• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "decoder-aarch64.h"
28 
29 #include <string>
30 
31 #include "../globals-vixl.h"
32 #include "../utils-vixl.h"
33 
34 #include "decoder-constants-aarch64.h"
35 
36 namespace vixl {
37 namespace aarch64 {
38 
Decode(const Instruction * instr)39 void Decoder::Decode(const Instruction* instr) {
40   std::list<DecoderVisitor*>::iterator it;
41   for (it = visitors_.begin(); it != visitors_.end(); it++) {
42     VIXL_ASSERT((*it)->IsConstVisitor());
43   }
44   VIXL_ASSERT(compiled_decoder_root_ != NULL);
45   compiled_decoder_root_->Decode(instr);
46 }
47 
Decode(Instruction * instr)48 void Decoder::Decode(Instruction* instr) {
49   compiled_decoder_root_->Decode(const_cast<const Instruction*>(instr));
50 }
51 
AddDecodeNode(const DecodeNode & node)52 void Decoder::AddDecodeNode(const DecodeNode& node) {
53   if (decode_nodes_.count(node.GetName()) == 0) {
54     decode_nodes_.insert(std::make_pair(node.GetName(), node));
55   }
56 }
57 
GetDecodeNode(std::string name)58 DecodeNode* Decoder::GetDecodeNode(std::string name) {
59   if (decode_nodes_.count(name) != 1) {
60     std::string msg = "Can't find decode node " + name + ".\n";
61     VIXL_ABORT_WITH_MSG(msg.c_str());
62   }
63   return &decode_nodes_[name];
64 }
65 
ConstructDecodeGraph()66 void Decoder::ConstructDecodeGraph() {
67   // Add all of the decoding nodes to the Decoder.
68   for (unsigned i = 0; i < ArrayLength(kDecodeMapping); i++) {
69     AddDecodeNode(DecodeNode(kDecodeMapping[i], this));
70 
71     // Add a node for each instruction form named, identified by having no '_'
72     // prefix on the node name.
73     const DecodeMapping& map = kDecodeMapping[i];
74     for (unsigned j = 0; j < map.mapping.size(); j++) {
75       if ((map.mapping[j].handler != NULL) &&
76           (map.mapping[j].handler[0] != '_')) {
77         AddDecodeNode(DecodeNode(map.mapping[j].handler, this));
78       }
79     }
80   }
81 
82   // Add an "unallocated" node, used when an instruction encoding is not
83   // recognised by the decoding graph.
84   AddDecodeNode(DecodeNode("unallocated", this));
85 
86   // Compile the graph from the root.
87   compiled_decoder_root_ = GetDecodeNode("Root")->Compile(this);
88 }
89 
AppendVisitor(DecoderVisitor * new_visitor)90 void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
91   visitors_.push_back(new_visitor);
92 }
93 
94 
PrependVisitor(DecoderVisitor * new_visitor)95 void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
96   visitors_.push_front(new_visitor);
97 }
98 
99 
InsertVisitorBefore(DecoderVisitor * new_visitor,DecoderVisitor * registered_visitor)100 void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
101                                   DecoderVisitor* registered_visitor) {
102   std::list<DecoderVisitor*>::iterator it;
103   for (it = visitors_.begin(); it != visitors_.end(); it++) {
104     if (*it == registered_visitor) {
105       visitors_.insert(it, new_visitor);
106       return;
107     }
108   }
109   // We reached the end of the list. The last element must be
110   // registered_visitor.
111   VIXL_ASSERT(*it == registered_visitor);
112   visitors_.insert(it, new_visitor);
113 }
114 
115 
InsertVisitorAfter(DecoderVisitor * new_visitor,DecoderVisitor * registered_visitor)116 void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
117                                  DecoderVisitor* registered_visitor) {
118   std::list<DecoderVisitor*>::iterator it;
119   for (it = visitors_.begin(); it != visitors_.end(); it++) {
120     if (*it == registered_visitor) {
121       it++;
122       visitors_.insert(it, new_visitor);
123       return;
124     }
125   }
126   // We reached the end of the list. The last element must be
127   // registered_visitor.
