• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //
18 // Definitions of resource data structures.
19 //
20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H
21 #define _LIBS_UTILS_RESOURCE_TYPES_H
22 
23 #include <android-base/expected.h>
24 #include <android-base/unique_fd.h>
25 #include <android/configuration.h>
26 #include <androidfw/Asset.h>
27 #include <androidfw/Errors.h>
28 #include <androidfw/LocaleData.h>
29 #include <androidfw/StringPiece.h>
30 #include <utils/ByteOrder.h>
31 #include <utils/Errors.h>
32 #include <utils/KeyedVector.h>
33 #include <utils/String16.h>
34 #include <utils/Vector.h>
35 #include <utils/threads.h>
36 
37 #include <stdint.h>
38 #include <sys/types.h>
39 
40 #include <array>
41 #include <map>
42 #include <memory>
43 #include <optional>
44 #include <string_view>
45 #include <unordered_map>
46 #include <utility>
47 
48 namespace android {
49 
50 constexpr const bool kDeviceEndiannessSame = dtohs(0x1001) == 0x1001;
51 
52 constexpr const uint32_t kIdmapMagic = 0x504D4449u;
53 constexpr const uint32_t kIdmapCurrentVersion = 0x0000000Bu;
54 
55 // This must never change.
56 constexpr const uint32_t kFabricatedOverlayMagic = 0x4f525246; // FRRO (big endian)
57 
58 // The version should only be changed when a backwards-incompatible change must be made to the
59 // fabricated overlay file format. Old fabricated overlays must be migrated to the new file format
60 // to prevent losing fabricated overlay data.
61 constexpr const uint32_t kFabricatedOverlayCurrentVersion = 3;
62 
63 // Returns whether or not the path represents a fabricated overlay.
64 bool IsFabricatedOverlayName(std::string_view path);
65 bool IsFabricatedOverlay(std::string_view path);
66 bool IsFabricatedOverlay(android::base::borrowed_fd fd);
67 
68 /**
69  * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of
70  * casting on raw data and expect char16_t to be exactly 16 bits.
71  */
72 #if __cplusplus >= 201103L
73 struct __assertChar16Size {
74     static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits");
75     static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned");
76 };
77 #endif
78 
79 /** ********************************************************************
80  *  PNG Extensions
81  *
82  *  New private chunks that may be placed in PNG images.
83  *
84  *********************************************************************** */
85 
86 /**
87  * This chunk specifies how to split an image into segments for
88  * scaling.
89  *
90  * There are J horizontal and K vertical segments.  These segments divide
91  * the image into J*K regions as follows (where J=4 and K=3):
92  *
93  *      F0   S0    F1     S1
94  *   +-----+----+------+-------+
95  * S2|  0  |  1 |  2   |   3   |
96  *   +-----+----+------+-------+
97  *   |     |    |      |       |
98  *   |     |    |      |       |
99  * F2|  4  |  5 |  6   |   7   |
100  *   |     |    |      |       |
101  *   |     |    |      |       |
102  *   +-----+----+------+-------+
103  * S3|  8  |  9 |  10  |   11  |
104  *   +-----+----+------+-------+
105  *
106  * Each horizontal and vertical segment is considered to by either
107  * stretchable (marked by the Sx labels) or fixed (marked by the Fy
108  * labels), in the horizontal or vertical axis, respectively. In the
109  * above example, the first is horizontal segment (F0) is fixed, the
110  * next is stretchable and then they continue to alternate. Note that
111  * the segment list for each axis can begin or end with a stretchable
112  * or fixed segment.
113  *
114  * The relative sizes of the stretchy segments indicates the relative
115  * amount of stretchiness of the regions bordered by the segments.  For
116  * example, regions 3, 7 and 11 above will take up more horizontal space
117  * than regions 1, 5 and 9 since the horizontal segment associated with
118  * the first set of regions is larger than the other set of regions.  The
119  * ratios of the amount of horizontal (or vertical) space taken by any
120  * two stretchable slices is exactly the ratio of their corresponding
121  * segment lengths.
122  *
123  * xDivs and yDivs are arrays of horizontal and vertical pixel
124  * indices.  The first pair of Divs (in either array) indicate the
125  * starting and ending points of the first stretchable segment in that
126  * axis. The next pair specifies the next stretchable segment, etc. So
127  * in the above example xDiv[0] and xDiv[1] specify the horizontal
128  * coordinates for the regions labeled 1, 5 and 9.  xDiv[2] and
129  * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that
130  * the leftmost slices always start at x=0 and the rightmost slices
131  * always end at the end of the image. So, for example, the regions 0,
132  * 4 and 8 (which are fixed along the X axis) start at x value 0 and
133  * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at
134  * xDiv[2].
135  *
136  * The colors array contains hints for each of the regions. They are
137  * ordered according left-to-right and top-to-bottom as indicated above.
138  * For each segment that is a solid color the array entry will contain
139  * that color value; otherwise it will contain NO_COLOR. Segments that
140  * are completely transparent will always have the value TRANSPARENT_COLOR.
