1 //===------------------------- ItaniumDemangle.h ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generic itanium demangler library. This file has two byte-per-byte identical
10 // copies in the source tree, one in libcxxabi, and the other in llvm.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef DEMANGLE_ITANIUMDEMANGLE_H
15 #define DEMANGLE_ITANIUMDEMANGLE_H
16
17 // FIXME: (possibly) incomplete list of features that clang mangles that this
18 // file does not yet support:
19 // - C++ modules TS
20
21 #include "DemangleConfig.h"
22 #include "StringView.h"
23 #include "Utility.h"
24 #include <cassert>
25 #include <cctype>
26 #include <cstdio>
27 #include <cstdlib>
28 #include <cstring>
29 #include <exception>
30 #include <numeric>
31 #include <type_traits>
32 #include <utility>
33
34 #define FOR_EACH_NODE_KIND(X) \
35 X(NodeArrayNode) \
36 X(DotSuffix) \
37 X(VendorExtQualType) \
38 X(QualType) \
39 X(ConversionOperatorType) \
40 X(PostfixQualifiedType) \
41 X(ElaboratedTypeSpefType) \
42 X(NameType) \
43 X(AbiTagAttr) \
44 X(EnableIfAttr) \
45 X(ObjCProtoName) \
46 X(PointerType) \
47 X(ReferenceType) \
48 X(PointerToMemberType) \
49 X(ArrayType) \
50 X(FunctionType) \
51 X(NoexceptSpec) \
52 X(DynamicExceptionSpec) \
53 X(FunctionEncoding) \
54 X(LiteralOperator) \
55 X(SpecialName) \
56 X(CtorVtableSpecialName) \
57 X(QualifiedName) \
58 X(NestedName) \
59 X(LocalName) \
60 X(VectorType) \
61 X(PixelVectorType) \
62 X(SyntheticTemplateParamName) \
63 X(TypeTemplateParamDecl) \
64 X(NonTypeTemplateParamDecl) \
65 X(TemplateTemplateParamDecl) \
66 X(TemplateParamPackDecl) \
67 X(ParameterPack) \
68 X(TemplateArgumentPack) \
69 X(ParameterPackExpansion) \
70 X(TemplateArgs) \
71 X(ForwardTemplateReference) \
72 X(NameWithTemplateArgs) \
73 X(GlobalQualifiedName) \
74 X(StdQualifiedName) \
75 X(ExpandedSpecialSubstitution) \
76 X(SpecialSubstitution) \
77 X(CtorDtorName) \
78 X(DtorName) \
79 X(UnnamedTypeName) \
80 X(ClosureTypeName) \
81 X(StructuredBindingName) \
82 X(BinaryExpr) \
83 X(ArraySubscriptExpr) \
84 X(PostfixExpr) \
85 X(ConditionalExpr) \
86 X(MemberExpr) \
87 X(EnclosingExpr) \
88 X(CastExpr) \
89 X(SizeofParamPackExpr) \
90 X(CallExpr) \
91 X(NewExpr) \
92 X(DeleteExpr) \
93 X(PrefixExpr) \
94 X(FunctionParam) \
95 X(ConversionExpr) \
96 X(InitListExpr) \
97 X(FoldExpr) \
98 X(ThrowExpr) \
99 X(UUIDOfExpr) \
100 X(BoolExpr) \
101 X(StringLiteral) \
102 X(LambdaExpr) \
103 X(IntegerCastExpr) \
104 X(IntegerLiteral) \
105 X(FloatLiteral) \
106 X(DoubleLiteral) \
107 X(LongDoubleLiteral) \
108 X(BracedExpr) \
109 X(BracedRangeExpr)
110
111 DEMANGLE_NAMESPACE_BEGIN
112
113 // Base class of all AST nodes. The AST is built by the parser, then is
114 // traversed by the printLeft/Right functions to produce a demangled string.
115 class Node {
116 public:
117 enum Kind : unsigned char {
118 #define ENUMERATOR(NodeKind) K ## NodeKind,
119 FOR_EACH_NODE_KIND(ENUMERATOR)
120 #undef ENUMERATOR
121 };
122
123 /// Three-way bool to track a cached value. Unknown is possible if this node
124 /// has an unexpanded parameter pack below it that may affect this cache.
125 enum class Cache : unsigned char { Yes, No, Unknown, };
126
127 private:
128 Kind K;
129
130 // FIXME: Make these protected.
131 public:
132 /// Tracks if this node has a component on its right side, in which case we
133 /// need to call printRight.
134 Cache RHSComponentCache;
135
136 /// Track if this node is a (possibly qualified) array type. This can affect
137 /// how we format the output string.
138 Cache ArrayCache;
139
140 /// Track if this node is a (possibly qualified) function type. This can
141 /// affect how we format the output string.
142 Cache FunctionCache;
143
144 public:
145 Node(Kind K_, Cache RHSComponentCache_ = Cache::No,
146 Cache ArrayCache_ = Cache::No, Cache FunctionCache_ = Cache::No)
K(K_)147 : K(K_), RHSComponentCache(RHSComponentCache_), ArrayCache(ArrayCache_),
148 FunctionCache(FunctionCache_) {}
149
150 /// Visit the most-derived object corresponding to this object.
151 template<typename Fn> void visit(Fn F) const;
152
153 // The following function is provided by all derived classes:
154 //
155 // Call F with arguments that, when passed to the constructor of this node,
156 // would construct an equivalent node.
157 //template<typename Fn> void match(Fn F) const;
158
hasRHSComponent(OutputStream & S)159 bool hasRHSComponent(OutputStream &S) const {
160 if (RHSComponentCache != Cache::Unknown)
161 return RHSComponentCache == Cache::Yes;
162 return hasRHSComponentSlow(S);
163 }
164
hasArray(OutputStream & S)165 bool hasArray(OutputStream &S) const {
166 if (ArrayCache != Cache::Unknown)
167 return ArrayCache == Cache::Yes;
168 return hasArraySlow(S);
169 }
170
hasFunction(OutputStream & S)171 bool hasFunction(OutputStream &S) const {
172 if (FunctionCache != Cache::Unknown)
173 return FunctionCache == Cache::Yes;
174 return hasFunctionSlow(S);
175 }
176
getKind()177 Kind getKind() const { return K; }
178
hasRHSComponentSlow(OutputStream &)179 virtual bool hasRHSComponentSlow(OutputStream &) const { return false; }
hasArraySlow(OutputStream &)180 virtual bool hasArraySlow(OutputStream &) const { return false; }
hasFunctionSlow(OutputStream &)181 virtual bool hasFunctionSlow(OutputStream &) const { return false; }
182
183 // Dig through "glue" nodes like ParameterPack and ForwardTemplateReference to
184 // get at a node that actually represents some concrete syntax.
getSyntaxNode(OutputStream &)185 virtual const Node *getSyntaxNode(OutputStream &) const {
186 return this;
187 }
188
print(OutputStream & S)189 void print(OutputStream &S) const {
190 printLeft(S);
191 if (RHSComponentCache != Cache::No)
192 printRight(S);
193 }
194
195 // Print the "left" side of this Node into OutputStream.
196 virtual void printLeft(OutputStream &) const = 0;
197
198 // Print the "right". This distinction is necessary to represent C++ types
199 // that appear on the RHS of their subtype, such as arrays or functions.
200 // Since most types don't have such a component, provide a default
201 // implementation.
printRight(OutputStream &)202 virtual void printRight(OutputStream &) const {}
203
getBaseName()204 virtual StringView getBaseName() const { return StringView(); }
205
206 // Silence compiler warnings, this dtor will never be called.
207 virtual ~Node() = default;
208
209 #ifndef NDEBUG
210 DEMANGLE_DUMP_METHOD void dump() const;
211 #endif
212 };
213
214 class NodeArray {
215 Node **Elements;
216 size_t NumElements;
217
218 public:
NodeArray()219 NodeArray() : Elements(nullptr), NumElements(0) {}
NodeArray(Node ** Elements_,size_t NumElements_)220 NodeArray(Node **Elements_, size_t NumElements_)
221 : Elements(Elements_), NumElements(NumElements_) {}
222
empty()223 bool empty() const { return NumElements == 0; }
size()224 size_t size() const { return NumElements; }
225
begin()226 Node **begin() const { return Elements; }
end()227 Node **end() const { return Elements + NumElements; }
228
229 Node *operator[](size_t Idx) const { return Elements[Idx]; }
230
printWithComma(OutputStream & S)231 void printWithComma(OutputStream &S) const {
232 bool FirstElement = true;
233 for (size_t Idx = 0; Idx != NumElements; ++Idx) {
234 size_t BeforeComma = S.getCurrentPosition();
235 if (!FirstElement)
236 S += ", ";
237 size_t AfterComma = S.getCurrentPosition();
238 Elements[Idx]->print(S);
239
240 // Elements[Idx] is an empty parameter pack expansion, we should erase the
241 // comma we just printed.
242 if (AfterComma == S.getCurrentPosition()) {
243 S.setCurrentPosition(BeforeComma);
244 continue;
245 }
246
247 FirstElement = false;
248 }
249 }
250 };
251
252 struct NodeArrayNode : Node {
253 NodeArray Array;
NodeArrayNodeNodeArrayNode254 NodeArrayNode(NodeArray Array_) : Node(KNodeArrayNode), Array(Array_) {}
255
matchNodeArrayNode256 template<typename Fn> void match(Fn F) const { F(Array); }
257
printLeftNodeArrayNode258 void printLeft(OutputStream &S) const override {
259 Array.printWithComma(S);
260 }
261 };
262
263 class DotSuffix final : public Node {
264 const Node *Prefix;
265 const StringView Suffix;
266
267 public:
DotSuffix(const Node * Prefix_,StringView Suffix_)268 DotSuffix(const Node *Prefix_, StringView Suffix_)
269 : Node(KDotSuffix), Prefix(Prefix_), Suffix(Suffix_) {}
270
match(Fn F)271 template<typename Fn> void match(Fn F) const { F(Prefix, Suffix); }
272
printLeft(OutputStream & s)273 void printLeft(OutputStream &s) const override {
274 Prefix->print(s);
275 s += " (";
276 s += Suffix;
277 s += ")";
278 }
279 };
280
281 class VendorExtQualType final : public Node {
282 const Node *Ty;
283 StringView Ext;
284
285 public:
VendorExtQualType(const Node * Ty_,StringView Ext_)286 VendorExtQualType(const Node *Ty_, StringView Ext_)
287 : Node(KVendorExtQualType), Ty(Ty_), Ext(Ext_) {}
288
match(Fn F)289 template<typename Fn> void match(Fn F) const { F(Ty, Ext); }
290
printLeft(OutputStream & S)291 void printLeft(OutputStream &S) const override {
292 Ty->print(S);
293 S += " ";
294 S += Ext;
295 }
296 };
297
298 enum FunctionRefQual : unsigned char {
299 FrefQualNone,
300 FrefQualLValue,
301 FrefQualRValue,
302 };
303
304 enum Qualifiers {
305 QualNone = 0,
306 QualConst = 0x1,
307 QualVolatile = 0x2,
308 QualRestrict = 0x4,
309 };
310
311 inline Qualifiers operator|=(Qualifiers &Q1, Qualifiers Q2) {
312 return Q1 = static_cast<Qualifiers>(Q1 | Q2);
313 }
314
315 class QualType final : public Node {
316 protected:
317 const Qualifiers Quals;
318 const Node *Child;
319
printQuals(OutputStream & S)320 void printQuals(OutputStream &S) const {
321 if (Quals & QualConst)
322 S += " const";
323 if (Quals & QualVolatile)
324 S += " volatile";
325 if (Quals & QualRestrict)
326 S += " restrict";
327 }
328
329 public:
QualType(const Node * Child_,Qualifiers Quals_)330 QualType(const Node *Child_, Qualifiers Quals_)
331 : Node(KQualType, Child_->RHSComponentCache,
332 Child_->ArrayCache, Child_->FunctionCache),
333 Quals(Quals_), Child(Child_) {}
334
match(Fn F)335 template<typename Fn> void match(Fn F) const { F(Child, Quals); }
336
hasRHSComponentSlow(OutputStream & S)337 bool hasRHSComponentSlow(OutputStream &S) const override {
338 return Child->hasRHSComponent(S);
339 }
hasArraySlow(OutputStream & S)340 bool hasArraySlow(OutputStream &S) const override {
341 return Child->hasArray(S);
342 }
hasFunctionSlow(OutputStream & S)343 bool hasFunctionSlow(OutputStream &S) const override {
344 return Child->hasFunction(S);
345 }
346
printLeft(OutputStream & S)347 void printLeft(OutputStream &S) const override {
348 Child->printLeft(S);
349 printQuals(S);
350 }
351
printRight(OutputStream & S)352 void printRight(OutputStream &S) const override { Child->printRight(S); }
353 };
354
355 class ConversionOperatorType final : public Node {
356 const Node *Ty;
357
358 public:
ConversionOperatorType(const Node * Ty_)359 ConversionOperatorType(const Node *Ty_)
360 : Node(KConversionOperatorType), Ty(Ty_) {}
361
match(Fn F)362 template<typename Fn> void match(Fn F) const { F(Ty); }
363
printLeft(OutputStream & S)364 void printLeft(OutputStream &S) const override {
365 S += "operator ";
366 Ty->print(S);
367 }
368 };
369
370 class PostfixQualifiedType final : public Node {
371 const Node *Ty;
372 const StringView Postfix;
373
374 public:
PostfixQualifiedType(Node * Ty_,StringView Postfix_)375 PostfixQualifiedType(Node *Ty_, StringView Postfix_)
376 : Node(KPostfixQualifiedType), Ty(Ty_), Postfix(Postfix_) {}
377
match(Fn F)378 template<typename Fn> void match(Fn F) const { F(Ty, Postfix); }
379
printLeft(OutputStream & s)380 void printLeft(OutputStream &s) const override {
381 Ty->printLeft(s);
382 s += Postfix;
383 }
384 };
385
386 class NameType final : public Node {
387 const StringView Name;
388
389 public:
NameType(StringView Name_)390 NameType(StringView Name_) : Node(KNameType), Name(Name_) {}
391
match(Fn F)392 template<typename Fn> void match(Fn F) const { F(Name); }
393
getName()394 StringView getName() const { return Name; }
getBaseName()395 StringView getBaseName() const override { return Name; }
396
printLeft(OutputStream & s)397 void printLeft(OutputStream &s) const override { s += Name; }
398 };
399
400 class ElaboratedTypeSpefType : public Node {
401 StringView Kind;
402 Node *Child;
403 public:
ElaboratedTypeSpefType(StringView Kind_,Node * Child_)404 ElaboratedTypeSpefType(StringView Kind_, Node *Child_)
405 : Node(KElaboratedTypeSpefType), Kind(Kind_), Child(Child_) {}
406
match(Fn F)407 template<typename Fn> void match(Fn F) const { F(Kind, Child); }
408
printLeft(OutputStream & S)409 void printLeft(OutputStream &S) const override {
410 S += Kind;
411 S += ' ';
412 Child->print(S);
413 }
414 };
415
416 struct AbiTagAttr : Node {
417 Node *Base;
418 StringView Tag;
419
AbiTagAttrAbiTagAttr420 AbiTagAttr(Node* Base_, StringView Tag_)
421 : Node(KAbiTagAttr, Base_->RHSComponentCache,
422 Base_->ArrayCache, Base_->FunctionCache),
423 Base(Base_), Tag(Tag_) {}
424
matchAbiTagAttr425 template<typename Fn> void match(Fn F) const { F(Base, Tag); }
426
printLeftAbiTagAttr427 void printLeft(OutputStream &S) const override {
428 Base->printLeft(S);
429 S += "[abi:";
430 S += Tag;
431 S += "]";
432 }
433 };
434
435 class EnableIfAttr : public Node {
436 NodeArray Conditions;
437 public:
EnableIfAttr(NodeArray Conditions_)438 EnableIfAttr(NodeArray Conditions_)
439 : Node(KEnableIfAttr), Conditions(Conditions_) {}
440
match(Fn F)441 template<typename Fn> void match(Fn F) const { F(Conditions); }
442
printLeft(OutputStream & S)443 void printLeft(OutputStream &S) const override {
444 S += " [enable_if:";
445 Conditions.printWithComma(S);
446 S += ']';
447 }
448 };
449
450 class ObjCProtoName : public Node {
451 const Node *Ty;
452 StringView Protocol;
453
454 friend class PointerType;
455
456 public:
ObjCProtoName(const Node * Ty_,StringView Protocol_)457 ObjCProtoName(const Node *Ty_, StringView Protocol_)
458 : Node(KObjCProtoName), Ty(Ty_), Protocol(Protocol_) {}
459
match(Fn F)460 template<typename Fn> void match(Fn F) const { F(Ty, Protocol); }
461
isObjCObject()462 bool isObjCObject() const {
463 return Ty->getKind() == KNameType &&
464 static_cast<const NameType *>(Ty)->getName() == "objc_object";
465 }
466
printLeft(OutputStream & S)467 void printLeft(OutputStream &S) const override {
468 Ty->print(S);
469 S += "<";
470 S += Protocol;
471 S += ">";
472 }
473 };
474
475 class PointerType final : public Node {
476 const Node *Pointee;
477
478 public:
PointerType(const Node * Pointee_)479 PointerType(const Node *Pointee_)
480 : Node(KPointerType, Pointee_->RHSComponentCache),
481 Pointee(Pointee_) {}
482
match(Fn F)483 template<typename Fn> void match(Fn F) const { F(Pointee); }
484
hasRHSComponentSlow(OutputStream & S)485 bool hasRHSComponentSlow(OutputStream &S) const override {
486 return Pointee->hasRHSComponent(S);
487 }
488
printLeft(OutputStream & s)489 void printLeft(OutputStream &s) const override {
490 // We rewrite objc_object<SomeProtocol>* into id<SomeProtocol>.
491 if (Pointee->getKind() != KObjCProtoName ||
492 !static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
493 Pointee->printLeft(s);
494 if (Pointee->hasArray(s))
495 s += " ";
496 if (Pointee->hasArray(s) || Pointee->hasFunction(s))
497 s += "(";
498 s += "*";
499 } else {
500 const auto *objcProto = static_cast<const ObjCProtoName *>(Pointee);
501 s += "id<";
502 s += objcProto->Protocol;
503 s += ">";
504 }
505 }
506
printRight(OutputStream & s)507 void printRight(OutputStream &s) const override {
508 if (Pointee->getKind() != KObjCProtoName ||
509 !static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
510 if (Pointee->hasArray(s) || Pointee->hasFunction(s))
511 s += ")";
512 Pointee->printRight(s);
513 }
514 }
515 };
516
517 enum class ReferenceKind {
518 LValue,
519 RValue,
520 };
521
522 // Represents either a LValue or an RValue reference type.
523 class ReferenceType : public Node {
524 const Node *Pointee;
525 ReferenceKind RK;
526
527 mutable bool Printing = false;
528
529 // Dig through any refs to refs, collapsing the ReferenceTypes as we go. The
530 // rule here is rvalue ref to rvalue ref collapses to a rvalue ref, and any
531 // other combination collapses to a lvalue ref.
collapse(OutputStream & S)532 std::pair<ReferenceKind, const Node *> collapse(OutputStream &S) const {
533 auto SoFar = std::make_pair(RK, Pointee);
534 for (;;) {
535 const Node *SN = SoFar.second->getSyntaxNode(S);
536 if (SN->getKind() != KReferenceType)
537 break;
538 auto *RT = static_cast<const ReferenceType *>(SN);
539 SoFar.second = RT->Pointee;
540 SoFar.first = std::min(SoFar.first, RT->RK);
541 }
542 return SoFar;
543 }
544
545 public:
ReferenceType(const Node * Pointee_,ReferenceKind RK_)546 ReferenceType(const Node *Pointee_, ReferenceKind RK_)
547 : Node(KReferenceType, Pointee_->RHSComponentCache),
548 Pointee(Pointee_), RK(RK_) {}
549
match(Fn F)550 template<typename Fn> void match(Fn F) const { F(Pointee, RK); }
551
hasRHSComponentSlow(OutputStream & S)552 bool hasRHSComponentSlow(OutputStream &S) const override {
553 return Pointee->hasRHSComponent(S);
554 }
555
printLeft(OutputStream & s)556 void printLeft(OutputStream &s) const override {
557 if (Printing)
558 return;
559 SwapAndRestore<bool> SavePrinting(Printing, true);
560 std::pair<ReferenceKind, const Node *> Collapsed = collapse(s);
561 Collapsed.second->printLeft(s);
562 if (Collapsed.second->hasArray(s))
563 s += " ";
564 if (Collapsed.second->hasArray(s) || Collapsed.second->hasFunction(s))
565 s += "(";
566
567 s += (Collapsed.first == ReferenceKind::LValue ? "&" : "&&");
568 }
printRight(OutputStream & s)569 void printRight(OutputStream &s) const override {
570 if (Printing)
571 return;
572 SwapAndRestore<bool> SavePrinting(Printing, true);
573 std::pair<ReferenceKind, const Node *> Collapsed = collapse(s);
574 if (Collapsed.second->hasArray(s) || Collapsed.second->hasFunction(s))
575 s += ")";
576 Collapsed.second->printRight(s);
577 }
578 };
579
580 class PointerToMemberType final : public Node {
581 const Node *ClassType;
582 const Node *MemberType;
583
584 public:
PointerToMemberType(const Node * ClassType_,const Node * MemberType_)585 PointerToMemberType(const Node *ClassType_, const Node *MemberType_)
586 : Node(KPointerToMemberType, MemberType_->RHSComponentCache),
587 ClassType(ClassType_), MemberType(MemberType_) {}
588
match(Fn F)589 template<typename Fn> void match(Fn F) const { F(ClassType, MemberType); }
590
hasRHSComponentSlow(OutputStream & S)591 bool hasRHSComponentSlow(OutputStream &S) const override {
592 return MemberType->hasRHSComponent(S);
593 }
594
printLeft(OutputStream & s)595 void printLeft(OutputStream &s) const override {
596 MemberType->printLeft(s);
597 if (MemberType->hasArray(s) || MemberType->hasFunction(s))
598 s += "(";
599 else
600 s += " ";
601 ClassType->print(s);
602 s += "::*";
603 }
604
printRight(OutputStream & s)605 void printRight(OutputStream &s) const override {
606 if (MemberType->hasArray(s) || MemberType->hasFunction(s))
607 s += ")";
608 MemberType->printRight(s);
609 }
610 };
611
612 class ArrayType final : public Node {
613 const Node *Base;
614 Node *Dimension;
615
616 public:
ArrayType(const Node * Base_,Node * Dimension_)617 ArrayType(const Node *Base_, Node *Dimension_)
618 : Node(KArrayType,
619 /*RHSComponentCache=*/Cache::Yes,
620 /*ArrayCache=*/Cache::Yes),
621 Base(Base_), Dimension(Dimension_) {}
622
match(Fn F)623 template<typename Fn> void match(Fn F) const { F(Base, Dimension); }
624
hasRHSComponentSlow(OutputStream &)625 bool hasRHSComponentSlow(OutputStream &) const override { return true; }
hasArraySlow(OutputStream &)626 bool hasArraySlow(OutputStream &) const override { return true; }
627
printLeft(OutputStream & S)628 void printLeft(OutputStream &S) const override { Base->printLeft(S); }
629
printRight(OutputStream & S)630 void printRight(OutputStream &S) const override {
631 if (S.back() != ']')
632 S += " ";
633 S += "[";
634 if (Dimension)
635 Dimension->print(S);
636 S += "]";
637 Base->printRight(S);
638 }
639 };
640
641 class FunctionType final : public Node {
642 const Node *Ret;
643 NodeArray Params;
644 Qualifiers CVQuals;
645 FunctionRefQual RefQual;
646 const Node *ExceptionSpec;
647
648 public:
FunctionType(const Node * Ret_,NodeArray Params_,Qualifiers CVQuals_,FunctionRefQual RefQual_,const Node * ExceptionSpec_)649 FunctionType(const Node *Ret_, NodeArray Params_, Qualifiers CVQuals_,
650 FunctionRefQual RefQual_, const Node *ExceptionSpec_)
651 : Node(KFunctionType,
652 /*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
653 /*FunctionCache=*/Cache::Yes),
654 Ret(Ret_), Params(Params_), CVQuals(CVQuals_), RefQual(RefQual_),
655 ExceptionSpec(ExceptionSpec_) {}
656
match(Fn F)657 template<typename Fn> void match(Fn F) const {
658 F(Ret, Params, CVQuals, RefQual, ExceptionSpec);
659 }
660
hasRHSComponentSlow(OutputStream &)661 bool hasRHSComponentSlow(OutputStream &) const override { return true; }
hasFunctionSlow(OutputStream &)662 bool hasFunctionSlow(OutputStream &) const override { return true; }
663
664 // Handle C++'s ... quirky decl grammar by using the left & right
665 // distinction. Consider:
666 // int (*f(float))(char) {}
667 // f is a function that takes a float and returns a pointer to a function
668 // that takes a char and returns an int. If we're trying to print f, start
669 // by printing out the return types's left, then print our parameters, then
670 // finally print right of the return type.
