1 //! The [`Layer`] trait, a composable abstraction for building [`Subscriber`]s.
2 //!
3 //! The [`Subscriber`] trait in `tracing-core` represents the _complete_ set of
4 //! functionality required to consume `tracing` instrumentation. This means that
5 //! a single `Subscriber` instance is a self-contained implementation of a
6 //! complete strategy for collecting traces; but it _also_ means that the
7 //! `Subscriber` trait cannot easily be composed with other `Subscriber`s.
8 //!
9 //! In particular, [`Subscriber`]s are responsible for generating [span IDs] and
10 //! assigning them to spans. Since these IDs must uniquely identify a span
11 //! within the context of the current trace, this means that there may only be
12 //! a single `Subscriber` for a given thread at any point in time —
13 //! otherwise, there would be no authoritative source of span IDs.
14 //!
15 //! On the other hand, the majority of the [`Subscriber`] trait's functionality
16 //! is composable: any number of subscribers may _observe_ events, span entry
17 //! and exit, and so on, provided that there is a single authoritative source of
18 //! span IDs. The [`Layer`] trait represents this composable subset of the
19 //! [`Subscriber`] behavior; it can _observe_ events and spans, but does not
20 //! assign IDs.
21 //!
22 //! # Composing Layers
23 //!
24 //! Since a [`Layer`] does not implement a complete strategy for collecting
25 //! traces, it must be composed with a `Subscriber` in order to be used. The
26 //! [`Layer`] trait is generic over a type parameter (called `S` in the trait
27 //! definition), representing the types of `Subscriber` they can be composed
28 //! with. Thus, a [`Layer`] may be implemented that will only compose with a
29 //! particular `Subscriber` implementation, or additional trait bounds may be
30 //! added to constrain what types implementing `Subscriber` a `Layer` can wrap.
31 //!
32 //! `Layer`s may be added to a `Subscriber` by using the [`SubscriberExt::with`]
33 //! method, which is provided by `tracing-subscriber`'s [prelude]. This method
34 //! returns a [`Layered`] struct that implements `Subscriber` by composing the
35 //! `Layer` with the `Subscriber`.
36 //!
37 //! For example:
38 //! ```rust
39 //! use tracing_subscriber::Layer;
40 //! use tracing_subscriber::prelude::*;
41 //! use tracing::Subscriber;
42 //!
43 //! pub struct MyLayer {
44 //! // ...
45 //! }
46 //!
47 //! impl<S: Subscriber> Layer<S> for MyLayer {
48 //! // ...
49 //! }
50 //!
51 //! pub struct MySubscriber {
52 //! // ...
53 //! }
54 //!
55 //! # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
56 //! impl Subscriber for MySubscriber {
57 //! // ...
58 //! # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
59 //! # fn record(&self, _: &Id, _: &Record) {}
60 //! # fn event(&self, _: &Event) {}
61 //! # fn record_follows_from(&self, _: &Id, _: &Id) {}
62 //! # fn enabled(&self, _: &Metadata) -> bool { false }
63 //! # fn enter(&self, _: &Id) {}
64 //! # fn exit(&self, _: &Id) {}
65 //! }
66 //! # impl MyLayer {
67 //! # fn new() -> Self { Self {} }
68 //! # }
69 //! # impl MySubscriber {
70 //! # fn new() -> Self { Self { }}
71 //! # }
72 //!
73 //! let subscriber = MySubscriber::new()
74 //! .with(MyLayer::new());
75 //!
76 //! tracing::subscriber::set_global_default(subscriber);
77 //! ```
78 //!
79 //! Multiple `Layer`s may be composed in the same manner:
80 //! ```rust
81 //! # use tracing_subscriber::{Layer, layer::SubscriberExt};
82 //! # use tracing::Subscriber;
83 //! pub struct MyOtherLayer {
84 //! // ...
85 //! }
86 //!
87 //! impl<S: Subscriber> Layer<S> for MyOtherLayer {
88 //! // ...
89 //! }
90 //!
91 //! pub struct MyThirdLayer {
92 //! // ...
93 //! }
94 //!
95 //! impl<S: Subscriber> Layer<S> for MyThirdLayer {
96 //! // ...
97 //! }
98 //! # pub struct MyLayer {}
99 //! # impl<S: Subscriber> Layer<S> for MyLayer {}
100 //! # pub struct MySubscriber { }
101 //! # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
102 //! # impl Subscriber for MySubscriber {
103 //! # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
104 //! # fn record(&self, _: &Id, _: &Record) {}
105 //! # fn event(&self, _: &Event) {}
106 //! # fn record_follows_from(&self, _: &Id, _: &Id) {}
107 //! # fn enabled(&self, _: &Metadata) -> bool { false }
108 //! # fn enter(&self, _: &Id) {}
109 //! # fn exit(&self, _: &Id) {}
110 //! }
111 //! # impl MyLayer {
112 //! # fn new() -> Self { Self {} }
113 //! # }
114 //! # impl MyOtherLayer {
115 //! # fn new() -> Self { Self {} }
116 //! # }
117 //! # impl MyThirdLayer {
118 //! # fn new() -> Self { Self {} }
119 //! # }
120 //! # impl MySubscriber {
121 //! # fn new() -> Self { Self { }}
122 //! # }
123 //!
124 //! let subscriber = MySubscriber::new()
125 //! .with(MyLayer::new())
126 //! .with(MyOtherLayer::new())
127 //! .with(MyThirdLayer::new());
128 //!
129 //! tracing::subscriber::set_global_default(subscriber);
130 //! ```
131 //!
132 //! The [`Layer::with_subscriber`] constructs the [`Layered`] type from a
133 //! [`Layer`] and [`Subscriber`], and is called by [`SubscriberExt::with`]. In
134 //! general, it is more idiomatic to use [`SubscriberExt::with`], and treat
135 //! [`Layer::with_subscriber`] as an implementation detail, as `with_subscriber`
136 //! calls must be nested, leading to less clear code for the reader.
137 //!
138 //! ## Runtime Configuration With `Layer`s
139 //!
140 //! In some cases, a particular [`Layer`] may be enabled or disabled based on
141 //! runtime configuration. This can introduce challenges, because the type of a
142 //! layered [`Subscriber`] depends on which layers are added to it: if an `if`
143 //! or `match` expression adds some [`Layer`] implementation in one branch,
144 //! and other layers in another, the [`Subscriber`] values returned by those
145 //! branches will have different types. For example, the following _will not_
146 //! work:
147 //!
148 //! ```compile_fail
149 //! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
150 //! # struct Config {
151 //! # is_prod: bool,
152 //! # path: &'static str,
153 //! # }
154 //! # let cfg = Config { is_prod: false, path: "debug.log" };
155 //! use std::fs::File;
156 //! use tracing_subscriber::{Registry, prelude::*};
157 //!
158 //! let stdout_log = tracing_subscriber::fmt::layer().pretty();
159 //! let subscriber = Registry::default().with(stdout_log);
160 //!
161 //! // The compile error will occur here because the if and else
162 //! // branches have different (and therefore incompatible) types.
163 //! let subscriber = if cfg.is_prod {
164 //! let file = File::create(cfg.path)?;
165 //! let layer = tracing_subscriber::fmt::layer()
166 //! .json()
167 //! .with_writer(Arc::new(file));
168 //! layer.with(subscriber)
169 //! } else {
170 //! layer
171 //! };
172 //!
173 //! tracing::subscriber::set_global_default(subscriber)
174 //! .expect("Unable to set global subscriber");
175 //! # Ok(()) }
176 //! ```
177 //!
178 //! However, a [`Layer`] wrapped in an [`Option`] [also implements the `Layer`
179 //! trait][option-impl]. This allows individual layers to be enabled or disabled at
180 //! runtime while always producing a [`Subscriber`] of the same type. For
181 //! example:
182 //!
183 //! ```
184 //! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
185 //! # struct Config {
186 //! # is_prod: bool,
187 //! # path: &'static str,
188 //! # }
189 //! # let cfg = Config { is_prod: false, path: "debug.log" };
190 //! use std::fs::File;
191 //! use tracing_subscriber::{Registry, prelude::*};
192 //!
193 //! let stdout_log = tracing_subscriber::fmt::layer().pretty();
194 //! let subscriber = Registry::default().with(stdout_log);
195 //!
196 //! // if `cfg.is_prod` is true, also log JSON-formatted logs to a file.
197 //! let json_log = if cfg.is_prod {
198 //! let file = File::create(cfg.path)?;
199 //! let json_log = tracing_subscriber::fmt::layer()
200 //! .json()
201 //! .with_writer(file);
202 //! Some(json_log)
203 //! } else {
204 //! None
205 //! };
206 //!
207 //! // If `cfg.is_prod` is false, then `json` will be `None`, and this layer
208 //! // will do nothing. However, the subscriber will still have the same type
209 //! // regardless of whether the `Option`'s value is `None` or `Some`.
210 //! let subscriber = subscriber.with(json_log);
211 //!
212 //! tracing::subscriber::set_global_default(subscriber)
213 //! .expect("Unable to set global subscriber");
214 //! # Ok(()) }
215 //! ```
216 //!
217 //! If a [`Layer`] may be one of several different types, note that [`Box<dyn
218 //! Layer<S> + Send + Sync>` implements `Layer`][box-impl].
219 //! This may be used to erase the type of a [`Layer`].
220 //!
221 //! For example, a function that configures a [`Layer`] to log to one of
222 //! several outputs might return a `Box<dyn Layer<S> + Send + Sync + 'static>`:
223 //! ```
224 //! use tracing_subscriber::{
225 //! Layer,
226 //! registry::LookupSpan,
227 //! prelude::*,
228 //! };
229 //! use std::{path::PathBuf, fs::File, io};
230 //!
231 //! /// Configures whether logs are emitted to a file, to stdout, or to stderr.
232 //! pub enum LogConfig {
233 //! File(PathBuf),
234 //! Stdout,
235 //! Stderr,
236 //! }
237 //!