141  *
142  * The PNG chunk type is "npTc".
143  */
144 struct alignas(uintptr_t) Res_png_9patch
145 {
Res_png_9patchRes_png_9patch146     Res_png_9patch() : wasDeserialized(false), xDivsOffset(0),
147                        yDivsOffset(0), colorsOffset(0) { }
148 
149     int8_t wasDeserialized;
150     uint8_t numXDivs;
151     uint8_t numYDivs;
152     uint8_t numColors;
153 
154     // The offset (from the start of this structure) to the xDivs & yDivs
155     // array for this 9patch. To get a pointer to this array, call
156     // getXDivs or getYDivs. Note that the serialized form for 9patches places
157     // the xDivs, yDivs and colors arrays immediately after the location
158     // of the Res_png_9patch struct.
159     uint32_t xDivsOffset;
160     uint32_t yDivsOffset;
161 
162     int32_t paddingLeft, paddingRight;
163     int32_t paddingTop, paddingBottom;
164 
165     enum {
166         // The 9 patch segment is not a solid color.
167         NO_COLOR = 0x00000001,
168 
169         // The 9 patch segment is completely transparent.
170         TRANSPARENT_COLOR = 0x00000000
171     };
172 
173     // The offset (from the start of this structure) to the colors array
174     // for this 9patch.
175     uint32_t colorsOffset;
176 
177     // Convert data from device representation to PNG file representation.
178     void deviceToFile();
179     // Convert data from PNG file representation to device representation.
180     void fileToDevice();
181 
182     // Serialize/Marshall the patch data into a newly malloc-ed block.
183     static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
184                            const int32_t* yDivs, const uint32_t* colors);
185     // Serialize/Marshall the patch data into |outData|.
186     static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
187                            const int32_t* yDivs, const uint32_t* colors, void* outData);
188     // Deserialize/Unmarshall the patch data
189     static Res_png_9patch* deserialize(void* data);
190     // Compute the size of the serialized data structure
191     size_t serializedSize() const;
192 
193     // These tell where the next section of a patch starts.
194     // For example, the first patch includes the pixels from
195     // 0 to xDivs[0]-1 and the second patch includes the pixels
196     // from xDivs[0] to xDivs[1]-1.
getXDivsRes_png_9patch197     inline int32_t* getXDivs() const {
198         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset);
199     }
getYDivsRes_png_9patch200     inline int32_t* getYDivs() const {
201         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset);
202     }
getColorsRes_png_9patch203     inline uint32_t* getColors() const {
204         return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset);
205     }
206 
207 } __attribute__((packed));
208 
209 /** ********************************************************************
210  *  Base Types
211  *
212  *  These are standard types that are shared between multiple specific
213  *  resource types.
214  *
215  *********************************************************************** */
216 
217 /**
218  * Header that appears at the front of every data chunk in a resource.
219  */
220 struct ResChunk_header
221 {
222     // Type identifier for this chunk.  The meaning of this value depends
223     // on the containing chunk.
224     uint16_t type;
225 
226     // Size of the chunk header (in bytes).  Adding this value to
227     // the address of the chunk allows you to find its associated data
228     // (if any).
229     uint16_t headerSize;
230 
231     // Total size of this chunk (in bytes).  This is the chunkSize plus
232     // the size of any data associated with the chunk.  Adding this value
233     // to the chunk allows you to completely skip its contents (including
234     // any child chunks).  If this value is the same as chunkSize, there is
235     // no data associated with the chunk.
236     uint32_t size;
237 };
238 
239 enum {
240     RES_NULL_TYPE                     = 0x0000,
241     RES_STRING_POOL_TYPE              = 0x0001,
242     RES_TABLE_TYPE                    = 0x0002,
243     RES_XML_TYPE                      = 0x0003,
244 
245     // Chunk types in RES_XML_TYPE
246     RES_XML_FIRST_CHUNK_TYPE          = 0x0100,
247     RES_XML_START_NAMESPACE_TYPE      = 0x0100,
248     RES_XML_END_NAMESPACE_TYPE        = 0x0101,
249     RES_XML_START_ELEMENT_TYPE        = 0x0102,
250     RES_XML_END_ELEMENT_TYPE          = 0x0103,
251     RES_XML_CDATA_TYPE                = 0x0104,
252     RES_XML_LAST_CHUNK_TYPE           = 0x017f,
253     // This contains a uint32_t array mapping strings in the string
254     // pool back to resource identifiers.  It is optional.
255     RES_XML_RESOURCE_MAP_TYPE         = 0x0180,
256 
257     // Chunk types in RES_TABLE_TYPE
258     RES_TABLE_PACKAGE_TYPE            = 0x0200,
259     RES_TABLE_TYPE_TYPE               = 0x0201,
260     RES_TABLE_TYPE_SPEC_TYPE          = 0x0202,
261     RES_TABLE_LIBRARY_TYPE            = 0x0203,
262     RES_TABLE_OVERLAYABLE_TYPE        = 0x0204,
263     RES_TABLE_OVERLAYABLE_POLICY_TYPE = 0x0205,
264     RES_TABLE_STAGED_ALIAS_TYPE       = 0x0206,
265 };
266 
267 /**
268  * Macros for building/splitting resource identifiers.