printLeft(OutputStream & S)671 void printLeft(OutputStream &S) const override {
672 Ret->printLeft(S);
673 S += " ";
674 }
675
printRight(OutputStream & S)676 void printRight(OutputStream &S) const override {
677 S += "(";
678 Params.printWithComma(S);
679 S += ")";
680 Ret->printRight(S);
681
682 if (CVQuals & QualConst)
683 S += " const";
684 if (CVQuals & QualVolatile)
685 S += " volatile";
686 if (CVQuals & QualRestrict)
687 S += " restrict";
688
689 if (RefQual == FrefQualLValue)
690 S += " &";
691 else if (RefQual == FrefQualRValue)
692 S += " &&";
693
694 if (ExceptionSpec != nullptr) {
695 S += ' ';
696 ExceptionSpec->print(S);
697 }
698 }
699 };
700
701 class NoexceptSpec : public Node {
702 const Node *E;
703 public:
NoexceptSpec(const Node * E_)704 NoexceptSpec(const Node *E_) : Node(KNoexceptSpec), E(E_) {}
705
match(Fn F)706 template<typename Fn> void match(Fn F) const { F(E); }
707
printLeft(OutputStream & S)708 void printLeft(OutputStream &S) const override {
709 S += "noexcept(";
710 E->print(S);
711 S += ")";
712 }
713 };
714
715 class DynamicExceptionSpec : public Node {
716 NodeArray Types;
717 public:
DynamicExceptionSpec(NodeArray Types_)718 DynamicExceptionSpec(NodeArray Types_)
719 : Node(KDynamicExceptionSpec), Types(Types_) {}
720
match(Fn F)721 template<typename Fn> void match(Fn F) const { F(Types); }
722
printLeft(OutputStream & S)723 void printLeft(OutputStream &S) const override {
724 S += "throw(";
725 Types.printWithComma(S);
726 S += ')';
727 }
728 };
729
730 class FunctionEncoding final : public Node {
731 const Node *Ret;
732 const Node *Name;
733 NodeArray Params;
734 const Node *Attrs;
735 Qualifiers CVQuals;
736 FunctionRefQual RefQual;
737
738 public:
FunctionEncoding(const Node * Ret_,const Node * Name_,NodeArray Params_,const Node * Attrs_,Qualifiers CVQuals_,FunctionRefQual RefQual_)739 FunctionEncoding(const Node *Ret_, const Node *Name_, NodeArray Params_,
740 const Node *Attrs_, Qualifiers CVQuals_,
741 FunctionRefQual RefQual_)
742 : Node(KFunctionEncoding,
743 /*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
744 /*FunctionCache=*/Cache::Yes),
745 Ret(Ret_), Name(Name_), Params(Params_), Attrs(Attrs_),
746 CVQuals(CVQuals_), RefQual(RefQual_) {}
747
match(Fn F)748 template<typename Fn> void match(Fn F) const {
749 F(Ret, Name, Params, Attrs, CVQuals, RefQual);
750 }
751
getCVQuals()752 Qualifiers getCVQuals() const { return CVQuals; }
getRefQual()753 FunctionRefQual getRefQual() const { return RefQual; }
getParams()754 NodeArray getParams() const { return Params; }
getReturnType()755 const Node *getReturnType() const { return Ret; }
756
hasRHSComponentSlow(OutputStream &)757 bool hasRHSComponentSlow(OutputStream &) const override { return true; }
hasFunctionSlow(OutputStream &)758 bool hasFunctionSlow(OutputStream &) const override { return true; }
759
getName()760 const Node *getName() const { return Name; }
761
printLeft(OutputStream & S)762 void printLeft(OutputStream &S) const override {
763 if (Ret) {
764 Ret->printLeft(S);
765 if (!Ret->hasRHSComponent(S))
766 S += " ";
767 }
768 Name->print(S);
769 }
770
printRight(OutputStream & S)771 void printRight(OutputStream &S) const override {
772 S += "(";
773 Params.printWithComma(S);
774 S += ")";
775 if (Ret)
776 Ret->printRight(S);
777
778 if (CVQuals & QualConst)
779 S += " const";
780 if (CVQuals & QualVolatile)
781 S += " volatile";
782 if (CVQuals & QualRestrict)
783 S += " restrict";
784
785 if (RefQual == FrefQualLValue)
786 S += " &";
787 else if (RefQual == FrefQualRValue)
788 S += " &&";
789
790 if (Attrs != nullptr)
791 Attrs->print(S);
792 }
793 };
794
795 class LiteralOperator : public Node {
796 const Node *OpName;
797
798 public:
LiteralOperator(const Node * OpName_)799 LiteralOperator(const Node *OpName_)
800 : Node(KLiteralOperator), OpName(OpName_) {}
801
match(Fn F)802 template<typename Fn> void match(Fn F) const { F(OpName); }
803
printLeft(OutputStream & S)804 void printLeft(OutputStream &S) const override {
805 S += "operator\"\" ";
806 OpName->print(S);
807 }
808 };
809
810 class SpecialName final : public Node {
811 const StringView Special;
812 const Node *Child;
813
814 public:
SpecialName(StringView Special_,const Node * Child_)815 SpecialName(StringView Special_, const Node *Child_)
816 : Node(KSpecialName), Special(Special_), Child(Child_) {}
817
match(Fn F)818 template<typename Fn> void match(Fn F) const { F(Special, Child); }
819
printLeft(OutputStream & S)820 void printLeft(OutputStream &S) const override {
821 S += Special;
822 Child->print(S);
823 }
824 };
825
826 class CtorVtableSpecialName final : public Node {
827 const Node *FirstType;
828 const Node *SecondType;
829
830 public:
CtorVtableSpecialName(const Node * FirstType_,const Node * SecondType_)831 CtorVtableSpecialName(const Node *FirstType_, const Node *SecondType_)
832 : Node(KCtorVtableSpecialName),
833 FirstType(FirstType_), SecondType(SecondType_) {}
834
match(Fn F)835 template<typename Fn> void match(Fn F) const { F(FirstType, SecondType); }
836
printLeft(OutputStream & S)837 void printLeft(OutputStream &S) const override {
838 S += "construction vtable for ";
839 FirstType->print(S);
840 S += "-in-";
841 SecondType->print(S);
842 }
843 };
844
845 struct NestedName : Node {
846 Node *Qual;
847 Node *Name;
848
NestedNameNestedName849 NestedName(Node *Qual_, Node *Name_)
850 : Node(KNestedName), Qual(Qual_), Name(Name_) {}
851
matchNestedName852 template<typename Fn> void match(Fn F) const { F(Qual, Name); }
853
getBaseNameNestedName854 StringView getBaseName() const override { return Name->getBaseName(); }
855
printLeftNestedName856 void printLeft(OutputStream &S) const override {
857 Qual->print(S);
858 S += "::";
859 Name->print(S);
860 }
861 };
862
863 struct LocalName : Node {
864 Node *Encoding;
865 Node *Entity;
866
LocalNameLocalName867 LocalName(Node *Encoding_, Node *Entity_)
868 : Node(KLocalName), Encoding(Encoding_), Entity(Entity_) {}
869
matchLocalName870 template<typename Fn> void match(Fn F) const { F(Encoding, Entity); }
871
printLeftLocalName872 void printLeft(OutputStream &S) const override {
873 Encoding->print(S);
874 S += "::";
875 Entity->print(S);
876 }
877 };
878
879 class QualifiedName final : public Node {
880 // qualifier::name
881 const Node *Qualifier;
882 const Node *Name;
883
884 public:
QualifiedName(const Node * Qualifier_,const Node * Name_)885 QualifiedName(const Node *Qualifier_, const Node *Name_)
886 : Node(KQualifiedName), Qualifier(Qualifier_), Name(Name_) {}
887
match(Fn F)888 template<typename Fn> void match(Fn F) const { F(Qualifier, Name); }
889
getBaseName()890 StringView getBaseName() const override { return Name->getBaseName(); }
891
printLeft(OutputStream & S)892 void printLeft(OutputStream &S) const override {
893 Qualifier->print(S);
894 S += "::";
895 Name->print(S);
896 }
897 };
898
899 class VectorType final : public Node {
900 const Node *BaseType;
901 const Node *Dimension;
902
903 public:
VectorType(const Node * BaseType_,Node * Dimension_)904 VectorType(const Node *BaseType_, Node *Dimension_)
905 : Node(KVectorType), BaseType(BaseType_),
906 Dimension(Dimension_) {}
907
match(Fn F)908 template<typename Fn> void match(Fn F) const { F(BaseType, Dimension); }
909
printLeft(OutputStream & S)910 void printLeft(OutputStream &S) const override {
911 BaseType->print(S);
912 S += " vector[";
913 if (Dimension)
914 Dimension->print(S);
915 S += "]";
916 }
917 };
918
919 class PixelVectorType final : public Node {
920 const Node *Dimension;
921
922 public:
PixelVectorType(const Node * Dimension_)923 PixelVectorType(const Node *Dimension_)
924 : Node(KPixelVectorType), Dimension(Dimension_) {}
925
match(Fn F)926 template<typename Fn> void match(Fn F) const { F(Dimension); }
927
printLeft(OutputStream & S)928 void printLeft(OutputStream &S) const override {
929 // FIXME: This should demangle as "vector pixel".
930 S += "pixel vector[";
931 Dimension->print(S);
932 S += "]";
933 }
934 };
935
936 enum class TemplateParamKind { Type, NonType, Template };
937
938 /// An invented name for a template parameter for which we don't have a
939 /// corresponding template argument.
940 ///
941 /// This node is created when parsing the <lambda-sig> for a lambda with
942 /// explicit template arguments, which might be referenced in the parameter
943 /// types appearing later in the <lambda-sig>.
944 class SyntheticTemplateParamName final : public Node {
945 TemplateParamKind Kind;
946 unsigned Index;
947
948 public:
SyntheticTemplateParamName(TemplateParamKind Kind_,unsigned Index_)949 SyntheticTemplateParamName(TemplateParamKind Kind_, unsigned Index_)
950 : Node(KSyntheticTemplateParamName), Kind(Kind_), Index(Index_) {}
951
match(Fn F)952 template<typename Fn> void match(Fn F) const { F(Kind, Index); }
953
printLeft(OutputStream & S)954 void printLeft(OutputStream &S) const override {
955 switch (Kind) {
956 case TemplateParamKind::Type:
957 S += "$T";
958 break;
959 case TemplateParamKind::NonType:
960 S += "$N";
961 break;
962 case TemplateParamKind::Template:
963 S += "$TT";
964 break;
965 }
966 if (Index > 0)
967 S << Index - 1;
968 }
969 };
970
971 /// A template type parameter declaration, 'typename T'.
972 class TypeTemplateParamDecl final : public Node {
973 Node *Name;
974
975 public:
TypeTemplateParamDecl(Node * Name_)976 TypeTemplateParamDecl(Node *Name_)
977 : Node(KTypeTemplateParamDecl, Cache::Yes), Name(Name_) {}
978
match(Fn F)979 template<typename Fn> void match(Fn F) const { F(Name); }
980
printLeft(OutputStream & S)981 void printLeft(OutputStream &S) const override {
982 S += "typename ";
983 }
984
printRight(OutputStream & S)985 void printRight(OutputStream &S) const override {
986 Name->print(S);
987 }
988 };
989
990 /// A non-type template parameter declaration, 'int N'.
991 class NonTypeTemplateParamDecl final : public Node {
992 Node *Name;
993 Node *Type;
994
995 public:
NonTypeTemplateParamDecl(Node * Name_,Node * Type_)996 NonTypeTemplateParamDecl(Node *Name_, Node *Type_)
997 : Node(KNonTypeTemplateParamDecl, Cache::Yes), Name(Name_), Type(Type_) {}
998
match(Fn F)999 template<typename Fn> void match(Fn F) const { F(Name, Type); }
1000
printLeft(OutputStream & S)1001 void printLeft(OutputStream &S) const override {
1002 Type->printLeft(S);
1003 if (!Type->hasRHSComponent(S))
1004 S += " ";
1005 }
1006
printRight(OutputStream & S)1007 void printRight(OutputStream &S) const override {
1008 Name->print(S);
1009 Type->printRight(S);
1010 }
1011 };
1012
1013 /// A template template parameter declaration,
1014 /// 'template<typename T> typename N'.
1015 class TemplateTemplateParamDecl final : public Node {
1016 Node *Name;
1017 NodeArray Params;
1018
1019 public:
TemplateTemplateParamDecl(Node * Name_,NodeArray Params_)1020 TemplateTemplateParamDecl(Node *Name_, NodeArray Params_)
1021 : Node(KTemplateTemplateParamDecl, Cache::Yes), Name(Name_),
1022 Params(Params_) {}
1023
match(Fn F)1024 template<typename Fn> void match(Fn F) const { F(Name, Params); }
1025
printLeft(OutputStream & S)1026 void printLeft(OutputStream &S) const override {
1027 S += "template<";
1028 Params.printWithComma(S);
1029 S += "> typename ";
1030 }
1031
printRight(OutputStream & S)1032 void printRight(OutputStream &S) const override {
1033 Name->print(S);
1034 }
1035 };
1036
1037 /// A template parameter pack declaration, 'typename ...T'.
1038 class TemplateParamPackDecl final : public Node {
1039 Node *Param;
1040
1041 public:
TemplateParamPackDecl(Node * Param_)1042 TemplateParamPackDecl(Node *Param_)
1043 : Node(KTemplateParamPackDecl, Cache::Yes), Param(Param_) {}
1044
match(Fn F)1045 template<typename Fn> void match(Fn F) const { F(Param); }
1046
printLeft(OutputStream & S)1047 void printLeft(OutputStream &S) const override {
1048 Param->printLeft(S);
1049 S += "...";
1050 }
1051
printRight(OutputStream & S)1052 void printRight(OutputStream &S) const override {
1053 Param->printRight(S);
1054 }
1055 };
1056
1057 /// An unexpanded parameter pack (either in the expression or type context). If
1058 /// this AST is correct, this node will have a ParameterPackExpansion node above
1059 /// it.
1060 ///
1061 /// This node is created when some <template-args> are found that apply to an
1062 /// <encoding>, and is stored in the TemplateParams table. In order for this to
1063 /// appear in the final AST, it has to referenced via a <template-param> (ie,
1064 /// T_).
1065 class ParameterPack final : public Node {
1066 NodeArray Data;
1067
1068 // Setup OutputStream for a pack expansion unless we're already expanding one.
initializePackExpansion(OutputStream & S)1069 void initializePackExpansion(OutputStream &S) const {
1070 if (S.CurrentPackMax == std::numeric_limits<unsigned>::max()) {
1071 S.CurrentPackMax = static_cast<unsigned>(Data.size());
1072 S.CurrentPackIndex = 0;
1073 }
1074 }
1075
1076 public:
ParameterPack(NodeArray Data_)1077 ParameterPack(NodeArray Data_) : Node(KParameterPack), Data(Data_) {
1078 ArrayCache = FunctionCache = RHSComponentCache = Cache::Unknown;
1079 if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
1080 return P->ArrayCache == Cache::No;
1081 }))
1082 ArrayCache = Cache::No;
1083 if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
1084 return P->FunctionCache == Cache::No;
1085 }))
1086 FunctionCache = Cache::No;
1087 if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
1088 return P->RHSComponentCache == Cache::No;
1089 }))
1090 RHSComponentCache = Cache::No;
1091 }
1092
match(Fn F)1093 template<typename Fn> void match(Fn F) const { F(Data); }
1094
hasRHSComponentSlow(OutputStream & S)1095 bool hasRHSComponentSlow(OutputStream &S) const override {
1096 initializePackExpansion(S);
1097 size_t Idx = S.CurrentPackIndex;
1098 return Idx < Data.size() && Data[Idx]->hasRHSComponent(S);
1099 }
hasArraySlow(OutputStream & S)1100 bool hasArraySlow(OutputStream &S) const override {
1101 initializePackExpansion(S);
1102 size_t Idx = S.CurrentPackIndex;
1103 return Idx < Data.size() && Data[Idx]->hasArray(S);
1104 }
hasFunctionSlow(OutputStream & S)1105 bool hasFunctionSlow(OutputStream &S) const override {
1106 initializePackExpansion(S);
1107 size_t Idx = S.CurrentPackIndex;
1108 return Idx < Data.size() && Data[Idx]->hasFunction(S);
1109 }
getSyntaxNode(OutputStream & S)1110 const Node *getSyntaxNode(OutputStream &S) const override {
1111 initializePackExpansion(S);
1112 size_t Idx = S.CurrentPackIndex;
1113 return Idx < Data.size() ? Data[Idx]->getSyntaxNode(S) : this;
1114 }
1115
printLeft(OutputStream & S)1116 void printLeft(OutputStream &S) const override {
1117 initializePackExpansion(S);
1118 size_t Idx = S.CurrentPackIndex;
1119 if (Idx < Data.size())
1120 Data[Idx]->printLeft(S);
1121 }
printRight(OutputStream & S)1122 void printRight(OutputStream &S) const override {
1123 initializePackExpansion(S);
1124 size_t Idx = S.CurrentPackIndex;
1125 if (Idx < Data.size())
1126 Data[Idx]->printRight(S);
1127 }
1128 };
1129
1130 /// A variadic template argument. This node represents an occurrence of
1131 /// J<something>E in some <template-args>. It isn't itself unexpanded, unless
1132 /// one of it's Elements is. The parser inserts a ParameterPack into the
1133 /// TemplateParams table if the <template-args> this pack belongs to apply to an
1134 /// <encoding>.
1135 class TemplateArgumentPack final : public Node {
1136 NodeArray Elements;
1137 public:
TemplateArgumentPack(NodeArray Elements_)1138 TemplateArgumentPack(NodeArray Elements_)
1139 : Node(KTemplateArgumentPack), Elements(Elements_) {}
1140
match(Fn F)1141 template<typename Fn> void match(Fn F) const { F(Elements); }
1142
getElements()1143 NodeArray getElements() const { return Elements; }
1144
printLeft(OutputStream & S)1145 void printLeft(OutputStream &S) const override {
1146 Elements.printWithComma(S);
1147 }
1148 };
1149
1150 /// A pack expansion. Below this node, there are some unexpanded ParameterPacks
1151 /// which each have Child->ParameterPackSize elements.
1152 class ParameterPackExpansion final : public Node {
1153 const Node *Child;
1154
1155 public:
ParameterPackExpansion(const Node * Child_)1156 ParameterPackExpansion(const Node *Child_)
1157 : Node(KParameterPackExpansion), Child(Child_) {}
1158
match(Fn F)1159 template<typename Fn> void match(Fn F) const { F(Child); }
1160
getChild()1161 const Node *getChild() const { return Child; }
1162
printLeft(OutputStream & S)1163 void printLeft(OutputStream &S) const override {
1164 constexpr unsigned Max = std::numeric_limits<unsigned>::max();
1165 SwapAndRestore<unsigned> SavePackIdx(S.CurrentPackIndex, Max);
1166 SwapAndRestore<unsigned> SavePackMax(S.CurrentPackMax, Max);
1167 size_t StreamPos = S.getCurrentPosition();
1168
1169 // Print the first element in the pack. If Child contains a ParameterPack,
1170 // it will set up S.CurrentPackMax and print the first element.
1171 Child->print(S);
1172
1173 // No ParameterPack was found in Child. This can occur if we've found a pack
1174 // expansion on a <function-param>.
1175 if (S.CurrentPackMax == Max) {
1176 S += "...";
1177 return;
1178 }
1179
1180 // We found a ParameterPack, but it has no elements. Erase whatever we may
1181 // of printed.
1182 if (S.CurrentPackMax == 0) {
1183 S.setCurrentPosition(StreamPos);
1184 return;
1185 }
1186
1187 // Else, iterate through the rest of the elements in the pack.
1188 for (unsigned I = 1, E = S.CurrentPackMax; I < E; ++I) {
1189 S += ", ";
1190 S.CurrentPackIndex = I;
1191 Child->print(S);
1192 }
1193 }
1194 };
1195
1196 class TemplateArgs final : public Node {
1197 NodeArray Params;
1198
1199 public:
TemplateArgs(NodeArray Params_)1200 TemplateArgs(NodeArray Params_) : Node(KTemplateArgs), Params(Params_) {}
1201
match(Fn F)1202 template<typename Fn> void match(Fn F) const { F(Params); }
1203
getParams()1204 NodeArray getParams() { return Params; }
1205
printLeft(OutputStream & S)1206 void printLeft(OutputStream &S) const override {
1207 S += "<";
1208 Params.printWithComma(S);
1209 if (S.back() == '>')
1210 S += " ";
1211 S += ">";
1212 }
1213 };
1214
1215 /// A forward-reference to a template argument that was not known at the point
1216 /// where the template parameter name was parsed in a mangling.
1217 ///
1218 /// This is created when demangling the name of a specialization of a
1219 /// conversion function template:
1220 ///
1221 /// \code
1222 /// struct A {
1223 /// template<typename T> operator T*();
1224 /// };
1225 /// \endcode
1226 ///
1227 /// When demangling a specialization of the conversion function template, we
1228 /// encounter the name of the template (including the \c T) before we reach
1229 /// the template argument list, so we cannot substitute the parameter name
1230 /// for the corresponding argument while parsing. Instead, we create a
1231 /// \c ForwardTemplateReference node that is resolved after we parse the
1232 /// template arguments.
1233 struct ForwardTemplateReference : Node {
1234 size_t Index;
1235 Node *Ref = nullptr;
1236
1237 // If we're currently printing this node. It is possible (though invalid) for
1238 // a forward template reference to refer to itself via a substitution. This
1239 // creates a cyclic AST, which will stack overflow printing. To fix this, bail
1240 // out if more than one print* function is active.
1241 mutable bool Printing = false;
1242
ForwardTemplateReferenceForwardTemplateReference1243 ForwardTemplateReference(size_t Index_)
1244 : Node(KForwardTemplateReference, Cache::Unknown, Cache::Unknown,
1245 Cache::Unknown),
1246 Index(Index_) {}
1247
1248 // We don't provide a matcher for these, because the value of the node is
1249 // not determined by its construction parameters, and it generally needs
1250 // special handling.