128   VIXL_ASSERT(*it == registered_visitor);
129   visitors_.push_back(new_visitor);
130 }
131 
132 
RemoveVisitor(DecoderVisitor * visitor)133 void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
134   visitors_.remove(visitor);
135 }
136 
VisitNamedInstruction(const Instruction * instr,const std::string & name)137 void Decoder::VisitNamedInstruction(const Instruction* instr,
138                                     const std::string& name) {
139   std::list<DecoderVisitor*>::iterator it;
140   Metadata m = {{"form", name}};
141   for (it = visitors_.begin(); it != visitors_.end(); it++) {
142     (*it)->Visit(&m, instr);
143   }
144 }
145 
146 // Initialise empty vectors for sampled bits and pattern table.
147 const std::vector<uint8_t> DecodeNode::kEmptySampledBits;
148 const std::vector<DecodePattern> DecodeNode::kEmptyPatternTable;
149 
CompileNodeForBits(Decoder * decoder,std::string name,uint32_t bits)150 void DecodeNode::CompileNodeForBits(Decoder* decoder,
151                                     std::string name,
152                                     uint32_t bits) {
153   DecodeNode* n = decoder->GetDecodeNode(name);
154   VIXL_ASSERT(n != NULL);
155   if (!n->IsCompiled()) {
156     n->Compile(decoder);
157   }
158   VIXL_ASSERT(n->IsCompiled());
159   compiled_node_->SetNodeForBits(bits, n->GetCompiledNode());
160 }
161 
162 
163 #define INSTANTIATE_TEMPLATE_M(M)                      \
164   case 0x##M:                                          \
165     bit_extract_fn = &Instruction::ExtractBits<0x##M>; \
166     break;
167 #define INSTANTIATE_TEMPLATE_MV(M, V)                           \
168   case 0x##M##V:                                                \
169     bit_extract_fn = &Instruction::IsMaskedValue<0x##M, 0x##V>; \
170     break;
171 
GetBitExtractFunctionHelper(uint32_t x,uint32_t y)172 BitExtractFn DecodeNode::GetBitExtractFunctionHelper(uint32_t x, uint32_t y) {
173   // Instantiate a templated bit extraction function for every pattern we
174   // might encounter. If the assertion in the default clause is reached, add a
175   // new instantiation below using the information in the failure message.
176   BitExtractFn bit_extract_fn = NULL;
177 
178   // The arguments x and y represent the mask and value. If y is 0, x is the
179   // mask. Otherwise, y is the mask, and x is the value to compare against a
180   // masked result.
181   uint64_t signature = (static_cast<uint64_t>(y) << 32) | x;
182   switch (signature) {
183     INSTANTIATE_TEMPLATE_M(00000002);
184     INSTANTIATE_TEMPLATE_M(00000010);
185     INSTANTIATE_TEMPLATE_M(00000060);
186     INSTANTIATE_TEMPLATE_M(000000df);
187     INSTANTIATE_TEMPLATE_M(00000100);
188     INSTANTIATE_TEMPLATE_M(00000200);
189     INSTANTIATE_TEMPLATE_M(00000400);
190     INSTANTIATE_TEMPLATE_M(00000800);
191     INSTANTIATE_TEMPLATE_M(00000c00);
192     INSTANTIATE_TEMPLATE_M(00000c10);
193     INSTANTIATE_TEMPLATE_M(00000fc0);
194     INSTANTIATE_TEMPLATE_M(00001000);
195     INSTANTIATE_TEMPLATE_M(00001400);
196     INSTANTIATE_TEMPLATE_M(00001800);
197     INSTANTIATE_TEMPLATE_M(00001c00);
198     INSTANTIATE_TEMPLATE_M(00002000);
199     INSTANTIATE_TEMPLATE_M(00002010);