269  */
270 #define Res_VALIDID(resid) (resid != 0)
271 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0)
272 #define Res_MAKEID(package, type, entry) \
273     (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF))
274 #define Res_GETPACKAGE(id) ((id>>24)-1)
275 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1)
276 #define Res_GETENTRY(id) (id&0xFFFF)
277 
278 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0)
279 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF))
280 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF))
281 
282 static const size_t Res_MAXPACKAGE = 255;
283 static const size_t Res_MAXTYPE = 255;
284 
285 /**
286  * Representation of a value in a resource, supplying type
287  * information.
288  */
289 struct Res_value
290 {
291     // Number of bytes in this structure.
292     uint16_t size;
293 
294     // Always set to 0.
295     uint8_t res0;
296 
297     // Type of the data value.
298     enum : uint8_t {
299         // The 'data' is either 0 or 1, specifying this resource is either
300         // undefined or empty, respectively.
301         TYPE_NULL = 0x00,
302         // The 'data' holds a ResTable_ref, a reference to another resource
303         // table entry.
304         TYPE_REFERENCE = 0x01,
305         // The 'data' holds an attribute resource identifier.
306         TYPE_ATTRIBUTE = 0x02,
307         // The 'data' holds an index into the containing resource table's
308         // global value string pool.
309         TYPE_STRING = 0x03,
310         // The 'data' holds a single-precision floating point number.
311         TYPE_FLOAT = 0x04,
312         // The 'data' holds a complex number encoding a dimension value,
313         // such as "100in".
314         TYPE_DIMENSION = 0x05,
315         // The 'data' holds a complex number encoding a fraction of a
316         // container.
317         TYPE_FRACTION = 0x06,
318         // The 'data' holds a dynamic ResTable_ref, which needs to be
319         // resolved before it can be used like a TYPE_REFERENCE.
320         TYPE_DYNAMIC_REFERENCE = 0x07,
321         // The 'data' holds an attribute resource identifier, which needs to be resolved
322         // before it can be used like a TYPE_ATTRIBUTE.
323         TYPE_DYNAMIC_ATTRIBUTE = 0x08,
324 
325         // Beginning of integer flavors...
326         TYPE_FIRST_INT = 0x10,
327 
328         // The 'data' is a raw integer value of the form n..n.
329         TYPE_INT_DEC = 0x10,
330         // The 'data' is a raw integer value of the form 0xn..n.
331         TYPE_INT_HEX = 0x11,
332         // The 'data' is either 0 or 1, for input "false" or "true" respectively.
333         TYPE_INT_BOOLEAN = 0x12,
334 
335         // Beginning of color integer flavors...
336         TYPE_FIRST_COLOR_INT = 0x1c,
337 
338         // The 'data' is a raw integer value of the form #aarrggbb.
339         TYPE_INT_COLOR_ARGB8 = 0x1c,
340         // The 'data' is a raw integer value of the form #rrggbb.
341         TYPE_INT_COLOR_RGB8 = 0x1d,
342         // The 'data' is a raw integer value of the form #argb.
343         TYPE_INT_COLOR_ARGB4 = 0x1e,
344         // The 'data' is a raw integer value of the form #rgb.
345         TYPE_INT_COLOR_RGB4 = 0x1f,
346 
347         // ...end of integer flavors.
348         TYPE_LAST_COLOR_INT = 0x1f,
349 
350         // ...end of integer flavors.
351         TYPE_LAST_INT = 0x1f
352     };
353     uint8_t dataType;
354 
355     // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION)
356     enum {
357         // Where the unit type information is.  This gives us 16 possible
358         // types, as defined below.
359         COMPLEX_UNIT_SHIFT = 0,
360         COMPLEX_UNIT_MASK = 0xf,
361 
362         // TYPE_DIMENSION: Value is raw pixels.
363         COMPLEX_UNIT_PX = 0,
364         // TYPE_DIMENSION: Value is Device Independent Pixels.
365         COMPLEX_UNIT_DIP = 1,
366         // TYPE_DIMENSION: Value is a Scaled device independent Pixels.
367         COMPLEX_UNIT_SP = 2,
368         // TYPE_DIMENSION: Value is in points.
369         COMPLEX_UNIT_PT = 3,
370         // TYPE_DIMENSION: Value is in inches.
371         COMPLEX_UNIT_IN = 4,
372         // TYPE_DIMENSION: Value is in millimeters.
373         COMPLEX_UNIT_MM = 5,
374 
375         // TYPE_FRACTION: A basic fraction of the overall size.
376         COMPLEX_UNIT_FRACTION = 0,
377         // TYPE_FRACTION: A fraction of the parent size.
378         COMPLEX_UNIT_FRACTION_PARENT = 1,
379 
380         // Where the radix information is, telling where the decimal place
381         // appears in the mantissa.  This give us 4 possible fixed point
382         // representations as defined below.