1251 template<typename Fn> void match(Fn F) const = delete;
1252
hasRHSComponentSlowForwardTemplateReference1253 bool hasRHSComponentSlow(OutputStream &S) const override {
1254 if (Printing)
1255 return false;
1256 SwapAndRestore<bool> SavePrinting(Printing, true);
1257 return Ref->hasRHSComponent(S);
1258 }
hasArraySlowForwardTemplateReference1259 bool hasArraySlow(OutputStream &S) const override {
1260 if (Printing)
1261 return false;
1262 SwapAndRestore<bool> SavePrinting(Printing, true);
1263 return Ref->hasArray(S);
1264 }
hasFunctionSlowForwardTemplateReference1265 bool hasFunctionSlow(OutputStream &S) const override {
1266 if (Printing)
1267 return false;
1268 SwapAndRestore<bool> SavePrinting(Printing, true);
1269 return Ref->hasFunction(S);
1270 }
getSyntaxNodeForwardTemplateReference1271 const Node *getSyntaxNode(OutputStream &S) const override {
1272 if (Printing)
1273 return this;
1274 SwapAndRestore<bool> SavePrinting(Printing, true);
1275 return Ref->getSyntaxNode(S);
1276 }
1277
printLeftForwardTemplateReference1278 void printLeft(OutputStream &S) const override {
1279 if (Printing)
1280 return;
1281 SwapAndRestore<bool> SavePrinting(Printing, true);
1282 Ref->printLeft(S);
1283 }
printRightForwardTemplateReference1284 void printRight(OutputStream &S) const override {
1285 if (Printing)
1286 return;
1287 SwapAndRestore<bool> SavePrinting(Printing, true);
1288 Ref->printRight(S);
1289 }
1290 };
1291
1292 struct NameWithTemplateArgs : Node {
1293 // name<template_args>
1294 Node *Name;
1295 Node *TemplateArgs;
1296
NameWithTemplateArgsNameWithTemplateArgs1297 NameWithTemplateArgs(Node *Name_, Node *TemplateArgs_)
1298 : Node(KNameWithTemplateArgs), Name(Name_), TemplateArgs(TemplateArgs_) {}
1299
matchNameWithTemplateArgs1300 template<typename Fn> void match(Fn F) const { F(Name, TemplateArgs); }
1301
getBaseNameNameWithTemplateArgs1302 StringView getBaseName() const override { return Name->getBaseName(); }
1303
printLeftNameWithTemplateArgs1304 void printLeft(OutputStream &S) const override {
1305 Name->print(S);
1306 TemplateArgs->print(S);
1307 }
1308 };
1309
1310 class GlobalQualifiedName final : public Node {
1311 Node *Child;
1312
1313 public:
GlobalQualifiedName(Node * Child_)1314 GlobalQualifiedName(Node* Child_)
1315 : Node(KGlobalQualifiedName), Child(Child_) {}
1316
match(Fn F)1317 template<typename Fn> void match(Fn F) const { F(Child); }
1318
getBaseName()1319 StringView getBaseName() const override { return Child->getBaseName(); }
1320
printLeft(OutputStream & S)1321 void printLeft(OutputStream &S) const override {
1322 S += "::";
1323 Child->print(S);
1324 }
1325 };
1326
1327 struct StdQualifiedName : Node {
1328 Node *Child;
1329
StdQualifiedNameStdQualifiedName1330 StdQualifiedName(Node *Child_) : Node(KStdQualifiedName), Child(Child_) {}
1331
matchStdQualifiedName1332 template<typename Fn> void match(Fn F) const { F(Child); }
1333
getBaseNameStdQualifiedName1334 StringView getBaseName() const override { return Child->getBaseName(); }
1335
printLeftStdQualifiedName1336 void printLeft(OutputStream &S) const override {
1337 S += "std::";
1338 Child->print(S);
1339 }
1340 };
1341
1342 enum class SpecialSubKind {
1343 allocator,
1344 basic_string,
1345 string,
1346 istream,
1347 ostream,
1348 iostream,
1349 };
1350
1351 class ExpandedSpecialSubstitution final : public Node {
1352 SpecialSubKind SSK;
1353
1354 public:
ExpandedSpecialSubstitution(SpecialSubKind SSK_)1355 ExpandedSpecialSubstitution(SpecialSubKind SSK_)
1356 : Node(KExpandedSpecialSubstitution), SSK(SSK_) {}
1357
match(Fn F)1358 template<typename Fn> void match(Fn F) const { F(SSK); }
1359
getBaseName()1360 StringView getBaseName() const override {
1361 switch (SSK) {
1362 case SpecialSubKind::allocator:
1363 return StringView("allocator");
1364 case SpecialSubKind::basic_string:
1365 return StringView("basic_string");
1366 case SpecialSubKind::string:
1367 return StringView("basic_string");
1368 case SpecialSubKind::istream:
1369 return StringView("basic_istream");
1370 case SpecialSubKind::ostream:
1371 return StringView("basic_ostream");
1372 case SpecialSubKind::iostream:
1373 return StringView("basic_iostream");
1374 }
1375 DEMANGLE_UNREACHABLE;
1376 }
1377
printLeft(OutputStream & S)1378 void printLeft(OutputStream &S) const override {
1379 switch (SSK) {
1380 case SpecialSubKind::allocator:
1381 S += "std::allocator";
1382 break;
1383 case SpecialSubKind::basic_string:
1384 S += "std::basic_string";
1385 break;
1386 case SpecialSubKind::string:
1387 S += "std::basic_string<char, std::char_traits<char>, "
1388 "std::allocator<char> >";
1389 break;
1390 case SpecialSubKind::istream:
1391 S += "std::basic_istream<char, std::char_traits<char> >";
1392 break;
1393 case SpecialSubKind::ostream:
1394 S += "std::basic_ostream<char, std::char_traits<char> >";
1395 break;
1396 case SpecialSubKind::iostream:
1397 S += "std::basic_iostream<char, std::char_traits<char> >";
1398 break;
1399 }
1400 }
1401 };
1402
1403 class SpecialSubstitution final : public Node {
1404 public:
1405 SpecialSubKind SSK;
1406
SpecialSubstitution(SpecialSubKind SSK_)1407 SpecialSubstitution(SpecialSubKind SSK_)
1408 : Node(KSpecialSubstitution), SSK(SSK_) {}
1409
match(Fn F)1410 template<typename Fn> void match(Fn F) const { F(SSK); }
1411
getBaseName()1412 StringView getBaseName() const override {
1413 switch (SSK) {
1414 case SpecialSubKind::allocator:
1415 return StringView("allocator");
1416 case SpecialSubKind::basic_string:
1417 return StringView("basic_string");
1418 case SpecialSubKind::string:
1419 return StringView("string");
1420 case SpecialSubKind::istream:
1421 return StringView("istream");
1422 case SpecialSubKind::ostream:
1423 return StringView("ostream");
1424 case SpecialSubKind::iostream:
1425 return StringView("iostream");
1426 }
1427 DEMANGLE_UNREACHABLE;
1428 }
1429
printLeft(OutputStream & S)1430 void printLeft(OutputStream &S) const override {
1431 switch (SSK) {
1432 case SpecialSubKind::allocator:
1433 S += "std::allocator";
1434 break;
1435 case SpecialSubKind::basic_string:
1436 S += "std::basic_string";
1437 break;
1438 case SpecialSubKind::string:
1439 S += "std::string";
1440 break;
1441 case SpecialSubKind::istream:
1442 S += "std::istream";
1443 break;
1444 case SpecialSubKind::ostream:
1445 S += "std::ostream";
1446 break;
1447 case SpecialSubKind::iostream:
1448 S += "std::iostream";
1449 break;
1450 }
1451 }
1452 };
1453
1454 class CtorDtorName final : public Node {
1455 const Node *Basename;
1456 const bool IsDtor;
1457 const int Variant;
1458
1459 public:
CtorDtorName(const Node * Basename_,bool IsDtor_,int Variant_)1460 CtorDtorName(const Node *Basename_, bool IsDtor_, int Variant_)
1461 : Node(KCtorDtorName), Basename(Basename_), IsDtor(IsDtor_),
1462 Variant(Variant_) {}
1463
match(Fn F)1464 template<typename Fn> void match(Fn F) const { F(Basename, IsDtor, Variant); }
1465
printLeft(OutputStream & S)1466 void printLeft(OutputStream &S) const override {
1467 if (IsDtor)
1468 S += "~";
1469 S += Basename->getBaseName();
1470 }
1471 };
1472
1473 class DtorName : public Node {
1474 const Node *Base;
1475
1476 public:
DtorName(const Node * Base_)1477 DtorName(const Node *Base_) : Node(KDtorName), Base(Base_) {}
1478
match(Fn F)1479 template<typename Fn> void match(Fn F) const { F(Base); }
1480
printLeft(OutputStream & S)1481 void printLeft(OutputStream &S) const override {
1482 S += "~";
1483 Base->printLeft(S);
1484 }
1485 };
1486
1487 class UnnamedTypeName : public Node {
1488 const StringView Count;
1489
1490 public:
UnnamedTypeName(StringView Count_)1491 UnnamedTypeName(StringView Count_) : Node(KUnnamedTypeName), Count(Count_) {}
1492
match(Fn F)1493 template<typename Fn> void match(Fn F) const { F(Count); }
1494
printLeft(OutputStream & S)1495 void printLeft(OutputStream &S) const override {
1496 S += "'unnamed";
1497 S += Count;
1498 S += "\'";
1499 }
1500 };
1501
1502 class ClosureTypeName : public Node {
1503 NodeArray TemplateParams;
1504 NodeArray Params;
1505 StringView Count;
1506
1507 public:
ClosureTypeName(NodeArray TemplateParams_,NodeArray Params_,StringView Count_)1508 ClosureTypeName(NodeArray TemplateParams_, NodeArray Params_,
1509 StringView Count_)
1510 : Node(KClosureTypeName), TemplateParams(TemplateParams_),
1511 Params(Params_), Count(Count_) {}
1512
match(Fn F)1513 template<typename Fn> void match(Fn F) const {
1514 F(TemplateParams, Params, Count);
1515 }
1516
printDeclarator(OutputStream & S)1517 void printDeclarator(OutputStream &S) const {
1518 if (!TemplateParams.empty()) {
1519 S += "<";
1520 TemplateParams.printWithComma(S);
1521 S += ">";
1522 }
1523 S += "(";
1524 Params.printWithComma(S);
1525 S += ")";
1526 }
1527
printLeft(OutputStream & S)1528 void printLeft(OutputStream &S) const override {
1529 S += "\'lambda";
1530 S += Count;
1531 S += "\'";
1532 printDeclarator(S);
1533 }
1534 };
1535
1536 class StructuredBindingName : public Node {
1537 NodeArray Bindings;
1538 public:
StructuredBindingName(NodeArray Bindings_)1539 StructuredBindingName(NodeArray Bindings_)
1540 : Node(KStructuredBindingName), Bindings(Bindings_) {}
1541
match(Fn F)1542 template<typename Fn> void match(Fn F) const { F(Bindings); }
1543
printLeft(OutputStream & S)1544 void printLeft(OutputStream &S) const override {
1545 S += '[';
1546 Bindings.printWithComma(S);
1547 S += ']';
1548 }
1549 };
1550
1551 // -- Expression Nodes --
1552
1553 class BinaryExpr : public Node {
1554 const Node *LHS;
1555 const StringView InfixOperator;
1556 const Node *RHS;
1557
1558 public:
BinaryExpr(const Node * LHS_,StringView InfixOperator_,const Node * RHS_)1559 BinaryExpr(const Node *LHS_, StringView InfixOperator_, const Node *RHS_)
1560 : Node(KBinaryExpr), LHS(LHS_), InfixOperator(InfixOperator_), RHS(RHS_) {
1561 }
1562
match(Fn F)1563 template<typename Fn> void match(Fn F) const { F(LHS, InfixOperator, RHS); }
1564
printLeft(OutputStream & S)1565 void printLeft(OutputStream &S) const override {
1566 // might be a template argument expression, then we need to disambiguate
1567 // with parens.
1568 if (InfixOperator == ">")
1569 S += "(";
1570
1571 S += "(";
1572 LHS->print(S);
1573 S += ") ";
1574 S += InfixOperator;
1575 S += " (";
1576 RHS->print(S);
1577 S += ")";
1578
1579 if (InfixOperator == ">")
1580 S += ")";
1581 }
1582 };
1583
1584 class ArraySubscriptExpr : public Node {
1585 const Node *Op1;
1586 const Node *Op2;
1587
1588 public:
ArraySubscriptExpr(const Node * Op1_,const Node * Op2_)1589 ArraySubscriptExpr(const Node *Op1_, const Node *Op2_)
1590 : Node(KArraySubscriptExpr), Op1(Op1_), Op2(Op2_) {}
1591
match(Fn F)1592 template<typename Fn> void match(Fn F) const { F(Op1, Op2); }
1593
printLeft(OutputStream & S)1594 void printLeft(OutputStream &S) const override {
1595 S += "(";
1596 Op1->print(S);
1597 S += ")[";
1598 Op2->print(S);
1599 S += "]";
1600 }
1601 };
1602
1603 class PostfixExpr : public Node {
1604 const Node *Child;
1605 const StringView Operator;
1606
1607 public:
PostfixExpr(const Node * Child_,StringView Operator_)1608 PostfixExpr(const Node *Child_, StringView Operator_)
1609 : Node(KPostfixExpr), Child(Child_), Operator(Operator_) {}
1610
match(Fn F)1611 template<typename Fn> void match(Fn F) const { F(Child, Operator); }
1612
printLeft(OutputStream & S)1613 void printLeft(OutputStream &S) const override {
1614 S += "(";
1615 Child->print(S);
1616 S += ")";
1617 S += Operator;
1618 }
1619 };
1620
1621 class ConditionalExpr : public Node {
1622 const Node *Cond;
1623 const Node *Then;
1624 const Node *Else;
1625
1626 public:
ConditionalExpr(const Node * Cond_,const Node * Then_,const Node * Else_)1627 ConditionalExpr(const Node *Cond_, const Node *Then_, const Node *Else_)
1628 : Node(KConditionalExpr), Cond(Cond_), Then(Then_), Else(Else_) {}
1629
match(Fn F)1630 template<typename Fn> void match(Fn F) const { F(Cond, Then, Else); }
1631
printLeft(OutputStream & S)1632 void printLeft(OutputStream &S) const override {
1633 S += "(";
1634 Cond->print(S);
1635 S += ") ? (";
1636 Then->print(S);
1637 S += ") : (";
1638 Else->print(S);
1639 S += ")";
1640 }
1641 };
1642
1643 class MemberExpr : public Node {
1644 const Node *LHS;
1645 const StringView Kind;
1646 const Node *RHS;
1647
1648 public:
MemberExpr(const Node * LHS_,StringView Kind_,const Node * RHS_)1649 MemberExpr(const Node *LHS_, StringView Kind_, const Node *RHS_)
1650 : Node(KMemberExpr), LHS(LHS_), Kind(Kind_), RHS(RHS_) {}
1651
match(Fn F)1652 template<typename Fn> void match(Fn F) const { F(LHS, Kind, RHS); }
1653
printLeft(OutputStream & S)1654 void printLeft(OutputStream &S) const override {
1655 LHS->print(S);
1656 S += Kind;
1657 RHS->print(S);
1658 }
1659 };
1660
1661 class EnclosingExpr : public Node {
1662 const StringView Prefix;
1663 const Node *Infix;
1664 const StringView Postfix;
1665
1666 public:
EnclosingExpr(StringView Prefix_,Node * Infix_,StringView Postfix_)1667 EnclosingExpr(StringView Prefix_, Node *Infix_, StringView Postfix_)
1668 : Node(KEnclosingExpr), Prefix(Prefix_), Infix(Infix_),
1669 Postfix(Postfix_) {}
1670
match(Fn F)1671 template<typename Fn> void match(Fn F) const { F(Prefix, Infix, Postfix); }
1672
printLeft(OutputStream & S)1673 void printLeft(OutputStream &S) const override {
1674 S += Prefix;
1675 Infix->print(S);
1676 S += Postfix;
1677 }
1678 };
1679
1680 class CastExpr : public Node {
1681 // cast_kind<to>(from)
1682 const StringView CastKind;
1683 const Node *To;
1684 const Node *From;
1685
1686 public:
CastExpr(StringView CastKind_,const Node * To_,const Node * From_)1687 CastExpr(StringView CastKind_, const Node *To_, const Node *From_)
1688 : Node(KCastExpr), CastKind(CastKind_), To(To_), From(From_) {}
1689
match(Fn F)1690 template<typename Fn> void match(Fn F) const { F(CastKind, To, From); }
1691
printLeft(OutputStream & S)1692 void printLeft(OutputStream &S) const override {
1693 S += CastKind;
1694 S += "<";
1695 To->printLeft(S);
1696 S += ">(";
1697 From->printLeft(S);
1698 S += ")";
1699 }
1700 };
1701
1702 class SizeofParamPackExpr : public Node {
1703 const Node *Pack;
1704
1705 public:
SizeofParamPackExpr(const Node * Pack_)1706 SizeofParamPackExpr(const Node *Pack_)
1707 : Node(KSizeofParamPackExpr), Pack(Pack_) {}
1708
match(Fn F)1709 template<typename Fn> void match(Fn F) const { F(Pack); }
1710
printLeft(OutputStream & S)1711 void printLeft(OutputStream &S) const override {
1712 S += "sizeof...(";
1713 ParameterPackExpansion PPE(Pack);
1714 PPE.printLeft(S);
1715 S += ")";
1716 }
1717 };
1718
1719 class CallExpr : public Node {
1720 const Node *Callee;
1721 NodeArray Args;
1722
1723 public:
CallExpr(const Node * Callee_,NodeArray Args_)1724 CallExpr(const Node *Callee_, NodeArray Args_)
1725 : Node(KCallExpr), Callee(Callee_), Args(Args_) {}
1726
match(Fn F)1727 template<typename Fn> void match(Fn F) const { F(Callee, Args); }
1728
printLeft(OutputStream & S)1729 void printLeft(OutputStream &S) const override {
1730 Callee->print(S);
1731 S += "(";
1732 Args.printWithComma(S);
1733 S += ")";
1734 }
1735 };
1736
1737 class NewExpr : public Node {
1738 // new (expr_list) type(init_list)
1739 NodeArray ExprList;
1740 Node *Type;
1741 NodeArray InitList;
1742 bool IsGlobal; // ::operator new ?
1743 bool IsArray; // new[] ?
1744 public:
NewExpr(NodeArray ExprList_,Node * Type_,NodeArray InitList_,bool IsGlobal_,bool IsArray_)1745 NewExpr(NodeArray ExprList_, Node *Type_, NodeArray InitList_, bool IsGlobal_,
1746 bool IsArray_)
1747 : Node(KNewExpr), ExprList(ExprList_), Type(Type_), InitList(InitList_),
1748 IsGlobal(IsGlobal_), IsArray(IsArray_) {}
1749
match(Fn F)1750 template<typename Fn> void match(Fn F) const {
1751 F(ExprList, Type, InitList, IsGlobal, IsArray);
1752 }
1753
printLeft(OutputStream & S)1754 void printLeft(OutputStream &S) const override {
1755 if (IsGlobal)
1756 S += "::operator ";
1757 S += "new";
1758 if (IsArray)
1759 S += "[]";
1760 S += ' ';
1761 if (!ExprList.empty()) {
1762 S += "(";
1763 ExprList.printWithComma(S);
1764 S += ")";
1765 }
1766 Type->print(S);
1767 if (!InitList.empty()) {
1768 S += "(";
1769 InitList.printWithComma(S);
1770 S += ")";
1771 }
1772
1773 }
1774 };
1775
1776 class DeleteExpr : public Node {
1777 Node *Op;
1778 bool IsGlobal;
1779 bool IsArray;
1780
1781 public:
DeleteExpr(Node * Op_,bool IsGlobal_,bool IsArray_)1782 DeleteExpr(Node *Op_, bool IsGlobal_, bool IsArray_)
1783 : Node(KDeleteExpr), Op(Op_), IsGlobal(IsGlobal_), IsArray(IsArray_) {}
1784
match(Fn F)1785 template<typename Fn> void match(Fn F) const { F(Op, IsGlobal, IsArray); }
1786
printLeft(OutputStream & S)1787 void printLeft(OutputStream &S) const override {
1788 if (IsGlobal)
1789 S += "::";
1790 S += "delete";
1791 if (IsArray)
1792 S += "[] ";
1793 Op->print(S);
1794 }
1795 };
1796
1797 class PrefixExpr : public Node {
1798 StringView Prefix;
1799 Node *Child;
1800
1801 public:
PrefixExpr(StringView Prefix_,Node * Child_)1802 PrefixExpr(StringView Prefix_, Node *Child_)
1803 : Node(KPrefixExpr), Prefix(Prefix_), Child(Child_) {}
1804
match(Fn F)1805 template<typename Fn> void match(Fn F) const { F(Prefix, Child); }
1806
printLeft(OutputStream & S)1807 void printLeft(OutputStream &S) const override {
1808 S += Prefix;
1809 S += "(";
1810 Child->print(S);
1811 S += ")";
1812 }
1813 };
1814
1815 class FunctionParam : public Node {
1816 StringView Number;
1817
1818 public:
FunctionParam(StringView Number_)1819 FunctionParam(StringView Number_) : Node(KFunctionParam), Number(Number_) {}
1820
match(Fn F)1821 template<typename Fn> void match(Fn F) const { F(Number); }
1822
printLeft(OutputStream & S)1823 void printLeft(OutputStream &S) const override {
1824 S += "fp";
1825 S += Number;
1826 }
1827 };
1828
1829 class ConversionExpr : public Node {
1830 const Node *Type;
1831 NodeArray Expressions;
1832
1833 public:
ConversionExpr(const Node * Type_,NodeArray Expressions_)1834 ConversionExpr(const Node *Type_, NodeArray Expressions_)
1835 : Node(KConversionExpr), Type(Type_), Expressions(Expressions_) {}
1836
match(Fn F)1837 template<typename Fn> void match(Fn F) const { F(Type, Expressions); }
1838
printLeft(OutputStream & S)1839 void printLeft(OutputStream &S) const override {
1840 S += "(";
1841 Type->print(S);
1842 S += ")(";
1843 Expressions.printWithComma(S);
1844 S += ")";
1845 }
1846 };
1847
1848 class InitListExpr : public Node {
1849 const Node *Ty;
1850 NodeArray Inits;
1851 public:
InitListExpr(const Node * Ty_,NodeArray Inits_)1852 InitListExpr(const Node *Ty_, NodeArray Inits_)
1853 : Node(KInitListExpr), Ty(Ty_), Inits(Inits_) {}
1854
match(Fn F)1855 template<typename Fn> void match(Fn F) const { F(Ty, Inits); }
1856
printLeft(OutputStream & S)1857 void printLeft(OutputStream &S) const override {
1858 if (Ty)
1859 Ty->print(S);
1860 S += '{';
1861 Inits.printWithComma(S);
1862 S += '}';
1863 }
1864 };
1865
1866 class BracedExpr : public Node {
1867 const Node *Elem;
1868 const Node *Init;
1869 bool IsArray;
1870 public:
BracedExpr(const Node * Elem_,const Node * Init_,bool IsArray_)1871 BracedExpr(const Node *Elem_, const Node *Init_, bool IsArray_)
1872 : Node(KBracedExpr), Elem(Elem_), Init(Init_), IsArray(IsArray_) {}
1873
match(Fn F)1874 template<typename Fn> void match(Fn F) const { F(Elem, Init, IsArray); }
1875
printLeft(OutputStream & S)1876 void printLeft(OutputStream &S) const override {
1877 if (IsArray) {
1878 S += '[';
1879 Elem->print(S);
1880 S += ']';
1881 } else {
1882 S += '.';
1883 Elem->print(S);
1884 }
1885 if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
1886 S += " = ";
1887 Init->print(S);
1888 }
1889 };
1890
1891 class BracedRangeExpr : public Node {
1892 const Node *First;
1893 const Node *Last;
1894 const Node *Init;
1895 public:
BracedRangeExpr(const Node * First_,const Node * Last_,const Node * Init_)1896 BracedRangeExpr(const Node *First_, const Node *Last_, const Node *Init_)
1897 : Node(KBracedRangeExpr), First(First_), Last(Last_), Init(Init_) {}
1898
match(Fn F)1899 template<typename Fn> void match(Fn F) const { F(First, Last, Init); }
1900
printLeft(OutputStream & S)1901 void printLeft(OutputStream &S) const override {
1902 S += '[';
1903 First->print(S);
1904 S += " ... ";
1905 Last->print(S);
1906 S += ']';
1907 if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
1908 S += " = ";
1909 Init->print(S);
1910 }
1911 };
1912
1913 class FoldExpr : public Node {
1914 const Node *Pack, *Init;
1915 StringView OperatorName;
1916 bool IsLeftFold;
1917
1918 public:
FoldExpr(bool IsLeftFold_,StringView OperatorName_,const Node * Pack_,const Node * Init_)1919 FoldExpr(bool IsLeftFold_, StringView OperatorName_, const Node *Pack_,
1920 const Node *Init_)
1921 : Node(KFoldExpr), Pack(Pack_), Init(Init_), OperatorName(OperatorName_),
1922 IsLeftFold(IsLeftFold_) {}
1923
match(Fn F)1924 template<typename Fn> void match(Fn F) const {
1925 F(IsLeftFold, OperatorName, Pack, Init);
1926 }
1927
printLeft(OutputStream & S)1928 void printLeft(OutputStream &S) const override {
1929 auto PrintPack = [&] {
1930 S += '(';
1931 ParameterPackExpansion(Pack).print(S);
1932 S += ')';
1933 };
1934
1935 S += '(';
1936
1937 if (IsLeftFold) {
1938 // init op ... op pack
1939 if (Init != nullptr) {
1940 Init->print(S);
1941 S += ' ';
1942 S += OperatorName;
1943 S += ' ';
1944 }
1945 // ... op pack
1946 S += "... ";
1947 S += OperatorName;
1948 S += ' ';
1949 PrintPack();
1950 } else { // !IsLeftFold
1951 // pack op ...
1952 PrintPack();
1953 S += ' ';
1954 S += OperatorName;
1955 S += " ...";
1956 // pack op ... op init
1957 if (Init != nullptr) {
1958 S += ' ';
1959 S += OperatorName;
1960 S += ' ';
1961 Init->print(S);
1962 }
1963 }
1964 S += ')';
1965 }
1966 };
1967
1968 class ThrowExpr : public Node {
1969 const Node *Op;
1970
1971 public:
ThrowExpr(const Node * Op_)1972 ThrowExpr(const Node *Op_) : Node(KThrowExpr), Op(Op_) {}
1973
match(Fn F)1974 template<typename Fn> void match(Fn F) const { F(Op); }
1975
printLeft(OutputStream & S)1976 void printLeft(OutputStream &S) const override {
1977 S += "throw ";
1978 Op->print(S);
1979 }
1980 };
1981
1982 // MSVC __uuidof extension, generated by clang in -fms-extensions mode.
1983 class UUIDOfExpr : public Node {
1984 Node *Operand;
1985 public:
UUIDOfExpr(Node * Operand_)1986 UUIDOfExpr(Node *Operand_) : Node(KUUIDOfExpr), Operand(Operand_) {}
1987
match(Fn F)1988 template<typename Fn> void match(Fn F) const { F(Operand); }
1989
printLeft(OutputStream & S)1990 void printLeft(OutputStream &S) const override {
1991 S << "__uuidof(";
1992 Operand->print(S);
1993 S << ")";
1994 }
1995 };
1996
1997 class BoolExpr : public Node {
1998 bool Value;
1999
2000 public:
BoolExpr(bool Value_)2001 BoolExpr(bool Value_) : Node(KBoolExpr), Value(Value_) {}
2002
match(Fn F)2003 template<typename Fn> void match(Fn F) const { F(Value); }
2004
printLeft(OutputStream & S)2005 void printLeft(OutputStream &S) const override {
2006 S += Value ? StringView("true") : StringView("false");
2007 }
2008 };
2009
2010 class StringLiteral : public Node {
2011 const Node *Type;
2012
2013 public:
StringLiteral(const Node * Type_)2014 StringLiteral(const Node *Type_) : Node(KStringLiteral), Type(Type_) {}
2015
match(Fn F)2016 template<typename Fn> void match(Fn F) const { F(Type); }
2017
printLeft(OutputStream & S)2018 void printLeft(OutputStream &S) const override {
2019 S += "\"<";
2020 Type->print(S);
2021 S += ">\"";
2022 }
2023 };
2024
2025 class LambdaExpr : public Node {
2026 const Node *Type;
2027
2028 public:
LambdaExpr(const Node * Type_)2029 LambdaExpr(const Node *Type_) : Node(KLambdaExpr), Type(Type_) {}
2030
match(Fn F)2031 template<typename Fn> void match(Fn F) const { F(Type); }
2032
printLeft(OutputStream & S)2033 void printLeft(OutputStream &S) const override {
2034 S += "[]";
2035 if (Type->getKind() == KClosureTypeName)
2036 static_cast<const ClosureTypeName *>(Type)->printDeclarator(S);
2037 S += "{...}";
2038 }
2039 };
2040
2041 class IntegerCastExpr : public Node {
2042 // ty(integer)
2043 const Node *Ty;
2044 StringView Integer;
2045
2046 public:
IntegerCastExpr(const Node * Ty_,StringView Integer_)2047 IntegerCastExpr(const Node *Ty_, StringView Integer_)
2048 : Node(KIntegerCastExpr), Ty(Ty_), Integer(Integer_) {}
2049
match(Fn F)2050 template<typename Fn> void match(Fn F) const { F(Ty, Integer); }
2051
printLeft(OutputStream & S)2052 void printLeft(OutputStream &S) const override {
2053 S += "(";
2054 Ty->print(S);
2055 S += ")";
2056 S += Integer;
2057 }
2058 };
2059
2060 class IntegerLiteral : public Node {
2061 StringView Type;
2062 StringView Value;
2063
2064 public:
IntegerLiteral(StringView Type_,StringView Value_)2065 IntegerLiteral(StringView Type_, StringView Value_)
2066 : Node(KIntegerLiteral), Type(Type_), Value(Value_) {}
2067
match(Fn F)2068 template<typename Fn> void match(Fn F) const { F(Type, Value); }
2069
printLeft(OutputStream & S)2070 void printLeft(OutputStream &S) const override {
2071 if (Type.size() > 3) {
2072 S += "(";
2073 S += Type;
2074 S += ")";
2075 }
2076
2077 if (Value[0] == 'n') {
2078 S += "-";
2079 S += Value.dropFront(1);
2080 } else
2081 S += Value;
2082
2083 if (Type.size() <= 3)
2084 S += Type;
2085 }
2086 };
2087
2088 template <class Float> struct FloatData;
2089
2090 namespace float_literal_impl {
getFloatLiteralKind(float *)2091 constexpr Node::Kind getFloatLiteralKind(float *) {
2092 return Node::KFloatLiteral;
2093 }
getFloatLiteralKind(double *)2094 constexpr Node::Kind getFloatLiteralKind(double *) {
2095 return Node::KDoubleLiteral;
2096 }
getFloatLiteralKind(long double *)2097 constexpr Node::Kind getFloatLiteralKind(long double *) {
2098 return Node::KLongDoubleLiteral;
2099 }
2100 }
2101
2102 template <class Float> class FloatLiteralImpl : public Node {
2103 const StringView Contents;
2104
2105 static constexpr Kind KindForClass =
2106 float_literal_impl::getFloatLiteralKind((Float *)nullptr);
2107
2108 public:
FloatLiteralImpl(StringView Contents_)2109 FloatLiteralImpl(StringView Contents_)
2110 : Node(KindForClass), Contents(Contents_) {}
2111
match(Fn F)2112 template<typename Fn> void match(Fn F) const { F(Contents); }
2113
printLeft(OutputStream & s)2114 void printLeft(OutputStream &s) const override {
2115 const char *first = Contents.begin();
2116 const char *last = Contents.end() + 1;
2117
2118 const size_t N = FloatData<Float>::mangled_size;
2119 if (static_cast<std::size_t>(last - first) > N) {
2120 last = first + N;
2121 union {
2122 Float value;
2123 char buf[sizeof(Float)];
2124 };
2125 const char *t = first;
2126 char *e = buf;
2127 for (; t != last; ++t, ++e) {
2128 unsigned d1 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
2129 : static_cast<unsigned>(*t - 'a' + 10);
2130 ++t;
2131 unsigned d0 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
2132 : static_cast<unsigned>(*t - 'a' + 10);
2133 *e = static_cast<char>((d1 << 4) + d0);
2134 }
2135 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
2136 std::reverse(buf, e);
2137 #endif
2138 char num[FloatData<Float>::max_demangled_size] = {0};
2139 int n = snprintf(num, sizeof(num), FloatData<Float>::spec, value);
2140 s += StringView(num, num + n);
2141 }
2142 }
2143 };
2144
2145 using FloatLiteral = FloatLiteralImpl<float>;
2146 using DoubleLiteral = FloatLiteralImpl<double>;
2147 using LongDoubleLiteral = FloatLiteralImpl<long double>;
2148
2149 /// Visit the node. Calls \c F(P), where \c P is the node cast to the
2150 /// appropriate derived class.