200     INSTANTIATE_TEMPLATE_M(00002400);
201     INSTANTIATE_TEMPLATE_M(00003000);
202     INSTANTIATE_TEMPLATE_M(00003020);
203     INSTANTIATE_TEMPLATE_M(00003400);
204     INSTANTIATE_TEMPLATE_M(00003800);
205     INSTANTIATE_TEMPLATE_M(00003c00);
206     INSTANTIATE_TEMPLATE_M(00013000);
207     INSTANTIATE_TEMPLATE_M(000203e0);
208     INSTANTIATE_TEMPLATE_M(000303e0);
209     INSTANTIATE_TEMPLATE_M(00040000);
210     INSTANTIATE_TEMPLATE_M(00040010);
211     INSTANTIATE_TEMPLATE_M(00060000);
212     INSTANTIATE_TEMPLATE_M(00061000);
213     INSTANTIATE_TEMPLATE_M(00070000);
214     INSTANTIATE_TEMPLATE_M(000703c0);
215     INSTANTIATE_TEMPLATE_M(00080000);
216     INSTANTIATE_TEMPLATE_M(00090000);
217     INSTANTIATE_TEMPLATE_M(000f0000);
218     INSTANTIATE_TEMPLATE_M(000f0010);
219     INSTANTIATE_TEMPLATE_M(00100000);
220     INSTANTIATE_TEMPLATE_M(00180000);
221     INSTANTIATE_TEMPLATE_M(001b1c00);
222     INSTANTIATE_TEMPLATE_M(001f0000);
223     INSTANTIATE_TEMPLATE_M(001f0018);
224     INSTANTIATE_TEMPLATE_M(001f2000);
225     INSTANTIATE_TEMPLATE_M(001f3000);
226     INSTANTIATE_TEMPLATE_M(00400000);
227     INSTANTIATE_TEMPLATE_M(00400018);
228     INSTANTIATE_TEMPLATE_M(00400800);
229     INSTANTIATE_TEMPLATE_M(00403000);
230     INSTANTIATE_TEMPLATE_M(00500000);
231     INSTANTIATE_TEMPLATE_M(00500800);
232     INSTANTIATE_TEMPLATE_M(00583000);
233     INSTANTIATE_TEMPLATE_M(005f0000);
234     INSTANTIATE_TEMPLATE_M(00800000);
235     INSTANTIATE_TEMPLATE_M(00800400);
236     INSTANTIATE_TEMPLATE_M(00800c1d);
237     INSTANTIATE_TEMPLATE_M(0080101f);
238     INSTANTIATE_TEMPLATE_M(00801c00);
239     INSTANTIATE_TEMPLATE_M(00803000);
240     INSTANTIATE_TEMPLATE_M(00803c00);
241     INSTANTIATE_TEMPLATE_M(009f0000);
242     INSTANTIATE_TEMPLATE_M(009f2000);
243     INSTANTIATE_TEMPLATE_M(00c00000);
244     INSTANTIATE_TEMPLATE_M(00c00010);
245     INSTANTIATE_TEMPLATE_M(00c0001f);
246     INSTANTIATE_TEMPLATE_M(00c00200);
247     INSTANTIATE_TEMPLATE_M(00c00400);
248     INSTANTIATE_TEMPLATE_M(00c00c00);
249     INSTANTIATE_TEMPLATE_M(00c00c19);
250     INSTANTIATE_TEMPLATE_M(00c01000);
251     INSTANTIATE_TEMPLATE_M(00c01400);
252     INSTANTIATE_TEMPLATE_M(00c01c00);
253     INSTANTIATE_TEMPLATE_M(00c02000);
254     INSTANTIATE_TEMPLATE_M(00c03000);
255     INSTANTIATE_TEMPLATE_M(00c03c00);
256     INSTANTIATE_TEMPLATE_M(00c70000);
257     INSTANTIATE_TEMPLATE_M(00c83000);
258     INSTANTIATE_TEMPLATE_M(00d00200);
259     INSTANTIATE_TEMPLATE_M(00d80800);
260     INSTANTIATE_TEMPLATE_M(00d81800);
261     INSTANTIATE_TEMPLATE_M(00d81c00);
262     INSTANTIATE_TEMPLATE_M(00d82800);
263     INSTANTIATE_TEMPLATE_M(00d82c00);
264     INSTANTIATE_TEMPLATE_M(00d92400);
265     INSTANTIATE_TEMPLATE_M(00d93000);
266     INSTANTIATE_TEMPLATE_M(00db0000);
267     INSTANTIATE_TEMPLATE_M(00db2000);
268     INSTANTIATE_TEMPLATE_M(00dc0000);
269     INSTANTIATE_TEMPLATE_M(00dc2000);
270     INSTANTIATE_TEMPLATE_M(00df0000);
271     INSTANTIATE_TEMPLATE_M(40000000);
272     INSTANTIATE_TEMPLATE_M(40000010);
273     INSTANTIATE_TEMPLATE_M(40000c00);
274     INSTANTIATE_TEMPLATE_M(40002000);
275     INSTANTIATE_TEMPLATE_M(40002010);
276     INSTANTIATE_TEMPLATE_M(40003000);