383         COMPLEX_RADIX_SHIFT = 4,
384         COMPLEX_RADIX_MASK = 0x3,
385 
386         // The mantissa is an integral number -- i.e., 0xnnnnnn.0
387         COMPLEX_RADIX_23p0 = 0,
388         // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn
389         COMPLEX_RADIX_16p7 = 1,
390         // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn
391         COMPLEX_RADIX_8p15 = 2,
392         // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn
393         COMPLEX_RADIX_0p23 = 3,
394 
395         // Where the actual value is.  This gives us 23 bits of
396         // precision.  The top bit is the sign.
397         COMPLEX_MANTISSA_SHIFT = 8,
398         COMPLEX_MANTISSA_MASK = 0xffffff
399     };
400 
401     // Possible data values for TYPE_NULL.
402     enum {
403         // The value is not defined.
404         DATA_NULL_UNDEFINED = 0,
405         // The value is explicitly defined as empty.
406         DATA_NULL_EMPTY = 1
407     };
408 
409     // The data for this item, as interpreted according to dataType.
410     typedef uint32_t data_type;
411     data_type data;
412 
copyFrom_dtohRes_value413     void copyFrom_dtoh(const Res_value& src) {
414       if constexpr (kDeviceEndiannessSame) {
415         *this = src;
416       } else {
417         copyFrom_dtoh_slow(src);
418       }
419     }
420 
421    private:
422     void copyFrom_dtoh_slow(const Res_value& src);
423 };
424 
425 /**
426  *  This is a reference to a unique entry (a ResTable_entry structure)
427  *  in a resource table.  The value is structured as: 0xpptteeee,
428  *  where pp is the package index, tt is the type index in that
429  *  package, and eeee is the entry index in that type.  The package
430  *  and type values start at 1 for the first item, to help catch cases
431  *  where they have not been supplied.
432  */
433 struct ResTable_ref
434 {
435     uint32_t ident;
436 };
437 
438 /**
439  * Reference to a string in a string pool.
440  */
441 struct ResStringPool_ref
442 {
443     // Index into the string pool table (uint32_t-offset from the indices
444     // immediately after ResStringPool_header) at which to find the location
445     // of the string data in the pool.
446     uint32_t index;
447 };
448 
449 /** ********************************************************************
450  *  String Pool
451  *
452  *  A set of strings that can be references by others through a
453  *  ResStringPool_ref.
454  *
455  *********************************************************************** */
456 
457 /**
458  * Definition for a pool of strings.  The data of this chunk is an
459  * array of uint32_t providing indices into the pool, relative to
460  * stringsStart.  At stringsStart are all of the UTF-16 strings
461  * concatenated together; each starts with a uint16_t of the string's
462  * length and each ends with a 0x0000 terminator.  If a string is >
463  * 32767 characters, the high bit of the length is set meaning to take
464  * those 15 bits as a high word and it will be followed by another
465  * uint16_t containing the low word.
466  *
467  * If styleCount is not zero, then immediately following the array of
468  * uint32_t indices into the string table is another array of indices
469  * into a style table starting at stylesStart.  Each entry in the
470  * style table is an array of ResStringPool_span structures.
471  */
472 struct ResStringPool_header
473 {
474     struct ResChunk_header header;
475 
476     // Number of strings in this pool (number of uint32_t indices that follow
477     // in the data).
478     uint32_t stringCount;
479 
480     // Number of style span arrays in the pool (number of uint32_t indices
481     // follow the string indices).
482     uint32_t styleCount;
483 
484     // Flags.
485     enum {
486         // If set, the string index is sorted by the string values (based
487         // on strcmp16()).
488         SORTED_FLAG = 1<<0,
489 
490         // String pool is encoded in UTF-8
491         UTF8_FLAG = 1<<8
492     };
493     uint32_t flags;
494 
495     // Index from header of the string data.
496     uint32_t stringsStart;
497 
498     // Index from header of the style data.
499     uint32_t stylesStart;
500 };
501 
502 /**
503  * This structure defines a span of style information associated with
504  * a string in the pool.
505  */
506 struct ResStringPool_span
507 {
508     enum {
509         END = 0xFFFFFFFF
510     };
511 
512     // This is the name of the span -- that is, the name of the XML
513     // tag that defined it.  The special value END (0xFFFFFFFF) indicates
514     // the end of an array of spans.
515     ResStringPool_ref name;
516 
517     // The range of characters in the string that this span applies to.
518     uint32_t firstChar, lastChar;
519 };
520 
521 /**
522  * Convenience class for accessing data in a ResStringPool resource.