2151 template<typename Fn>
visit(Fn F)2152 void Node::visit(Fn F) const {
2153 switch (K) {
2154 #define CASE(X) case K ## X: return F(static_cast<const X*>(this));
2155 FOR_EACH_NODE_KIND(CASE)
2156 #undef CASE
2157 }
2158 assert(0 && "unknown mangling node kind");
2159 }
2160
2161 /// Determine the kind of a node from its type.
2162 template<typename NodeT> struct NodeKind;
2163 #define SPECIALIZATION(X) \
2164 template<> struct NodeKind<X> { \
2165 static constexpr Node::Kind Kind = Node::K##X; \
2166 static constexpr const char *name() { return #X; } \
2167 };
FOR_EACH_NODE_KIND(SPECIALIZATION)2168 FOR_EACH_NODE_KIND(SPECIALIZATION)
2169 #undef SPECIALIZATION
2170
2171 #undef FOR_EACH_NODE_KIND
2172
2173 template <class T, size_t N>
2174 class PODSmallVector {
2175 static_assert(std::is_trivial<T>::value,
2176 "T is required to be a trivial type");
2177
2178 T* First = nullptr;
2179 T* Last = nullptr;
2180 T* Cap = nullptr;
2181 T Inline[N] = {};
2182
2183 bool isInline() const { return First == Inline; }
2184
2185 void clearInline() {
2186 First = Inline;
2187 Last = Inline;
2188 Cap = Inline + N;
2189 }
2190
2191 void reserve(size_t NewCap) {
2192 size_t S = size();
2193 if (isInline()) {
2194 auto* Tmp = static_cast<T*>(std::malloc(NewCap * sizeof(T)));
2195 if (Tmp == nullptr)
2196 std::terminate();
2197 std::copy(First, Last, Tmp);
2198 First = Tmp;
2199 } else {
2200 First = static_cast<T*>(std::realloc(First, NewCap * sizeof(T)));
2201 if (First == nullptr)
2202 std::terminate();
2203 }
2204 Last = First + S;
2205 Cap = First + NewCap;
2206 }
2207
2208 public:
2209 PODSmallVector() : First(Inline), Last(First), Cap(Inline + N) {}
2210
2211 PODSmallVector(const PODSmallVector&) = delete;
2212 PODSmallVector& operator=(const PODSmallVector&) = delete;
2213
2214 PODSmallVector(PODSmallVector&& Other) : PODSmallVector() {
2215 if (Other.isInline()) {
2216 std::copy(Other.begin(), Other.end(), First);
2217 Last = First + Other.size();
2218 Other.clear();
2219 return;
2220 }
2221
2222 First = Other.First;
2223 Last = Other.Last;
2224 Cap = Other.Cap;
2225 Other.clearInline();
2226 }
2227
2228 PODSmallVector& operator=(PODSmallVector&& Other) {
2229 if (Other.isInline()) {
2230 if (!isInline()) {
2231 std::free(First);
2232 clearInline();
2233 }
2234 std::copy(Other.begin(), Other.end(), First);
2235 Last = First + Other.size();
2236 Other.clear();
2237 return *this;
2238 }
2239
2240 if (isInline()) {
2241 First = Other.First;
2242 Last = Other.Last;
2243 Cap = Other.Cap;
2244 Other.clearInline();
2245 return *this;
2246 }
2247
2248 std::swap(First, Other.First);
2249 std::swap(Last, Other.Last);
2250 std::swap(Cap, Other.Cap);
2251 Other.clear();
2252 return *this;
2253 }
2254
2255 void push_back(const T& Elem) {
2256 if (Last == Cap)
2257 reserve(size() * 2);
2258 *Last++ = Elem;
2259 }
2260
2261 void pop_back() {
2262 assert(Last != First && "Popping empty vector!");
2263 --Last;
2264 }
2265
2266 void dropBack(size_t Index) {
2267 assert(Index <= size() && "dropBack() can't expand!");
2268 Last = First + Index;
2269 }
2270
2271 T* begin() { return First; }
2272 T* end() { return Last; }
2273
2274 bool empty() const { return First == Last; }
2275 size_t size() const { return static_cast<size_t>(Last - First); }
2276 T& back() {
2277 assert(Last != First && "Calling back() on empty vector!");
2278 return *(Last - 1);
2279 }
2280 T& operator[](size_t Index) {
2281 assert(Index < size() && "Invalid access!");
2282 return *(begin() + Index);
2283 }
2284 void clear() { Last = First; }
2285
2286 ~PODSmallVector() {
2287 if (!isInline())
2288 std::free(First);
2289 }
2290 };
2291
2292 template <typename Derived, typename Alloc> struct AbstractManglingParser {
2293 const char *First;
2294 const char *Last;
2295
2296 // Name stack, this is used by the parser to hold temporary names that were
2297 // parsed. The parser collapses multiple names into new nodes to construct
2298 // the AST. Once the parser is finished, names.size() == 1.
2299 PODSmallVector<Node *, 32> Names;
2300
2301 // Substitution table. Itanium supports name substitutions as a means of
2302 // compression. The string "S42_" refers to the 44nd entry (base-36) in this
2303 // table.
2304 PODSmallVector<Node *, 32> Subs;
2305
2306 using TemplateParamList = PODSmallVector<Node *, 8>;
2307
2308 class ScopedTemplateParamList {
2309 AbstractManglingParser *Parser;
2310 size_t OldNumTemplateParamLists;
2311 TemplateParamList Params;
2312
2313 public:
ScopedTemplateParamListAbstractManglingParser2314 ScopedTemplateParamList(AbstractManglingParser *Parser)
2315 : Parser(Parser),
2316 OldNumTemplateParamLists(Parser->TemplateParams.size()) {
2317 Parser->TemplateParams.push_back(&Params);
2318 }
~ScopedTemplateParamListAbstractManglingParser2319 ~ScopedTemplateParamList() {
2320 assert(Parser->TemplateParams.size() >= OldNumTemplateParamLists);
2321 Parser->TemplateParams.dropBack(OldNumTemplateParamLists);
2322 }
2323 };
2324
2325 // Template parameter table. Like the above, but referenced like "T42_".
2326 // This has a smaller size compared to Subs and Names because it can be
2327 // stored on the stack.
2328 TemplateParamList OuterTemplateParams;
2329
2330 // Lists of template parameters indexed by template parameter depth,
2331 // referenced like "TL2_4_". If nonempty, element 0 is always
2332 // OuterTemplateParams; inner elements are always template parameter lists of
2333 // lambda expressions. For a generic lambda with no explicit template
2334 // parameter list, the corresponding parameter list pointer will be null.
2335 PODSmallVector<TemplateParamList *, 4> TemplateParams;
2336
2337 // Set of unresolved forward <template-param> references. These can occur in a
2338 // conversion operator's type, and are resolved in the enclosing <encoding>.
2339 PODSmallVector<ForwardTemplateReference *, 4> ForwardTemplateRefs;
2340
2341 bool TryToParseTemplateArgs = true;
2342 bool PermitForwardTemplateReferences = false;
2343 size_t ParsingLambdaParamsAtLevel = (size_t)-1;
2344
2345 unsigned NumSyntheticTemplateParameters[3] = {};
2346
2347 Alloc ASTAllocator;
2348
AbstractManglingParserAbstractManglingParser2349 AbstractManglingParser(const char *First_, const char *Last_)
2350 : First(First_), Last(Last_) {}
2351
getDerivedAbstractManglingParser2352 Derived &getDerived() { return static_cast<Derived &>(*this); }
2353
resetAbstractManglingParser2354 void reset(const char *First_, const char *Last_) {
2355 First = First_;
2356 Last = Last_;
2357 Names.clear();
2358 Subs.clear();
2359 TemplateParams.clear();
2360 ParsingLambdaParamsAtLevel = (size_t)-1;
2361 TryToParseTemplateArgs = true;
2362 PermitForwardTemplateReferences = false;
2363 for (int I = 0; I != 3; ++I)
2364 NumSyntheticTemplateParameters[I] = 0;
2365 ASTAllocator.reset();
2366 }
2367
makeAbstractManglingParser2368 template <class T, class... Args> Node *make(Args &&... args) {
2369 return ASTAllocator.template makeNode<T>(std::forward<Args>(args)...);
2370 }
2371
makeNodeArrayAbstractManglingParser2372 template <class It> NodeArray makeNodeArray(It begin, It end) {
2373 size_t sz = static_cast<size_t>(end - begin);
2374 void *mem = ASTAllocator.allocateNodeArray(sz);
2375 Node **data = new (mem) Node *[sz];
2376 std::copy(begin, end, data);
2377 return NodeArray(data, sz);
2378 }
2379
popTrailingNodeArrayAbstractManglingParser2380 NodeArray popTrailingNodeArray(size_t FromPosition) {
2381 assert(FromPosition <= Names.size());
2382 NodeArray res =
2383 makeNodeArray(Names.begin() + (long)FromPosition, Names.end());
2384 Names.dropBack(FromPosition);
2385 return res;
2386 }
2387
consumeIfAbstractManglingParser2388 bool consumeIf(StringView S) {
2389 if (StringView(First, Last).startsWith(S)) {
2390 First += S.size();
2391 return true;
2392 }
2393 return false;
2394 }
2395
consumeIfAbstractManglingParser2396 bool consumeIf(char C) {
2397 if (First != Last && *First == C) {
2398 ++First;
2399 return true;
2400 }
2401 return false;
2402 }
2403
consumeAbstractManglingParser2404 char consume() { return First != Last ? *First++ : '\0'; }
2405
2406 char look(unsigned Lookahead = 0) {
2407 if (static_cast<size_t>(Last - First) <= Lookahead)
2408 return '\0';
2409 return First[Lookahead];
2410 }
2411
numLeftAbstractManglingParser2412 size_t numLeft() const { return static_cast<size_t>(Last - First); }
2413
2414 StringView parseNumber(bool AllowNegative = false);
2415 Qualifiers parseCVQualifiers();
2416 bool parsePositiveInteger(size_t *Out);
2417 StringView parseBareSourceName();
2418
2419 bool parseSeqId(size_t *Out);
2420 Node *parseSubstitution();
2421 Node *parseTemplateParam();
2422 Node *parseTemplateParamDecl();
2423 Node *parseTemplateArgs(bool TagTemplates = false);
2424 Node *parseTemplateArg();
2425
2426 /// Parse the <expr> production.
2427 Node *parseExpr();
2428 Node *parsePrefixExpr(StringView Kind);
2429 Node *parseBinaryExpr(StringView Kind);
2430 Node *parseIntegerLiteral(StringView Lit);
2431 Node *parseExprPrimary();
2432 template <class Float> Node *parseFloatingLiteral();
2433 Node *parseFunctionParam();
2434 Node *parseNewExpr();
2435 Node *parseConversionExpr();
2436 Node *parseBracedExpr();
2437 Node *parseFoldExpr();
2438
2439 /// Parse the <type> production.
2440 Node *parseType();
2441 Node *parseFunctionType();
2442 Node *parseVectorType();
2443 Node *parseDecltype();
2444 Node *parseArrayType();
2445 Node *parsePointerToMemberType();
2446 Node *parseClassEnumType();
2447 Node *parseQualifiedType();
2448
2449 Node *parseEncoding();
2450 bool parseCallOffset();
2451 Node *parseSpecialName();
2452
2453 /// Holds some extra information about a <name> that is being parsed. This
2454 /// information is only pertinent if the <name> refers to an <encoding>.
2455 struct NameState {
2456 bool CtorDtorConversion = false;
2457 bool EndsWithTemplateArgs = false;
2458 Qualifiers CVQualifiers = QualNone;
2459 FunctionRefQual ReferenceQualifier = FrefQualNone;
2460 size_t ForwardTemplateRefsBegin;
2461
NameStateAbstractManglingParser::NameState2462 NameState(AbstractManglingParser *Enclosing)
2463 : ForwardTemplateRefsBegin(Enclosing->ForwardTemplateRefs.size()) {}
2464 };
2465
resolveForwardTemplateRefsAbstractManglingParser2466 bool resolveForwardTemplateRefs(NameState &State) {
2467 size_t I = State.ForwardTemplateRefsBegin;
2468 size_t E = ForwardTemplateRefs.size();
2469 for (; I < E; ++I) {
2470 size_t Idx = ForwardTemplateRefs[I]->Index;
2471 if (TemplateParams.empty() || !TemplateParams[0] ||
2472 Idx >= TemplateParams[0]->size())
2473 return true;
2474 ForwardTemplateRefs[I]->Ref = (*TemplateParams[0])[Idx];
2475 }
2476 ForwardTemplateRefs.dropBack(State.ForwardTemplateRefsBegin);
2477 return false;
2478 }
2479
2480 /// Parse the <name> production>
2481 Node *parseName(NameState *State = nullptr);
2482 Node *parseLocalName(NameState *State);
2483 Node *parseOperatorName(NameState *State);
2484 Node *parseUnqualifiedName(NameState *State);
2485 Node *parseUnnamedTypeName(NameState *State);
2486 Node *parseSourceName(NameState *State);
2487 Node *parseUnscopedName(NameState *State);
2488 Node *parseNestedName(NameState *State);
2489 Node *parseCtorDtorName(Node *&SoFar, NameState *State);
2490
2491 Node *parseAbiTags(Node *N);
2492
2493 /// Parse the <unresolved-name> production.
2494 Node *parseUnresolvedName();
2495 Node *parseSimpleId();
2496 Node *parseBaseUnresolvedName();
2497 Node *parseUnresolvedType();
2498 Node *parseDestructorName();
2499
2500 /// Top-level entry point into the parser.
2501 Node *parse();
2502 };
2503
2504 const char* parse_discriminator(const char* first, const char* last);
2505
2506 // <name> ::= <nested-name> // N
2507 // ::= <local-name> # See Scope Encoding below // Z
2508 // ::= <unscoped-template-name> <template-args>
2509 // ::= <unscoped-name>
2510 //
2511 // <unscoped-template-name> ::= <unscoped-name>
2512 // ::= <substitution>
2513 template <typename Derived, typename Alloc>
parseName(NameState * State)2514 Node *AbstractManglingParser<Derived, Alloc>::parseName(NameState *State) {
2515 consumeIf('L'); // extension
2516
2517 if (look() == 'N')
2518 return getDerived().parseNestedName(State);
2519 if (look() == 'Z')
2520 return getDerived().parseLocalName(State);
2521
2522 // ::= <unscoped-template-name> <template-args>
2523 if (look() == 'S' && look(1) != 't') {
2524 Node *S = getDerived().parseSubstitution();
2525 if (S == nullptr)
2526 return nullptr;
2527 if (look() != 'I')
2528 return nullptr;
2529 Node *TA = getDerived().parseTemplateArgs(State != nullptr);
2530 if (TA == nullptr)
2531 return nullptr;
2532 if (State) State->EndsWithTemplateArgs = true;
2533 return make<NameWithTemplateArgs>(S, TA);
2534 }
2535
2536 Node *N = getDerived().parseUnscopedName(State);
2537 if (N == nullptr)
2538 return nullptr;
2539 // ::= <unscoped-template-name> <template-args>
2540 if (look() == 'I') {
2541 Subs.push_back(N);
2542 Node *TA = getDerived().parseTemplateArgs(State != nullptr);
2543 if (TA == nullptr)
2544 return nullptr;
2545 if (State) State->EndsWithTemplateArgs = true;
2546 return make<NameWithTemplateArgs>(N, TA);
2547 }
2548 // ::= <unscoped-name>
2549 return N;
2550 }
2551
2552 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
2553 // := Z <function encoding> E s [<discriminator>]
2554 // := Z <function encoding> Ed [ <parameter number> ] _ <entity name>
2555 template <typename Derived, typename Alloc>
parseLocalName(NameState * State)2556 Node *AbstractManglingParser<Derived, Alloc>::parseLocalName(NameState *State) {
2557 if (!consumeIf('Z'))
2558 return nullptr;
2559 Node *Encoding = getDerived().parseEncoding();
2560 if (Encoding == nullptr || !consumeIf('E'))
2561 return nullptr;
2562
2563 if (consumeIf('s')) {
2564 First = parse_discriminator(First, Last);
2565 auto *StringLitName = make<NameType>("string literal");
2566 if (!StringLitName)
2567 return nullptr;
2568 return make<LocalName>(Encoding, StringLitName);
2569 }
2570
2571 if (consumeIf('d')) {
2572 parseNumber(true);
2573 if (!consumeIf('_'))
2574 return nullptr;
2575 Node *N = getDerived().parseName(State);
2576 if (N == nullptr)
2577 return nullptr;
2578 return make<LocalName>(Encoding, N);
2579 }
2580
2581 Node *Entity = getDerived().parseName(State);
2582 if (Entity == nullptr)
2583 return nullptr;
2584 First = parse_discriminator(First, Last);
2585 return make<LocalName>(Encoding, Entity);
2586 }
2587
2588 // <unscoped-name> ::= <unqualified-name>
2589 // ::= St <unqualified-name> # ::std::
2590 // extension ::= StL<unqualified-name>
2591 template <typename Derived, typename Alloc>
2592 Node *
parseUnscopedName(NameState * State)2593 AbstractManglingParser<Derived, Alloc>::parseUnscopedName(NameState *State) {
2594 if (consumeIf("StL") || consumeIf("St")) {
2595 Node *R = getDerived().parseUnqualifiedName(State);
2596 if (R == nullptr)
2597 return nullptr;
2598 return make<StdQualifiedName>(R);
2599 }
2600 return getDerived().parseUnqualifiedName(State);
2601 }
2602
2603 // <unqualified-name> ::= <operator-name> [abi-tags]
2604 // ::= <ctor-dtor-name>
2605 // ::= <source-name>
2606 // ::= <unnamed-type-name>
2607 // ::= DC <source-name>+ E # structured binding declaration
2608 template <typename Derived, typename Alloc>
2609 Node *
parseUnqualifiedName(NameState * State)2610 AbstractManglingParser<Derived, Alloc>::parseUnqualifiedName(NameState *State) {
2611 // <ctor-dtor-name>s are special-cased in parseNestedName().
2612 Node *Result;
2613 if (look() == 'U')
2614 Result = getDerived().parseUnnamedTypeName(State);
2615 else if (look() >= '1' && look() <= '9')
2616 Result = getDerived().parseSourceName(State);
2617 else if (consumeIf("DC")) {
2618 size_t BindingsBegin = Names.size();
2619 do {
2620 Node *Binding = getDerived().parseSourceName(State);
2621 if (Binding == nullptr)
2622 return nullptr;
2623 Names.push_back(Binding);
2624 } while (!consumeIf('E'));
2625 Result = make<StructuredBindingName>(popTrailingNodeArray(BindingsBegin));
2626 } else
2627 Result = getDerived().parseOperatorName(State);
2628 if (Result != nullptr)
2629 Result = getDerived().parseAbiTags(Result);
2630 return Result;
2631 }
2632
2633 // <unnamed-type-name> ::= Ut [<nonnegative number>] _
2634 // ::= <closure-type-name>
2635 //
2636 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
2637 //
2638 // <lambda-sig> ::= <parameter type>+ # Parameter types or "v" if the lambda has no parameters
2639 template <typename Derived, typename Alloc>
2640 Node *
parseUnnamedTypeName(NameState * State)2641 AbstractManglingParser<Derived, Alloc>::parseUnnamedTypeName(NameState *State) {
2642 // <template-params> refer to the innermost <template-args>. Clear out any
2643 // outer args that we may have inserted into TemplateParams.
2644 if (State != nullptr)
2645 TemplateParams.clear();
2646
2647 if (consumeIf("Ut")) {
2648 StringView Count = parseNumber();
2649 if (!consumeIf('_'))
2650 return nullptr;
2651 return make<UnnamedTypeName>(Count);
2652 }
2653 if (consumeIf("Ul")) {
2654 SwapAndRestore<size_t> SwapParams(ParsingLambdaParamsAtLevel,
2655 TemplateParams.size());
2656 ScopedTemplateParamList LambdaTemplateParams(this);
2657
2658 size_t ParamsBegin = Names.size();
2659 while (look() == 'T' &&
2660 StringView("yptn").find(look(1)) != StringView::npos) {
2661 Node *T = parseTemplateParamDecl();
2662 if (!T)
2663 return nullptr;
2664 Names.push_back(T);
2665 }
2666 NodeArray TempParams = popTrailingNodeArray(ParamsBegin);
2667
2668 // FIXME: If TempParams is empty and none of the function parameters
2669 // includes 'auto', we should remove LambdaTemplateParams from the
2670 // TemplateParams list. Unfortunately, we don't find out whether there are
2671 // any 'auto' parameters until too late in an example such as:
2672 //
2673 // template<typename T> void f(
2674 // decltype([](decltype([]<typename T>(T v) {}),
2675 // auto) {})) {}
2676 // template<typename T> void f(
2677 // decltype([](decltype([]<typename T>(T w) {}),
2678 // int) {})) {}
2679 //
2680 // Here, the type of v is at level 2 but the type of w is at level 1. We
2681 // don't find this out until we encounter the type of the next parameter.
2682 //
2683 // However, compilers can't actually cope with the former example in
2684 // practice, and it's likely to be made ill-formed in future, so we don't
2685 // need to support it here.
2686 //
2687 // If we encounter an 'auto' in the function parameter types, we will
2688 // recreate a template parameter scope for it, but any intervening lambdas
2689 // will be parsed in the 'wrong' template parameter depth.
2690 if (TempParams.empty())
2691 TemplateParams.pop_back();
2692
2693 if (!consumeIf("vE")) {
2694 do {
2695 Node *P = getDerived().parseType();
2696 if (P == nullptr)
2697 return nullptr;
2698 Names.push_back(P);
2699 } while (!consumeIf('E'));
2700 }
2701 NodeArray Params = popTrailingNodeArray(ParamsBegin);
2702
2703 StringView Count = parseNumber();
2704 if (!consumeIf('_'))
2705 return nullptr;
2706 return make<ClosureTypeName>(TempParams, Params, Count);
2707 }
2708 if (consumeIf("Ub")) {
2709 (void)parseNumber();
2710 if (!consumeIf('_'))
2711 return nullptr;
2712 return make<NameType>("'block-literal'");
2713 }
2714 return nullptr;
2715 }
2716
2717 // <source-name> ::= <positive length number> <identifier>
2718 template <typename Derived, typename Alloc>
parseSourceName(NameState *)2719 Node *AbstractManglingParser<Derived, Alloc>::parseSourceName(NameState *) {
2720 size_t Length = 0;
2721 if (parsePositiveInteger(&Length))
2722 return nullptr;
2723 if (numLeft() < Length || Length == 0)
2724 return nullptr;
2725 StringView Name(First, First + Length);
2726 First += Length;
2727 if (Name.startsWith("_GLOBAL__N"))
2728 return make<NameType>("(anonymous namespace)");
2729 return make<NameType>(Name);
2730 }
2731
2732 // <operator-name> ::= aa # &&
2733 // ::= ad # & (unary)
2734 // ::= an # &
2735 // ::= aN # &=
2736 // ::= aS # =
2737 // ::= cl # ()
2738 // ::= cm # ,
2739 // ::= co # ~
2740 // ::= cv <type> # (cast)
2741 // ::= da # delete[]
2742 // ::= de # * (unary)
2743 // ::= dl # delete
2744 // ::= dv # /
2745 // ::= dV # /=
2746 // ::= eo # ^
2747 // ::= eO # ^=
2748 // ::= eq # ==
2749 // ::= ge # >=
2750 // ::= gt # >
2751 // ::= ix # []
2752 // ::= le # <=
2753 // ::= li <source-name> # operator ""
2754 // ::= ls # <<
2755 // ::= lS # <<=
2756 // ::= lt # <
2757 // ::= mi # -
2758 // ::= mI # -=
2759 // ::= ml # *
2760 // ::= mL # *=
2761 // ::= mm # -- (postfix in <expression> context)
2762 // ::= na # new[]
2763 // ::= ne # !=
2764 // ::= ng # - (unary)
2765 // ::= nt # !