238 //! impl LogConfig {
239 //! pub fn layer<S>(self) -> Box<dyn Layer<S> + Send + Sync + 'static>
240 //! where
241 //! S: tracing_core::Subscriber,
242 //! for<'a> S: LookupSpan<'a>,
243 //! {
244 //! // Shared configuration regardless of where logs are output to.
245 //! let fmt = tracing_subscriber::fmt::layer()
246 //! .with_target(true)
247 //! .with_thread_names(true);
248 //!
249 //! // Configure the writer based on the desired log target:
250 //! match self {
251 //! LogConfig::File(path) => {
252 //! let file = File::create(path).expect("failed to create log file");
253 //! Box::new(fmt.with_writer(file))
254 //! },
255 //! LogConfig::Stdout => Box::new(fmt.with_writer(io::stdout)),
256 //! LogConfig::Stderr => Box::new(fmt.with_writer(io::stderr)),
257 //! }
258 //! }
259 //! }
260 //!
261 //! let config = LogConfig::Stdout;
262 //! tracing_subscriber::registry()
263 //! .with(config.layer())
264 //! .init();
265 //! ```
266 //!
267 //! The [`Layer::boxed`] method is provided to make boxing a `Layer`
268 //! more convenient, but [`Box::new`] may be used as well.
269 //!
270 //! When the number of `Layer`s varies at runtime, note that a
271 //! [`Vec<L> where L: Layer` also implements `Layer`][vec-impl]. This
272 //! can be used to add a variable number of `Layer`s to a `Subscriber`:
273 //!
274 //! ```
275 //! use tracing_subscriber::{Layer, prelude::*};
276 //! struct MyLayer {
277 //! // ...
278 //! }
279 //! # impl MyLayer { fn new() -> Self { Self {} }}
280 //!
281 //! impl<S: tracing_core::Subscriber> Layer<S> for MyLayer {
282 //! // ...
283 //! }
284 //!
285 //! /// Returns how many layers we need
286 //! fn how_many_layers() -> usize {
287 //! // ...
288 //! # 3
289 //! }
290 //!
291 //! // Create a variable-length `Vec` of layers
292 //! let mut layers = Vec::new();
293 //! for _ in 0..how_many_layers() {
294 //! layers.push(MyLayer::new());
295 //! }
296 //!
297 //! tracing_subscriber::registry()
298 //! .with(layers)
299 //! .init();
300 //! ```
301 //!
302 //! If a variable number of `Layer` is needed and those `Layer`s have
303 //! different types, a `Vec` of [boxed `Layer` trait objects][box-impl] may
304 //! be used. For example:
305 //!
306 //! ```
307 //! use tracing_subscriber::{filter::LevelFilter, Layer, prelude::*};
308 //! use std::fs::File;
309 //! # fn main() -> Result<(), Box<dyn std::error::Error>> {
310 //! struct Config {
311 //! enable_log_file: bool,
312 //! enable_stdout: bool,
313 //! enable_stderr: bool,
314 //! // ...
315 //! }
316 //! # impl Config {
317 //! # fn from_config_file()-> Result<Self, Box<dyn std::error::Error>> {
318 //! # // don't enable the log file so that the example doesn't actually create it
319 //! # Ok(Self { enable_log_file: false, enable_stdout: true, enable_stderr: true })
320 //! # }
321 //! # }
322 //!
323 //! let cfg = Config::from_config_file()?;
324 //!
325 //! // Based on our dynamically loaded config file, create any number of layers:
326 //! let mut layers = Vec::new();
327 //!
328 //! if cfg.enable_log_file {
329 //! let file = File::create("myapp.log")?;
330 //! let layer = tracing_subscriber::fmt::layer()
331 //! .with_thread_names(true)
332 //! .with_target(true)
333 //! .json()
334 //! .with_writer(file)
335 //! // Box the layer as a type-erased trait object, so that it can
336 //! // be pushed to the `Vec`.
337 //! .boxed();
338 //! layers.push(layer);
339 //! }
340 //!
341 //! if cfg.enable_stdout {
342 //! let layer = tracing_subscriber::fmt::layer()
343 //! .pretty()
344 //! .with_filter(LevelFilter::INFO)
345 //! // Box the layer as a type-erased trait object, so that it can
346 //! // be pushed to the `Vec`.
347 //! .boxed();
348 //! layers.push(layer);
349 //! }
350 //!
351 //! if cfg.enable_stdout {
352 //! let layer = tracing_subscriber::fmt::layer()
353 //! .with_target(false)
354 //! .with_filter(LevelFilter::WARN)
355 //! // Box the layer as a type-erased trait object, so that it can
356 //! // be pushed to the `Vec`.
357 //! .boxed();
358 //! layers.push(layer);
359 //! }
360 //!
361 //! tracing_subscriber::registry()
362 //! .with(layers)
363 //! .init();
364 //!# Ok(()) }
365 //! ```
366 //!
367 //! Finally, if the number of layers _changes_ at runtime, a `Vec` of
368 //! subscribers can be used alongside the [`reload`](crate::reload) module to
369 //! add or remove subscribers dynamically at runtime.
370 //!
371 //! [option-impl]: Layer#impl-Layer<S>-for-Option<L>
372 //! [box-impl]: Layer#impl-Layer%3CS%3E-for-Box%3Cdyn%20Layer%3CS%3E%20+%20Send%20+%20Sync%3E
373 //! [vec-impl]: Layer#impl-Layer<S>-for-Vec<L>
374 //! [prelude]: crate::prelude
375 //!
376 //! # Recording Traces
377 //!
378 //! The [`Layer`] trait defines a set of methods for consuming notifications from
379 //! tracing instrumentation, which are generally equivalent to the similarly
380 //! named methods on [`Subscriber`]. Unlike [`Subscriber`], the methods on
381 //! `Layer` are additionally passed a [`Context`] type, which exposes additional
382 //! information provided by the wrapped subscriber (such as [the current span])
383 //! to the layer.
384 //!
385 //! # Filtering with `Layer`s
386 //!
387 //! As well as strategies for handling trace events, the `Layer` trait may also
388 //! be used to represent composable _filters_. This allows the determination of
389 //! what spans and events should be recorded to be decoupled from _how_ they are
390 //! recorded: a filtering layer can be applied to other layers or
391 //! subscribers. `Layer`s can be used to implement _global filtering_, where a
392 //! `Layer` provides a filtering strategy for the entire subscriber.
393 //! Additionally, individual recording `Layer`s or sets of `Layer`s may be
394 //! combined with _per-layer filters_ that control what spans and events are
395 //! recorded by those layers.
396 //!
397 //! ## Global Filtering
398 //!
399 //! A `Layer` that implements a filtering strategy should override the
400 //! [`register_callsite`] and/or [`enabled`] methods. It may also choose to implement
401 //! methods such as [`on_enter`], if it wishes to filter trace events based on
402 //! the current span context.
403 //!
404 //! Note that the [`Layer::register_callsite`] and [`Layer::enabled`] methods
405 //! determine whether a span or event is enabled *globally*. Thus, they should
406 //! **not** be used to indicate whether an individual layer wishes to record a
407 //! particular span or event. Instead, if a layer is only interested in a subset
408 //! of trace data, but does *not* wish to disable other spans and events for the
409 //! rest of the layer stack should ignore those spans and events in its
410 //! notification methods.
411 //!
412 //! The filtering methods on a stack of `Layer`s are evaluated in a top-down
413 //! order, starting with the outermost `Layer` and ending with the wrapped
414 //! [`Subscriber`]. If any layer returns `false` from its [`enabled`] method, or
415 //! [`Interest::never()`] from its [`register_callsite`] method, filter
416 //! evaluation will short-circuit and the span or event will be disabled.
417 //!
418 //! ### Enabling Interest
419 //!
420 //! Whenever an tracing event (or span) is emitted, it goes through a number of
421 //! steps to determine how and how much it should be processed. The earlier an
422 //! event is disabled, the less work has to be done to process the event, so
423 //! `Layer`s that implement filtering should attempt to disable unwanted
424 //! events as early as possible. In order, each event checks:
425 //!
426 //! - [`register_callsite`], once per callsite (roughly: once per time that
427 //! `event!` or `span!` is written in the source code; this is cached at the
428 //! callsite). See [`Subscriber::register_callsite`] and
429 //! [`tracing_core::callsite`] for a summary of how this behaves.
430 //! - [`enabled`], once per emitted event (roughly: once per time that `event!`
431 //! or `span!` is *executed*), and only if `register_callsite` registers an
432 //! [`Interest::sometimes`]. This is the main customization point to globally
433 //! filter events based on their [`Metadata`]. If an event can be disabled
434 //! based only on [`Metadata`], it should be, as this allows the construction
435 //! of the actual `Event`/`Span` to be skipped.
436 //! - For events only (and not spans), [`event_enabled`] is called just before
437 //! processing the event. This gives layers one last chance to say that
438 //! an event should be filtered out, now that the event's fields are known.
439 //!
440 //! ## Per-Layer Filtering
441 //!
442 //! **Note**: per-layer filtering APIs currently require the [`"registry"` crate
443 //! feature flag][feat] to be enabled.
444 //!
445 //! Sometimes, it may be desirable for one `Layer` to record a particular subset
446 //! of spans and events, while a different subset of spans and events are
447 //! recorded by other `Layer`s. For example:
448 //!
449 //! - A layer that records metrics may wish to observe only events including
450 //! particular tracked values, while a logging layer ignores those events.
451 //! - If recording a distributed trace is expensive, it might be desirable to
452 //! only send spans with `INFO` and lower verbosity to the distributed tracing
453 //! system, while logging more verbose spans to a file.
454 //! - Spans and events with a particular target might be recorded differently
455 //! from others, such as by generating an HTTP access log from a span that
456 //! tracks the lifetime of an HTTP request.
457 //!
458 //! The [`Filter`] trait is used to control what spans and events are
459 //! observed by an individual `Layer`, while still allowing other `Layer`s to
460 //! potentially record them. The [`Layer::with_filter`] method combines a
461 //! `Layer` with a [`Filter`], returning a [`Filtered`] layer.