523  */
524 class ResStringPool
525 {
526 public:
527  ResStringPool();
528  explicit ResStringPool(bool optimize_name_lookups);
529  ResStringPool(const void* data, size_t size, bool copyData = false,
530                bool optimize_name_lookups = false);
531  virtual ~ResStringPool();
532 
533  void setToEmpty();
534  status_t setTo(incfs::map_ptr<void> data, size_t size, bool copyData = false);
535 
536  status_t getError() const;
537 
538  void uninit();
539 
540  // Return string entry as UTF16; if the pool is UTF8, the string will
541  // be converted before returning.
stringAt(const ResStringPool_ref & ref)542  inline base::expected<StringPiece16, NullOrIOError> stringAt(const ResStringPool_ref& ref) const {
543    return stringAt(ref.index);
544  }
545     virtual base::expected<StringPiece16, NullOrIOError> stringAt(size_t idx) const;
546 
547     // Note: returns null if the string pool is not UTF8.
548     virtual base::expected<StringPiece, NullOrIOError> string8At(size_t idx) const;
549 
550     // Return string whether the pool is UTF8 or UTF16.  Does not allow you
551     // to distinguish null.
552     base::expected<String8, IOError> string8ObjectAt(size_t idx) const;
553 
554     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(
555         const ResStringPool_ref& ref) const;
556     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(size_t idx) const;
557 
558     base::expected<size_t, NullOrIOError> indexOfString(const char16_t* str, size_t strLen) const;
559 
560     virtual size_t size() const;
561     size_t styleCount() const;
562     size_t bytes() const;
563     incfs::map_ptr<void> data() const;
564 
565     bool isSorted() const;
566     bool isUTF8() const;
567 
568 private:
569     status_t                                      mError;
570     void*                                         mOwnedData;
571     incfs::verified_map_ptr<ResStringPool_header> mHeader;
572     size_t                                        mSize;
573     mutable Mutex                                 mCachesLock;
574     incfs::map_ptr<uint32_t>                      mEntries;
575     incfs::map_ptr<uint32_t>                      mEntryStyles;
576     incfs::map_ptr<void>                          mStrings;
577     char16_t mutable**                            mCache;
578     uint32_t                                      mStringPoolSize;    // number of uint16_t
579     incfs::map_ptr<uint32_t>                      mStyles;
580     uint32_t                                      mStylePoolSize;    // number of uint32_t
581 
582     mutable std::optional<std::pair<std::unordered_map<std::string_view, int>,
583                                     std::unordered_map<std::u16string_view, int>>>
584         mIndexLookupCache;
585 
586     base::expected<StringPiece, NullOrIOError> stringDecodeAt(
587         size_t idx, incfs::map_ptr<uint8_t> str, size_t encLen) const;
588 };
589 
590 /**
591  * Wrapper class that allows the caller to retrieve a string from
592  * a string pool without knowing which string pool to look.
593  */
594 class StringPoolRef {
595 public:
596  StringPoolRef() = default;
597  StringPoolRef(const ResStringPool* pool, uint32_t index);
598 
599  base::expected<StringPiece, NullOrIOError> string8() const;
600  base::expected<StringPiece16, NullOrIOError> string16() const;
601 
602 private:
603  const ResStringPool* mPool = nullptr;
604  uint32_t mIndex = 0u;
605 };
606 
607 /** ********************************************************************
608  *  XML Tree
609  *
610  *  Binary representation of an XML document.  This is designed to
611  *  express everything in an XML document, in a form that is much
612  *  easier to parse on the device.
613  *
614  *********************************************************************** */
615 
616 /**
617  * XML tree header.  This appears at the front of an XML tree,
618  * describing its content.  It is followed by a flat array of
619  * ResXMLTree_node structures; the hierarchy of the XML document
620  * is described by the occurrance of RES_XML_START_ELEMENT_TYPE
621  * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array.
622  */
623 struct ResXMLTree_header
624 {
625     struct ResChunk_header header;
626 };
627 
628 /**
629  * Basic XML tree node.  A single item in the XML document.  Extended info
630  * about the node can be found after header.headerSize.
631  */
632 struct ResXMLTree_node
633 {
634     struct ResChunk_header header;
635 
636     // Line number in original source file at which this element appeared.
637     uint32_t lineNumber;
638 
639     // Optional XML comment that was associated with this element; -1 if none.
640     struct ResStringPool_ref comment;
641 };
642 
643 /**
644  * Extended XML tree node for CDATA tags -- includes the CDATA string.
645  * Appears header.headerSize bytes after a ResXMLTree_node.
646  */
647 struct ResXMLTree_cdataExt
648 {
649     // The raw CDATA character data.
650     struct ResStringPool_ref data;
651 
652     // The typed value of the character data if this is a CDATA node.
653     struct Res_value typedData;
654 };
655 
656 /**
657  * Extended XML tree node for namespace start/end nodes.
658  * Appears header.headerSize bytes after a ResXMLTree_node.
659  */
660 struct ResXMLTree_namespaceExt
661 {
662     // The prefix of the namespace.
663     struct ResStringPool_ref prefix;
664 
665     // The URI of the namespace.
666     struct ResStringPool_ref uri;
667 };
668 
669 /**
670  * Extended XML tree node for element start/end nodes.
671  * Appears header.headerSize bytes after a ResXMLTree_node.
672  */
673 struct ResXMLTree_endElementExt
674 {
675     // String of the full namespace of this element.