277     INSTANTIATE_TEMPLATE_M(40003c00);
278     INSTANTIATE_TEMPLATE_M(401f2000);
279     INSTANTIATE_TEMPLATE_M(40400800);
280     INSTANTIATE_TEMPLATE_M(40400c00);
281     INSTANTIATE_TEMPLATE_M(40403c00);
282     INSTANTIATE_TEMPLATE_M(405f0000);
283     INSTANTIATE_TEMPLATE_M(40800000);
284     INSTANTIATE_TEMPLATE_M(40800c00);
285     INSTANTIATE_TEMPLATE_M(40802000);
286     INSTANTIATE_TEMPLATE_M(40802010);
287     INSTANTIATE_TEMPLATE_M(40803400);
288     INSTANTIATE_TEMPLATE_M(40803c00);
289     INSTANTIATE_TEMPLATE_M(40c00000);
290     INSTANTIATE_TEMPLATE_M(40c00400);
291     INSTANTIATE_TEMPLATE_M(40c00800);
292     INSTANTIATE_TEMPLATE_M(40c00c00);
293     INSTANTIATE_TEMPLATE_M(40c00c10);
294     INSTANTIATE_TEMPLATE_M(40c02000);
295     INSTANTIATE_TEMPLATE_M(40c02010);
296     INSTANTIATE_TEMPLATE_M(40c02c00);
297     INSTANTIATE_TEMPLATE_M(40c03c00);
298     INSTANTIATE_TEMPLATE_M(40c80000);
299     INSTANTIATE_TEMPLATE_M(40c90000);
300     INSTANTIATE_TEMPLATE_M(40cf0000);
301     INSTANTIATE_TEMPLATE_M(40d02000);
302     INSTANTIATE_TEMPLATE_M(40d02010);
303     INSTANTIATE_TEMPLATE_M(40d80000);
304     INSTANTIATE_TEMPLATE_M(40d81800);
305     INSTANTIATE_TEMPLATE_M(40dc0000);
306     INSTANTIATE_TEMPLATE_M(bf20c000);
307     INSTANTIATE_TEMPLATE_MV(00000006, 00000000);
308     INSTANTIATE_TEMPLATE_MV(00000006, 00000006);
309     INSTANTIATE_TEMPLATE_MV(00000007, 00000000);
310     INSTANTIATE_TEMPLATE_MV(0000001f, 0000001f);
311     INSTANTIATE_TEMPLATE_MV(00000210, 00000000);
312     INSTANTIATE_TEMPLATE_MV(000003e0, 00000000);
313     INSTANTIATE_TEMPLATE_MV(000003e0, 000003e0);
314     INSTANTIATE_TEMPLATE_MV(000003e2, 000003e0);
315     INSTANTIATE_TEMPLATE_MV(000003e6, 000003e0);
316     INSTANTIATE_TEMPLATE_MV(000003e6, 000003e6);
317     INSTANTIATE_TEMPLATE_MV(00000c00, 00000000);
318     INSTANTIATE_TEMPLATE_MV(00000fc0, 00000000);
319     INSTANTIATE_TEMPLATE_MV(000013e0, 00001000);
320     INSTANTIATE_TEMPLATE_MV(00001c00, 00000000);
321     INSTANTIATE_TEMPLATE_MV(00002400, 00000000);
322     INSTANTIATE_TEMPLATE_MV(00003000, 00000000);
323     INSTANTIATE_TEMPLATE_MV(00003000, 00001000);
324     INSTANTIATE_TEMPLATE_MV(00003000, 00002000);
325     INSTANTIATE_TEMPLATE_MV(00003000, 00003000);
326     INSTANTIATE_TEMPLATE_MV(00003010, 00000000);
327     INSTANTIATE_TEMPLATE_MV(00003c00, 00003c00);
328     INSTANTIATE_TEMPLATE_MV(00040010, 00000000);
329     INSTANTIATE_TEMPLATE_MV(00060000, 00000000);
330     INSTANTIATE_TEMPLATE_MV(00061000, 00000000);
331     INSTANTIATE_TEMPLATE_MV(00070000, 00030000);
332     INSTANTIATE_TEMPLATE_MV(00073ee0, 00033060);
333     INSTANTIATE_TEMPLATE_MV(00073f9f, 0000001f);
334     INSTANTIATE_TEMPLATE_MV(000f0000, 00000000);
335     INSTANTIATE_TEMPLATE_MV(000f0010, 00000000);
336     INSTANTIATE_TEMPLATE_MV(00100200, 00000000);
337     INSTANTIATE_TEMPLATE_MV(00100210, 00000000);
338     INSTANTIATE_TEMPLATE_MV(00160000, 00000000);
339     INSTANTIATE_TEMPLATE_MV(00170000, 00000000);
340     INSTANTIATE_TEMPLATE_MV(001c0000, 00000000);
341     INSTANTIATE_TEMPLATE_MV(001d0000, 00000000);
342     INSTANTIATE_TEMPLATE_MV(001e0000, 00000000);
343     INSTANTIATE_TEMPLATE_MV(001f0000, 00000000);