2766 // ::= nw # new
2767 // ::= oo # ||
2768 // ::= or # |
2769 // ::= oR # |=
2770 // ::= pm # ->*
2771 // ::= pl # +
2772 // ::= pL # +=
2773 // ::= pp # ++ (postfix in <expression> context)
2774 // ::= ps # + (unary)
2775 // ::= pt # ->
2776 // ::= qu # ?
2777 // ::= rm # %
2778 // ::= rM # %=
2779 // ::= rs # >>
2780 // ::= rS # >>=
2781 // ::= ss # <=> C++2a
2782 // ::= v <digit> <source-name> # vendor extended operator
2783 template <typename Derived, typename Alloc>
2784 Node *
parseOperatorName(NameState * State)2785 AbstractManglingParser<Derived, Alloc>::parseOperatorName(NameState *State) {
2786 switch (look()) {
2787 case 'a':
2788 switch (look(1)) {
2789 case 'a':
2790 First += 2;
2791 return make<NameType>("operator&&");
2792 case 'd':
2793 case 'n':
2794 First += 2;
2795 return make<NameType>("operator&");
2796 case 'N':
2797 First += 2;
2798 return make<NameType>("operator&=");
2799 case 'S':
2800 First += 2;
2801 return make<NameType>("operator=");
2802 }
2803 return nullptr;
2804 case 'c':
2805 switch (look(1)) {
2806 case 'l':
2807 First += 2;
2808 return make<NameType>("operator()");
2809 case 'm':
2810 First += 2;
2811 return make<NameType>("operator,");
2812 case 'o':
2813 First += 2;
2814 return make<NameType>("operator~");
2815 // ::= cv <type> # (cast)
2816 case 'v': {
2817 First += 2;
2818 SwapAndRestore<bool> SaveTemplate(TryToParseTemplateArgs, false);
2819 // If we're parsing an encoding, State != nullptr and the conversion
2820 // operators' <type> could have a <template-param> that refers to some
2821 // <template-arg>s further ahead in the mangled name.
2822 SwapAndRestore<bool> SavePermit(PermitForwardTemplateReferences,
2823 PermitForwardTemplateReferences ||
2824 State != nullptr);
2825 Node *Ty = getDerived().parseType();
2826 if (Ty == nullptr)
2827 return nullptr;
2828 if (State) State->CtorDtorConversion = true;
2829 return make<ConversionOperatorType>(Ty);
2830 }
2831 }
2832 return nullptr;
2833 case 'd':
2834 switch (look(1)) {
2835 case 'a':
2836 First += 2;
2837 return make<NameType>("operator delete[]");
2838 case 'e':
2839 First += 2;
2840 return make<NameType>("operator*");
2841 case 'l':
2842 First += 2;
2843 return make<NameType>("operator delete");
2844 case 'v':
2845 First += 2;
2846 return make<NameType>("operator/");
2847 case 'V':
2848 First += 2;
2849 return make<NameType>("operator/=");
2850 }
2851 return nullptr;
2852 case 'e':
2853 switch (look(1)) {
2854 case 'o':
2855 First += 2;
2856 return make<NameType>("operator^");
2857 case 'O':
2858 First += 2;
2859 return make<NameType>("operator^=");
2860 case 'q':
2861 First += 2;
2862 return make<NameType>("operator==");
2863 }
2864 return nullptr;
2865 case 'g':
2866 switch (look(1)) {
2867 case 'e':
2868 First += 2;
2869 return make<NameType>("operator>=");
2870 case 't':
2871 First += 2;
2872 return make<NameType>("operator>");
2873 }
2874 return nullptr;
2875 case 'i':
2876 if (look(1) == 'x') {
2877 First += 2;
2878 return make<NameType>("operator[]");
2879 }
2880 return nullptr;
2881 case 'l':
2882 switch (look(1)) {
2883 case 'e':
2884 First += 2;
2885 return make<NameType>("operator<=");
2886 // ::= li <source-name> # operator ""
2887 case 'i': {
2888 First += 2;
2889 Node *SN = getDerived().parseSourceName(State);
2890 if (SN == nullptr)
2891 return nullptr;
2892 return make<LiteralOperator>(SN);
2893 }
2894 case 's':
2895 First += 2;
2896 return make<NameType>("operator<<");
2897 case 'S':
2898 First += 2;
2899 return make<NameType>("operator<<=");
2900 case 't':
2901 First += 2;
2902 return make<NameType>("operator<");
2903 }
2904 return nullptr;
2905 case 'm':
2906 switch (look(1)) {
2907 case 'i':
2908 First += 2;
2909 return make<NameType>("operator-");
2910 case 'I':
2911 First += 2;
2912 return make<NameType>("operator-=");
2913 case 'l':
2914 First += 2;
2915 return make<NameType>("operator*");
2916 case 'L':
2917 First += 2;
2918 return make<NameType>("operator*=");
2919 case 'm':
2920 First += 2;
2921 return make<NameType>("operator--");
2922 }
2923 return nullptr;
2924 case 'n':
2925 switch (look(1)) {
2926 case 'a':
2927 First += 2;
2928 return make<NameType>("operator new[]");
2929 case 'e':
2930 First += 2;
2931 return make<NameType>("operator!=");
2932 case 'g':
2933 First += 2;
2934 return make<NameType>("operator-");
2935 case 't':
2936 First += 2;
2937 return make<NameType>("operator!");
2938 case 'w':
2939 First += 2;
2940 return make<NameType>("operator new");
2941 }
2942 return nullptr;
2943 case 'o':
2944 switch (look(1)) {
2945 case 'o':
2946 First += 2;
2947 return make<NameType>("operator||");
2948 case 'r':
2949 First += 2;
2950 return make<NameType>("operator|");
2951 case 'R':
2952 First += 2;
2953 return make<NameType>("operator|=");
2954 }
2955 return nullptr;
2956 case 'p':
2957 switch (look(1)) {
2958 case 'm':
2959 First += 2;
2960 return make<NameType>("operator->*");
2961 case 'l':
2962 First += 2;
2963 return make<NameType>("operator+");
2964 case 'L':
2965 First += 2;
2966 return make<NameType>("operator+=");
2967 case 'p':
2968 First += 2;
2969 return make<NameType>("operator++");
2970 case 's':
2971 First += 2;
2972 return make<NameType>("operator+");
2973 case 't':
2974 First += 2;
2975 return make<NameType>("operator->");
2976 }
2977 return nullptr;
2978 case 'q':
2979 if (look(1) == 'u') {
2980 First += 2;
2981 return make<NameType>("operator?");
2982 }
2983 return nullptr;
2984 case 'r':
2985 switch (look(1)) {
2986 case 'm':
2987 First += 2;
2988 return make<NameType>("operator%");
2989 case 'M':
2990 First += 2;
2991 return make<NameType>("operator%=");
2992 case 's':
2993 First += 2;
2994 return make<NameType>("operator>>");
2995 case 'S':
2996 First += 2;
2997 return make<NameType>("operator>>=");
2998 }
2999 return nullptr;
3000 case 's':
3001 if (look(1) == 's') {
3002 First += 2;
3003 return make<NameType>("operator<=>");
3004 }
3005 return nullptr;
3006 // ::= v <digit> <source-name> # vendor extended operator
3007 case 'v':
3008 if (std::isdigit(look(1))) {
3009 First += 2;
3010 Node *SN = getDerived().parseSourceName(State);
3011 if (SN == nullptr)
3012 return nullptr;
3013 return make<ConversionOperatorType>(SN);
3014 }
3015 return nullptr;
3016 }
3017 return nullptr;
3018 }
3019
3020 // <ctor-dtor-name> ::= C1 # complete object constructor
3021 // ::= C2 # base object constructor
3022 // ::= C3 # complete object allocating constructor
3023 // extension ::= C4 # gcc old-style "[unified]" constructor
3024 // extension ::= C5 # the COMDAT used for ctors
3025 // ::= D0 # deleting destructor
3026 // ::= D1 # complete object destructor
3027 // ::= D2 # base object destructor
3028 // extension ::= D4 # gcc old-style "[unified]" destructor
3029 // extension ::= D5 # the COMDAT used for dtors
3030 template <typename Derived, typename Alloc>
3031 Node *
parseCtorDtorName(Node * & SoFar,NameState * State)3032 AbstractManglingParser<Derived, Alloc>::parseCtorDtorName(Node *&SoFar,
3033 NameState *State) {
3034 if (SoFar->getKind() == Node::KSpecialSubstitution) {
3035 auto SSK = static_cast<SpecialSubstitution *>(SoFar)->SSK;
3036 switch (SSK) {
3037 case SpecialSubKind::string:
3038 case SpecialSubKind::istream:
3039 case SpecialSubKind::ostream:
3040 case SpecialSubKind::iostream:
3041 SoFar = make<ExpandedSpecialSubstitution>(SSK);
3042 if (!SoFar)
3043 return nullptr;
3044 break;
3045 default:
3046 break;
3047 }
3048 }
3049
3050 if (consumeIf('C')) {
3051 bool IsInherited = consumeIf('I');
3052 if (look() != '1' && look() != '2' && look() != '3' && look() != '4' &&
3053 look() != '5')
3054 return nullptr;
3055 int Variant = look() - '0';
3056 ++First;
3057 if (State) State->CtorDtorConversion = true;
3058 if (IsInherited) {
3059 if (getDerived().parseName(State) == nullptr)
3060 return nullptr;
3061 }
3062 return make<CtorDtorName>(SoFar, /*IsDtor=*/false, Variant);
3063 }
3064
3065 if (look() == 'D' && (look(1) == '0' || look(1) == '1' || look(1) == '2' ||
3066 look(1) == '4' || look(1) == '5')) {
3067 int Variant = look(1) - '0';
3068 First += 2;
3069 if (State) State->CtorDtorConversion = true;
3070 return make<CtorDtorName>(SoFar, /*IsDtor=*/true, Variant);
3071 }
3072
3073 return nullptr;
3074 }
3075
3076 // <nested-name> ::= N [<CV-Qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
3077 // ::= N [<CV-Qualifiers>] [<ref-qualifier>] <template-prefix> <template-args> E
3078 //
3079 // <prefix> ::= <prefix> <unqualified-name>
3080 // ::= <template-prefix> <template-args>
3081 // ::= <template-param>
3082 // ::= <decltype>
3083 // ::= # empty
3084 // ::= <substitution>
3085 // ::= <prefix> <data-member-prefix>
3086 // extension ::= L
3087 //
3088 // <data-member-prefix> := <member source-name> [<template-args>] M
3089 //
3090 // <template-prefix> ::= <prefix> <template unqualified-name>
3091 // ::= <template-param>
3092 // ::= <substitution>
3093 template <typename Derived, typename Alloc>
3094 Node *
parseNestedName(NameState * State)3095 AbstractManglingParser<Derived, Alloc>::parseNestedName(NameState *State) {
3096 if (!consumeIf('N'))
3097 return nullptr;
3098
3099 Qualifiers CVTmp = parseCVQualifiers();
3100 if (State) State->CVQualifiers = CVTmp;
3101
3102 if (consumeIf('O')) {
3103 if (State) State->ReferenceQualifier = FrefQualRValue;
3104 } else if (consumeIf('R')) {
3105 if (State) State->ReferenceQualifier = FrefQualLValue;
3106 } else
3107 if (State) State->ReferenceQualifier = FrefQualNone;
3108
3109 Node *SoFar = nullptr;
3110 auto PushComponent = [&](Node *Comp) {
3111 if (!Comp) return false;
3112 if (SoFar) SoFar = make<NestedName>(SoFar, Comp);
3113 else SoFar = Comp;
3114 if (State) State->EndsWithTemplateArgs = false;
3115 return SoFar != nullptr;
3116 };
3117
3118 if (consumeIf("St")) {
3119 SoFar = make<NameType>("std");
3120 if (!SoFar)
3121 return nullptr;
3122 }
3123
3124 while (!consumeIf('E')) {
3125 consumeIf('L'); // extension
3126
3127 // <data-member-prefix> := <member source-name> [<template-args>] M
3128 if (consumeIf('M')) {
3129 if (SoFar == nullptr)
3130 return nullptr;
3131 continue;
3132 }
3133
3134 // ::= <template-param>
3135 if (look() == 'T') {
3136 if (!PushComponent(getDerived().parseTemplateParam()))
3137 return nullptr;
3138 Subs.push_back(SoFar);
3139 continue;
3140 }
3141
3142 // ::= <template-prefix> <template-args>
3143 if (look() == 'I') {
3144 Node *TA = getDerived().parseTemplateArgs(State != nullptr);
3145 if (TA == nullptr || SoFar == nullptr)
3146 return nullptr;
3147 SoFar = make<NameWithTemplateArgs>(SoFar, TA);
3148 if (!SoFar)
3149 return nullptr;
3150 if (State) State->EndsWithTemplateArgs = true;
3151 Subs.push_back(SoFar);
3152 continue;
3153 }
3154
3155 // ::= <decltype>
3156 if (look() == 'D' && (look(1) == 't' || look(1) == 'T')) {
3157 if (!PushComponent(getDerived().parseDecltype()))
3158 return nullptr;
3159 Subs.push_back(SoFar);
3160 continue;
3161 }
3162
3163 // ::= <substitution>
3164 if (look() == 'S' && look(1) != 't') {
3165 Node *S = getDerived().parseSubstitution();
3166 if (!PushComponent(S))
3167 return nullptr;
3168 if (SoFar != S)
3169 Subs.push_back(S);
3170 continue;
3171 }
3172
3173 // Parse an <unqualified-name> thats actually a <ctor-dtor-name>.
3174 if (look() == 'C' || (look() == 'D' && look(1) != 'C')) {
3175 if (SoFar == nullptr)
3176 return nullptr;
3177 if (!PushComponent(getDerived().parseCtorDtorName(SoFar, State)))
3178 return nullptr;
3179 SoFar = getDerived().parseAbiTags(SoFar);
3180 if (SoFar == nullptr)
3181 return nullptr;
3182 Subs.push_back(SoFar);
3183 continue;
3184 }
3185
3186 // ::= <prefix> <unqualified-name>
3187 if (!PushComponent(getDerived().parseUnqualifiedName(State)))
3188 return nullptr;
3189 Subs.push_back(SoFar);
3190 }
3191
3192 if (SoFar == nullptr || Subs.empty())
3193 return nullptr;
3194
3195 Subs.pop_back();
3196 return SoFar;
3197 }
3198
3199 // <simple-id> ::= <source-name> [ <template-args> ]
3200 template <typename Derived, typename Alloc>
parseSimpleId()3201 Node *AbstractManglingParser<Derived, Alloc>::parseSimpleId() {
3202 Node *SN = getDerived().parseSourceName(/*NameState=*/nullptr);
3203 if (SN == nullptr)
3204 return nullptr;
3205 if (look() == 'I') {
3206 Node *TA = getDerived().parseTemplateArgs();
3207 if (TA == nullptr)
3208 return nullptr;
3209 return make<NameWithTemplateArgs>(SN, TA);
3210 }
3211 return SN;
3212 }
3213
3214 // <destructor-name> ::= <unresolved-type> # e.g., ~T or ~decltype(f())
3215 // ::= <simple-id> # e.g., ~A<2*N>
3216 template <typename Derived, typename Alloc>
parseDestructorName()3217 Node *AbstractManglingParser<Derived, Alloc>::parseDestructorName() {
3218 Node *Result;
3219 if (std::isdigit(look()))
3220 Result = getDerived().parseSimpleId();
3221 else
3222 Result = getDerived().parseUnresolvedType();
3223 if (Result == nullptr)
3224 return nullptr;
3225 return make<DtorName>(Result);
3226 }
3227
3228 // <unresolved-type> ::= <template-param>
3229 // ::= <decltype>
3230 // ::= <substitution>
3231 template <typename Derived, typename Alloc>
parseUnresolvedType()3232 Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedType() {
3233 if (look() == 'T') {
3234 Node *TP = getDerived().parseTemplateParam();
3235 if (TP == nullptr)
3236 return nullptr;
3237 Subs.push_back(TP);
3238 return TP;
3239 }
3240 if (look() == 'D') {
3241 Node *DT = getDerived().parseDecltype();
3242 if (DT == nullptr)
3243 return nullptr;
3244 Subs.push_back(DT);
3245 return DT;
3246 }
3247 return getDerived().parseSubstitution();
3248 }
3249
3250 // <base-unresolved-name> ::= <simple-id> # unresolved name
3251 // extension ::= <operator-name> # unresolved operator-function-id
3252 // extension ::= <operator-name> <template-args> # unresolved operator template-id
3253 // ::= on <operator-name> # unresolved operator-function-id
3254 // ::= on <operator-name> <template-args> # unresolved operator template-id
3255 // ::= dn <destructor-name> # destructor or pseudo-destructor;
3256 // # e.g. ~X or ~X<N-1>
3257 template <typename Derived, typename Alloc>
parseBaseUnresolvedName()3258 Node *AbstractManglingParser<Derived, Alloc>::parseBaseUnresolvedName() {
3259 if (std::isdigit(look()))
3260 return getDerived().parseSimpleId();
3261
3262 if (consumeIf("dn"))
3263 return getDerived().parseDestructorName();
3264
3265 consumeIf("on");
3266
3267 Node *Oper = getDerived().parseOperatorName(/*NameState=*/nullptr);
3268 if (Oper == nullptr)
3269 return nullptr;
3270 if (look() == 'I') {
3271 Node *TA = getDerived().parseTemplateArgs();
3272 if (TA == nullptr)
3273 return nullptr;
3274 return make<NameWithTemplateArgs>(Oper, TA);
3275 }
3276 return Oper;
3277 }
3278
3279 // <unresolved-name>
3280 // extension ::= srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
3281 // ::= [gs] <base-unresolved-name> # x or (with "gs") ::x
3282 // ::= [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
3283 // # A::x, N::y, A<T>::z; "gs" means leading "::"
3284 // ::= sr <unresolved-type> <base-unresolved-name> # T::x / decltype(p)::x
3285 // extension ::= sr <unresolved-type> <template-args> <base-unresolved-name>
3286 // # T::N::x /decltype(p)::N::x
3287 // (ignored) ::= srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
3288 //
3289 // <unresolved-qualifier-level> ::= <simple-id>
3290 template <typename Derived, typename Alloc>
parseUnresolvedName()3291 Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedName() {
3292 Node *SoFar = nullptr;
3293
3294 // srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
3295 // srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
3296 if (consumeIf("srN")) {
3297 SoFar = getDerived().parseUnresolvedType();
3298 if (SoFar == nullptr)
3299 return nullptr;
3300
3301 if (look() == 'I') {
3302 Node *TA = getDerived().parseTemplateArgs();
3303 if (TA == nullptr)
3304 return nullptr;
3305 SoFar = make<NameWithTemplateArgs>(SoFar, TA);
3306 if (!SoFar)
3307 return nullptr;
3308 }
3309
3310 while (!consumeIf('E')) {
3311 Node *Qual = getDerived().parseSimpleId();
3312 if (Qual == nullptr)
3313 return nullptr;
3314 SoFar = make<QualifiedName>(SoFar, Qual);
3315 if (!SoFar)
3316 return nullptr;
3317 }
3318
3319 Node *Base = getDerived().parseBaseUnresolvedName();
3320 if (Base == nullptr)
3321 return nullptr;
3322 return make<QualifiedName>(SoFar, Base);
3323 }
3324
3325 bool Global = consumeIf("gs");
3326
3327 // [gs] <base-unresolved-name> # x or (with "gs") ::x
3328 if (!consumeIf("sr")) {
3329 SoFar = getDerived().parseBaseUnresolvedName();
3330 if (SoFar == nullptr)
3331 return nullptr;
3332 if (Global)
3333 SoFar = make<GlobalQualifiedName>(SoFar);
3334 return SoFar;
3335 }
3336
3337 // [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
3338 if (std::isdigit(look())) {
3339 do {
3340 Node *Qual = getDerived().parseSimpleId();
3341 if (Qual == nullptr)
3342 return nullptr;
3343 if (SoFar)
3344 SoFar = make<QualifiedName>(SoFar, Qual);
3345 else if (Global)
3346 SoFar = make<GlobalQualifiedName>(Qual);
3347 else
3348 SoFar = Qual;
3349 if (!SoFar)
3350 return nullptr;
3351 } while (!consumeIf('E'));
3352 }
3353 // sr <unresolved-type> <base-unresolved-name>
3354 // sr <unresolved-type> <template-args> <base-unresolved-name>
3355 else {
3356 SoFar = getDerived().parseUnresolvedType();
3357 if (SoFar == nullptr)
3358 return nullptr;
3359
3360 if (look() == 'I') {
3361 Node *TA = getDerived().parseTemplateArgs();
3362 if (TA == nullptr)
3363 return nullptr;
3364 SoFar = make<NameWithTemplateArgs>(SoFar, TA);
3365 if (!SoFar)
3366 return nullptr;
3367 }
3368 }
3369
3370 assert(SoFar != nullptr);
3371
3372 Node *Base = getDerived().parseBaseUnresolvedName();
3373 if (Base == nullptr)
3374 return nullptr;
3375 return make<QualifiedName>(SoFar, Base);
3376 }
3377
3378 // <abi-tags> ::= <abi-tag> [<abi-tags>]
3379 // <abi-tag> ::= B <source-name>
3380 template <typename Derived, typename Alloc>
parseAbiTags(Node * N)3381 Node *AbstractManglingParser<Derived, Alloc>::parseAbiTags(Node *N) {
3382 while (consumeIf('B')) {
3383 StringView SN = parseBareSourceName();
3384 if (SN.empty())
3385 return nullptr;
3386 N = make<AbiTagAttr>(N, SN);
3387 if (!N)
3388 return nullptr;
3389 }
3390 return N;
3391 }
3392
3393 // <number> ::= [n] <non-negative decimal integer>
3394 template <typename Alloc, typename Derived>
3395 StringView
parseNumber(bool AllowNegative)3396 AbstractManglingParser<Alloc, Derived>::parseNumber(bool AllowNegative) {
3397 const char *Tmp = First;
3398 if (AllowNegative)
3399 consumeIf('n');
3400 if (numLeft() == 0 || !std::isdigit(*First))
3401 return StringView();
3402 while (numLeft() != 0 && std::isdigit(*First))
3403 ++First;
3404 return StringView(Tmp, First);
3405 }
3406
3407 // <positive length number> ::= [0-9]*
3408 template <typename Alloc, typename Derived>
parsePositiveInteger(size_t * Out)3409 bool AbstractManglingParser<Alloc, Derived>::parsePositiveInteger(size_t *Out) {
3410 *Out = 0;
3411 if (look() < '0' || look() > '9')
3412 return true;
3413 while (look() >= '0' && look() <= '9') {
3414 *Out *= 10;
3415 *Out += static_cast<size_t>(consume() - '0');
3416 }
3417 return false;
3418 }
3419
3420 template <typename Alloc, typename Derived>
parseBareSourceName()3421 StringView AbstractManglingParser<Alloc, Derived>::parseBareSourceName() {
3422 size_t Int = 0;
3423 if (parsePositiveInteger(&Int) || numLeft() < Int)
3424 return StringView();
3425 StringView R(First, First + Int);
3426 First += Int;
3427 return R;
3428 }
3429
3430 // <function-type> ::= [<CV-qualifiers>] [<exception-spec>] [Dx] F [Y] <bare-function-type> [<ref-qualifier>] E
3431 //
3432 // <exception-spec> ::= Do # non-throwing exception-specification (e.g., noexcept, throw())
3433 // ::= DO <expression> E # computed (instantiation-dependent) noexcept
3434 // ::= Dw <type>+ E # dynamic exception specification with instantiation-dependent types
3435 //
3436 // <ref-qualifier> ::= R # & ref-qualifier
3437 // <ref-qualifier> ::= O # && ref-qualifier
3438 template <typename Derived, typename Alloc>
parseFunctionType()3439 Node *AbstractManglingParser<Derived, Alloc>::parseFunctionType() {
3440 Qualifiers CVQuals = parseCVQualifiers();
3441
3442 Node *ExceptionSpec = nullptr;
3443 if (consumeIf("Do")) {
3444 ExceptionSpec = make<NameType>("noexcept");
3445 if (!ExceptionSpec)
3446 return nullptr;
3447 } else if (consumeIf("DO")) {
3448 Node *E = getDerived().parseExpr();
3449 if (E == nullptr || !consumeIf('E'))
3450 return nullptr;
3451 ExceptionSpec = make<NoexceptSpec>(E);
3452 if (!ExceptionSpec)
3453 return nullptr;
3454 } else if (consumeIf("Dw")) {
3455 size_t SpecsBegin = Names.size();
3456 while (!consumeIf('E')) {
3457 Node *T = getDerived().parseType();
3458 if (T == nullptr)
3459 return nullptr;
3460 Names.push_back(T);
3461 }
3462 ExceptionSpec =
3463 make<DynamicExceptionSpec>(popTrailingNodeArray(SpecsBegin));
3464 if (!ExceptionSpec)
3465 return nullptr;
3466 }
3467
3468 consumeIf("Dx"); // transaction safe
3469
3470 if (!consumeIf('F'))
3471 return nullptr;
3472 consumeIf('Y'); // extern "C"
3473 Node *ReturnType = getDerived().parseType();
3474 if (ReturnType == nullptr)
3475 return nullptr;
3476
3477 FunctionRefQual ReferenceQualifier = FrefQualNone;
3478 size_t ParamsBegin = Names.size();
3479 while (true) {
3480 if (consumeIf('E'))
3481 break;
3482 if (consumeIf('v'))
3483 continue;
3484 if (consumeIf("RE")) {
3485 ReferenceQualifier = FrefQualLValue;
3486 break;
3487 }
3488 if (consumeIf("OE")) {
3489 ReferenceQualifier = FrefQualRValue;
3490 break;
3491 }
3492 Node *T = getDerived().parseType();
3493 if (T == nullptr)
3494 return nullptr;
3495 Names.push_back(T);
3496 }
3497
3498 NodeArray Params = popTrailingNodeArray(ParamsBegin);
3499 return make<FunctionType>(ReturnType, Params, CVQuals,
3500 ReferenceQualifier, ExceptionSpec);
3501 }
3502
3503 // extension:
3504 // <vector-type> ::= Dv <positive dimension number> _ <extended element type>
3505 // ::= Dv [<dimension expression>] _ <element type>
3506 // <extended element type> ::= <element type>
3507 // ::= p # AltiVec vector pixel
3508 template <typename Derived, typename Alloc>
parseVectorType()3509 Node *AbstractManglingParser<Derived, Alloc>::parseVectorType() {
3510 if (!consumeIf("Dv"))
3511 return nullptr;
3512 if (look() >= '1' && look() <= '9') {
3513 Node *DimensionNumber = make<NameType>(parseNumber());
3514 if (!DimensionNumber)
3515 return nullptr;
3516 if (!consumeIf('_'))
3517 return nullptr;
3518 if (consumeIf('p'))
3519 return make<PixelVectorType>(DimensionNumber);
3520 Node *ElemType = getDerived().parseType();
3521 if (ElemType == nullptr)
3522 return nullptr;
3523 return make<VectorType>(ElemType, DimensionNumber);
3524 }
3525
3526 if (!consumeIf('_')) {
3527 Node *DimExpr = getDerived().parseExpr();
3528 if (!DimExpr)
3529 return nullptr;
3530 if (!consumeIf('_'))
3531 return nullptr;
3532 Node *ElemType = getDerived().parseType();
3533 if (!ElemType)
3534 return nullptr;
3535 return make<VectorType>(ElemType, DimExpr);
3536 }
3537 Node *ElemType = getDerived().parseType();
3538 if (!ElemType)
3539 return nullptr;
3540 return make<VectorType>(ElemType, /*Dimension=*/nullptr);
3541 }
3542
3543 // <decltype> ::= Dt <expression> E # decltype of an id-expression or class member access (C++0x)
3544 // ::= DT <expression> E # decltype of an expression (C++0x)
3545 template <typename Derived, typename Alloc>
parseDecltype()3546 Node *AbstractManglingParser<Derived, Alloc>::parseDecltype() {
3547 if (!consumeIf('D'))
3548 return nullptr;
3549 if (!consumeIf('t') && !consumeIf('T'))
3550 return nullptr;
3551 Node *E = getDerived().parseExpr();
3552 if (E == nullptr)
3553 return nullptr;
3554 if (!consumeIf('E'))
3555 return nullptr;
3556 return make<EnclosingExpr>("decltype(", E, ")");
3557 }
3558
3559 // <array-type> ::= A <positive dimension number> _ <element type>
3560 // ::= A [<dimension expression>] _ <element type>
3561 template <typename Derived, typename Alloc>
parseArrayType()3562 Node *AbstractManglingParser<Derived, Alloc>::parseArrayType() {
3563 if (!consumeIf('A'))
3564 return nullptr;
3565
3566 Node *Dimension = nullptr;
3567
3568 if (std::isdigit(look())) {
3569 Dimension = make<NameType>(parseNumber());
3570 if (!Dimension)
3571 return nullptr;
3572 if (!consumeIf('_'))
3573 return nullptr;
3574 } else if (!consumeIf('_')) {
3575 Node *DimExpr = getDerived().parseExpr();
3576 if (DimExpr == nullptr)
3577 return nullptr;
3578 if (!consumeIf('_'))
3579 return nullptr;
3580 Dimension = DimExpr;
3581 }
3582
3583 Node *Ty = getDerived().parseType();
3584 if (Ty == nullptr)
3585 return nullptr;
3586 return make<ArrayType>(Ty, Dimension);
3587 }
3588
3589 // <pointer-to-member-type> ::= M <class type> <member type>
3590 template <typename Derived, typename Alloc>
parsePointerToMemberType()3591 Node *AbstractManglingParser<Derived, Alloc>::parsePointerToMemberType() {
3592 if (!consumeIf('M'))
3593 return nullptr;
3594 Node *ClassType = getDerived().parseType();
3595 if (ClassType == nullptr)
3596 return nullptr;
3597 Node *MemberType = getDerived().parseType();
3598 if (MemberType == nullptr)
3599 return nullptr;
3600 return make<PointerToMemberType>(ClassType, MemberType);
3601 }
3602
3603 // <class-enum-type> ::= <name> # non-dependent type name, dependent type name, or dependent typename-specifier
3604 // ::= Ts <name> # dependent elaborated type specifier using 'struct' or 'class'
3605 // ::= Tu <name> # dependent elaborated type specifier using 'union'
3606 // ::= Te <name> # dependent elaborated type specifier using 'enum'
3607 template <typename Derived, typename Alloc>
parseClassEnumType()3608 Node *AbstractManglingParser<Derived, Alloc>::parseClassEnumType() {
3609 StringView ElabSpef;
3610 if (consumeIf("Ts"))
3611 ElabSpef = "struct";
3612 else if (consumeIf("Tu"))
3613 ElabSpef = "union";
3614 else if (consumeIf("Te"))
3615 ElabSpef = "enum";
3616
3617 Node *Name = getDerived().parseName();
3618 if (Name == nullptr)
3619 return nullptr;
3620
3621 if (!ElabSpef.empty())
3622 return make<ElaboratedTypeSpefType>(ElabSpef, Name);
3623
3624 return Name;
3625 }
3626
3627 // <qualified-type> ::= <qualifiers> <type>
3628 // <qualifiers> ::= <extended-qualifier>* <CV-qualifiers>
3629 // <extended-qualifier> ::= U <source-name> [<template-args>] # vendor extended type qualifier
3630 template <typename Derived, typename Alloc>
parseQualifiedType()3631 Node *AbstractManglingParser<Derived, Alloc>::parseQualifiedType() {
3632 if (consumeIf('U')) {
3633 StringView Qual = parseBareSourceName();
3634 if (Qual.empty())
3635 return nullptr;
3636
3637 // FIXME parse the optional <template-args> here!
