• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Student's t distribution class."""
16
17import numpy as np
18
19from tensorflow.python.framework import constant_op
20from tensorflow.python.framework import dtypes
21from tensorflow.python.framework import ops
22from tensorflow.python.framework import tensor_shape
23from tensorflow.python.ops import array_ops
24from tensorflow.python.ops import check_ops
25from tensorflow.python.ops import control_flow_ops
26from tensorflow.python.ops import math_ops
27from tensorflow.python.ops import nn
28from tensorflow.python.ops import random_ops
29from tensorflow.python.ops import special_math_ops
30from tensorflow.python.ops.distributions import distribution
31from tensorflow.python.ops.distributions import util as distribution_util
32from tensorflow.python.util import deprecation
33from tensorflow.python.util.tf_export import tf_export
34
35
36__all__ = [
37    "StudentT",
38    "StudentTWithAbsDfSoftplusScale",
39]
40
41
42@tf_export(v1=["distributions.StudentT"])
43class StudentT(distribution.Distribution):
44  """Student's t-distribution.
45
46  This distribution has parameters: degree of freedom `df`, location `loc`,
47  and `scale`.
48
49  #### Mathematical details
50
51  The probability density function (pdf) is,
52
53  ```none
54  pdf(x; df, mu, sigma) = (1 + y**2 / df)**(-0.5 (df + 1)) / Z
55  where,
56  y = (x - mu) / sigma
57  Z = abs(sigma) sqrt(df pi) Gamma(0.5 df) / Gamma(0.5 (df + 1))
58  ```
59
60  where:
61  * `loc = mu`,
62  * `scale = sigma`, and,
63  * `Z` is the normalization constant, and,
64  * `Gamma` is the [gamma function](
65    https://en.wikipedia.org/wiki/Gamma_function).
66
67  The StudentT distribution is a member of the [location-scale family](
68  https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
69  constructed as,
70
71  ```none
72  X ~ StudentT(df, loc=0, scale=1)
73  Y = loc + scale * X
74  ```
75
76  Notice that `scale` has semantics more similar to standard deviation than
77  variance. However it is not actually the std. deviation; the Student's
78  t-distribution std. dev. is `scale sqrt(df / (df - 2))` when `df > 2`.
79
80  Samples of this distribution are reparameterized (pathwise differentiable).
81  The derivatives are computed using the approach described in
82  (Figurnov et al., 2018).
83
84  #### Examples
85
86  Examples of initialization of one or a batch of distributions.
87
88  ```python
89  import tensorflow_probability as tfp
90  tfd = tfp.distributions
91
92  # Define a single scalar Student t distribution.
93  single_dist = tfd.StudentT(df=3)
94
95  # Evaluate the pdf at 1, returning a scalar Tensor.
96  single_dist.prob(1.)
97
98  # Define a batch of two scalar valued Student t's.
99  # The first has degrees of freedom 2, mean 1, and scale 11.
100  # The second 3, 2 and 22.
101  multi_dist = tfd.StudentT(df=[2, 3], loc=[1, 2.], scale=[11, 22.])
102
103  # Evaluate the pdf of the first distribution on 0, and the second on 1.5,
104  # returning a length two tensor.
105  multi_dist.prob([0, 1.5])
106
107  # Get 3 samples, returning a 3 x 2 tensor.
108  multi_dist.sample(3)
109  ```
110
111  Arguments are broadcast when possible.
112
113  ```python
114  # Define a batch of two Student's t distributions.
115  # Both have df 2 and mean 1, but different scales.
116  dist = tfd.StudentT(df=2, loc=1, scale=[11, 22.])
117
118  # Evaluate the pdf of both distributions on the same point, 3.0,
119  # returning a length 2 tensor.
120  dist.prob(3.0)
121  ```
122
123  Compute the gradients of samples w.r.t. the parameters:
124
125  ```python
126  df = tf.constant(2.0)
127  loc = tf.constant(2.0)
128  scale = tf.constant(11.0)
129  dist = tfd.StudentT(df=df, loc=loc, scale=scale)
130  samples = dist.sample(5)  # Shape [5]
131  loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
132  # Unbiased stochastic gradients of the loss function
133  grads = tf.gradients(loss, [df, loc, scale])
134  ```
135
136  References:
137    Implicit Reparameterization Gradients:
138      [Figurnov et al., 2018]
139      (http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients)
140      ([pdf](http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf))
141  """
142
143  @deprecation.deprecated(
144      "2019-01-01",
145      "The TensorFlow Distributions library has moved to "
146      "TensorFlow Probability "
147      "(https://github.com/tensorflow/probability). You "
148      "should update all references to use `tfp.distributions` "
149      "instead of `tf.distributions`.",
150      warn_once=True)
151  def __init__(self,
152               df,
153               loc,
154               scale,
155               validate_args=False,
156               allow_nan_stats=True,
157               name="StudentT"):
158    """Construct Student's t distributions.