344     INSTANTIATE_TEMPLATE_MV(001f0000, 00010000);
345     INSTANTIATE_TEMPLATE_MV(001f0000, 00100000);
346     INSTANTIATE_TEMPLATE_MV(001f0000, 001f0000);
347     INSTANTIATE_TEMPLATE_MV(001f3000, 00000000);
348     INSTANTIATE_TEMPLATE_MV(001f3000, 00001000);
349     INSTANTIATE_TEMPLATE_MV(001f3000, 001f0000);
350     INSTANTIATE_TEMPLATE_MV(001f300f, 0000000d);
351     INSTANTIATE_TEMPLATE_MV(001f301f, 0000000d);
352     INSTANTIATE_TEMPLATE_MV(001f33e0, 000103e0);
353     INSTANTIATE_TEMPLATE_MV(001f3800, 00000000);
354     INSTANTIATE_TEMPLATE_MV(00401000, 00400000);
355     INSTANTIATE_TEMPLATE_MV(005f3000, 001f0000);
356     INSTANTIATE_TEMPLATE_MV(005f3000, 001f1000);
357     INSTANTIATE_TEMPLATE_MV(00800010, 00000000);
358     INSTANTIATE_TEMPLATE_MV(00800400, 00000000);
359     INSTANTIATE_TEMPLATE_MV(00800410, 00000000);
360     INSTANTIATE_TEMPLATE_MV(00803000, 00002000);
361     INSTANTIATE_TEMPLATE_MV(00870000, 00000000);
362     INSTANTIATE_TEMPLATE_MV(009f0000, 00010000);
363     INSTANTIATE_TEMPLATE_MV(00c00000, 00000000);
364     INSTANTIATE_TEMPLATE_MV(00c00000, 00400000);
365     INSTANTIATE_TEMPLATE_MV(00c0001f, 00000000);
366     INSTANTIATE_TEMPLATE_MV(00c001ff, 00000000);
367     INSTANTIATE_TEMPLATE_MV(00c00200, 00400000);
368     INSTANTIATE_TEMPLATE_MV(00c0020f, 00400000);
369     INSTANTIATE_TEMPLATE_MV(00c003e0, 00000000);
370     INSTANTIATE_TEMPLATE_MV(00c00800, 00000000);
371     INSTANTIATE_TEMPLATE_MV(00d80800, 00000000);
372     INSTANTIATE_TEMPLATE_MV(00df0000, 00000000);
373     INSTANTIATE_TEMPLATE_MV(00df3800, 001f0800);
374     INSTANTIATE_TEMPLATE_MV(40002000, 40000000);
375     INSTANTIATE_TEMPLATE_MV(40003c00, 00000000);
376     INSTANTIATE_TEMPLATE_MV(40040000, 00000000);
377     INSTANTIATE_TEMPLATE_MV(401f2000, 401f0000);
378     INSTANTIATE_TEMPLATE_MV(40800c00, 40000400);
379     INSTANTIATE_TEMPLATE_MV(40c00000, 00000000);
380     INSTANTIATE_TEMPLATE_MV(40c00000, 00400000);
381     INSTANTIATE_TEMPLATE_MV(40c00000, 40000000);
382     INSTANTIATE_TEMPLATE_MV(40c00000, 40800000);
383     INSTANTIATE_TEMPLATE_MV(40df0000, 00000000);
384     default: {
385       static bool printed_preamble = false;
386       if (!printed_preamble) {
387         printf("One or more missing template instantiations.\n");
388         printf(
389             "Add the following to either GetBitExtractFunction() "
390             "implementations\n");
391         printf("in %s near line %d:\n", __FILE__, __LINE__);
392         printed_preamble = true;
393       }
394 
395       if (y == 0) {
396         printf("  INSTANTIATE_TEMPLATE_M(%08x);\n", x);
397         bit_extract_fn = &Instruction::ExtractBitsAbsent;
398       } else {
399         printf("  INSTANTIATE_TEMPLATE_MV(%08x, %08x);\n", y, x);
400         bit_extract_fn = &Instruction::IsMaskedValueAbsent;
401       }
402     }
403   }
404   return bit_extract_fn;
405 }
406 
407 #undef INSTANTIATE_TEMPLATE_M
408 #undef INSTANTIATE_TEMPLATE_MV
409 
TryCompileOptimisedDecodeTable(Decoder * decoder)410 bool DecodeNode::TryCompileOptimisedDecodeTable(Decoder* decoder) {
411   // EitherOr optimisation: if there are only one or two patterns in the table,
412   // try to optimise the node to exploit that.