676     struct ResStringPool_ref ns;
677 
678     // String name of this node if it is an ELEMENT; the raw
679     // character data if this is a CDATA node.
680     struct ResStringPool_ref name;
681 };
682 
683 /**
684  * Extended XML tree node for start tags -- includes attribute
685  * information.
686  * Appears header.headerSize bytes after a ResXMLTree_node.
687  */
688 struct ResXMLTree_attrExt
689 {
690     // String of the full namespace of this element.
691     struct ResStringPool_ref ns;
692 
693     // String name of this node if it is an ELEMENT; the raw
694     // character data if this is a CDATA node.
695     struct ResStringPool_ref name;
696 
697     // Byte offset from the start of this structure where the attributes start.
698     uint16_t attributeStart;
699 
700     // Size of the ResXMLTree_attribute structures that follow.
701     uint16_t attributeSize;
702 
703     // Number of attributes associated with an ELEMENT.  These are
704     // available as an array of ResXMLTree_attribute structures
705     // immediately following this node.
706     uint16_t attributeCount;
707 
708     // Index (1-based) of the "id" attribute. 0 if none.
709     uint16_t idIndex;
710 
711     // Index (1-based) of the "class" attribute. 0 if none.
712     uint16_t classIndex;
713 
714     // Index (1-based) of the "style" attribute. 0 if none.
715     uint16_t styleIndex;
716 };
717 
718 struct ResXMLTree_attribute
719 {
720     // Namespace of this attribute.
721     struct ResStringPool_ref ns;
722 
723     // Name of this attribute.
724     struct ResStringPool_ref name;
725 
726     // The original raw string value of this attribute.
727     struct ResStringPool_ref rawValue;
728 
729     // Processesd typed value of this attribute.
730     struct Res_value typedValue;
731 };
732 
733 class ResXMLTree;
734 
735 class ResXMLParser
736 {
737 public:
738     explicit ResXMLParser(const ResXMLTree& tree);
739 
740     enum event_code_t {
741         BAD_DOCUMENT = -1,
742         START_DOCUMENT = 0,
743         END_DOCUMENT = 1,
744 
745         FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE,
746 
747         START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE,
748         END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE,
749         START_TAG = RES_XML_START_ELEMENT_TYPE,
750         END_TAG = RES_XML_END_ELEMENT_TYPE,
751         TEXT = RES_XML_CDATA_TYPE
752     };
753 
754     struct ResXMLPosition
755     {
756         event_code_t                eventCode;
757         const ResXMLTree_node*      curNode;
758         const void*                 curExt;
759     };
760 
761     void restart();
762 
763     const ResStringPool& getStrings() const;
764 
765     event_code_t getEventType() const;
766     // Note, unlike XmlPullParser, the first call to next() will return
767     // START_TAG of the first element.
768     event_code_t next();
769 
770     // These are available for all nodes:
771     int32_t getCommentID() const;
772     const char16_t* getComment(size_t* outLen) const;
773     uint32_t getLineNumber() const;
774 
775     // This is available for TEXT:
776     int32_t getTextID() const;
777     const char16_t* getText(size_t* outLen) const;
778     ssize_t getTextValue(Res_value* outValue) const;
779 
780     // These are available for START_NAMESPACE and END_NAMESPACE:
781     int32_t getNamespacePrefixID() const;
782     const char16_t* getNamespacePrefix(size_t* outLen) const;
783     int32_t getNamespaceUriID() const;
784     const char16_t* getNamespaceUri(size_t* outLen) const;
785 
786     // These are available for START_TAG and END_TAG:
787     int32_t getElementNamespaceID() const;
788     const char16_t* getElementNamespace(size_t* outLen) const;
789     int32_t getElementNameID() const;
790     const char16_t* getElementName(size_t* outLen) const;
791 
792     // Remaining methods are for retrieving information about attributes
793     // associated with a START_TAG:
794 
795     size_t getAttributeCount() const;
796 
797     // Returns -1 if no namespace, -2 if idx out of range.
798     int32_t getAttributeNamespaceID(size_t idx) const;
799     const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const;
800 
801     int32_t getAttributeNameID(size_t idx) const;
802     const char16_t* getAttributeName(size_t idx, size_t* outLen) const;
803     uint32_t getAttributeNameResID(size_t idx) const;
804 
805     // These will work only if the underlying string pool is UTF-8.