3638
3639 // extension ::= U <objc-name> <objc-type> # objc-type<identifier>
3640 if (Qual.startsWith("objcproto")) {
3641 StringView ProtoSourceName = Qual.dropFront(std::strlen("objcproto"));
3642 StringView Proto;
3643 {
3644 SwapAndRestore<const char *> SaveFirst(First, ProtoSourceName.begin()),
3645 SaveLast(Last, ProtoSourceName.end());
3646 Proto = parseBareSourceName();
3647 }
3648 if (Proto.empty())
3649 return nullptr;
3650 Node *Child = getDerived().parseQualifiedType();
3651 if (Child == nullptr)
3652 return nullptr;
3653 return make<ObjCProtoName>(Child, Proto);
3654 }
3655
3656 Node *Child = getDerived().parseQualifiedType();
3657 if (Child == nullptr)
3658 return nullptr;
3659 return make<VendorExtQualType>(Child, Qual);
3660 }
3661
3662 Qualifiers Quals = parseCVQualifiers();
3663 Node *Ty = getDerived().parseType();
3664 if (Ty == nullptr)
3665 return nullptr;
3666 if (Quals != QualNone)
3667 Ty = make<QualType>(Ty, Quals);
3668 return Ty;
3669 }
3670
3671 // <type> ::= <builtin-type>
3672 // ::= <qualified-type>
3673 // ::= <function-type>
3674 // ::= <class-enum-type>
3675 // ::= <array-type>
3676 // ::= <pointer-to-member-type>
3677 // ::= <template-param>
3678 // ::= <template-template-param> <template-args>
3679 // ::= <decltype>
3680 // ::= P <type> # pointer
3681 // ::= R <type> # l-value reference
3682 // ::= O <type> # r-value reference (C++11)
3683 // ::= C <type> # complex pair (C99)
3684 // ::= G <type> # imaginary (C99)
3685 // ::= <substitution> # See Compression below
3686 // extension ::= U <objc-name> <objc-type> # objc-type<identifier>
3687 // extension ::= <vector-type> # <vector-type> starts with Dv
3688 //
3689 // <objc-name> ::= <k0 number> objcproto <k1 number> <identifier> # k0 = 9 + <number of digits in k1> + k1
3690 // <objc-type> ::= <source-name> # PU<11+>objcproto 11objc_object<source-name> 11objc_object -> id<source-name>
3691 template <typename Derived, typename Alloc>
parseType()3692 Node *AbstractManglingParser<Derived, Alloc>::parseType() {
3693 Node *Result = nullptr;
3694
3695 switch (look()) {
3696 // ::= <qualified-type>
3697 case 'r':
3698 case 'V':
3699 case 'K': {
3700 unsigned AfterQuals = 0;
3701 if (look(AfterQuals) == 'r') ++AfterQuals;
3702 if (look(AfterQuals) == 'V') ++AfterQuals;
3703 if (look(AfterQuals) == 'K') ++AfterQuals;
3704
3705 if (look(AfterQuals) == 'F' ||
3706 (look(AfterQuals) == 'D' &&
3707 (look(AfterQuals + 1) == 'o' || look(AfterQuals + 1) == 'O' ||
3708 look(AfterQuals + 1) == 'w' || look(AfterQuals + 1) == 'x'))) {
3709 Result = getDerived().parseFunctionType();
3710 break;
3711 }
3712 DEMANGLE_FALLTHROUGH;
3713 }
3714 case 'U': {
3715 Result = getDerived().parseQualifiedType();
3716 break;
3717 }
3718 // <builtin-type> ::= v # void
3719 case 'v':
3720 ++First;
3721 return make<NameType>("void");
3722 // ::= w # wchar_t
3723 case 'w':
3724 ++First;
3725 return make<NameType>("wchar_t");
3726 // ::= b # bool
3727 case 'b':
3728 ++First;
3729 return make<NameType>("bool");
3730 // ::= c # char
3731 case 'c':
3732 ++First;
3733 return make<NameType>("char");
3734 // ::= a # signed char
3735 case 'a':
3736 ++First;
3737 return make<NameType>("signed char");
3738 // ::= h # unsigned char
3739 case 'h':
3740 ++First;
3741 return make<NameType>("unsigned char");
3742 // ::= s # short
3743 case 's':
3744 ++First;
3745 return make<NameType>("short");
3746 // ::= t # unsigned short
3747 case 't':
3748 ++First;
3749 return make<NameType>("unsigned short");
3750 // ::= i # int
3751 case 'i':
3752 ++First;
3753 return make<NameType>("int");
3754 // ::= j # unsigned int
3755 case 'j':
3756 ++First;
3757 return make<NameType>("unsigned int");
3758 // ::= l # long
3759 case 'l':
3760 ++First;
3761 return make<NameType>("long");
3762 // ::= m # unsigned long
3763 case 'm':
3764 ++First;
3765 return make<NameType>("unsigned long");
3766 // ::= x # long long, __int64
3767 case 'x':
3768 ++First;
3769 return make<NameType>("long long");
3770 // ::= y # unsigned long long, __int64
3771 case 'y':
3772 ++First;
3773 return make<NameType>("unsigned long long");
3774 // ::= n # __int128
3775 case 'n':
3776 ++First;
3777 return make<NameType>("__int128");
3778 // ::= o # unsigned __int128
3779 case 'o':
3780 ++First;
3781 return make<NameType>("unsigned __int128");
3782 // ::= f # float
3783 case 'f':
3784 ++First;
3785 return make<NameType>("float");
3786 // ::= d # double
3787 case 'd':
3788 ++First;
3789 return make<NameType>("double");
3790 // ::= e # long double, __float80
3791 case 'e':
3792 ++First;
3793 return make<NameType>("long double");
3794 // ::= g # __float128
3795 case 'g':
3796 ++First;
3797 return make<NameType>("__float128");
3798 // ::= z # ellipsis
3799 case 'z':
3800 ++First;
3801 return make<NameType>("...");
3802
3803 // <builtin-type> ::= u <source-name> # vendor extended type
3804 case 'u': {
3805 ++First;
3806 StringView Res = parseBareSourceName();
3807 if (Res.empty())
3808 return nullptr;
3809 // Typically, <builtin-type>s are not considered substitution candidates,
3810 // but the exception to that exception is vendor extended types (Itanium C++
3811 // ABI 5.9.1).
3812 Result = make<NameType>(Res);
3813 break;
3814 }
3815 case 'D':
3816 switch (look(1)) {
3817 // ::= Dd # IEEE 754r decimal floating point (64 bits)
3818 case 'd':
3819 First += 2;
3820 return make<NameType>("decimal64");
3821 // ::= De # IEEE 754r decimal floating point (128 bits)
3822 case 'e':
3823 First += 2;
3824 return make<NameType>("decimal128");
3825 // ::= Df # IEEE 754r decimal floating point (32 bits)
3826 case 'f':
3827 First += 2;
3828 return make<NameType>("decimal32");
3829 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
3830 case 'h':
3831 First += 2;
3832 return make<NameType>("decimal16");
3833 // ::= Di # char32_t
3834 case 'i':
3835 First += 2;
3836 return make<NameType>("char32_t");
3837 // ::= Ds # char16_t
3838 case 's':
3839 First += 2;
3840 return make<NameType>("char16_t");
3841 // ::= Du # char8_t (C++2a, not yet in the Itanium spec)
3842 case 'u':
3843 First += 2;
3844 return make<NameType>("char8_t");
3845 // ::= Da # auto (in dependent new-expressions)
3846 case 'a':
3847 First += 2;
3848 return make<NameType>("auto");
3849 // ::= Dc # decltype(auto)
3850 case 'c':
3851 First += 2;
3852 return make<NameType>("decltype(auto)");
3853 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
3854 case 'n':
3855 First += 2;
3856 return make<NameType>("std::nullptr_t");
3857
3858 // ::= <decltype>
3859 case 't':
3860 case 'T': {
3861 Result = getDerived().parseDecltype();
3862 break;
3863 }
3864 // extension ::= <vector-type> # <vector-type> starts with Dv
3865 case 'v': {
3866 Result = getDerived().parseVectorType();
3867 break;
3868 }
3869 // ::= Dp <type> # pack expansion (C++0x)
3870 case 'p': {
3871 First += 2;
3872 Node *Child = getDerived().parseType();
3873 if (!Child)
3874 return nullptr;
3875 Result = make<ParameterPackExpansion>(Child);
3876 break;
3877 }
3878 // Exception specifier on a function type.
3879 case 'o':
3880 case 'O':
3881 case 'w':
3882 // Transaction safe function type.
3883 case 'x':
3884 Result = getDerived().parseFunctionType();
3885 break;
3886 }
3887 break;
3888 // ::= <function-type>
3889 case 'F': {
3890 Result = getDerived().parseFunctionType();
3891 break;
3892 }
3893 // ::= <array-type>
3894 case 'A': {
3895 Result = getDerived().parseArrayType();
3896 break;
3897 }
3898 // ::= <pointer-to-member-type>
3899 case 'M': {
3900 Result = getDerived().parsePointerToMemberType();
3901 break;
3902 }
3903 // ::= <template-param>
3904 case 'T': {
3905 // This could be an elaborate type specifier on a <class-enum-type>.
3906 if (look(1) == 's' || look(1) == 'u' || look(1) == 'e') {
3907 Result = getDerived().parseClassEnumType();
3908 break;
3909 }
3910
3911 Result = getDerived().parseTemplateParam();
3912 if (Result == nullptr)
3913 return nullptr;
3914
3915 // Result could be either of:
3916 // <type> ::= <template-param>
3917 // <type> ::= <template-template-param> <template-args>
3918 //
3919 // <template-template-param> ::= <template-param>
3920 // ::= <substitution>
3921 //
3922 // If this is followed by some <template-args>, and we're permitted to
3923 // parse them, take the second production.
3924
3925 if (TryToParseTemplateArgs && look() == 'I') {
3926 Node *TA = getDerived().parseTemplateArgs();
3927 if (TA == nullptr)
3928 return nullptr;
3929 Result = make<NameWithTemplateArgs>(Result, TA);
3930 }
3931 break;
3932 }
3933 // ::= P <type> # pointer
3934 case 'P': {
3935 ++First;
3936 Node *Ptr = getDerived().parseType();
3937 if (Ptr == nullptr)
3938 return nullptr;
3939 Result = make<PointerType>(Ptr);
3940 break;
3941 }
3942 // ::= R <type> # l-value reference
3943 case 'R': {
3944 ++First;
3945 Node *Ref = getDerived().parseType();
3946 if (Ref == nullptr)
3947 return nullptr;
3948 Result = make<ReferenceType>(Ref, ReferenceKind::LValue);
3949 break;
3950 }
3951 // ::= O <type> # r-value reference (C++11)
3952 case 'O': {
3953 ++First;
3954 Node *Ref = getDerived().parseType();
3955 if (Ref == nullptr)
3956 return nullptr;
3957 Result = make<ReferenceType>(Ref, ReferenceKind::RValue);
3958 break;
3959 }
3960 // ::= C <type> # complex pair (C99)
3961 case 'C': {
3962 ++First;
3963 Node *P = getDerived().parseType();
3964 if (P == nullptr)
3965 return nullptr;
3966 Result = make<PostfixQualifiedType>(P, " complex");
3967 break;
3968 }
3969 // ::= G <type> # imaginary (C99)
3970 case 'G': {
3971 ++First;
3972 Node *P = getDerived().parseType();
3973 if (P == nullptr)
3974 return P;
3975 Result = make<PostfixQualifiedType>(P, " imaginary");
3976 break;
3977 }
3978 // ::= <substitution> # See Compression below
3979 case 'S': {
3980 if (look(1) && look(1) != 't') {
3981 Node *Sub = getDerived().parseSubstitution();
3982 if (Sub == nullptr)
3983 return nullptr;
3984
3985 // Sub could be either of:
3986 // <type> ::= <substitution>
3987 // <type> ::= <template-template-param> <template-args>
3988 //
3989 // <template-template-param> ::= <template-param>
3990 // ::= <substitution>
3991 //
3992 // If this is followed by some <template-args>, and we're permitted to
3993 // parse them, take the second production.
3994
3995 if (TryToParseTemplateArgs && look() == 'I') {
3996 Node *TA = getDerived().parseTemplateArgs();
3997 if (TA == nullptr)
3998 return nullptr;
3999 Result = make<NameWithTemplateArgs>(Sub, TA);
4000 break;
4001 }
4002
4003 // If all we parsed was a substitution, don't re-insert into the
4004 // substitution table.
4005 return Sub;
4006 }
4007 DEMANGLE_FALLTHROUGH;
4008 }
4009 // ::= <class-enum-type>
4010 default: {
4011 Result = getDerived().parseClassEnumType();
4012 break;
4013 }
4014 }
4015
4016 // If we parsed a type, insert it into the substitution table. Note that all
4017 // <builtin-type>s and <substitution>s have already bailed out, because they
4018 // don't get substitutions.
4019 if (Result != nullptr)
4020 Subs.push_back(Result);
4021 return Result;
4022 }
4023
4024 template <typename Derived, typename Alloc>
parsePrefixExpr(StringView Kind)4025 Node *AbstractManglingParser<Derived, Alloc>::parsePrefixExpr(StringView Kind) {
4026 Node *E = getDerived().parseExpr();
4027 if (E == nullptr)
4028 return nullptr;
4029 return make<PrefixExpr>(Kind, E);
4030 }
4031
4032 template <typename Derived, typename Alloc>
parseBinaryExpr(StringView Kind)4033 Node *AbstractManglingParser<Derived, Alloc>::parseBinaryExpr(StringView Kind) {
4034 Node *LHS = getDerived().parseExpr();
4035 if (LHS == nullptr)
4036 return nullptr;
4037 Node *RHS = getDerived().parseExpr();
4038 if (RHS == nullptr)
4039 return nullptr;
4040 return make<BinaryExpr>(LHS, Kind, RHS);
4041 }
4042
4043 template <typename Derived, typename Alloc>
4044 Node *
parseIntegerLiteral(StringView Lit)4045 AbstractManglingParser<Derived, Alloc>::parseIntegerLiteral(StringView Lit) {
4046 StringView Tmp = parseNumber(true);
4047 if (!Tmp.empty() && consumeIf('E'))
4048 return make<IntegerLiteral>(Lit, Tmp);
4049 return nullptr;
4050 }
4051
4052 // <CV-Qualifiers> ::= [r] [V] [K]
4053 template <typename Alloc, typename Derived>
parseCVQualifiers()4054 Qualifiers AbstractManglingParser<Alloc, Derived>::parseCVQualifiers() {
4055 Qualifiers CVR = QualNone;
4056 if (consumeIf('r'))
4057 CVR |= QualRestrict;
4058 if (consumeIf('V'))
4059 CVR |= QualVolatile;
4060 if (consumeIf('K'))
4061 CVR |= QualConst;
4062 return CVR;
4063 }
4064
4065 // <function-param> ::= fp <top-level CV-Qualifiers> _ # L == 0, first parameter
4066 // ::= fp <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L == 0, second and later parameters
4067 // ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> _ # L > 0, first parameter
4068 // ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L > 0, second and later parameters
4069 template <typename Derived, typename Alloc>
parseFunctionParam()4070 Node *AbstractManglingParser<Derived, Alloc>::parseFunctionParam() {
4071 if (consumeIf("fp")) {
4072 parseCVQualifiers();
4073 StringView Num = parseNumber();
4074 if (!consumeIf('_'))
4075 return nullptr;
4076 return make<FunctionParam>(Num);
4077 }
4078 if (consumeIf("fL")) {
4079 if (parseNumber().empty())
4080 return nullptr;
4081 if (!consumeIf('p'))
4082 return nullptr;
4083 parseCVQualifiers();
4084 StringView Num = parseNumber();
4085 if (!consumeIf('_'))
4086 return nullptr;
4087 return make<FunctionParam>(Num);
4088 }
4089 return nullptr;
4090 }
4091
4092 // [gs] nw <expression>* _ <type> E # new (expr-list) type
4093 // [gs] nw <expression>* _ <type> <initializer> # new (expr-list) type (init)
4094 // [gs] na <expression>* _ <type> E # new[] (expr-list) type
4095 // [gs] na <expression>* _ <type> <initializer> # new[] (expr-list) type (init)
4096 // <initializer> ::= pi <expression>* E # parenthesized initialization
4097 template <typename Derived, typename Alloc>
parseNewExpr()4098 Node *AbstractManglingParser<Derived, Alloc>::parseNewExpr() {
4099 bool Global = consumeIf("gs");
4100 bool IsArray = look(1) == 'a';
4101 if (!consumeIf("nw") && !consumeIf("na"))
4102 return nullptr;
4103 size_t Exprs = Names.size();
4104 while (!consumeIf('_')) {
4105 Node *Ex = getDerived().parseExpr();
4106 if (Ex == nullptr)
4107 return nullptr;
4108 Names.push_back(Ex);
4109 }
4110 NodeArray ExprList = popTrailingNodeArray(Exprs);
4111 Node *Ty = getDerived().parseType();
4112 if (Ty == nullptr)
4113 return Ty;
4114 if (consumeIf("pi")) {
4115 size_t InitsBegin = Names.size();
4116 while (!consumeIf('E')) {
4117 Node *Init = getDerived().parseExpr();
4118 if (Init == nullptr)
4119 return Init;
4120 Names.push_back(Init);
4121 }
4122 NodeArray Inits = popTrailingNodeArray(InitsBegin);
4123 return make<NewExpr>(ExprList, Ty, Inits, Global, IsArray);
4124 } else if (!consumeIf('E'))
4125 return nullptr;
4126 return make<NewExpr>(ExprList, Ty, NodeArray(), Global, IsArray);
4127 }
4128
4129 // cv <type> <expression> # conversion with one argument
4130 // cv <type> _ <expression>* E # conversion with a different number of arguments
4131 template <typename Derived, typename Alloc>
parseConversionExpr()4132 Node *AbstractManglingParser<Derived, Alloc>::parseConversionExpr() {
4133 if (!consumeIf("cv"))
4134 return nullptr;
4135 Node *Ty;
4136 {
4137 SwapAndRestore<bool> SaveTemp(TryToParseTemplateArgs, false);
4138 Ty = getDerived().parseType();
4139 }
4140
4141 if (Ty == nullptr)
4142 return nullptr;
4143
4144 if (consumeIf('_')) {
4145 size_t ExprsBegin = Names.size();
4146 while (!consumeIf('E')) {
4147 Node *E = getDerived().parseExpr();
4148 if (E == nullptr)
4149 return E;
4150 Names.push_back(E);
4151 }
4152 NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
4153 return make<ConversionExpr>(Ty, Exprs);
4154 }
4155
4156 Node *E[1] = {getDerived().parseExpr()};
4157 if (E[0] == nullptr)
4158 return nullptr;
4159 return make<ConversionExpr>(Ty, makeNodeArray(E, E + 1));
4160 }
4161
4162 // <expr-primary> ::= L <type> <value number> E # integer literal
4163 // ::= L <type> <value float> E # floating literal
4164 // ::= L <string type> E # string literal
4165 // ::= L <nullptr type> E # nullptr literal (i.e., "LDnE")
4166 // ::= L <lambda type> E # lambda expression
4167 // FIXME: ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C 2000)
4168 // ::= L <mangled-name> E # external name
4169 template <typename Derived, typename Alloc>
parseExprPrimary()4170 Node *AbstractManglingParser<Derived, Alloc>::parseExprPrimary() {
4171 if (!consumeIf('L'))
4172 return nullptr;
4173 switch (look()) {
4174 case 'w':
4175 ++First;
4176 return getDerived().parseIntegerLiteral("wchar_t");
4177 case 'b':
4178 if (consumeIf("b0E"))
4179 return make<BoolExpr>(0);
4180 if (consumeIf("b1E"))
4181 return make<BoolExpr>(1);
4182 return nullptr;
4183 case 'c':
4184 ++First;
4185 return getDerived().parseIntegerLiteral("char");
4186 case 'a':
4187 ++First;
4188 return getDerived().parseIntegerLiteral("signed char");
4189 case 'h':
4190 ++First;
4191 return getDerived().parseIntegerLiteral("unsigned char");
4192 case 's':
4193 ++First;
4194 return getDerived().parseIntegerLiteral("short");
4195 case 't':
4196 ++First;
4197 return getDerived().parseIntegerLiteral("unsigned short");
4198 case 'i':
4199 ++First;
4200 return getDerived().parseIntegerLiteral("");
4201 case 'j':
4202 ++First;
4203 return getDerived().parseIntegerLiteral("u");
4204 case 'l':
4205 ++First;
4206 return getDerived().parseIntegerLiteral("l");
4207 case 'm':
4208 ++First;
4209 return getDerived().parseIntegerLiteral("ul");
4210 case 'x':
4211 ++First;
4212 return getDerived().parseIntegerLiteral("ll");
4213 case 'y':
4214 ++First;
4215 return getDerived().parseIntegerLiteral("ull");
4216 case 'n':
4217 ++First;
4218 return getDerived().parseIntegerLiteral("__int128");
4219 case 'o':
4220 ++First;
4221 return getDerived().parseIntegerLiteral("unsigned __int128");
4222 case 'f':
4223 ++First;
4224 return getDerived().template parseFloatingLiteral<float>();
4225 case 'd':
4226 ++First;
4227 return getDerived().template parseFloatingLiteral<double>();
4228 case 'e':
4229 ++First;
4230 return getDerived().template parseFloatingLiteral<long double>();
4231 case '_':
4232 if (consumeIf("_Z")) {
4233 Node *R = getDerived().parseEncoding();
4234 if (R != nullptr && consumeIf('E'))
4235 return R;
4236 }
4237 return nullptr;
4238 case 'A': {
4239 Node *T = getDerived().parseType();
4240 if (T == nullptr)
4241 return nullptr;
4242 // FIXME: We need to include the string contents in the mangling.