413   size_t table_size = pattern_table_.size();
414   if ((table_size <= 2) && (GetSampledBitsCount() > 1)) {
415     // TODO: support 'x' in this optimisation by dropping the sampled bit
416     // positions before making the mask/value.
417     if (!PatternContainsSymbol(pattern_table_[0].pattern,
418                                PatternSymbol::kSymbolX) &&
419         (table_size == 1)) {
420       // A pattern table consisting of a fixed pattern with no x's, and an
421       // "otherwise" or absent case. Optimise this into an instruction mask and
422       // value test.
423       uint32_t single_decode_mask = 0;
424       uint32_t single_decode_value = 0;
425       const std::vector<uint8_t>& bits = GetSampledBits();
426 
427       // Construct the instruction mask and value from the pattern.
428       VIXL_ASSERT(bits.size() == GetPatternLength(pattern_table_[0].pattern));
429       for (size_t i = 0; i < bits.size(); i++) {
430         single_decode_mask |= 1U << bits[i];
431         if (GetSymbolAt(pattern_table_[0].pattern, i) ==
432             PatternSymbol::kSymbol1) {
433           single_decode_value |= 1U << bits[i];
434         }
435       }
436       BitExtractFn bit_extract_fn =
437           GetBitExtractFunction(single_decode_mask, single_decode_value);
438 
439       // Create a compiled node that contains a two entry table for the
440       // either/or cases.
441       CreateCompiledNode(bit_extract_fn, 2);
442 
443       // Set DecodeNode for when the instruction after masking doesn't match the
444       // value.
445       CompileNodeForBits(decoder, "unallocated", 0);
446 
447       // Set DecodeNode for when it does match.
448       CompileNodeForBits(decoder, pattern_table_[0].handler, 1);
449 
450       return true;
451     }
452   }
453   return false;
454 }
455 
Compile(Decoder * decoder)456 CompiledDecodeNode* DecodeNode::Compile(Decoder* decoder) {
457   if (IsLeafNode()) {
458     // A leaf node is a simple wrapper around a visitor function, with no
459     // instruction decoding to do.
460     CreateVisitorNode();
461   } else if (!TryCompileOptimisedDecodeTable(decoder)) {
462     // The "otherwise" node is the default next node if no pattern matches.
463     std::string otherwise = "unallocated";
464 
465     // For each pattern in pattern_table_, create an entry in matches that
466     // has a corresponding mask and value for the pattern.
467     std::vector<MaskValuePair> matches;
468     for (size_t i = 0; i < pattern_table_.size(); i++) {
469       matches.push_back(GenerateMaskValuePair(
470           GenerateOrderedPattern(pattern_table_[i].pattern)));
471     }
472 
473     BitExtractFn bit_extract_fn =
474         GetBitExtractFunction(GenerateSampledBitsMask());
475 
476     // Create a compiled node that contains a table with an entry for every bit
477     // pattern.
478     CreateCompiledNode(bit_extract_fn,
479                        static_cast<size_t>(1) << GetSampledBitsCount());
480     VIXL_ASSERT(compiled_node_ != NULL);
481 
482     // When we find a pattern matches the representation, set the node's decode
483     // function for that representation to the corresponding function.