462 //!
463 //! This crate's [`filter`] module provides a number of types which implement
464 //! the [`Filter`] trait, such as [`LevelFilter`], [`Targets`], and
465 //! [`FilterFn`]. These [`Filter`]s provide ready-made implementations of
466 //! common forms of filtering. For custom filtering policies, the [`FilterFn`]
467 //! and [`DynFilterFn`] types allow implementing a [`Filter`] with a closure or
468 //! function pointer. In addition, when more control is required, the [`Filter`]
469 //! trait may also be implemented for user-defined types.
470 //!
471 //! //! [`Option<Filter>`] also implements [`Filter`], which allows for an optional
472 //! filter. [`None`](Option::None) filters out _nothing_ (that is, allows
473 //! everything through). For example:
474 //!
475 //! ```rust
476 //! # use tracing_subscriber::{filter::filter_fn, Layer};
477 //! # use tracing_core::{Metadata, subscriber::Subscriber};
478 //! # struct MyLayer<S>(std::marker::PhantomData<S>);
479 //! # impl<S> MyLayer<S> { fn new() -> Self { Self(std::marker::PhantomData)} }
480 //! # impl<S: Subscriber> Layer<S> for MyLayer<S> {}
481 //! # fn my_filter(_: &str) -> impl Fn(&Metadata) -> bool { |_| true }
482 //! fn setup_tracing<S: Subscriber>(filter_config: Option<&str>) {
483 //! let layer = MyLayer::<S>::new()
484 //! .with_filter(filter_config.map(|config| filter_fn(my_filter(config))));
485 //! //...
486 //! }
487 //! ```
488 //!
489 //! <pre class="compile_fail" style="white-space:normal;font:inherit;">
490 //! <strong>Warning</strong>: Currently, the <a href="../struct.Registry.html">
491 //! <code>Registry</code></a> type defined in this crate is the only root
492 //! <code>Subscriber</code> capable of supporting <code>Layer</code>s with
493 //! per-layer filters. In the future, new APIs will be added to allow other
494 //! root <code>Subscriber</code>s to support per-layer filters.
495 //! </pre>
496 //!
497 //! For example, to generate an HTTP access log based on spans with
498 //! the `http_access` target, while logging other spans and events to
499 //! standard out, a [`Filter`] can be added to the access log layer:
500 //!
501 //! ```
502 //! use tracing_subscriber::{filter, prelude::*};
503 //!
504 //! // Generates an HTTP access log.
505 //! let access_log = // ...
506 //! # filter::LevelFilter::INFO;
507 //!
508 //! // Add a filter to the access log layer so that it only observes
509 //! // spans and events with the `http_access` target.
510 //! let access_log = access_log.with_filter(filter::filter_fn(|metadata| {
511 //! // Returns `true` if and only if the span or event's target is
512 //! // "http_access".
513 //! metadata.target() == "http_access"
514 //! }));
515 //!
516 //! // A general-purpose logging layer.
517 //! let fmt_layer = tracing_subscriber::fmt::layer();
518 //!
519 //! // Build a subscriber that combines the access log and stdout log
520 //! // layers.
521 //! tracing_subscriber::registry()
522 //! .with(fmt_layer)
523 //! .with(access_log)
524 //! .init();
525 //! ```
526 //!
527 //! Multiple layers can have their own, separate per-layer filters. A span or
528 //! event will be recorded if it is enabled by _any_ per-layer filter, but it
529 //! will be skipped by the layers whose filters did not enable it. Building on
530 //! the previous example:
531 //!
532 //! ```
533 //! use tracing_subscriber::{filter::{filter_fn, LevelFilter}, prelude::*};
534 //!
535 //! let access_log = // ...
536 //! # LevelFilter::INFO;
537 //! let fmt_layer = tracing_subscriber::fmt::layer();
538 //!
539 //! tracing_subscriber::registry()
540 //! // Add the filter for the "http_access" target to the access
541 //! // log layer, like before.
542 //! .with(access_log.with_filter(filter_fn(|metadata| {
543 //! metadata.target() == "http_access"
544 //! })))
545 //! // Add a filter for spans and events with the INFO level
546 //! // and below to the logging layer.
547 //! .with(fmt_layer.with_filter(LevelFilter::INFO))
548 //! .init();
549 //!
550 //! // Neither layer will observe this event
551 //! tracing::debug!(does_anyone_care = false, "a tree fell in the forest");
552 //!
553 //! // This event will be observed by the logging layer, but not
554 //! // by the access log layer.
555 //! tracing::warn!(dose_roentgen = %3.8, "not great, but not terrible");
556 //!
557 //! // This event will be observed only by the access log layer.
558 //! tracing::trace!(target: "http_access", "HTTP request started");
559 //!
560 //! // Both layers will observe this event.
561 //! tracing::error!(target: "http_access", "HTTP request failed with a very bad error!");
562 //! ```
563 //!
564 //! A per-layer filter can be applied to multiple [`Layer`]s at a time, by
565 //! combining them into a [`Layered`] layer using [`Layer::and_then`], and then
566 //! calling [`Layer::with_filter`] on the resulting [`Layered`] layer.
567 //!
568 //! Consider the following:
569 //! - `layer_a` and `layer_b`, which should only receive spans and events at
570 //! the [`INFO`] [level] and above.
571 //! - A third layer, `layer_c`, which should receive spans and events at
572 //! the [`DEBUG`] [level] as well.
573 //!
574 //! The layers and filters would be composed thusly:
575 //!
576 //! ```
577 //! use tracing_subscriber::{filter::LevelFilter, prelude::*};
578 //!
579 //! let layer_a = // ...
580 //! # LevelFilter::INFO;
581 //! let layer_b = // ...
582 //! # LevelFilter::INFO;
583 //! let layer_c = // ...
584 //! # LevelFilter::INFO;
585 //!
586 //! let info_layers = layer_a
587 //! // Combine `layer_a` and `layer_b` into a `Layered` layer:
588 //! .and_then(layer_b)
589 //! // ...and then add an `INFO` `LevelFilter` to that layer:
590 //! .with_filter(LevelFilter::INFO);
591 //!
592 //! tracing_subscriber::registry()
593 //! // Add `layer_c` with a `DEBUG` filter.
594 //! .with(layer_c.with_filter(LevelFilter::DEBUG))
595 //! .with(info_layers)
596 //! .init();
597 //!```
598 //!
599 //! If a [`Filtered`] [`Layer`] is combined with another [`Layer`]
600 //! [`Layer::and_then`], and a filter is added to the [`Layered`] layer, that
601 //! layer will be filtered by *both* the inner filter and the outer filter.
602 //! Only spans and events that are enabled by *both* filters will be
603 //! observed by that layer. This can be used to implement complex filtering
604 //! trees.
605 //!
606 //! As an example, consider the following constraints:
607 //! - Suppose that a particular [target] is used to indicate events that
608 //! should be counted as part of a metrics system, which should be only
609 //! observed by a layer that collects metrics.
610 //! - A log of high-priority events ([`INFO`] and above) should be logged
611 //! to stdout, while more verbose events should be logged to a debugging log file.
612 //! - Metrics-focused events should *not* be included in either log output.
613 //!
614 //! In that case, it is possible to apply a filter to both logging layers to
615 //! exclude the metrics events, while additionally adding a [`LevelFilter`]
616 //! to the stdout log:
617 //!
618 //! ```
619 //! # // wrap this in a function so we don't actually create `debug.log` when
620 //! # // running the doctests..
621 //! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
622 //! use tracing_subscriber::{filter, prelude::*};
623 //! use std::{fs::File, sync::Arc};
624 //!
625 //! // A layer that logs events to stdout using the human-readable "pretty"
626 //! // format.
627 //! let stdout_log = tracing_subscriber::fmt::layer()
628 //! .pretty();
629 //!
630 //! // A layer that logs events to a file.
631 //! let file = File::create("debug.log")?;
632 //! let debug_log = tracing_subscriber::fmt::layer()
633 //! .with_writer(Arc::new(file));
634 //!
635 //! // A layer that collects metrics using specific events.
636 //! let metrics_layer = /* ... */ filter::LevelFilter::INFO;
637 //!
638 //! tracing_subscriber::registry()
639 //! .with(
640 //! stdout_log
641 //! // Add an `INFO` filter to the stdout logging layer
642 //! .with_filter(filter::LevelFilter::INFO)
643 //! // Combine the filtered `stdout_log` layer with the
644 //! // `debug_log` layer, producing a new `Layered` layer.
645 //! .and_then(debug_log)
646 //! // Add a filter to *both* layers that rejects spans and
647 //! // events whose targets start with `metrics`.
648 //! .with_filter(filter::filter_fn(|metadata| {
649 //! !metadata.target().starts_with("metrics")
650 //! }))
651 //! )
652 //! .with(
653 //! // Add a filter to the metrics label that *only* enables
654 //! // events whose targets start with `metrics`.
655 //! metrics_layer.with_filter(filter::filter_fn(|metadata| {
656 //! metadata.target().starts_with("metrics")
657 //! }))
658 //! )
659 //! .init();
660 //!
661 //! // This event will *only* be recorded by the metrics layer.
662 //! tracing::info!(target: "metrics::cool_stuff_count", value = 42);
663 //!
664 //! // This event will only be seen by the debug log file layer:
665 //! tracing::debug!("this is a message, and part of a system of messages");
666 //!
667 //! // This event will be seen by both the stdout log layer *and*
668 //! // the debug log file layer, but not by the metrics layer.
669 //! tracing::warn!("the message is a warning about danger!");
670 //! # Ok(()) }
671 //! ```
672 //!