806     const char* getAttributeNamespace8(size_t idx, size_t* outLen) const;
807     const char* getAttributeName8(size_t idx, size_t* outLen) const;
808 
809     int32_t getAttributeValueStringID(size_t idx) const;
810     const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const;
811 
812     int32_t getAttributeDataType(size_t idx) const;
813     int32_t getAttributeData(size_t idx) const;
814     ssize_t getAttributeValue(size_t idx, Res_value* outValue) const;
815 
816     ssize_t indexOfAttribute(const char* ns, const char* attr) const;
817     ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen,
818                              const char16_t* attr, size_t attrLen) const;
819 
820     ssize_t indexOfID() const;
821     ssize_t indexOfClass() const;
822     ssize_t indexOfStyle() const;
823 
824     void getPosition(ResXMLPosition* pos) const;
825     void setPosition(const ResXMLPosition& pos);
826 
827     void setSourceResourceId(const uint32_t resId);
828     uint32_t getSourceResourceId() const;
829 
830 private:
831     friend class ResXMLTree;
832 
833     event_code_t nextNode();
834 
835     const ResXMLTree&           mTree;
836     event_code_t                mEventCode;
837     const ResXMLTree_node*      mCurNode;
838     const void*                 mCurExt;
839     uint32_t                    mSourceResourceId;
840 };
841 
842 static inline bool operator==(const android::ResXMLParser::ResXMLPosition& lhs,
843                               const android::ResXMLParser::ResXMLPosition& rhs) {
844   return lhs.curNode == rhs.curNode;
845 }
846 
847 class DynamicRefTable;
848 
849 /**
850  * Convenience class for accessing data in a ResXMLTree resource.
851  */
852 class ResXMLTree : public ResXMLParser
853 {
854 public:
855     /**
856      * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation.
857      * The tree stores a clone of the specified DynamicRefTable, so any changes to the original
858      * DynamicRefTable will not affect this tree after instantiation.
859      **/
860     explicit ResXMLTree(std::shared_ptr<const DynamicRefTable> dynamicRefTable);
861     ResXMLTree();
862     ~ResXMLTree();
863 
864     status_t setTo(const void* data, size_t size, bool copyData=false);
865 
866     status_t getError() const;
867 
868     void uninit();
869 
870 private:
871     friend class ResXMLParser;
872 
873     status_t validateNode(const ResXMLTree_node* node) const;
874 
875     std::shared_ptr<const DynamicRefTable> mDynamicRefTable;
876 
877     status_t                    mError;
878     void*                       mOwnedData;
879     const ResXMLTree_header*    mHeader;
880     size_t                      mSize;
881     const uint8_t*              mDataEnd;
882     ResStringPool               mStrings;
883     const uint32_t*             mResIds;
884     size_t                      mNumResIds;
885     const ResXMLTree_node*      mRootNode;
886     const void*                 mRootExt;
887     event_code_t                mRootCode;
888 };
889 
890 /** ********************************************************************
891  *  RESOURCE TABLE
892  *
893  *********************************************************************** */
894 
895 /**
896  * Header for a resource table.  Its data contains a series of
897  * additional chunks:
898  *   * A ResStringPool_header containing all table values.  This string pool
899  *     contains all of the string values in the entire resource table (not
900  *     the names of entries or type identifiers however).
901  *   * One or more ResTable_package chunks.
902  *
903  * Specific entries within a resource table can be uniquely identified
904  * with a single integer as defined by the ResTable_ref structure.
905  */
906 struct ResTable_header
907 {
908     struct ResChunk_header header;
909 
910     // The number of ResTable_package structures.
911     uint32_t packageCount;
912 };
913 
914 /**
915  * A collection of resource data types within a package.  Followed by
916  * one or more ResTable_type and ResTable_typeSpec structures containing the
917  * entry values for each resource type.
918  */
919 struct ResTable_package
920 {
921     struct ResChunk_header header;
922 
923     // If this is a base package, its ID.  Package IDs start
924     // at 1 (corresponding to the value of the package bits in a
925     // resource identifier).  0 means this is not a base package.
926     uint32_t id;
927 
928     // Actual name of this package, \0-terminated.
929     uint16_t name[128];
930 
931     // Offset to a ResStringPool_header defining the resource
932     // type symbol table.  If zero, this package is inheriting from
933     // another base package (overriding specific values in it).
934     uint32_t typeStrings;
935 
936     // Last index into typeStrings that is for public use by others.
937     uint32_t lastPublicType;
938 
939     // Offset to a ResStringPool_header defining the resource
940     // key symbol table.  If zero, this package is inheriting from
941     // another base package (overriding specific values in it).
942     uint32_t keyStrings;
943 
944     // Last index into keyStrings that is for public use by others.
945     uint32_t lastPublicKey;
946 
947     uint32_t typeIdOffset;
948 };
949 
950 // The most specific locale can consist of:
951 //
952 // - a 3 char language code
953 // - a 3 char region code prefixed by a 'r'
954 // - a 4 char script code prefixed by a 's'
955 // - a 8 char variant code prefixed by a 'v'
956 //
957 // each separated by a single char separator, which sums up to a total of 24
958 // chars, (25 include the string terminator). Numbering system specificator,
959 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes,
960 // or 40 bytes to make it 4 bytes aligned.
961 #define RESTABLE_MAX_LOCALE_LEN 40
962 
963 
964 /**
965  * Describes a particular resource configuration.
966  */
967 struct ResTable_config
968 {
969     // Number of bytes in this structure.
970     uint32_t size;
971 
972     union {
973         struct {
974             // Mobile country code (from SIM).  0 means "any".
975             uint16_t mcc;
976             // Mobile network code (from SIM).  0 means "any".