4243 if (consumeIf('E'))
4244 return make<StringLiteral>(T);
4245 return nullptr;
4246 }
4247 case 'D':
4248 if (consumeIf("DnE"))
4249 return make<NameType>("nullptr");
4250 return nullptr;
4251 case 'T':
4252 // Invalid mangled name per
4253 // http://sourcerytools.com/pipermail/cxx-abi-dev/2011-August/002422.html
4254 return nullptr;
4255 case 'U': {
4256 // FIXME: Should we support LUb... for block literals?
4257 if (look(1) != 'l')
4258 return nullptr;
4259 Node *T = parseUnnamedTypeName(nullptr);
4260 if (!T || !consumeIf('E'))
4261 return nullptr;
4262 return make<LambdaExpr>(T);
4263 }
4264 default: {
4265 // might be named type
4266 Node *T = getDerived().parseType();
4267 if (T == nullptr)
4268 return nullptr;
4269 StringView N = parseNumber();
4270 if (N.empty())
4271 return nullptr;
4272 if (!consumeIf('E'))
4273 return nullptr;
4274 return make<IntegerCastExpr>(T, N);
4275 }
4276 }
4277 }
4278
4279 // <braced-expression> ::= <expression>
4280 // ::= di <field source-name> <braced-expression> # .name = expr
4281 // ::= dx <index expression> <braced-expression> # [expr] = expr
4282 // ::= dX <range begin expression> <range end expression> <braced-expression>
4283 template <typename Derived, typename Alloc>
parseBracedExpr()4284 Node *AbstractManglingParser<Derived, Alloc>::parseBracedExpr() {
4285 if (look() == 'd') {
4286 switch (look(1)) {
4287 case 'i': {
4288 First += 2;
4289 Node *Field = getDerived().parseSourceName(/*NameState=*/nullptr);
4290 if (Field == nullptr)
4291 return nullptr;
4292 Node *Init = getDerived().parseBracedExpr();
4293 if (Init == nullptr)
4294 return nullptr;
4295 return make<BracedExpr>(Field, Init, /*isArray=*/false);
4296 }
4297 case 'x': {
4298 First += 2;
4299 Node *Index = getDerived().parseExpr();
4300 if (Index == nullptr)
4301 return nullptr;
4302 Node *Init = getDerived().parseBracedExpr();
4303 if (Init == nullptr)
4304 return nullptr;
4305 return make<BracedExpr>(Index, Init, /*isArray=*/true);
4306 }
4307 case 'X': {
4308 First += 2;
4309 Node *RangeBegin = getDerived().parseExpr();
4310 if (RangeBegin == nullptr)
4311 return nullptr;
4312 Node *RangeEnd = getDerived().parseExpr();
4313 if (RangeEnd == nullptr)
4314 return nullptr;
4315 Node *Init = getDerived().parseBracedExpr();
4316 if (Init == nullptr)
4317 return nullptr;
4318 return make<BracedRangeExpr>(RangeBegin, RangeEnd, Init);
4319 }
4320 }
4321 }
4322 return getDerived().parseExpr();
4323 }
4324
4325 // (not yet in the spec)
4326 // <fold-expr> ::= fL <binary-operator-name> <expression> <expression>
4327 // ::= fR <binary-operator-name> <expression> <expression>
4328 // ::= fl <binary-operator-name> <expression>
4329 // ::= fr <binary-operator-name> <expression>
4330 template <typename Derived, typename Alloc>
parseFoldExpr()4331 Node *AbstractManglingParser<Derived, Alloc>::parseFoldExpr() {
4332 if (!consumeIf('f'))
4333 return nullptr;
4334
4335 char FoldKind = look();
4336 bool IsLeftFold, HasInitializer;
4337 HasInitializer = FoldKind == 'L' || FoldKind == 'R';
4338 if (FoldKind == 'l' || FoldKind == 'L')
4339 IsLeftFold = true;
4340 else if (FoldKind == 'r' || FoldKind == 'R')
4341 IsLeftFold = false;
4342 else
4343 return nullptr;
4344 ++First;
4345
4346 // FIXME: This map is duplicated in parseOperatorName and parseExpr.
4347 StringView OperatorName;
4348 if (consumeIf("aa")) OperatorName = "&&";
4349 else if (consumeIf("an")) OperatorName = "&";
4350 else if (consumeIf("aN")) OperatorName = "&=";
4351 else if (consumeIf("aS")) OperatorName = "=";
4352 else if (consumeIf("cm")) OperatorName = ",";
4353 else if (consumeIf("ds")) OperatorName = ".*";
4354 else if (consumeIf("dv")) OperatorName = "/";
4355 else if (consumeIf("dV")) OperatorName = "/=";
4356 else if (consumeIf("eo")) OperatorName = "^";
4357 else if (consumeIf("eO")) OperatorName = "^=";
4358 else if (consumeIf("eq")) OperatorName = "==";
4359 else if (consumeIf("ge")) OperatorName = ">=";
4360 else if (consumeIf("gt")) OperatorName = ">";
4361 else if (consumeIf("le")) OperatorName = "<=";
4362 else if (consumeIf("ls")) OperatorName = "<<";
4363 else if (consumeIf("lS")) OperatorName = "<<=";
4364 else if (consumeIf("lt")) OperatorName = "<";
4365 else if (consumeIf("mi")) OperatorName = "-";
4366 else if (consumeIf("mI")) OperatorName = "-=";
4367 else if (consumeIf("ml")) OperatorName = "*";
4368 else if (consumeIf("mL")) OperatorName = "*=";
4369 else if (consumeIf("ne")) OperatorName = "!=";
4370 else if (consumeIf("oo")) OperatorName = "||";
4371 else if (consumeIf("or")) OperatorName = "|";
4372 else if (consumeIf("oR")) OperatorName = "|=";
4373 else if (consumeIf("pl")) OperatorName = "+";
4374 else if (consumeIf("pL")) OperatorName = "+=";
4375 else if (consumeIf("rm")) OperatorName = "%";
4376 else if (consumeIf("rM")) OperatorName = "%=";
4377 else if (consumeIf("rs")) OperatorName = ">>";
4378 else if (consumeIf("rS")) OperatorName = ">>=";
4379 else return nullptr;
4380
4381 Node *Pack = getDerived().parseExpr(), *Init = nullptr;
4382 if (Pack == nullptr)
4383 return nullptr;
4384 if (HasInitializer) {
4385 Init = getDerived().parseExpr();
4386 if (Init == nullptr)
4387 return nullptr;
4388 }
4389
4390 if (IsLeftFold && Init)
4391 std::swap(Pack, Init);
4392
4393 return make<FoldExpr>(IsLeftFold, OperatorName, Pack, Init);
4394 }
4395
4396 // <expression> ::= <unary operator-name> <expression>
4397 // ::= <binary operator-name> <expression> <expression>
4398 // ::= <ternary operator-name> <expression> <expression> <expression>
4399 // ::= cl <expression>+ E # call
4400 // ::= cv <type> <expression> # conversion with one argument
4401 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4402 // ::= [gs] nw <expression>* _ <type> E # new (expr-list) type
4403 // ::= [gs] nw <expression>* _ <type> <initializer> # new (expr-list) type (init)
4404 // ::= [gs] na <expression>* _ <type> E # new[] (expr-list) type
4405 // ::= [gs] na <expression>* _ <type> <initializer> # new[] (expr-list) type (init)
4406 // ::= [gs] dl <expression> # delete expression
4407 // ::= [gs] da <expression> # delete[] expression
4408 // ::= pp_ <expression> # prefix ++
4409 // ::= mm_ <expression> # prefix --
4410 // ::= ti <type> # typeid (type)
4411 // ::= te <expression> # typeid (expression)
4412 // ::= dc <type> <expression> # dynamic_cast<type> (expression)
4413 // ::= sc <type> <expression> # static_cast<type> (expression)
4414 // ::= cc <type> <expression> # const_cast<type> (expression)
4415 // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
4416 // ::= st <type> # sizeof (a type)
4417 // ::= sz <expression> # sizeof (an expression)
4418 // ::= at <type> # alignof (a type)
4419 // ::= az <expression> # alignof (an expression)
4420 // ::= nx <expression> # noexcept (expression)
4421 // ::= <template-param>
4422 // ::= <function-param>
4423 // ::= dt <expression> <unresolved-name> # expr.name
4424 // ::= pt <expression> <unresolved-name> # expr->name
4425 // ::= ds <expression> <expression> # expr.*expr
4426 // ::= sZ <template-param> # size of a parameter pack
4427 // ::= sZ <function-param> # size of a function parameter pack
4428 // ::= sP <template-arg>* E # sizeof...(T), size of a captured template parameter pack from an alias template
4429 // ::= sp <expression> # pack expansion
4430 // ::= tw <expression> # throw expression
4431 // ::= tr # throw with no operand (rethrow)
4432 // ::= <unresolved-name> # f(p), N::f(p), ::f(p),
4433 // # freestanding dependent name (e.g., T::x),
4434 // # objectless nonstatic member reference
4435 // ::= fL <binary-operator-name> <expression> <expression>
4436 // ::= fR <binary-operator-name> <expression> <expression>
4437 // ::= fl <binary-operator-name> <expression>
4438 // ::= fr <binary-operator-name> <expression>
4439 // ::= <expr-primary>
4440 template <typename Derived, typename Alloc>
parseExpr()4441 Node *AbstractManglingParser<Derived, Alloc>::parseExpr() {
4442 bool Global = consumeIf("gs");
4443 if (numLeft() < 2)
4444 return nullptr;
4445
4446 switch (*First) {
4447 case 'L':
4448 return getDerived().parseExprPrimary();
4449 case 'T':
4450 return getDerived().parseTemplateParam();
4451 case 'f': {
4452 // Disambiguate a fold expression from a <function-param>.
4453 if (look(1) == 'p' || (look(1) == 'L' && std::isdigit(look(2))))
4454 return getDerived().parseFunctionParam();
4455 return getDerived().parseFoldExpr();
4456 }
4457 case 'a':
4458 switch (First[1]) {
4459 case 'a':
4460 First += 2;
4461 return getDerived().parseBinaryExpr("&&");
4462 case 'd':
4463 First += 2;
4464 return getDerived().parsePrefixExpr("&");
4465 case 'n':
4466 First += 2;
4467 return getDerived().parseBinaryExpr("&");
4468 case 'N':
4469 First += 2;
4470 return getDerived().parseBinaryExpr("&=");
4471 case 'S':
4472 First += 2;
4473 return getDerived().parseBinaryExpr("=");
4474 case 't': {
4475 First += 2;
4476 Node *Ty = getDerived().parseType();
4477 if (Ty == nullptr)
4478 return nullptr;
4479 return make<EnclosingExpr>("alignof (", Ty, ")");
4480 }
4481 case 'z': {
4482 First += 2;
4483 Node *Ty = getDerived().parseExpr();
4484 if (Ty == nullptr)
4485 return nullptr;
4486 return make<EnclosingExpr>("alignof (", Ty, ")");
4487 }
4488 }
4489 return nullptr;
4490 case 'c':
4491 switch (First[1]) {
4492 // cc <type> <expression> # const_cast<type>(expression)
4493 case 'c': {
4494 First += 2;
4495 Node *Ty = getDerived().parseType();
4496 if (Ty == nullptr)
4497 return Ty;
4498 Node *Ex = getDerived().parseExpr();
4499 if (Ex == nullptr)
4500 return Ex;
4501 return make<CastExpr>("const_cast", Ty, Ex);
4502 }
4503 // cl <expression>+ E # call
4504 case 'l': {
4505 First += 2;
4506 Node *Callee = getDerived().parseExpr();
4507 if (Callee == nullptr)
4508 return Callee;
4509 size_t ExprsBegin = Names.size();
4510 while (!consumeIf('E')) {
4511 Node *E = getDerived().parseExpr();
4512 if (E == nullptr)
4513 return E;
4514 Names.push_back(E);
4515 }
4516 return make<CallExpr>(Callee, popTrailingNodeArray(ExprsBegin));
4517 }
4518 case 'm':
4519 First += 2;
4520 return getDerived().parseBinaryExpr(",");
4521 case 'o':
4522 First += 2;
4523 return getDerived().parsePrefixExpr("~");
4524 case 'v':
4525 return getDerived().parseConversionExpr();
4526 }
4527 return nullptr;
4528 case 'd':
4529 switch (First[1]) {
4530 case 'a': {
4531 First += 2;
4532 Node *Ex = getDerived().parseExpr();
4533 if (Ex == nullptr)
4534 return Ex;
4535 return make<DeleteExpr>(Ex, Global, /*is_array=*/true);
4536 }
4537 case 'c': {
4538 First += 2;
4539 Node *T = getDerived().parseType();
4540 if (T == nullptr)
4541 return T;
4542 Node *Ex = getDerived().parseExpr();
4543 if (Ex == nullptr)
4544 return Ex;
4545 return make<CastExpr>("dynamic_cast", T, Ex);
4546 }
4547 case 'e':
4548 First += 2;
4549 return getDerived().parsePrefixExpr("*");
4550 case 'l': {
4551 First += 2;
4552 Node *E = getDerived().parseExpr();
4553 if (E == nullptr)
4554 return E;
4555 return make<DeleteExpr>(E, Global, /*is_array=*/false);
4556 }
4557 case 'n':
4558 return getDerived().parseUnresolvedName();
4559 case 's': {
4560 First += 2;
4561 Node *LHS = getDerived().parseExpr();
4562 if (LHS == nullptr)
4563 return nullptr;
4564 Node *RHS = getDerived().parseExpr();
4565 if (RHS == nullptr)
4566 return nullptr;
4567 return make<MemberExpr>(LHS, ".*", RHS);
4568 }
4569 case 't': {
4570 First += 2;
4571 Node *LHS = getDerived().parseExpr();
4572 if (LHS == nullptr)
4573 return LHS;
4574 Node *RHS = getDerived().parseExpr();
4575 if (RHS == nullptr)
4576 return nullptr;
4577 return make<MemberExpr>(LHS, ".", RHS);
4578 }
4579 case 'v':
4580 First += 2;
4581 return getDerived().parseBinaryExpr("/");
4582 case 'V':
4583 First += 2;
4584 return getDerived().parseBinaryExpr("/=");
4585 }
4586 return nullptr;
4587 case 'e':
4588 switch (First[1]) {
4589 case 'o':
4590 First += 2;
4591 return getDerived().parseBinaryExpr("^");
4592 case 'O':
4593 First += 2;
4594 return getDerived().parseBinaryExpr("^=");
4595 case 'q':
4596 First += 2;
4597 return getDerived().parseBinaryExpr("==");
4598 }
4599 return nullptr;
4600 case 'g':
4601 switch (First[1]) {
4602 case 'e':
4603 First += 2;
4604 return getDerived().parseBinaryExpr(">=");
4605 case 't':
4606 First += 2;
4607 return getDerived().parseBinaryExpr(">");
4608 }
4609 return nullptr;
4610 case 'i':
4611 switch (First[1]) {
4612 case 'x': {
4613 First += 2;
4614 Node *Base = getDerived().parseExpr();
4615 if (Base == nullptr)
4616 return nullptr;
4617 Node *Index = getDerived().parseExpr();
4618 if (Index == nullptr)
4619 return Index;
4620 return make<ArraySubscriptExpr>(Base, Index);
4621 }
4622 case 'l': {
4623 First += 2;
4624 size_t InitsBegin = Names.size();
4625 while (!consumeIf('E')) {
4626 Node *E = getDerived().parseBracedExpr();
4627 if (E == nullptr)
4628 return nullptr;
4629 Names.push_back(E);
4630 }
4631 return make<InitListExpr>(nullptr, popTrailingNodeArray(InitsBegin));
4632 }
4633 }
4634 return nullptr;
4635 case 'l':
4636 switch (First[1]) {
4637 case 'e':
4638 First += 2;
4639 return getDerived().parseBinaryExpr("<=");
4640 case 's':
4641 First += 2;
4642 return getDerived().parseBinaryExpr("<<");
4643 case 'S':
4644 First += 2;
4645 return getDerived().parseBinaryExpr("<<=");
4646 case 't':
4647 First += 2;
4648 return getDerived().parseBinaryExpr("<");
4649 }
4650 return nullptr;
4651 case 'm':
4652 switch (First[1]) {
4653 case 'i':
4654 First += 2;
4655 return getDerived().parseBinaryExpr("-");
4656 case 'I':
4657 First += 2;
4658 return getDerived().parseBinaryExpr("-=");
4659 case 'l':
4660 First += 2;
4661 return getDerived().parseBinaryExpr("*");
4662 case 'L':
4663 First += 2;
4664 return getDerived().parseBinaryExpr("*=");
4665 case 'm':
4666 First += 2;
4667 if (consumeIf('_'))
4668 return getDerived().parsePrefixExpr("--");
4669 Node *Ex = getDerived().parseExpr();
4670 if (Ex == nullptr)
4671 return nullptr;
4672 return make<PostfixExpr>(Ex, "--");
4673 }
4674 return nullptr;
4675 case 'n':
4676 switch (First[1]) {
4677 case 'a':
4678 case 'w':
4679 return getDerived().parseNewExpr();
4680 case 'e':
4681 First += 2;
4682 return getDerived().parseBinaryExpr("!=");
4683 case 'g':
4684 First += 2;
4685 return getDerived().parsePrefixExpr("-");
4686 case 't':
4687 First += 2;
4688 return getDerived().parsePrefixExpr("!");
4689 case 'x':
4690 First += 2;
4691 Node *Ex = getDerived().parseExpr();
4692 if (Ex == nullptr)
4693 return Ex;
4694 return make<EnclosingExpr>("noexcept (", Ex, ")");
4695 }
4696 return nullptr;
4697 case 'o':
4698 switch (First[1]) {
4699 case 'n':
4700 return getDerived().parseUnresolvedName();
4701 case 'o':
4702 First += 2;
4703 return getDerived().parseBinaryExpr("||");
4704 case 'r':
4705 First += 2;
4706 return getDerived().parseBinaryExpr("|");
4707 case 'R':
4708 First += 2;
4709 return getDerived().parseBinaryExpr("|=");
4710 }
4711 return nullptr;
4712 case 'p':
4713 switch (First[1]) {
4714 case 'm':
4715 First += 2;
4716 return getDerived().parseBinaryExpr("->*");
4717 case 'l':
4718 First += 2;
4719 return getDerived().parseBinaryExpr("+");
4720 case 'L':
4721 First += 2;
4722 return getDerived().parseBinaryExpr("+=");
4723 case 'p': {
4724 First += 2;
4725 if (consumeIf('_'))
4726 return getDerived().parsePrefixExpr("++");
4727 Node *Ex = getDerived().parseExpr();
4728 if (Ex == nullptr)
4729 return Ex;
4730 return make<PostfixExpr>(Ex, "++");
4731 }
4732 case 's':
4733 First += 2;
4734 return getDerived().parsePrefixExpr("+");
4735 case 't': {
4736 First += 2;
4737 Node *L = getDerived().parseExpr();
4738 if (L == nullptr)
4739 return nullptr;
4740 Node *R = getDerived().parseExpr();
4741 if (R == nullptr)
4742 return nullptr;
4743 return make<MemberExpr>(L, "->", R);
4744 }
4745 }
4746 return nullptr;
4747 case 'q':
4748 if (First[1] == 'u') {
4749 First += 2;
4750 Node *Cond = getDerived().parseExpr();
4751 if (Cond == nullptr)
4752 return nullptr;
4753 Node *LHS = getDerived().parseExpr();
4754 if (LHS == nullptr)
4755 return nullptr;
4756 Node *RHS = getDerived().parseExpr();
4757 if (RHS == nullptr)
4758 return nullptr;
4759 return make<ConditionalExpr>(Cond, LHS, RHS);
4760 }
4761 return nullptr;
4762 case 'r':
4763 switch (First[1]) {
4764 case 'c': {
4765 First += 2;
4766 Node *T = getDerived().parseType();
4767 if (T == nullptr)
4768 return T;
4769 Node *Ex = getDerived().parseExpr();
4770 if (Ex == nullptr)
4771 return Ex;
4772 return make<CastExpr>("reinterpret_cast", T, Ex);
4773 }
4774 case 'm':
4775 First += 2;
4776 return getDerived().parseBinaryExpr("%");
4777 case 'M':
4778 First += 2;
4779 return getDerived().parseBinaryExpr("%=");
4780 case 's':
4781 First += 2;
4782 return getDerived().parseBinaryExpr(">>");
4783 case 'S':
4784 First += 2;
4785 return getDerived().parseBinaryExpr(">>=");
4786 }
4787 return nullptr;
4788 case 's':
4789 switch (First[1]) {
4790 case 'c': {
4791 First += 2;
4792 Node *T = getDerived().parseType();
4793 if (T == nullptr)
4794 return T;
4795 Node *Ex = getDerived().parseExpr();
4796 if (Ex == nullptr)
4797 return Ex;
4798 return make<CastExpr>("static_cast", T, Ex);
4799 }
4800 case 'p': {
4801 First += 2;
4802 Node *Child = getDerived().parseExpr();
4803 if (Child == nullptr)
4804 return nullptr;
4805 return make<ParameterPackExpansion>(Child);
4806 }
4807 case 'r':
4808 return getDerived().parseUnresolvedName();
4809 case 't': {
4810 First += 2;
4811 Node *Ty = getDerived().parseType();
4812 if (Ty == nullptr)
4813 return Ty;
4814 return make<EnclosingExpr>("sizeof (", Ty, ")");
4815 }
4816 case 'z': {
4817 First += 2;
4818 Node *Ex = getDerived().parseExpr();
4819 if (Ex == nullptr)
4820 return Ex;
4821 return make<EnclosingExpr>("sizeof (", Ex, ")");
4822 }
4823 case 'Z':
4824 First += 2;
4825 if (look() == 'T') {
4826 Node *R = getDerived().parseTemplateParam();
4827 if (R == nullptr)
4828 return nullptr;
4829 return make<SizeofParamPackExpr>(R);
4830 } else if (look() == 'f') {
4831 Node *FP = getDerived().parseFunctionParam();
4832 if (FP == nullptr)
4833 return nullptr;
4834 return make<EnclosingExpr>("sizeof... (", FP, ")");
4835 }
4836 return nullptr;
4837 case 'P': {
4838 First += 2;
4839 size_t ArgsBegin = Names.size();
4840 while (!consumeIf('E')) {
4841 Node *Arg = getDerived().parseTemplateArg();
4842 if (Arg == nullptr)
4843 return nullptr;
4844 Names.push_back(Arg);
4845 }
4846 auto *Pack = make<NodeArrayNode>(popTrailingNodeArray(ArgsBegin));
4847 if (!Pack)
4848 return nullptr;
4849 return make<EnclosingExpr>("sizeof... (", Pack, ")");
4850 }
4851 }
4852 return nullptr;
4853 case 't':
4854 switch (First[1]) {
4855 case 'e': {
4856 First += 2;
4857 Node *Ex = getDerived().parseExpr();
4858 if (Ex == nullptr)
4859 return Ex;
4860 return make<EnclosingExpr>("typeid (", Ex, ")");
4861 }
4862 case 'i': {
4863 First += 2;
4864 Node *Ty = getDerived().parseType();
4865 if (Ty == nullptr)
4866 return Ty;
4867 return make<EnclosingExpr>("typeid (", Ty, ")");
4868 }
4869 case 'l': {
4870 First += 2;
4871 Node *Ty = getDerived().parseType();
4872 if (Ty == nullptr)
4873 return nullptr;
4874 size_t InitsBegin = Names.size();
4875 while (!consumeIf('E')) {
4876 Node *E = getDerived().parseBracedExpr();
4877 if (E == nullptr)
4878 return nullptr;
4879 Names.push_back(E);
4880 }
4881 return make<InitListExpr>(Ty, popTrailingNodeArray(InitsBegin));
4882 }
4883 case 'r':
4884 First += 2;
4885 return make<NameType>("throw");
4886 case 'w': {
4887 First += 2;
4888 Node *Ex = getDerived().parseExpr();
4889 if (Ex == nullptr)
4890 return nullptr;
4891 return make<ThrowExpr>(Ex);
4892 }
4893 }
4894 return nullptr;
4895 case '1':
4896 case '2':
4897 case '3':
4898 case '4':
4899 case '5':
4900 case '6':
4901 case '7':
4902 case '8':
4903 case '9':
4904 return getDerived().parseUnresolvedName();
4905 }
4906
4907 if (consumeIf("u8__uuidoft")) {
4908 Node *Ty = getDerived().parseType();
4909 if (!Ty)
4910 return nullptr;
4911 return make<UUIDOfExpr>(Ty);
4912 }
4913
4914 if (consumeIf("u8__uuidofz")) {
4915 Node *Ex = getDerived().parseExpr();
4916 if (!Ex)
4917 return nullptr;
4918 return make<UUIDOfExpr>(Ex);
4919 }
4920
4921 return nullptr;
4922 }
4923
4924 // <call-offset> ::= h <nv-offset> _
4925 // ::= v <v-offset> _
4926 //
4927 // <nv-offset> ::= <offset number>
4928 // # non-virtual base override
4929 //
4930 // <v-offset> ::= <offset number> _ <virtual offset number>
4931 // # virtual base override, with vcall offset
4932 template <typename Alloc, typename Derived>
parseCallOffset()4933 bool AbstractManglingParser<Alloc, Derived>::parseCallOffset() {
4934 // Just scan through the call offset, we never add this information into the
4935 // output.