673 //! [`Subscriber`]: tracing_core::subscriber::Subscriber
674 //! [span IDs]: tracing_core::span::Id
675 //! [the current span]: Context::current_span
676 //! [`register_callsite`]: Layer::register_callsite
677 //! [`enabled`]: Layer::enabled
678 //! [`event_enabled`]: Layer::event_enabled
679 //! [`on_enter`]: Layer::on_enter
680 //! [`Layer::register_callsite`]: Layer::register_callsite
681 //! [`Layer::enabled`]: Layer::enabled
682 //! [`Interest::never()`]: tracing_core::subscriber::Interest::never()
683 //! [`Filtered`]: crate::filter::Filtered
684 //! [`filter`]: crate::filter
685 //! [`Targets`]: crate::filter::Targets
686 //! [`FilterFn`]: crate::filter::FilterFn
687 //! [`DynFilterFn`]: crate::filter::DynFilterFn
688 //! [level]: tracing_core::Level
689 //! [`INFO`]: tracing_core::Level::INFO
690 //! [`DEBUG`]: tracing_core::Level::DEBUG
691 //! [target]: tracing_core::Metadata::target
692 //! [`LevelFilter`]: crate::filter::LevelFilter
693 //! [feat]: crate#feature-flags
694 use crate::filter;
695
696 use tracing_core::{
697 metadata::Metadata,
698 span,
699 subscriber::{Interest, Subscriber},
700 Dispatch, Event, LevelFilter,
701 };
702
703 use core::any::TypeId;
704
705 feature! {
706 #![feature = "alloc"]
707 use alloc::boxed::Box;
708 use core::ops::{Deref, DerefMut};
709 }
710
711 mod context;
712 mod layered;
713 pub use self::{context::*, layered::*};
714
715 // The `tests` module is `pub(crate)` because it contains test utilities used by
716 // other modules.
717 #[cfg(test)]
718 pub(crate) mod tests;
719
720 /// A composable handler for `tracing` events.
721 ///
722 /// A `Layer` implements a behavior for recording or collecting traces that can
723 /// be composed together with other `Layer`s to build a [`Subscriber`]. See the
724 /// [module-level documentation](crate::layer) for details.
725 ///
726 /// [`Subscriber`]: tracing_core::Subscriber
727 #[cfg_attr(docsrs, doc(notable_trait))]
728 pub trait Layer<S>
729 where
730 S: Subscriber,
731 Self: 'static,
732 {
733 /// Performs late initialization when installing this layer as a
734 /// [`Subscriber`].
735 ///
736 /// ## Avoiding Memory Leaks
737 ///
738 /// `Layer`s should not store the [`Dispatch`] pointing to the [`Subscriber`]
739 /// that they are a part of. Because the `Dispatch` owns the `Subscriber`,
740 /// storing the `Dispatch` within the `Subscriber` will create a reference
741 /// count cycle, preventing the `Dispatch` from ever being dropped.
742 ///
743 /// Instead, when it is necessary to store a cyclical reference to the
744 /// `Dispatch` within a `Layer`, use [`Dispatch::downgrade`] to convert a
745 /// `Dispatch` into a [`WeakDispatch`]. This type is analogous to
746 /// [`std::sync::Weak`], and does not create a reference count cycle. A
747 /// [`WeakDispatch`] can be stored within a subscriber without causing a
748 /// memory leak, and can be [upgraded] into a `Dispatch` temporarily when
749 /// the `Dispatch` must be accessed by the subscriber.
750 ///
751 /// [`WeakDispatch`]: tracing_core::dispatcher::WeakDispatch
752 /// [upgraded]: tracing_core::dispatcher::WeakDispatch::upgrade
753 /// [`Subscriber`]: tracing_core::Subscriber
on_register_dispatch(&self, subscriber: &Dispatch)754 fn on_register_dispatch(&self, subscriber: &Dispatch) {
755 let _ = subscriber;
756 }
757
758 /// Performs late initialization when attaching a `Layer` to a
759 /// [`Subscriber`].
760 ///
761 /// This is a callback that is called when the `Layer` is added to a
762 /// [`Subscriber`] (e.g. in [`Layer::with_subscriber`] and
763 /// [`SubscriberExt::with`]). Since this can only occur before the
764 /// [`Subscriber`] has been set as the default, both the `Layer` and
765 /// [`Subscriber`] are passed to this method _mutably_. This gives the
766 /// `Layer` the opportunity to set any of its own fields with values
767 /// received by method calls on the [`Subscriber`].
768 ///
769 /// For example, [`Filtered`] layers implement `on_layer` to call the
770 /// [`Subscriber`]'s [`register_filter`] method, and store the returned
771 /// [`FilterId`] as a field.
772 ///
773 /// **Note** In most cases, `Layer` implementations will not need to
774 /// implement this method. However, in cases where a type implementing
775 /// `Layer` wraps one or more other types that implement `Layer`, like the
776 /// [`Layered`] and [`Filtered`] types in this crate, that type MUST ensure
777 /// that the inner `Layer`s' `on_layer` methods are called. Otherwise,
778 /// functionality that relies on `on_layer`, such as [per-layer filtering],
779 /// may not work correctly.
780 ///
781 /// [`Filtered`]: crate::filter::Filtered
782 /// [`register_filter`]: crate::registry::LookupSpan::register_filter
783 /// [per-layer filtering]: #per-layer-filtering
784 /// [`FilterId`]: crate::filter::FilterId
on_layer(&mut self, subscriber: &mut S)785 fn on_layer(&mut self, subscriber: &mut S) {
786 let _ = subscriber;
787 }
788
789 /// Registers a new callsite with this layer, returning whether or not
790 /// the layer is interested in being notified about the callsite, similarly
791 /// to [`Subscriber::register_callsite`].
792 ///
793 /// By default, this returns [`Interest::always()`] if [`self.enabled`] returns
794 /// true, or [`Interest::never()`] if it returns false.
795 ///
796 /// <pre class="ignore" style="white-space:normal;font:inherit;">
797 /// <strong>Note</strong>: This method (and <a href="#method.enabled">
798 /// <code>Layer::enabled</code></a>) determine whether a span or event is
799 /// globally enabled, <em>not</em> whether the individual layer will be
800 /// notified about that span or event. This is intended to be used
801 /// by layers that implement filtering for the entire stack. Layers which do
802 /// not wish to be notified about certain spans or events but do not wish to
803 /// globally disable them should ignore those spans or events in their
804 /// <a href="#method.on_event"><code>on_event</code></a>,
805 /// <a href="#method.on_enter"><code>on_enter</code></a>,
806 /// <a href="#method.on_exit"><code>on_exit</code></a>, and other notification
807 /// methods.
808 /// </pre>
809 ///
810 /// See [the trait-level documentation] for more information on filtering
811 /// with `Layer`s.
812 ///
813 /// Layers may also implement this method to perform any behaviour that
814 /// should be run once per callsite. If the layer wishes to use
815 /// `register_callsite` for per-callsite behaviour, but does not want to
816 /// globally enable or disable those callsites, it should always return
817 /// [`Interest::always()`].
818 ///
819 /// [`Interest`]: tracing_core::Interest
820 /// [`Subscriber::register_callsite`]: tracing_core::Subscriber::register_callsite()
821 /// [`Interest::never()`]: tracing_core::subscriber::Interest::never()
822 /// [`Interest::always()`]: tracing_core::subscriber::Interest::always()
823 /// [`self.enabled`]: Layer::enabled()
824 /// [`Layer::enabled`]: Layer::enabled()
825 /// [`on_event`]: Layer::on_event()
826 /// [`on_enter`]: Layer::on_enter()
827 /// [`on_exit`]: Layer::on_exit()
828 /// [the trait-level documentation]: #filtering-with-layers
register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest829 fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
830 if self.enabled(metadata, Context::none()) {
831 Interest::always()
832 } else {
833 Interest::never()
834 }
835 }
836
837 /// Returns `true` if this layer is interested in a span or event with the
838 /// given `metadata` in the current [`Context`], similarly to
839 /// [`Subscriber::enabled`].
840 ///
841 /// By default, this always returns `true`, allowing the wrapped subscriber
842 /// to choose to disable the span.
843 ///
844 /// <pre class="ignore" style="white-space:normal;font:inherit;">
845 /// <strong>Note</strong>: This method (and <a href="#method.register_callsite">
846 /// <code>Layer::register_callsite</code></a>) determine whether a span or event is
847 /// globally enabled, <em>not</em> whether the individual layer will be
848 /// notified about that span or event. This is intended to be used
849 /// by layers that implement filtering for the entire stack. Layers which do
850 /// not wish to be notified about certain spans or events but do not wish to
851 /// globally disable them should ignore those spans or events in their
852 /// <a href="#method.on_event"><code>on_event</code></a>,
853 /// <a href="#method.on_enter"><code>on_enter</code></a>,
854 /// <a href="#method.on_exit"><code>on_exit</code></a>, and other notification
855 /// methods.
856 /// </pre>
857 ///
858 ///
859 /// See [the trait-level documentation] for more information on filtering
860 /// with `Layer`s.
861 ///
862 /// [`Interest`]: tracing_core::Interest
863 /// [`Subscriber::enabled`]: tracing_core::Subscriber::enabled()
864 /// [`Layer::register_callsite`]: Layer::register_callsite()
865 /// [`on_event`]: Layer::on_event()
866 /// [`on_enter`]: Layer::on_enter()
867 /// [`on_exit`]: Layer::on_exit()
868 /// [the trait-level documentation]: #filtering-with-layers
enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool869 fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
870 let _ = (metadata, ctx);
871 true
872 }
873
874 /// Notifies this layer that a new span was constructed with the given
875 /// `Attributes` and `Id`.
on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>)876 fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
877 let _ = (attrs, id, ctx);
878 }
879
880 // TODO(eliza): do we want this to be a public API? If we end up moving
881 // filtering layers to a separate trait, we may no longer want `Layer`s to
882 // be able to participate in max level hinting...
883 #[doc(hidden)]
max_level_hint(&self) -> Option<LevelFilter>884 fn max_level_hint(&self) -> Option<LevelFilter> {
885 None
886 }
887
888 /// Notifies this layer that a span with the given `Id` recorded the given
889 /// `values`.
