint32_t *s, uint8_t *dst)
137 {
138   KRML_MAYBE_FOR5(i, 0U, 5U, 1U, store32_be(dst + i * 4U, s[i]););
139 }
140 
Hacl_Hash_SHA1_update_multi(uint32_t * s,uint8_t * blocks,uint32_t n_blocks)141 void Hacl_Hash_SHA1_update_multi(uint32_t *s, uint8_t *blocks, uint32_t n_blocks)
142 {
143   for (uint32_t i = 0U; i < n_blocks; i++)
144   {
145     uint32_t sz = 64U;
146     uint8_t *block = blocks + sz * i;
147     update(s, block);
148   }
149 }
150 
151 void
Hacl_Hash_SHA1_update_last(uint32_t * s,uint64_t prev_len,uint8_t * input,uint32_t input_len)152 Hacl_Hash_SHA1_update_last(uint32_t *s, uint64_t prev_len, uint8_t *input, uint32_t input_len)
153 {
154   uint32_t blocks_n = input_len / 64U;
155   uint32_t blocks_len = blocks_n * 64U;
156   uint8_t *blocks = input;
157   uint32_t rest_len = input_len - blocks_len;
158   uint8_t *rest = input + blocks_len;
159   Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n);
160   uint64_t total_input_len = prev_len + (uint64_t)input_len;
161   uint32_t pad_len = 1U + (128U - (9U + (uint32_t)(total_input_len % (uint64_t)64U))) % 64U + 8U;
162   uint32_t tmp_len = rest_len + pad_len;
163   uint8_t tmp_twoblocks[128U] = { 0U };
164   uint8_t *tmp = tmp_twoblocks;
165   uint8_t *tmp_rest = tmp;
166   uint8_t *tmp_pad = tmp + rest_len;
167   memcpy(tmp_rest, rest, rest_len * sizeof (uint8_t));
168   pad(total_input_len, tmp_pad);
169   Hacl_Hash_SHA1_update_multi(s, tmp, tmp_len / 64U);
170 }
171 
Hacl_Hash_SHA1_hash_oneshot(uint8_t * output,uint8_t * input,uint32_t input_len)172 void Hacl_Hash_SHA1_hash_oneshot(uint8_t *output, uint8_t *input, uint32_t input_len)
173 {
174   uint32_t s[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U };
175   uint32_t blocks_n0 = input_len / 64U;
176   uint32_t blocks_n1;
177   if (input_len % 64U == 0U && blocks_n0 > 0U)
178   {
179     blocks_n1 = blocks_n0 - 1U;
180   }
181   else
182   {
183     blocks_n1 = blocks_n0;
184   }
185   uint32_t blocks_len0 = blocks_n1 * 64U;
186   uint8_t *blocks0 = input;
187   uint32_t rest_len0 = input_len - blocks_len0;
188   uint8_t *rest0 = input + blocks_len0;
189   uint32_t blocks_n = blocks_n1;
190   uint32_t blocks_len = blocks_len0;
191   uint8_t *blocks = blocks0;
192   uint32_t rest_len = rest_len0;
193   uint8_t *rest = rest0;
194   Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n);
195   Hacl_Hash_SHA1_update_last(s, (uint64_t)blocks_len, rest, rest_len);
196   Hacl_Hash_SHA1_finish(s, output);
197 }
198 
Hacl_Hash_SHA1_malloc(void)199 Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_malloc(void)
200 {
201   uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t));
202   uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t));
203   Hacl_Streaming_MD_state_32
204   s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U };
205   Hacl_Streaming_MD_state_32
206   *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
207   p[0U] = s;
208   Hacl_Hash_SHA1_init(block_state);
209   return p;
210 }
211 
Hacl_Hash_SHA1_reset(Hacl_Streaming_MD_state_32 * state)212 void Hacl_Hash_SHA1_reset(Hacl_Streaming_MD_state_32 *state)
213 {
214   Hacl_Streaming_MD_state_32 scrut = *state;
215   uint8_t *buf = scrut.buf;
216   uint32_t *block_state = scrut.block_state;
217   Hacl_Hash_SHA1_init(block_state);
218   Hacl_Streaming_MD_state_32
219   tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U };
220   state[0U] = tmp;
221 }
222 
223 /**
224 0 = success, 1 = max length exceeded
225 */
226 Hacl_Streaming_Types_error_code
Hacl_Hash_SHA1_update(Hacl_Streaming_MD_state_32 * state,uint8_t * chunk,uint32_t chunk_len)227 Hacl_Hash_SHA1_update(Hacl_Streaming_MD_state_32 *state, uint8_t *chunk, uint32_t chunk_len)
228 {
229   Hacl_Streaming_MD_state_32 s = *state;
230   uint64_t total_len = s.total_len;