159
160    The distributions have degree of freedom `df`, mean `loc`, and scale
161    `scale`.
162
163    The parameters `df`, `loc`, and `scale` must be shaped in a way that
164    supports broadcasting (e.g. `df + loc + scale` is a valid operation).
165
166    Args:
167      df: Floating-point `Tensor`. The degrees of freedom of the
168        distribution(s). `df` must contain only positive values.
169      loc: Floating-point `Tensor`. The mean(s) of the distribution(s).
170      scale: Floating-point `Tensor`. The scaling factor(s) for the
171        distribution(s). Note that `scale` is not technically the standard
172        deviation of this distribution but has semantics more similar to
173        standard deviation than variance.
174      validate_args: Python `bool`, default `False`. When `True` distribution
175        parameters are checked for validity despite possibly degrading runtime
176        performance. When `False` invalid inputs may silently render incorrect
177        outputs.
178      allow_nan_stats: Python `bool`, default `True`. When `True`,
179        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
180        indicate the result is undefined. When `False`, an exception is raised
181        if one or more of the statistic's batch members are undefined.
182      name: Python `str` name prefixed to Ops created by this class.
183
184    Raises:
185      TypeError: if loc and scale are different dtypes.
186    """
187    parameters = dict(locals())
188    with ops.name_scope(name, values=[df, loc, scale]) as name:
189      with ops.control_dependencies([check_ops.assert_positive(df)]
190                                    if validate_args else []):
191        self._df = array_ops.identity(df, name="df")
192        self._loc = array_ops.identity(loc, name="loc")
193        self._scale = array_ops.identity(scale, name="scale")
194        check_ops.assert_same_float_dtype(
195            (self._df, self._loc, self._scale))
196    super(StudentT, self).__init__(
197        dtype=self._scale.dtype,
198        reparameterization_type=distribution.FULLY_REPARAMETERIZED,
199        validate_args=validate_args,
200        allow_nan_stats=allow_nan_stats,
201        parameters=parameters,
202        graph_parents=[self._df, self._loc, self._scale],
203        name=name)
204
205  @staticmethod
206  def _param_shapes(sample_shape):
207    return dict(
208        zip(("df", "loc", "scale"), (
209            [ops.convert_to_tensor(
210                sample_shape, dtype=dtypes.int32)] * 3)))
211
212  @property
213  def df(self):
214    """Degrees of freedom in these Student's t distribution(s)."""
215    return self._df
216
217  @property
218  def loc(self):
219    """Locations of these Student's t distribution(s)."""
220    return self._loc
221
222  @property
223  def scale(self):
224    """Scaling factors of these Student's t distribution(s)."""
225    return self._scale
226
227  def _batch_shape_tensor(self):
228    return array_ops.broadcast_dynamic_shape(
229        array_ops.shape(self.df),
230        array_ops.broadcast_dynamic_shape(
231            array_ops.shape(self.loc), array_ops.shape(self.scale)))
232
233  def _batch_shape(self):
234    return array_ops.broadcast_static_shape(
235        array_ops.broadcast_static_shape(self.df.get_shape(),
236                                         self.loc.get_shape()),
237        self.scale.get_shape())
238
239  def _event_shape_tensor(self):
240    return constant_op.constant([], dtype=math_ops.int32)
241
242  def _event_shape(self):
243    return tensor_shape.TensorShape([])
244
245  def _sample_n(self, n, seed=None):
246    # The sampling method comes from the fact that if:
247    #   X ~ Normal(0, 1)
248    #   Z ~ Chi2(df)
249    #   Y = X / sqrt(Z / df)
250    # then:
251    #   Y ~ StudentT(df).
252    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
253    normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
254    df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
255    gamma_sample = random_ops.random_gamma(
256        [n],
257        0.5 * df,
258        beta=0.5,
259        dtype=self.dtype,
260        seed=distribution_util.gen_new_seed(seed, salt="student_t"))
261    samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
262    return samples * self.scale + self.loc  # Abs(scale) not wanted.
263
264  def _log_prob(self, x):
265    return self._log_unnormalized_prob(x) - self._log_normalization()
266
267  def _log_unnormalized_prob(self, x):
268    y = (x - self.loc) / self.scale  # Abs(scale) superfluous.