890 // Note: it's unclear to me why we'd need the current span in `record` (the
891 // only thing the `Context` type currently provides), but passing it in anyway
892 // seems like a good future-proofing measure as it may grow other methods later...
on_record(&self, _span: &span::Id, _values: &span::Record<'_>, _ctx: Context<'_, S>)893 fn on_record(&self, _span: &span::Id, _values: &span::Record<'_>, _ctx: Context<'_, S>) {}
894
895 /// Notifies this layer that a span with the ID `span` recorded that it
896 /// follows from the span with the ID `follows`.
897 // Note: it's unclear to me why we'd need the current span in `record` (the
898 // only thing the `Context` type currently provides), but passing it in anyway
899 // seems like a good future-proofing measure as it may grow other methods later...
on_follows_from(&self, _span: &span::Id, _follows: &span::Id, _ctx: Context<'_, S>)900 fn on_follows_from(&self, _span: &span::Id, _follows: &span::Id, _ctx: Context<'_, S>) {}
901
902 /// Called before [`on_event`], to determine if `on_event` should be called.
903 ///
904 /// <div class="example-wrap" style="display:inline-block">
905 /// <pre class="ignore" style="white-space:normal;font:inherit;">
906 ///
907 /// **Note**: This method determines whether an event is globally enabled,
908 /// *not* whether the individual `Layer` will be notified about the
909 /// event. This is intended to be used by `Layer`s that implement
910 /// filtering for the entire stack. `Layer`s which do not wish to be
911 /// notified about certain events but do not wish to globally disable them
912 /// should ignore those events in their [on_event][Self::on_event].
913 ///
914 /// </pre></div>
915 ///
916 /// See [the trait-level documentation] for more information on filtering
917 /// with `Layer`s.
918 ///
919 /// [`on_event`]: Self::on_event
920 /// [`Interest`]: tracing_core::Interest
921 /// [the trait-level documentation]: #filtering-with-layers
922 #[inline] // collapse this to a constant please mrs optimizer
event_enabled(&self, _event: &Event<'_>, _ctx: Context<'_, S>) -> bool923 fn event_enabled(&self, _event: &Event<'_>, _ctx: Context<'_, S>) -> bool {
924 true
925 }
926
927 /// Notifies this layer that an event has occurred.
on_event(&self, _event: &Event<'_>, _ctx: Context<'_, S>)928 fn on_event(&self, _event: &Event<'_>, _ctx: Context<'_, S>) {}
929
930 /// Notifies this layer that a span with the given ID was entered.
on_enter(&self, _id: &span::Id, _ctx: Context<'_, S>)931 fn on_enter(&self, _id: &span::Id, _ctx: Context<'_, S>) {}
932
933 /// Notifies this layer that the span with the given ID was exited.
on_exit(&self, _id: &span::Id, _ctx: Context<'_, S>)934 fn on_exit(&self, _id: &span::Id, _ctx: Context<'_, S>) {}
935
936 /// Notifies this layer that the span with the given ID has been closed.
on_close(&self, _id: span::Id, _ctx: Context<'_, S>)937 fn on_close(&self, _id: span::Id, _ctx: Context<'_, S>) {}
938
939 /// Notifies this layer that a span ID has been cloned, and that the
940 /// subscriber returned a different ID.
on_id_change(&self, _old: &span::Id, _new: &span::Id, _ctx: Context<'_, S>)941 fn on_id_change(&self, _old: &span::Id, _new: &span::Id, _ctx: Context<'_, S>) {}
942
943 /// Composes this layer around the given `Layer`, returning a `Layered`
944 /// struct implementing `Layer`.
945 ///
946 /// The returned `Layer` will call the methods on this `Layer` and then
947 /// those of the new `Layer`, before calling the methods on the subscriber
948 /// it wraps. For example:
949 ///
950 /// ```rust
951 /// # use tracing_subscriber::layer::Layer;
952 /// # use tracing_core::Subscriber;
953 /// pub struct FooLayer {
954 /// // ...
955 /// }
956 ///
957 /// pub struct BarLayer {
958 /// // ...
959 /// }
960 ///
961 /// pub struct MySubscriber {
962 /// // ...
963 /// }
964 ///
965 /// impl<S: Subscriber> Layer<S> for FooLayer {
966 /// // ...
967 /// }
968 ///
969 /// impl<S: Subscriber> Layer<S> for BarLayer {
970 /// // ...
971 /// }
972 ///
973 /// # impl FooLayer {
974 /// # fn new() -> Self { Self {} }
975 /// # }
976 /// # impl BarLayer {
977 /// # fn new() -> Self { Self { }}
978 /// # }
979 /// # impl MySubscriber {
980 /// # fn new() -> Self { Self { }}
981 /// # }
982 /// # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
983 /// # impl tracing_core::Subscriber for MySubscriber {
984 /// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
985 /// # fn record(&self, _: &Id, _: &Record) {}
986 /// # fn event(&self, _: &Event) {}
987 /// # fn record_follows_from(&self, _: &Id, _: &Id) {}
988 /// # fn enabled(&self, _: &Metadata) -> bool { false }
989 /// # fn enter(&self, _: &Id) {}
990 /// # fn exit(&self, _: &Id) {}
991 /// # }
992 /// let subscriber = FooLayer::new()
993 /// .and_then(BarLayer::new())
994 /// .with_subscriber(MySubscriber::new());
995 /// ```
996 ///
997 /// Multiple layers may be composed in this manner:
998 ///
999 /// ```rust
1000 /// # use tracing_subscriber::layer::Layer;
1001 /// # use tracing_core::Subscriber;
1002 /// # pub struct FooLayer {}
1003 /// # pub struct BarLayer {}
1004 /// # pub struct MySubscriber {}
1005 /// # impl<S: Subscriber> Layer<S> for FooLayer {}
1006 /// # impl<S: Subscriber> Layer<S> for BarLayer {}
1007 /// # impl FooLayer {
1008 /// # fn new() -> Self { Self {} }
1009 /// # }
1010 /// # impl BarLayer {
1011 /// # fn new() -> Self { Self { }}
1012 /// # }
1013 /// # impl MySubscriber {
1014 /// # fn new() -> Self { Self { }}
1015 /// # }
1016 /// # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
1017 /// # impl tracing_core::Subscriber for MySubscriber {
1018 /// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
1019 /// # fn record(&self, _: &Id, _: &Record) {}
1020 /// # fn event(&self, _: &Event) {}
1021 /// # fn record_follows_from(&self, _: &Id, _: &Id) {}
1022 /// # fn enabled(&self, _: &Metadata) -> bool { false }
1023 /// # fn enter(&self, _: &Id) {}
1024 /// # fn exit(&self, _: &Id) {}
1025 /// # }
1026 /// pub struct BazLayer {
1027 /// // ...
1028 /// }
1029 ///
1030 /// impl<S: Subscriber> Layer<S> for BazLayer {
1031 /// // ...
1032 /// }
1033 /// # impl BazLayer { fn new() -> Self { BazLayer {} } }
1034 ///
1035 /// let subscriber = FooLayer::new()
1036 /// .and_then(BarLayer::new())
1037 /// .and_then(BazLayer::new())
1038 /// .with_subscriber(MySubscriber::new());
1039 /// ```
and_then<L>(self, layer: L) -> Layered<L, Self, S> where L: Layer<S>, Self: Sized,1040 fn and_then<L>(self, layer: L) -> Layered<L, Self, S>
1041 where
1042 L: Layer<S>,
1043 Self: Sized,
1044 {
1045 let inner_has_layer_filter = filter::layer_has_plf(&self);
1046 Layered::new(layer, self, inner_has_layer_filter)
1047 }
1048
1049 /// Composes this `Layer` with the given [`Subscriber`], returning a
1050 /// `Layered` struct that implements [`Subscriber`].
1051 ///
1052 /// The returned `Layered` subscriber will call the methods on this `Layer`
1053 /// and then those of the wrapped subscriber.
1054 ///
1055 /// For example:
1056 /// ```rust
1057 /// # use tracing_subscriber::layer::Layer;
1058 /// # use tracing_core::Subscriber;
1059 /// pub struct FooLayer {
1060 /// // ...
1061 /// }
1062 ///
1063 /// pub struct MySubscriber {
1064 /// // ...
1065 /// }
1066 ///
1067 /// impl<S: Subscriber> Layer<S> for FooLayer {
1068 /// // ...
1069 /// }
1070 ///
1071 /// # impl FooLayer {
1072 /// # fn new() -> Self { Self {} }
1073 /// # }
1074 /// # impl MySubscriber {
1075 /// # fn new() -> Self { Self { }}
1076 /// # }
1077 /// # use tracing_core::{span::{Id, Attributes, Record}, Metadata};
1078 /// # impl tracing_core::Subscriber for MySubscriber {
1079 /// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(0) }
1080 /// # fn record(&self, _: &Id, _: &Record) {}
1081 /// # fn event(&self, _: &tracing_core::Event) {}
1082 /// # fn record_follows_from(&self, _: &Id, _: &Id) {}
1083 /// # fn enabled(&self, _: &Metadata) -> bool { false }
1084 /// # fn enter(&self, _: &Id) {}
1085 /// # fn exit(&self, _: &Id) {}
1086 /// # }
1087 /// let subscriber = FooLayer::new()
1088 /// .with_subscriber(MySubscriber::new());
1089 ///```
1090 ///
1091 /// [`Subscriber`]: tracing_core::Subscriber
with_subscriber(mut self, mut inner: S) -> Layered<Self, S> where Self: Sized,1092 fn with_subscriber(mut self, mut inner: S) -> Layered<Self, S>
1093 where
1094 Self: Sized,
1095 {
1096 let inner_has_layer_filter = filter::subscriber_has_plf(&inner);
1097 self.on_layer(&mut inner);
1098 Layered::new(self, inner, inner_has_layer_filter)
1099 }
1100
1101 /// Combines `self` with a [`Filter`], returning a [`Filtered`] layer.
1102 ///
1103 /// The [`Filter`] will control which spans and events are enabled for
1104 /// this layer. See [the trait-level documentation][plf] for details on
1105 /// per-layer filtering.