4936 if (consumeIf('h'))
4937 return parseNumber(true).empty() || !consumeIf('_');
4938 if (consumeIf('v'))
4939 return parseNumber(true).empty() || !consumeIf('_') ||
4940 parseNumber(true).empty() || !consumeIf('_');
4941 return true;
4942 }
4943
4944 // <special-name> ::= TV <type> # virtual table
4945 // ::= TT <type> # VTT structure (construction vtable index)
4946 // ::= TI <type> # typeinfo structure
4947 // ::= TS <type> # typeinfo name (null-terminated byte string)
4948 // ::= Tc <call-offset> <call-offset> <base encoding>
4949 // # base is the nominal target function of thunk
4950 // # first call-offset is 'this' adjustment
4951 // # second call-offset is result adjustment
4952 // ::= T <call-offset> <base encoding>
4953 // # base is the nominal target function of thunk
4954 // ::= GV <object name> # Guard variable for one-time initialization
4955 // # No <type>
4956 // ::= TW <object name> # Thread-local wrapper
4957 // ::= TH <object name> # Thread-local initialization
4958 // ::= GR <object name> _ # First temporary
4959 // ::= GR <object name> <seq-id> _ # Subsequent temporaries
4960 // extension ::= TC <first type> <number> _ <second type> # construction vtable for second-in-first
4961 // extension ::= GR <object name> # reference temporary for object
4962 template <typename Derived, typename Alloc>
parseSpecialName()4963 Node *AbstractManglingParser<Derived, Alloc>::parseSpecialName() {
4964 switch (look()) {
4965 case 'T':
4966 switch (look(1)) {
4967 // TV <type> # virtual table
4968 case 'V': {
4969 First += 2;
4970 Node *Ty = getDerived().parseType();
4971 if (Ty == nullptr)
4972 return nullptr;
4973 return make<SpecialName>("vtable for ", Ty);
4974 }
4975 // TT <type> # VTT structure (construction vtable index)
4976 case 'T': {
4977 First += 2;
4978 Node *Ty = getDerived().parseType();
4979 if (Ty == nullptr)
4980 return nullptr;
4981 return make<SpecialName>("VTT for ", Ty);
4982 }
4983 // TI <type> # typeinfo structure
4984 case 'I': {
4985 First += 2;
4986 Node *Ty = getDerived().parseType();
4987 if (Ty == nullptr)
4988 return nullptr;
4989 return make<SpecialName>("typeinfo for ", Ty);
4990 }
4991 // TS <type> # typeinfo name (null-terminated byte string)
4992 case 'S': {
4993 First += 2;
4994 Node *Ty = getDerived().parseType();
4995 if (Ty == nullptr)
4996 return nullptr;
4997 return make<SpecialName>("typeinfo name for ", Ty);
4998 }
4999 // Tc <call-offset> <call-offset> <base encoding>
5000 case 'c': {
5001 First += 2;
5002 if (parseCallOffset() || parseCallOffset())
5003 return nullptr;
5004 Node *Encoding = getDerived().parseEncoding();
5005 if (Encoding == nullptr)
5006 return nullptr;
5007 return make<SpecialName>("covariant return thunk to ", Encoding);
5008 }
5009 // extension ::= TC <first type> <number> _ <second type>
5010 // # construction vtable for second-in-first
5011 case 'C': {
5012 First += 2;
5013 Node *FirstType = getDerived().parseType();
5014 if (FirstType == nullptr)
5015 return nullptr;
5016 if (parseNumber(true).empty() || !consumeIf('_'))
5017 return nullptr;
5018 Node *SecondType = getDerived().parseType();
5019 if (SecondType == nullptr)
5020 return nullptr;
5021 return make<CtorVtableSpecialName>(SecondType, FirstType);
5022 }
5023 // TW <object name> # Thread-local wrapper
5024 case 'W': {
5025 First += 2;
5026 Node *Name = getDerived().parseName();
5027 if (Name == nullptr)
5028 return nullptr;
5029 return make<SpecialName>("thread-local wrapper routine for ", Name);
5030 }
5031 // TH <object name> # Thread-local initialization
5032 case 'H': {
5033 First += 2;
5034 Node *Name = getDerived().parseName();
5035 if (Name == nullptr)
5036 return nullptr;
5037 return make<SpecialName>("thread-local initialization routine for ", Name);
5038 }
5039 // T <call-offset> <base encoding>
5040 default: {
5041 ++First;
5042 bool IsVirt = look() == 'v';
5043 if (parseCallOffset())
5044 return nullptr;
5045 Node *BaseEncoding = getDerived().parseEncoding();
5046 if (BaseEncoding == nullptr)
5047 return nullptr;
5048 if (IsVirt)
5049 return make<SpecialName>("virtual thunk to ", BaseEncoding);
5050 else
5051 return make<SpecialName>("non-virtual thunk to ", BaseEncoding);
5052 }
5053 }
5054 case 'G':
5055 switch (look(1)) {
5056 // GV <object name> # Guard variable for one-time initialization
5057 case 'V': {
5058 First += 2;
5059 Node *Name = getDerived().parseName();
5060 if (Name == nullptr)
5061 return nullptr;
5062 return make<SpecialName>("guard variable for ", Name);
5063 }
5064 // GR <object name> # reference temporary for object
5065 // GR <object name> _ # First temporary
5066 // GR <object name> <seq-id> _ # Subsequent temporaries
5067 case 'R': {
5068 First += 2;
5069 Node *Name = getDerived().parseName();
5070 if (Name == nullptr)
5071 return nullptr;
5072 size_t Count;
5073 bool ParsedSeqId = !parseSeqId(&Count);
5074 if (!consumeIf('_') && ParsedSeqId)
5075 return nullptr;
5076 return make<SpecialName>("reference temporary for ", Name);
5077 }
5078 }
5079 }
5080 return nullptr;
5081 }
5082
5083 // <encoding> ::= <function name> <bare-function-type>
5084 // ::= <data name>
5085 // ::= <special-name>
5086 template <typename Derived, typename Alloc>
parseEncoding()5087 Node *AbstractManglingParser<Derived, Alloc>::parseEncoding() {
5088 if (look() == 'G' || look() == 'T')
5089 return getDerived().parseSpecialName();
5090
5091 auto IsEndOfEncoding = [&] {
5092 // The set of chars that can potentially follow an <encoding> (none of which
5093 // can start a <type>). Enumerating these allows us to avoid speculative
5094 // parsing.
5095 return numLeft() == 0 || look() == 'E' || look() == '.' || look() == '_';
5096 };
5097
5098 NameState NameInfo(this);
5099 Node *Name = getDerived().parseName(&NameInfo);
5100 if (Name == nullptr)
5101 return nullptr;
5102
5103 if (resolveForwardTemplateRefs(NameInfo))
5104 return nullptr;
5105
5106 if (IsEndOfEncoding())
5107 return Name;
5108
5109 Node *Attrs = nullptr;
5110 if (consumeIf("Ua9enable_ifI")) {
5111 size_t BeforeArgs = Names.size();
5112 while (!consumeIf('E')) {
5113 Node *Arg = getDerived().parseTemplateArg();
5114 if (Arg == nullptr)
5115 return nullptr;
5116 Names.push_back(Arg);
5117 }
5118 Attrs = make<EnableIfAttr>(popTrailingNodeArray(BeforeArgs));
5119 if (!Attrs)
5120 return nullptr;
5121 }
5122
5123 Node *ReturnType = nullptr;
5124 if (!NameInfo.CtorDtorConversion && NameInfo.EndsWithTemplateArgs) {
5125 ReturnType = getDerived().parseType();
5126 if (ReturnType == nullptr)
5127 return nullptr;
5128 }
5129
5130 if (consumeIf('v'))
5131 return make<FunctionEncoding>(ReturnType, Name, NodeArray(),
5132 Attrs, NameInfo.CVQualifiers,
5133 NameInfo.ReferenceQualifier);
5134
5135 size_t ParamsBegin = Names.size();
5136 do {
5137 Node *Ty = getDerived().parseType();
5138 if (Ty == nullptr)
5139 return nullptr;
5140 Names.push_back(Ty);
5141 } while (!IsEndOfEncoding());
5142
5143 return make<FunctionEncoding>(ReturnType, Name,
5144 popTrailingNodeArray(ParamsBegin),
5145 Attrs, NameInfo.CVQualifiers,
5146 NameInfo.ReferenceQualifier);
5147 }
5148
5149 template <class Float>
5150 struct FloatData;
5151
5152 template <>
5153 struct FloatData<float>
5154 {
5155 static const size_t mangled_size = 8;
5156 static const size_t max_demangled_size = 24;
5157 static constexpr const char* spec = "%af";
5158 };
5159
5160 template <>
5161 struct FloatData<double>
5162 {
5163 static const size_t mangled_size = 16;
5164 static const size_t max_demangled_size = 32;
5165 static constexpr const char* spec = "%a";
5166 };
5167
5168 template <>
5169 struct FloatData<long double>
5170 {
5171 #if defined(__mips__) && defined(__mips_n64) || defined(__aarch64__) || \
5172 defined(__wasm__)
5173 static const size_t mangled_size = 32;
5174 #elif defined(__arm__) || defined(__mips__) || defined(__hexagon__)
5175 static const size_t mangled_size = 16;
5176 #else
5177 static const size_t mangled_size = 20; // May need to be adjusted to 16 or 24 on other platforms
5178 #endif
5179 static const size_t max_demangled_size = 40;
5180 static constexpr const char *spec = "%LaL";
5181 };
5182
5183 template <typename Alloc, typename Derived>
5184 template <class Float>
5185 Node *AbstractManglingParser<Alloc, Derived>::parseFloatingLiteral() {
5186 const size_t N = FloatData<Float>::mangled_size;
5187 if (numLeft() <= N)
5188 return nullptr;
5189 StringView Data(First, First + N);
5190 for (char C : Data)
5191 if (!std::isxdigit(C))
5192 return nullptr;
5193 First += N;
5194 if (!consumeIf('E'))
5195 return nullptr;
5196 return make<FloatLiteralImpl<Float>>(Data);
5197 }
5198
5199 // <seq-id> ::= <0-9A-Z>+
5200 template <typename Alloc, typename Derived>
5201 bool AbstractManglingParser<Alloc, Derived>::parseSeqId(size_t *Out) {
5202 if (!(look() >= '0' && look() <= '9') &&
5203 !(look() >= 'A' && look() <= 'Z'))
5204 return true;
5205
5206 size_t Id = 0;
5207 while (true) {
5208 if (look() >= '0' && look() <= '9') {
5209 Id *= 36;
5210 Id += static_cast<size_t>(look() - '0');
5211 } else if (look() >= 'A' && look() <= 'Z') {
5212 Id *= 36;
5213 Id += static_cast<size_t>(look() - 'A') + 10;
5214 } else {
5215 *Out = Id;
5216 return false;
5217 }
5218 ++First;
5219 }
5220 }
5221
5222 // <substitution> ::= S <seq-id> _
5223 // ::= S_
5224 // <substitution> ::= Sa # ::std::allocator
5225 // <substitution> ::= Sb # ::std::basic_string
5226 // <substitution> ::= Ss # ::std::basic_string < char,
5227 // ::std::char_traits<char>,
5228 // ::std::allocator<char> >
5229 // <substitution> ::= Si # ::std::basic_istream<char, std::char_traits<char> >
5230 // <substitution> ::= So # ::std::basic_ostream<char, std::char_traits<char> >
5231 // <substitution> ::= Sd # ::std::basic_iostream<char, std::char_traits<char> >
5232 template <typename Derived, typename Alloc>
5233 Node *AbstractManglingParser<Derived, Alloc>::parseSubstitution() {
5234 if (!consumeIf('S'))
5235 return nullptr;
5236
5237 if (std::islower(look())) {
5238 Node *SpecialSub;
5239 switch (look()) {
5240 case 'a':
5241 ++First;
5242 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::allocator);
5243 break;
5244 case 'b':
5245 ++First;
5246 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::basic_string);
5247 break;
5248 case 's':
5249 ++First;
5250 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::string);
5251 break;
5252 case 'i':
5253 ++First;
5254 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::istream);
5255 break;
5256 case 'o':
5257 ++First;
5258 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::ostream);
5259 break;
5260 case 'd':
5261 ++First;
5262 SpecialSub = make<SpecialSubstitution>(SpecialSubKind::iostream);
5263 break;
5264 default:
5265 return nullptr;
5266 }
5267 if (!SpecialSub)
5268 return nullptr;
5269 // Itanium C++ ABI 5.1.2: If a name that would use a built-in <substitution>
5270 // has ABI tags, the tags are appended to the substitution; the result is a
5271 // substitutable component.
5272 Node *WithTags = getDerived().parseAbiTags(SpecialSub);
5273 if (WithTags != SpecialSub) {
5274 Subs.push_back(WithTags);
5275 SpecialSub = WithTags;
5276 }
5277 return SpecialSub;
5278 }
5279
5280 // ::= S_
5281 if (consumeIf('_')) {
5282 if (Subs.empty())
5283 return nullptr;
5284 return Subs[0];
5285 }
5286
5287 // ::= S <seq-id> _
5288 size_t Index = 0;
5289 if (parseSeqId(&Index))
5290 return nullptr;
5291 ++Index;
5292 if (!consumeIf('_') || Index >= Subs.size())
5293 return nullptr;
5294 return Subs[Index];
5295 }
5296
5297 // <template-param> ::= T_ # first template parameter
5298 // ::= T <parameter-2 non-negative number> _
5299 // ::= TL <level-1> __
5300 // ::= TL <level-1> _ <parameter-2 non-negative number> _
5301 template <typename Derived, typename Alloc>
5302 Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParam() {
5303 if (!consumeIf('T'))
5304 return nullptr;
5305
5306 size_t Level = 0;
5307 if (consumeIf('L')) {
5308 if (parsePositiveInteger(&Level))
5309 return nullptr;
5310 ++Level;
5311 if (!consumeIf('_'))
5312 return nullptr;
5313 }
5314
5315 size_t Index = 0;
5316 if (!consumeIf('_')) {
5317 if (parsePositiveInteger(&Index))
5318 return nullptr;
5319 ++Index;
5320 if (!consumeIf('_'))
5321 return nullptr;
5322 }
5323
5324 // If we're in a context where this <template-param> refers to a
5325 // <template-arg> further ahead in the mangled name (currently just conversion
5326 // operator types), then we should only look it up in the right context.
5327 // This can only happen at the outermost level.
5328 if (PermitForwardTemplateReferences && Level == 0) {
5329 Node *ForwardRef = make<ForwardTemplateReference>(Index);
5330 if (!ForwardRef)
5331 return nullptr;
5332 assert(ForwardRef->getKind() == Node::KForwardTemplateReference);
5333 ForwardTemplateRefs.push_back(
5334 static_cast<ForwardTemplateReference *>(ForwardRef));
5335 return ForwardRef;
5336 }
5337
5338 if (Level >= TemplateParams.size() || !TemplateParams[Level] ||
5339 Index >= TemplateParams[Level]->size()) {
5340 // Itanium ABI 5.1.8: In a generic lambda, uses of auto in the parameter
5341 // list are mangled as the corresponding artificial template type parameter.
5342 if (ParsingLambdaParamsAtLevel == Level && Level <= TemplateParams.size()) {
5343 // This will be popped by the ScopedTemplateParamList in
5344 // parseUnnamedTypeName.
5345 if (Level == TemplateParams.size())
5346 TemplateParams.push_back(nullptr);
5347 return make<NameType>("auto");
5348 }
5349
5350 return nullptr;
5351 }
5352
5353 return (*TemplateParams[Level])[Index];
5354 }
5355
5356 // <template-param-decl> ::= Ty # type parameter
5357 // ::= Tn <type> # non-type parameter
5358 // ::= Tt <template-param-decl>* E # template parameter
5359 // ::= Tp <template-param-decl> # parameter pack
5360 template <typename Derived, typename Alloc>
5361 Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParamDecl() {
5362 auto InventTemplateParamName = [&](TemplateParamKind Kind) {
5363 unsigned Index = NumSyntheticTemplateParameters[(int)Kind]++;
5364 Node *N = make<SyntheticTemplateParamName>(Kind, Index);
5365 if (N) TemplateParams.back()->push_back(N);
5366 return N;
5367 };
5368
5369 if (consumeIf("Ty")) {
5370 Node *Name = InventTemplateParamName(TemplateParamKind::Type);
5371 if (!Name)
5372 return nullptr;
5373 return make<TypeTemplateParamDecl>(Name);
5374 }
5375
5376 if (consumeIf("Tn")) {
5377 Node *Name = InventTemplateParamName(TemplateParamKind::NonType);
5378 if (!Name)
5379 return nullptr;
5380 Node *Type = parseType();
5381 if (!Type)
5382 return nullptr;
5383 return make<NonTypeTemplateParamDecl>(Name, Type);
5384 }
5385
5386 if (consumeIf("Tt")) {
5387 Node *Name = InventTemplateParamName(TemplateParamKind::Template);
5388 if (!Name)
5389 return nullptr;
5390 size_t ParamsBegin = Names.size();
5391 ScopedTemplateParamList TemplateTemplateParamParams(this);
5392 while (!consumeIf("E")) {
5393 Node *P = parseTemplateParamDecl();
5394 if (!P)
5395 return nullptr;
5396 Names.push_back(P);
5397 }
5398 NodeArray Params = popTrailingNodeArray(ParamsBegin);
5399 return make<TemplateTemplateParamDecl>(Name, Params);
5400 }
5401
5402 if (consumeIf("Tp")) {
5403 Node *P = parseTemplateParamDecl();
5404 if (!P)
5405 return nullptr;
5406 return make<TemplateParamPackDecl>(P);
5407 }
5408
5409 return nullptr;
5410 }
5411
5412 // <template-arg> ::= <type> # type or template
5413 // ::= X <expression> E # expression
5414 // ::= <expr-primary> # simple expressions
5415 // ::= J <template-arg>* E # argument pack
5416 // ::= LZ <encoding> E # extension
5417 template <typename Derived, typename Alloc>
5418 Node *AbstractManglingParser<Derived, Alloc>::parseTemplateArg() {
5419 switch (look()) {
5420 case 'X': {
5421 ++First;
5422 Node *Arg = getDerived().parseExpr();
5423 if (Arg == nullptr || !consumeIf('E'))
5424 return nullptr;
5425 return Arg;
5426 }
5427 case 'J': {
5428 ++First;
5429 size_t ArgsBegin = Names.size();
5430 while (!consumeIf('E')) {
5431 Node *Arg = getDerived().parseTemplateArg();
5432 if (Arg == nullptr)
5433 return nullptr;
5434 Names.push_back(Arg);
5435 }
5436 NodeArray Args = popTrailingNodeArray(ArgsBegin);
5437 return make<TemplateArgumentPack>(Args);
5438 }
5439 case 'L': {
5440 // ::= LZ <encoding> E # extension
5441 if (look(1) == 'Z') {
5442 First += 2;
5443 Node *Arg = getDerived().parseEncoding();
5444 if (Arg == nullptr || !consumeIf('E'))
5445 return nullptr;
5446 return Arg;
5447 }
5448 // ::= <expr-primary> # simple expressions
5449 return getDerived().parseExprPrimary();
5450 }
5451 default:
5452 return getDerived().parseType();
5453 }
5454 }
5455
5456 // <template-args> ::= I <template-arg>* E
5457 // extension, the abi says <template-arg>+
5458 template <typename Derived, typename Alloc>
5459 Node *
5460 AbstractManglingParser<Derived, Alloc>::parseTemplateArgs(bool TagTemplates) {
5461 if (!consumeIf('I'))
5462 return nullptr;
5463
5464 // <template-params> refer to the innermost <template-args>. Clear out any
5465 // outer args that we may have inserted into TemplateParams.
5466 if (TagTemplates) {
5467 TemplateParams.clear();
5468 TemplateParams.push_back(&OuterTemplateParams);
5469 OuterTemplateParams.clear();
5470 }
5471
5472 size_t ArgsBegin = Names.size();
5473 while (!consumeIf('E')) {
5474 if (TagTemplates) {
5475 auto OldParams = std::move(TemplateParams);
5476 Node *Arg = getDerived().parseTemplateArg();
5477 TemplateParams = std::move(OldParams);
5478 if (Arg == nullptr)
5479 return nullptr;
5480 Names.push_back(Arg);
5481 Node *TableEntry = Arg;
5482 if (Arg->getKind() == Node::KTemplateArgumentPack) {
5483 TableEntry = make<ParameterPack>(
5484 static_cast<TemplateArgumentPack*>(TableEntry)->getElements());
5485 if (!TableEntry)
5486 return nullptr;
5487 }
5488 TemplateParams.back()->push_back(TableEntry);
5489 } else {
5490 Node *Arg = getDerived().parseTemplateArg();
5491 if (Arg == nullptr)
5492 return nullptr;
5493 Names.push_back(Arg);
5494 }
5495 }
5496 return make<TemplateArgs>(popTrailingNodeArray(ArgsBegin));
5497 }
5498
5499 // <mangled-name> ::= _Z <encoding>
5500 // ::= <type>
5501 // extension ::= ___Z <encoding> _block_invoke
5502 // extension ::= ___Z <encoding> _block_invoke<decimal-digit>+
5503 // extension ::= ___Z <encoding> _block_invoke_<decimal-digit>+
5504 template <typename Derived, typename Alloc>
5505 Node *AbstractManglingParser<Derived, Alloc>::parse() {
5506 if (consumeIf("_Z") || consumeIf("__Z")) {
5507 Node *Encoding = getDerived().parseEncoding();
5508 if (Encoding == nullptr)
5509 return nullptr;
5510 if (look() == '.') {
5511 Encoding = make<DotSuffix>(Encoding, StringView(First, Last));
5512 First = Last;
5513 }
5514 if (numLeft() != 0)
5515 return nullptr;
5516 return Encoding;
5517 }
5518
5519 if (consumeIf("___Z") || consumeIf("____Z")) {
5520 Node *Encoding = getDerived().parseEncoding();
5521 if (Encoding == nullptr || !consumeIf("_block_invoke"))
5522 return nullptr;
5523 bool RequireNumber = consumeIf('_');
5524 if (parseNumber().empty() && RequireNumber)
5525 return nullptr;
5526 if (look() == '.')
5527 First = Last;
5528 if (numLeft() != 0)
5529 return nullptr;
5530 return make<SpecialName>("invocation function for block in ", Encoding);
5531 }
5532
5533 Node *Ty = getDerived().parseType();
5534 if (numLeft() != 0)
5535 return nullptr;
5536 return Ty;
5537 }
5538
5539 template <typename Alloc>
5540 struct ManglingParser : AbstractManglingParser<ManglingParser<Alloc>, Alloc> {
5541 using AbstractManglingParser<ManglingParser<Alloc>,
5542 Alloc>::AbstractManglingParser;
5543 };
5544
5545 DEMANGLE_NAMESPACE_END
5546
5547 #endif // DEMANGLE_ITANIUMDEMANGLE_H
5548