269    return -0.5 * (self.df + 1.) * math_ops.log1p(y**2. / self.df)
270
271  def _log_normalization(self):
272    return (math_ops.log(math_ops.abs(self.scale)) +
273            0.5 * math_ops.log(self.df) +
274            0.5 * np.log(np.pi) +
275            math_ops.lgamma(0.5 * self.df) -
276            math_ops.lgamma(0.5 * (self.df + 1.)))
277
278  def _cdf(self, x):
279    # Take Abs(scale) to make subsequent where work correctly.
280    y = (x - self.loc) / math_ops.abs(self.scale)
281    x_t = self.df / (y**2. + self.df)
282    neg_cdf = 0.5 * math_ops.betainc(0.5 * self.df, 0.5, x_t)
283    return array_ops.where_v2(math_ops.less(y, 0.), neg_cdf, 1. - neg_cdf)
284
285  def _entropy(self):
286    v = array_ops.ones(self.batch_shape_tensor(),
287                       dtype=self.dtype)[..., array_ops.newaxis]
288    u = v * self.df[..., array_ops.newaxis]
289    beta_arg = array_ops.concat([u, v], -1) / 2.
290    return (math_ops.log(math_ops.abs(self.scale)) +
291            0.5 * math_ops.log(self.df) +
292            special_math_ops.lbeta(beta_arg) +
293            0.5 * (self.df + 1.) *
294            (math_ops.digamma(0.5 * (self.df + 1.)) -
295             math_ops.digamma(0.5 * self.df)))
296
297  @distribution_util.AppendDocstring(
298      """The mean of Student's T equals `loc` if `df > 1`, otherwise it is
299      `NaN`. If `self.allow_nan_stats=True`, then an exception will be raised
300      rather than returning `NaN`.""")
301  def _mean(self):
302    mean = self.loc * array_ops.ones(self.batch_shape_tensor(),
303                                     dtype=self.dtype)
304    if self.allow_nan_stats:
305      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
306      return array_ops.where_v2(
307          math_ops.greater(
308              self.df,
309              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
310          mean, array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
311    else:
312      return control_flow_ops.with_dependencies(
313          [
314              check_ops.assert_less(
315                  array_ops.ones([], dtype=self.dtype),
316                  self.df,
317                  message="mean not defined for components of df <= 1"),
318          ],
319          mean)
320
321  @distribution_util.AppendDocstring("""
322      The variance for Student's T equals
323
324      ```
325      df / (df - 2), when df > 2
326      infinity, when 1 < df <= 2
327      NaN, when df <= 1
328      ```
329      """)
330  def _variance(self):
331    # We need to put the tf.where inside the outer tf.where to ensure we never
332    # hit a NaN in the gradient.
333    denom = array_ops.where_v2(
334        math_ops.greater(self.df, 2.), self.df - 2.,
335        array_ops.ones_like(self.df))
336    # Abs(scale) superfluous.
337    var = (array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype) *
338           math_ops.square(self.scale) * self.df / denom)
339    # When 1 < df <= 2, variance is infinite.
340    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
341    result_where_defined = array_ops.where_v2(
342        self.df > array_ops.fill(self.batch_shape_tensor(), 2.), var,
343        array_ops.fill(self.batch_shape_tensor(), inf, name="inf"))
344
345    if self.allow_nan_stats:
346      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
347      return array_ops.where_v2(
348          math_ops.greater(
349              self.df,
350              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
351          result_where_defined,
352          array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
353    else:
354      return control_flow_ops.with_dependencies(
355          [
356              check_ops.assert_less(
357                  array_ops.ones([], dtype=self.dtype),
358                  self.df,
359                  message="variance not defined for components of df <= 1"),
360          ],
361          result_where_defined)
362
363  def _mode(self):
364    return array_ops.identity(self.loc)
365
366
367class StudentTWithAbsDfSoftplusScale(StudentT):
368  """StudentT with `df = floor(abs(df))` and `scale = softplus(scale)`."""
369
370  @deprecation.deprecated(
371      "2019-01-01",
372      "Use `tfd.StudentT(tf.floor(tf.abs(df)), loc, "
373      "tf.nn.softplus(scale)) instead.",
374      warn_once=True)
375  def __init__(self,
376               df,
377               loc,
378               scale,
379               validate_args=False,
380               allow_nan_stats=True,
381               name="StudentTWithAbsDfSoftplusScale"):
382    parameters = dict(locals())
383    with ops.name_scope(name, values=[df, scale]) as name:
384      super(StudentTWithAbsDfSoftplusScale, self).__init__(
385          df=math_ops.floor(math_ops.abs(df)),
386          loc=loc,
387          scale=nn.softplus(scale, name="softplus_scale"),
388          validate_args=validate_args,
389          allow_nan_stats=allow_nan_stats,
390          name=name)
391    self._parameters = parameters
392