1106 ///
1107 /// [`Filtered`]: crate::filter::Filtered
1108 /// [plf]: crate::layer#per-layer-filtering
1109 #[cfg(all(feature = "registry", feature = "std"))]
1110 #[cfg_attr(docsrs, doc(cfg(all(feature = "registry", feature = "std"))))]
with_filter<F>(self, filter: F) -> filter::Filtered<Self, F, S> where Self: Sized, F: Filter<S>,1111 fn with_filter<F>(self, filter: F) -> filter::Filtered<Self, F, S>
1112 where
1113 Self: Sized,
1114 F: Filter<S>,
1115 {
1116 filter::Filtered::new(self, filter)
1117 }
1118
1119 /// Erases the type of this [`Layer`], returning a [`Box`]ed `dyn
1120 /// Layer` trait object.
1121 ///
1122 /// This can be used when a function returns a `Layer` which may be of
1123 /// one of several types, or when a `Layer` subscriber has a very long type
1124 /// signature.
1125 ///
1126 /// # Examples
1127 ///
1128 /// The following example will *not* compile, because the value assigned to
1129 /// `log_layer` may have one of several different types:
1130 ///
1131 /// ```compile_fail
1132 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1133 /// use tracing_subscriber::{Layer, filter::LevelFilter, prelude::*};
1134 /// use std::{path::PathBuf, fs::File, io};
1135 ///
1136 /// /// Configures whether logs are emitted to a file, to stdout, or to stderr.
1137 /// pub enum LogConfig {
1138 /// File(PathBuf),
1139 /// Stdout,
1140 /// Stderr,
1141 /// }
1142 ///
1143 /// let config = // ...
1144 /// # LogConfig::Stdout;
1145 ///
1146 /// // Depending on the config, construct a layer of one of several types.
1147 /// let log_layer = match config {
1148 /// // If logging to a file, use a maximally-verbose configuration.
1149 /// LogConfig::File(path) => {
1150 /// let file = File::create(path)?;
1151 /// tracing_subscriber::fmt::layer()
1152 /// .with_thread_ids(true)
1153 /// .with_thread_names(true)
1154 /// // Selecting the JSON logging format changes the layer's
1155 /// // type.
1156 /// .json()
1157 /// .with_span_list(true)
1158 /// // Setting the writer to use our log file changes the
1159 /// // layer's type again.
1160 /// .with_writer(file)
1161 /// },
1162 ///
1163 /// // If logging to stdout, use a pretty, human-readable configuration.
1164 /// LogConfig::Stdout => tracing_subscriber::fmt::layer()
1165 /// // Selecting the "pretty" logging format changes the
1166 /// // layer's type!
1167 /// .pretty()
1168 /// .with_writer(io::stdout)
1169 /// // Add a filter based on the RUST_LOG environment variable;
1170 /// // this changes the type too!
1171 /// .and_then(tracing_subscriber::EnvFilter::from_default_env()),
1172 ///
1173 /// // If logging to stdout, only log errors and warnings.
1174 /// LogConfig::Stderr => tracing_subscriber::fmt::layer()
1175 /// // Changing the writer changes the layer's type
1176 /// .with_writer(io::stderr)
1177 /// // Only log the `WARN` and `ERROR` levels. Adding a filter
1178 /// // changes the layer's type to `Filtered<LevelFilter, ...>`.
1179 /// .with_filter(LevelFilter::WARN),
1180 /// };
1181 ///
1182 /// tracing_subscriber::registry()
1183 /// .with(log_layer)
1184 /// .init();
1185 /// # Ok(()) }
1186 /// ```
1187 ///
1188 /// However, adding a call to `.boxed()` after each match arm erases the
1189 /// layer's type, so this code *does* compile:
1190 ///
1191 /// ```
1192 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1193 /// # use tracing_subscriber::{Layer, filter::LevelFilter, prelude::*};
1194 /// # use std::{path::PathBuf, fs::File, io};
1195 /// # pub enum LogConfig {
1196 /// # File(PathBuf),
1197 /// # Stdout,
1198 /// # Stderr,
1199 /// # }
1200 /// # let config = LogConfig::Stdout;
1201 /// let log_layer = match config {
1202 /// LogConfig::File(path) => {
1203 /// let file = File::create(path)?;
1204 /// tracing_subscriber::fmt::layer()
1205 /// .with_thread_ids(true)
1206 /// .with_thread_names(true)
1207 /// .json()
1208 /// .with_span_list(true)
1209 /// .with_writer(file)
1210 /// // Erase the type by boxing the layer
1211 /// .boxed()
1212 /// },
1213 ///
1214 /// LogConfig::Stdout => tracing_subscriber::fmt::layer()
1215 /// .pretty()
1216 /// .with_writer(io::stdout)
1217 /// .and_then(tracing_subscriber::EnvFilter::from_default_env())
1218 /// // Erase the type by boxing the layer
1219 /// .boxed(),
1220 ///
1221 /// LogConfig::Stderr => tracing_subscriber::fmt::layer()
1222 /// .with_writer(io::stderr)
1223 /// .with_filter(LevelFilter::WARN)
1224 /// // Erase the type by boxing the layer
1225 /// .boxed(),
1226 /// };
1227 ///
1228 /// tracing_subscriber::registry()
1229 /// .with(log_layer)
1230 /// .init();
1231 /// # Ok(()) }
1232 /// ```
1233 #[cfg(any(feature = "alloc", feature = "std"))]
1234 #[cfg_attr(docsrs, doc(cfg(any(feature = "alloc", feature = "std"))))]
boxed(self) -> Box<dyn Layer<S> + Send + Sync + 'static> where Self: Sized, Self: Layer<S> + Send + Sync + 'static, S: Subscriber,1235 fn boxed(self) -> Box<dyn Layer<S> + Send + Sync + 'static>
1236 where
1237 Self: Sized,
1238 Self: Layer<S> + Send + Sync + 'static,
1239 S: Subscriber,
1240 {
1241 Box::new(self)
1242 }
1243
1244 #[doc(hidden)]
downcast_raw(&self, id: TypeId) -> Option<*const ()>1245 unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
1246 if id == TypeId::of::<Self>() {
1247 Some(self as *const _ as *const ())
1248 } else {
1249 None
1250 }
1251 }
1252 }
1253
1254 feature! {
1255 #![all(feature = "registry", feature = "std")]
1256
1257 /// A per-[`Layer`] filter that determines whether a span or event is enabled
1258 /// for an individual layer.
1259 ///
1260 /// See [the module-level documentation][plf] for details on using [`Filter`]s.
1261 ///
1262 /// [plf]: crate::layer#per-layer-filtering
1263 #[cfg_attr(docsrs, doc(notable_trait))]
1264 pub trait Filter<S> {
1265 /// Returns `true` if this layer is interested in a span or event with the
1266 /// given [`Metadata`] in the current [`Context`], similarly to
1267 /// [`Subscriber::enabled`].
1268 ///
1269 /// If this returns `false`, the span or event will be disabled _for the
1270 /// wrapped [`Layer`]_. Unlike [`Layer::enabled`], the span or event will
1271 /// still be recorded if any _other_ layers choose to enable it. However,
1272 /// the layer [filtered] by this filter will skip recording that span or
1273 /// event.
1274 ///
1275 /// If all layers indicate that they do not wish to see this span or event,
1276 /// it will be disabled.
1277 ///
1278 /// [`metadata`]: tracing_core::Metadata
1279 /// [`Subscriber::enabled`]: tracing_core::Subscriber::enabled
1280 /// [filtered]: crate::filter::Filtered
1281 fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool;
1282
1283 /// Returns an [`Interest`] indicating whether this layer will [always],
1284 /// [sometimes], or [never] be interested in the given [`Metadata`].
1285 ///
1286 /// When a given callsite will [always] or [never] be enabled, the results
1287 /// of evaluating the filter may be cached for improved performance.
1288 /// Therefore, if a filter is capable of determining that it will always or
1289 /// never enable a particular callsite, providing an implementation of this
1290 /// function is recommended.
1291 ///
1292 /// <pre class="ignore" style="white-space:normal;font:inherit;">
1293 /// <strong>Note</strong>: If a <code>Filter</code> will perform
1294 /// <em>dynamic filtering</em> that depends on the current context in which
1295 /// a span or event was observed (e.g. only enabling an event when it
1296 /// occurs within a particular span), it <strong>must</strong> return
1297 /// <code>Interest::sometimes()</code> from this method. If it returns
1298 /// <code>Interest::always()</code> or <code>Interest::never()</code>, the
1299 /// <code>enabled</code> method may not be called when a particular instance
1300 /// of that span or event is recorded.
1301 /// </pre>
1302 ///
1303 /// This method is broadly similar to [`Subscriber::register_callsite`];
1304 /// however, since the returned value represents only the interest of
1305 /// *this* layer, the resulting behavior is somewhat different.
1306 ///
1307 /// If a [`Subscriber`] returns [`Interest::always()`][always] or
1308 /// [`Interest::never()`][never] for a given [`Metadata`], its [`enabled`]
1309 /// method is then *guaranteed* to never be called for that callsite. On the
1310 /// other hand, when a `Filter` returns [`Interest::always()`][always] or
1311 /// [`Interest::never()`][never] for a callsite, _other_ [`Layer`]s may have
1312 /// differing interests in that callsite. If this is the case, the callsite
1313 /// will receive [`Interest::sometimes()`][sometimes], and the [`enabled`]
1314 /// method will still be called for that callsite when it records a span or
1315 /// event.
1316 ///
1317 /// Returning [`Interest::always()`][always] or [`Interest::never()`][never] from
1318 /// `Filter::callsite_enabled` will permanently enable or disable a
1319 /// callsite (without requiring subsequent calls to [`enabled`]) if and only
1320 /// if the following is true:
1321 ///
1322 /// - all [`Layer`]s that comprise the subscriber include `Filter`s
1323 /// (this includes a tree of [`Layered`] layers that share the same
1324 /// `Filter`)
1325 /// - all those `Filter`s return the same [`Interest`].