484     for (uint32_t bits = 0; bits < (1U << GetSampledBitsCount()); bits++) {
485       for (size_t i = 0; i < matches.size(); i++) {
486         if ((bits & matches[i].first) == matches[i].second) {
487           // Only one instruction class should match for each value of bits, so
488           // if we get here, the node pointed to should still be unallocated.
489           VIXL_ASSERT(compiled_node_->GetNodeForBits(bits) == NULL);
490           CompileNodeForBits(decoder, pattern_table_[i].handler, bits);
491           break;
492         }
493       }
494 
495       // If the decode_table_ entry for these bits is still NULL, the
496       // instruction must be handled by the "otherwise" case, which by default
497       // is the Unallocated visitor.
498       if (compiled_node_->GetNodeForBits(bits) == NULL) {
499         CompileNodeForBits(decoder, otherwise, bits);
500       }
501     }
502   }
503 
504   VIXL_ASSERT(compiled_node_ != NULL);
505   return compiled_node_;
506 }
507 
Decode(const Instruction * instr) const508 void CompiledDecodeNode::Decode(const Instruction* instr) const {
509   if (IsLeafNode()) {
510     // If this node is a leaf, call the registered visitor function.
511     VIXL_ASSERT(decoder_ != NULL);
512     decoder_->VisitNamedInstruction(instr, instruction_name_);
513   } else {
514     // Otherwise, using the sampled bit extractor for this node, look up the
515     // next node in the decode tree, and call its Decode method.
516     VIXL_ASSERT(bit_extract_fn_ != NULL);
517     VIXL_ASSERT((instr->*bit_extract_fn_)() < decode_table_size_);
518     VIXL_ASSERT(decode_table_[(instr->*bit_extract_fn_)()] != NULL);
519     decode_table_[(instr->*bit_extract_fn_)()]->Decode(instr);
520   }
521 }
522 
GenerateMaskValuePair(uint32_t pattern) const523 DecodeNode::MaskValuePair DecodeNode::GenerateMaskValuePair(
524     uint32_t pattern) const {
525   uint32_t mask = 0, value = 0;
526   for (size_t i = 0; i < GetPatternLength(pattern); i++) {
527     PatternSymbol sym = GetSymbolAt(pattern, i);
528     mask = (mask << 1) | ((sym == PatternSymbol::kSymbolX) ? 0 : 1);
529     value = (value << 1) | (static_cast<uint32_t>(sym) & 1);
530   }
531   return std::make_pair(mask, value);
532 }
533 
GenerateOrderedPattern(uint32_t pattern) const534 uint32_t DecodeNode::GenerateOrderedPattern(uint32_t pattern) const {
535   const std::vector<uint8_t>& sampled_bits = GetSampledBits();
536   uint64_t temp = 0xffffffffffffffff;
537 
538   // Place symbols into the field of set bits. Symbols are two bits wide and
539   // take values 0, 1 or 2, so 3 will represent "no symbol".
540   for (size_t i = 0; i < sampled_bits.size(); i++) {
541     int shift = sampled_bits[i] * 2;
542     temp ^= static_cast<uint64_t>(kEndOfPattern) << shift;
543     temp |= static_cast<uint64_t>(GetSymbolAt(pattern, i)) << shift;
544   }
545 
546   // Iterate over temp and extract new pattern ordered by sample position.
547   uint32_t result = kEndOfPattern;  // End of pattern marker.
548 
549   // Iterate over the pattern one symbol (two bits) at a time.
550   for (int i = 62; i >= 0; i -= 2) {
551     uint32_t sym = (temp >> i) & kPatternSymbolMask;
552 
553     // If this is a valid symbol, shift into the result.
554     if (sym != kEndOfPattern) {
555       result = (result << 2) | sym;
556     }
557   }
558 
559   // The length of the ordered pattern must be the same as the input pattern,
560   // and the number of sampled bits.
561   VIXL_ASSERT(GetPatternLength(result) == GetPatternLength(pattern));
562   VIXL_ASSERT(GetPatternLength(result) == sampled_bits.size());
563 
564   return result;
565 }
566 
GenerateSampledBitsMask() const567 uint32_t DecodeNode::GenerateSampledBitsMask() const {
568   uint32_t mask = 0;
569   for (int bit : GetSampledBits()) {
570     mask |= 1 << bit;
571   }
572   return mask;
573 }
574 
575 }  // namespace aarch64
576 }  // namespace vixl
577