231   if ((uint64_t)chunk_len > 2305843009213693951ULL - total_len)
232   {
233     return Hacl_Streaming_Types_MaximumLengthExceeded;
234   }
235   uint32_t sz;
236   if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL)
237   {
238     sz = 64U;
239   }
240   else
241   {
242     sz = (uint32_t)(total_len % (uint64_t)64U);
243   }
244   if (chunk_len <= 64U - sz)
245   {
246     Hacl_Streaming_MD_state_32 s1 = *state;
247     uint32_t *block_state1 = s1.block_state;
248     uint8_t *buf = s1.buf;
249     uint64_t total_len1 = s1.total_len;
250     uint32_t sz1;
251     if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
252     {
253       sz1 = 64U;
254     }
255     else
256     {
257       sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
258     }
259     uint8_t *buf2 = buf + sz1;
260     memcpy(buf2, chunk, chunk_len * sizeof (uint8_t));
261     uint64_t total_len2 = total_len1 + (uint64_t)chunk_len;
262     *state
263     =
264       (
265         (Hacl_Streaming_MD_state_32){
266           .block_state = block_state1,
267           .buf = buf,
268           .total_len = total_len2
269         }
270       );
271   }
272   else if (sz == 0U)
273   {
274     Hacl_Streaming_MD_state_32 s1 = *state;
275     uint32_t *block_state1 = s1.block_state;
276     uint8_t *buf = s1.buf;
277     uint64_t total_len1 = s1.total_len;
278     uint32_t sz1;
279     if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
280     {
281       sz1 = 64U;
282     }
283     else
284     {
285       sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
286     }
287     if (!(sz1 == 0U))
288     {
289       Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U);
290     }
291     uint32_t ite;
292     if ((uint64_t)chunk_len % (uint64_t)64U == 0ULL && (uint64_t)chunk_len > 0ULL)
293     {
294       ite = 64U;
295     }
296     else
297     {
298       ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)64U);
299     }
300     uint32_t n_blocks = (chunk_len - ite) / 64U;
301     uint32_t data1_len = n_blocks * 64U;
302     uint32_t data2_len = chunk_len - data1_len;
303     uint8_t *data1 = chunk;
304     uint8_t *data2 = chunk + data1_len;
305     Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U);
306     uint8_t *dst = buf;
307     memcpy(dst, data2, data2_len * sizeof (uint8_t));
308     *state
309     =
310       (
311         (Hacl_Streaming_MD_state_32){
312           .block_state = block_state1,
313           .buf = buf,
314           .total_len = total_len1 + (uint64_t)chunk_len
315         }
316       );
317   }
318   else
319   {
320     uint32_t diff = 64U - sz;
321     uint8_t *chunk1 = chunk;
322     uint8_t *chunk2 = chunk + diff;
323     Hacl_Streaming_MD_state_32 s1 = *state;
324     uint32_t *block_state10 = s1.block_state;
325     uint8_t *buf0 = s1.buf;
326     uint64_t total_len10 = s1.total_len;
327     uint32_t sz10;
328     if (total_len10 % (uint64_t)64U == 0ULL && total_len10 > 0ULL)
329     {
330       sz10 = 64U;
331     }
332     else
333     {
334       sz10 = (uint32_t)(total_len10 % (uint64_t)64U);
335     }
336     uint8_t *buf2 = buf0 + sz10;
337     memcpy(buf2, chunk1, diff * sizeof (uint8_t));
338     uint64_t total_len2 = total_len10 + (uint64_t)diff;
339     *state
340     =
341       (
342         (Hacl_Streaming_MD_state_32){
343           .block_state = block_state10,
344           .buf = buf0,
345           .total_len = total_len2
346         }
347       );
348     Hacl_Streaming_MD_state_32 s10 = *state;
349     uint32_t *block_state1 = s10.block_state;
350     uint8_t *buf = s10.buf;
351     uint64_t total_len1 = s10.total_len;
352     uint32_t sz1;
353     if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
354     {
355       sz1 = 64U;