1326 ///
1327 /// For example, if a [`Subscriber`] consists of two [`Filtered`] layers,
1328 /// and both of those layers return [`Interest::never()`][never], that
1329 /// callsite *will* never be enabled, and the [`enabled`] methods of those
1330 /// [`Filter`]s will not be called.
1331 ///
1332 /// ## Default Implementation
1333 ///
1334 /// The default implementation of this method assumes that the
1335 /// `Filter`'s [`enabled`] method _may_ perform dynamic filtering, and
1336 /// returns [`Interest::sometimes()`][sometimes], to ensure that [`enabled`]
1337 /// is called to determine whether a particular _instance_ of the callsite
1338 /// is enabled in the current context. If this is *not* the case, and the
1339 /// `Filter`'s [`enabled`] method will always return the same result
1340 /// for a particular [`Metadata`], this method can be overridden as
1341 /// follows:
1342 ///
1343 /// ```
1344 /// use tracing_subscriber::layer;
1345 /// use tracing_core::{Metadata, subscriber::Interest};
1346 ///
1347 /// struct MyFilter {
1348 /// // ...
1349 /// }
1350 ///
1351 /// impl MyFilter {
1352 /// // The actual logic for determining whether a `Metadata` is enabled
1353 /// // must be factored out from the `enabled` method, so that it can be
1354 /// // called without a `Context` (which is not provided to the
1355 /// // `callsite_enabled` method).
1356 /// fn is_enabled(&self, metadata: &Metadata<'_>) -> bool {
1357 /// // ...
1358 /// # drop(metadata); true
1359 /// }
1360 /// }
1361 ///
1362 /// impl<S> layer::Filter<S> for MyFilter {
1363 /// fn enabled(&self, metadata: &Metadata<'_>, _: &layer::Context<'_, S>) -> bool {
1364 /// // Even though we are implementing `callsite_enabled`, we must still provide a
1365 /// // working implementation of `enabled`, as returning `Interest::always()` or
1366 /// // `Interest::never()` will *allow* caching, but will not *guarantee* it.
1367 /// // Other filters may still return `Interest::sometimes()`, so we may be
1368 /// // asked again in `enabled`.
1369 /// self.is_enabled(metadata)
1370 /// }
1371 ///
1372 /// fn callsite_enabled(&self, metadata: &'static Metadata<'static>) -> Interest {
1373 /// // The result of `self.enabled(metadata, ...)` will always be
1374 /// // the same for any given `Metadata`, so we can convert it into
1375 /// // an `Interest`:
1376 /// if self.is_enabled(metadata) {
1377 /// Interest::always()
1378 /// } else {
1379 /// Interest::never()
1380 /// }
1381 /// }
1382 /// }
1383 /// ```
1384 ///
1385 /// [`Metadata`]: tracing_core::Metadata
1386 /// [`Interest`]: tracing_core::Interest
1387 /// [always]: tracing_core::Interest::always
1388 /// [sometimes]: tracing_core::Interest::sometimes
1389 /// [never]: tracing_core::Interest::never
1390 /// [`Subscriber::register_callsite`]: tracing_core::Subscriber::register_callsite
1391 /// [`Subscriber`]: tracing_core::Subscriber
1392 /// [`enabled`]: Filter::enabled
1393 /// [`Filtered`]: crate::filter::Filtered
1394 fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
1395 let _ = meta;
1396 Interest::sometimes()
1397 }
1398
1399 /// Called before the filtered [`Layer]'s [`on_event`], to determine if
1400 /// `on_event` should be called.
1401 ///
1402 /// This gives a chance to filter events based on their fields. Note,
1403 /// however, that this *does not* override [`enabled`], and is not even
1404 /// called if [`enabled`] returns `false`.
1405 ///
1406 /// ## Default Implementation
1407 ///
1408 /// By default, this method returns `true`, indicating that no events are
1409 /// filtered out based on their fields.
1410 ///
1411 /// [`enabled`]: crate::layer::Filter::enabled
1412 /// [`on_event`]: crate::layer::Layer::on_event
1413 #[inline] // collapse this to a constant please mrs optimizer
1414 fn event_enabled(&self, event: &Event<'_>, cx: &Context<'_, S>) -> bool {
1415 let _ = (event, cx);
1416 true
1417 }
1418
1419 /// Returns an optional hint of the highest [verbosity level][level] that
1420 /// this `Filter` will enable.
1421 ///
1422 /// If this method returns a [`LevelFilter`], it will be used as a hint to
1423 /// determine the most verbose level that will be enabled. This will allow
1424 /// spans and events which are more verbose than that level to be skipped
1425 /// more efficiently. An implementation of this method is optional, but
1426 /// strongly encouraged.
1427 ///
1428 /// If the maximum level the `Filter` will enable can change over the
1429 /// course of its lifetime, it is free to return a different value from
1430 /// multiple invocations of this method. However, note that changes in the
1431 /// maximum level will **only** be reflected after the callsite [`Interest`]
1432 /// cache is rebuilt, by calling the
1433 /// [`tracing_core::callsite::rebuild_interest_cache`][rebuild] function.
1434 /// Therefore, if the `Filter will change the value returned by this
1435 /// method, it is responsible for ensuring that
1436 /// [`rebuild_interest_cache`][rebuild] is called after the value of the max
1437 /// level changes.
1438 ///
1439 /// ## Default Implementation
1440 ///
1441 /// By default, this method returns `None`, indicating that the maximum
1442 /// level is unknown.
1443 ///
1444 /// [level]: tracing_core::metadata::Level
1445 /// [`LevelFilter`]: crate::filter::LevelFilter
1446 /// [`Interest`]: tracing_core::subscriber::Interest
1447 /// [rebuild]: tracing_core::callsite::rebuild_interest_cache
1448 fn max_level_hint(&self) -> Option<LevelFilter> {
1449 None
1450 }
1451
1452 /// Notifies this filter that a new span was constructed with the given
1453 /// `Attributes` and `Id`.
1454 ///
1455 /// By default, this method does nothing. `Filter` implementations that
1456 /// need to be notified when new spans are created can override this
1457 /// method.
1458 fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
1459 let _ = (attrs, id, ctx);
1460 }
1461
1462
1463 /// Notifies this filter that a span with the given `Id` recorded the given
1464 /// `values`.
1465 ///
1466 /// By default, this method does nothing. `Filter` implementations that
1467 /// need to be notified when new spans are created can override this
1468 /// method.
1469 fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
1470 let _ = (id, values, ctx);
1471 }
1472
1473 /// Notifies this filter that a span with the given ID was entered.
1474 ///
1475 /// By default, this method does nothing. `Filter` implementations that
1476 /// need to be notified when a span is entered can override this method.
1477 fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
1478 let _ = (id, ctx);
1479 }
1480
1481 /// Notifies this filter that a span with the given ID was exited.
1482 ///
1483 /// By default, this method does nothing. `Filter` implementations that
1484 /// need to be notified when a span is exited can override this method.
1485 fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
1486 let _ = (id, ctx);
1487 }
1488
1489 /// Notifies this filter that a span with the given ID has been closed.
1490 ///
1491 /// By default, this method does nothing. `Filter` implementations that
1492 /// need to be notified when a span is closed can override this method.
1493 fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
1494 let _ = (id, ctx);
1495 }
1496 }
1497 }
1498
1499 /// Extension trait adding a `with(Layer)` combinator to `Subscriber`s.
1500 pub trait SubscriberExt: Subscriber + crate::sealed::Sealed {
1501 /// Wraps `self` with the provided `layer`.
with<L>(self, layer: L) -> Layered<L, Self> where L: Layer<Self>, Self: Sized,1502 fn with<L>(self, layer: L) -> Layered<L, Self>
1503 where
1504 L: Layer<Self>,
1505 Self: Sized,
1506 {
1507 layer.with_subscriber(self)
1508 }
1509 }
1510
1511 /// A layer that does nothing.
1512 #[derive(Clone, Debug, Default)]
1513 pub struct Identity {
1514 _p: (),
1515 }
1516
1517 // === impl Layer ===
1518
1519 #[derive(Clone, Copy)]
1520 pub(crate) struct NoneLayerMarker(());
1521 static NONE_LAYER_MARKER: NoneLayerMarker = NoneLayerMarker(());
1522
1523 /// Is a type implementing `Layer` `Option::<_>::None`?
layer_is_none<L, S>(layer: &L) -> bool where L: Layer<S>, S: Subscriber,1524 pub(crate) fn layer_is_none<L, S>(layer: &L) -> bool
1525 where
1526 L: Layer<S>,
1527 S: Subscriber,
1528 {
1529 unsafe {
1530 // Safety: we're not actually *doing* anything with this pointer ---
1531 // this only care about the `Option`, which is essentially being used
1532 // as a bool. We can rely on the pointer being valid, because it is
1533 // a crate-private type, and is only returned by the `Layer` impl
1534 // for `Option`s. However, even if the layer *does* decide to be
1535 // evil and give us an invalid pointer here, that's fine, because we'll
1536 // never actually dereference it.
1537 layer.downcast_raw(TypeId::of::<NoneLayerMarker>())
1538 }
1539 .is_some()
1540 }
1541
1542 /// Is a type implementing `Subscriber` `Option::<_>::None`?
subscriber_is_none<S>(subscriber: &S) -> bool where S: Subscriber,1543 pub(crate) fn subscriber_is_none<S>(subscriber: &S) -> bool
1544 where
1545 S: Subscriber,
1546 {
1547 unsafe {
1548 // Safety: we're not actually *doing* anything with this pointer ---
1549 // this only care about the `Option`, which is essentially being used
1550 // as a bool. We can rely on the pointer being valid, because it is
1551 // a crate-private type, and is only returned by the `Layer` impl
1552 // for `Option`s. However, even if the subscriber *does* decide to be
1553 // evil and give us an invalid pointer here, that's fine, because we'll
1554 // never actually dereference it.
1555 subscriber.downcast_raw(TypeId::of::<NoneLayerMarker>())
1556 }
1557 .is_some()
1558 }
1559
1560 impl<L, S> Layer<S> for Option<L>
1561 where
1562 L: Layer<S>,
1563 S: Subscriber,
1564 {
on_layer(&mut self, subscriber: &mut S)1565 fn on_layer(&mut self, subscriber: &mut S) {
1566 if let Some(ref mut layer) = self {
1567 layer.on_layer(subscriber)
1568 }
1569 }
1570
1571 #[inline]
on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>)1572 fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
1573 if let Some(ref inner) = self {
1574 inner.on_new_span(attrs, id, ctx)
1575 }
1576 }
1577
1578 #[inline]
register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest1579 fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
1580 match self {
1581 Some(ref inner) => inner.register_callsite(metadata),
1582 None => Interest::always(),
1583 }
1584 }
1585
1586 #[inline]
enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool1587 fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
1588 match self {
1589 Some(ref inner) => inner.enabled(metadata, ctx),
1590 None => true,
1591 }
1592 }
1593
1594 #[inline]
max_level_hint(&self) -> Option<LevelFilter>1595 fn max_level_hint(&self) -> Option<LevelFilter> {
1596 match self {
1597 Some(ref inner) => inner.max_level_hint(),
1598 None => {
1599 // There is no inner layer, so this layer will
1600 // never enable anything.
1601 Some(LevelFilter::OFF)
1602 }
1603 }
1604 }
1605
1606 #[inline]
on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>)1607 fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
1608 if let Some(ref inner) = self {
1609 inner.on_record(span, values, ctx);
1610 }
1611 }
1612
1613 #[inline]
on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>)1614 fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
1615 if let Some(ref inner) = self {
1616 inner.on_follows_from(span, follows, ctx);
1617 }
1618 }
1619
1620 #[inline]
event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool1621 fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
1622 match self {
1623 Some(ref inner) => inner.event_enabled(event, ctx),
1624 None => true,
1625 }
1626 }
1627
1628 #[inline]
on_event(&self, event: &Event<'_>, ctx: Context<'_, S>)1629 fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
1630 if let Some(ref inner) = self {
1631 inner.on_event(event, ctx);
1632 }
1633 }
1634
1635 #[inline]
on_enter(&self, id: &span::Id, ctx: Context<'_, S>)1636 fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
1637 if let Some(ref inner) = self {
1638 inner.on_enter(id, ctx);
1639 }
1640 }
1641
1642 #[inline]
on_exit(&self, id: &span::Id, ctx: Context<'_, S>)1643 fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
1644 if let Some(ref inner) = self {
1645 inner.on_exit(id, ctx);
1646 }
1647 }
1648
1649 #[inline]
on_close(&self, id: span::Id, ctx: Context<'_, S>)1650 fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
1651 if let Some(ref inner) = self {
1652 inner.on_close(id, ctx);
1653 }
1654 }
1655
1656 #[inline]
on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>)1657 fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
1658 if let Some(ref inner) = self {
1659 inner.on_id_change(old, new, ctx)
1660 }
1661 }
1662
1663 #[doc(hidden)]
1664 #[inline]
downcast_raw(&self, id: TypeId) -> Option<*const ()>1665 unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
1666 if id == TypeId::of::<Self>() {
1667 Some(self as *const _ as *const ())
1668 } else if id == TypeId::of::<NoneLayerMarker>() && self.is_none() {
1669 Some(&NONE_LAYER_MARKER as *const _ as *const ())
1670 } else {
1671 self.as_ref().and_then(|inner| inner.downcast_raw(id))
1672 }
1673 }
1674 }
1675
1676 feature! {
1677 #![any(feature = "std", feature = "alloc")]
1678 #[cfg(not(feature = "std"))]
1679 use alloc::vec::Vec;
1680
1681 macro_rules! layer_impl_body {
1682 () => {
1683 #[inline]
1684 fn on_register_dispatch(&self, subscriber: &Dispatch) {
1685 self.deref().on_register_dispatch(subscriber);
1686 }
1687
1688 #[inline]
1689 fn on_layer(&mut self, subscriber: &mut S) {
1690 self.deref_mut().on_layer(subscriber);
1691 }
1692
1693 #[inline]
1694 fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
1695 self.deref().on_new_span(attrs, id, ctx)
1696 }
1697
1698 #[inline]
1699 fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
1700 self.deref().register_callsite(metadata)
1701 }
1702
1703 #[inline]
1704 fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
1705 self.deref().enabled(metadata, ctx)
1706 }
1707
1708 #[inline]
1709 fn max_level_hint(&self) -> Option<LevelFilter> {
1710 self.deref().max_level_hint()
1711 }
1712
1713 #[inline]
1714 fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
1715 self.deref().on_record(span, values, ctx)
1716 }
1717
1718 #[inline]
1719 fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
1720 self.deref().on_follows_from(span, follows, ctx)
1721 }
1722
1723 #[inline]
1724 fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
1725 self.deref().event_enabled(event, ctx)
1726 }
1727
1728 #[inline]
1729 fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
1730 self.deref().on_event(event, ctx)
1731 }
1732
1733 #[inline]
1734 fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
1735 self.deref().on_enter(id, ctx)
1736 }
1737
1738 #[inline]
1739 fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
1740 self.deref().on_exit(id, ctx)
1741 }
1742
1743 #[inline]
1744 fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
1745 self.deref().on_close(id, ctx)
1746 }
1747
1748 #[inline]
1749 fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
1750 self.deref().on_id_change(old, new, ctx)
1751 }
1752
1753 #[doc(hidden)]
1754 #[inline]
1755 unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
1756 self.deref().downcast_raw(id)
1757 }
1758 };
1759 }
1760
1761 impl<L, S> Layer<S> for Box<L>
1762 where
1763 L: Layer<S>,
1764 S: Subscriber,
1765 {
1766 layer_impl_body! {}
1767 }
1768
1769 impl<S> Layer<S> for Box<dyn Layer<S> + Send + Sync>
1770 where
1771 S: Subscriber,
1772 {
1773 layer_impl_body! {}
1774 }
1775
1776
1777
1778 impl<S, L> Layer<S> for Vec<L>
1779 where
1780 L: Layer<S>,
1781 S: Subscriber,
1782 {
1783
1784 fn on_layer(&mut self, subscriber: &mut S) {
1785 for l in self {
1786 l.on_layer(subscriber);
1787 }
1788 }
1789
1790 fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
1791 // Return highest level of interest.
1792 let mut interest = Interest::never();
1793 for l in self {
1794 let new_interest = l.register_callsite(metadata);
1795 if (interest.is_sometimes() && new_interest.is_always())
1796 || (interest.is_never() && !new_interest.is_never())
1797 {
1798 interest = new_interest;
1799 }
1800 }
1801
1802 interest
1803 }
1804
1805 fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
1806 self.iter().all(|l| l.enabled(metadata, ctx.clone()))
1807 }
1808
1809 fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
1810 self.iter().all(|l| l.event_enabled(event, ctx.clone()))
1811 }
1812
1813 fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
1814 for l in self {
1815 l.on_new_span(attrs, id, ctx.clone());
1816 }
1817 }
1818
1819 fn max_level_hint(&self) -> Option<LevelFilter> {
1820 // Default to `OFF` if there are no inner layers.
1821 let mut max_level = LevelFilter::OFF;
1822 for l in self {
1823 // NOTE(eliza): this is slightly subtle: if *any* layer
1824 // returns `None`, we have to return `None`, assuming there is
1825 // no max level hint, since that particular layer cannot
1826 // provide a hint.
1827 let hint = l.max_level_hint()?;
1828 max_level = core::cmp::max(hint, max_level);
1829 }
1830 Some(max_level)
1831 }
1832
1833 fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
1834 for l in self {
1835 l.on_record(span, values, ctx.clone())
1836 }
1837 }
1838
1839 fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
1840 for l in self {
1841 l.on_follows_from(span, follows, ctx.clone());
1842 }
1843 }
1844
1845 fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
1846 for l in self {
1847 l.on_event(event, ctx.clone());
1848 }
1849 }
1850
1851 fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
1852 for l in self {
1853 l.on_enter(id, ctx.clone());
1854 }
1855 }
1856
1857 fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
1858 for l in self {
1859 l.on_exit(id, ctx.clone());
1860 }
1861 }
1862
1863 fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
1864 for l in self {
1865 l.on_close(id.clone(), ctx.clone());
1866 }
1867 }
1868
1869 #[doc(hidden)]
1870 unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
1871 // If downcasting to `Self`, return a pointer to `self`.
1872 if id == TypeId::of::<Self>() {
1873 return Some(self as *const _ as *const ());
1874 }
1875
1876 // Someone is looking for per-layer filters. But, this `Vec`
1877 // might contain layers with per-layer filters *and*
1878 // layers without filters. It should only be treated as a
1879 // per-layer-filtered layer if *all* its layers have
1880 // per-layer filters.
1881 // XXX(eliza): it's a bummer we have to do this linear search every
1882 // time. It would be nice if this could be cached, but that would
1883 // require replacing the `Vec` impl with an impl for a newtype...
1884 if filter::is_plf_downcast_marker(id) && self.iter().any(|s| s.downcast_raw(id).is_none()) {
1885 return None;
1886 }
1887
1888 // Otherwise, return the first child of `self` that downcaasts to
1889 // the selected type, if any.
1890 // XXX(eliza): hope this is reasonable lol
1891 self.iter().find_map(|l| l.downcast_raw(id))
1892 }
1893 }
1894 }
1895
1896 // === impl SubscriberExt ===
1897
1898 impl<S: Subscriber> crate::sealed::Sealed for S {}
1899 impl<S: Subscriber> SubscriberExt for S {}
1900
1901 // === impl Identity ===
1902
1903 impl<S: Subscriber> Layer<S> for Identity {}
1904
1905 impl Identity {
1906 /// Returns a new `Identity` layer.
new() -> Self1907 pub fn new() -> Self {
1908 Self { _p: () }
1909 }
1910 }
1911