356     }
357     else
358     {
359       sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
360     }
361     if (!(sz1 == 0U))
362     {
363       Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U);
364     }
365     uint32_t ite;
366     if
367     ((uint64_t)(chunk_len - diff) % (uint64_t)64U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL)
368     {
369       ite = 64U;
370     }
371     else
372     {
373       ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)64U);
374     }
375     uint32_t n_blocks = (chunk_len - diff - ite) / 64U;
376     uint32_t data1_len = n_blocks * 64U;
377     uint32_t data2_len = chunk_len - diff - data1_len;
378     uint8_t *data1 = chunk2;
379     uint8_t *data2 = chunk2 + data1_len;
380     Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U);
381     uint8_t *dst = buf;
382     memcpy(dst, data2, data2_len * sizeof (uint8_t));
383     *state
384     =
385       (
386         (Hacl_Streaming_MD_state_32){
387           .block_state = block_state1,
388           .buf = buf,
389           .total_len = total_len1 + (uint64_t)(chunk_len - diff)
390         }
391       );
392   }
393   return Hacl_Streaming_Types_Success;
394 }
395 
Hacl_Hash_SHA1_digest(Hacl_Streaming_MD_state_32 * state,uint8_t * output)396 void Hacl_Hash_SHA1_digest(Hacl_Streaming_MD_state_32 *state, uint8_t *output)
397 {
398   Hacl_Streaming_MD_state_32 scrut = *state;
399   uint32_t *block_state = scrut.block_state;
400   uint8_t *buf_ = scrut.buf;
401   uint64_t total_len = scrut.total_len;
402   uint32_t r;
403   if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL)
404   {
405     r = 64U;
406   }
407   else
408   {
409     r = (uint32_t)(total_len % (uint64_t)64U);
410   }
411   uint8_t *buf_1 = buf_;
412   uint32_t tmp_block_state[5U] = { 0U };
413   memcpy(tmp_block_state, block_state, 5U * sizeof (uint32_t));
414   uint32_t ite;
415   if (r % 64U == 0U && r > 0U)
416   {
417     ite = 64U;
418   }
419   else
420   {
421     ite = r % 64U;
422   }
423   uint8_t *buf_last = buf_1 + r - ite;
424   uint8_t *buf_multi = buf_1;
425   Hacl_Hash_SHA1_update_multi(tmp_block_state, buf_multi, 0U);
426   uint64_t prev_len_last = total_len - (uint64_t)r;
427   Hacl_Hash_SHA1_update_last(tmp_block_state, prev_len_last, buf_last, r);
428   Hacl_Hash_SHA1_finish(tmp_block_state, output);
429 }
430 
Hacl_Hash_SHA1_free(Hacl_Streaming_MD_state_32 * state)431 void Hacl_Hash_SHA1_free(Hacl_Streaming_MD_state_32 *state)
432 {
433   Hacl_Streaming_MD_state_32 scrut = *state;
434   uint8_t *buf = scrut.buf;
435   uint32_t *block_state = scrut.block_state;
436   KRML_HOST_FREE(block_state);
437   KRML_HOST_FREE(buf);
438   KRML_HOST_FREE(state);
439 }
440 
Hacl_Hash_SHA1_copy(Hacl_Streaming_MD_state_32 * state)441 Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_copy(Hacl_Streaming_MD_state_32 *state)
442 {
443   Hacl_Streaming_MD_state_32 scrut = *state;
444   uint32_t *block_state0 = scrut.block_state;
445   uint8_t *buf0 = scrut.buf;
446   uint64_t total_len0 = scrut.total_len;
447   uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t));
448   memcpy(buf, buf0, 64U * sizeof (uint8_t));
449   uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t));
450   memcpy(block_state, block_state0, 5U * sizeof (uint32_t));
451   Hacl_Streaming_MD_state_32
452   s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
453   Hacl_Streaming_MD_state_32
454   *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
455   p[0U] = s;
456   return p;
457 }
458 
Hacl_Hash_SHA1_hash(uint8_t * output,uint8_t * input,uint32_t input_len)459 void Hacl_Hash_SHA1_hash(uint8_t *output, uint8_t *input, uint32_t input_len)
460 {
461   Hacl_Hash_SHA1_hash_oneshot(output, input, input_len);
462 }
463 
464