977             uint16_t mnc;
978         };
979         uint32_t imsi;
980     };
981 
982     union {
983         struct {
984             // This field can take three different forms:
985             // - \0\0 means "any".
986             //
987             // - Two 7 bit ascii values interpreted as ISO-639-1 language
988             //   codes ('fr', 'en' etc. etc.). The high bit for both bytes is
989             //   zero.
990             //
991             // - A single 16 bit little endian packed value representing an
992             //   ISO-639-2 3 letter language code. This will be of the form:
993             //
994             //   {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f}
995             //
996             //   bit[0, 4] = first letter of the language code
997             //   bit[5, 9] = second letter of the language code
998             //   bit[10, 14] = third letter of the language code.
999             //   bit[15] = 1 always
1000             //
1001             // For backwards compatibility, languages that have unambiguous
1002             // two letter codes are represented in that format.
1003             //
1004             // The layout is always bigendian irrespective of the runtime
1005             // architecture.
1006             char language[2];
1007 
1008             // This field can take three different forms:
1009             // - \0\0 means "any".
1010             //
1011             // - Two 7 bit ascii values interpreted as 2 letter region
1012             //   codes ('US', 'GB' etc.). The high bit for both bytes is zero.
1013             //
1014             // - An UN M.49 3 digit region code. For simplicity, these are packed
1015             //   in the same manner as the language codes, though we should need
1016             //   only 10 bits to represent them, instead of the 15.
1017             //
1018             // The layout is always bigendian irrespective of the runtime
1019             // architecture.
1020             char country[2];
1021         };
1022         uint32_t locale;
1023     };
1024 
1025     enum {
1026         ORIENTATION_ANY  = ACONFIGURATION_ORIENTATION_ANY,
1027         ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT,
1028         ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND,
1029         ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE,
1030     };
1031 
1032     enum {
1033         TOUCHSCREEN_ANY  = ACONFIGURATION_TOUCHSCREEN_ANY,
1034         TOUCHSCREEN_NOTOUCH  = ACONFIGURATION_TOUCHSCREEN_NOTOUCH,
1035         TOUCHSCREEN_STYLUS  = ACONFIGURATION_TOUCHSCREEN_STYLUS,
1036         TOUCHSCREEN_FINGER  = ACONFIGURATION_TOUCHSCREEN_FINGER,
1037     };
1038 
1039     enum {
1040         DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT,
1041         DENSITY_LOW = ACONFIGURATION_DENSITY_LOW,
1042         DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM,
1043         DENSITY_TV = ACONFIGURATION_DENSITY_TV,
1044         DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH,
1045         DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH,
1046         DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH,
1047         DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH,
1048         DENSITY_ANY = ACONFIGURATION_DENSITY_ANY,
1049         DENSITY_NONE = ACONFIGURATION_DENSITY_NONE
1050     };
1051 
1052     union {
1053         struct {
1054             uint8_t orientation;
1055             uint8_t touchscreen;
1056             uint16_t density;
1057         };
1058         uint32_t screenType;
1059     };
1060 
1061     enum {
1062         KEYBOARD_ANY  = ACONFIGURATION_KEYBOARD_ANY,
1063         KEYBOARD_NOKEYS  = ACONFIGURATION_KEYBOARD_NOKEYS,
1064         KEYBOARD_QWERTY  = ACONFIGURATION_KEYBOARD_QWERTY,
1065         KEYBOARD_12KEY  = ACONFIGURATION_KEYBOARD_12KEY,
1066     };
1067 
1068     enum {
1069         NAVIGATION_ANY  = ACONFIGURATION_NAVIGATION_ANY,
1070         NAVIGATION_NONAV  = ACONFIGURATION_NAVIGATION_NONAV,
1071         NAVIGATION_DPAD  = ACONFIGURATION_NAVIGATION_DPAD,
1072         NAVIGATION_TRACKBALL  = ACONFIGURATION_NAVIGATION_TRACKBALL,
1073         NAVIGATION_WHEEL  = ACONFIGURATION_NAVIGATION_WHEEL,
1074     };
1075 
1076     enum {
1077         MASK_KEYSHIDDEN = 0x0003,
1078         KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY,
1079         KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO,
1080         KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES,
1081         KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT,
1082     };
1083 
1084     enum {
1085         MASK_NAVHIDDEN = 0x000c,
1086         SHIFT_NAVHIDDEN = 2,
1087         NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN,
1088         NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN,
1089         NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN,
1090     };
1091 
1092     enum {
1093         GRAMMATICAL_GENDER_ANY = ACONFIGURATION_GRAMMATICAL_GENDER_ANY,
1094         GRAMMATICAL_GENDER_NEUTER = ACONFIGURATION_GRAMMATICAL_GENDER_NEUTER,
1095         GRAMMATICAL_GENDER_FEMININE = ACONFIGURATION_GRAMMATICAL_GENDER_FEMININE,
1096         GRAMMATICAL_GENDER_MASCULINE = ACONFIGURATION_GRAMMATICAL_GENDER_MASCULINE,
1097         GRAMMATICAL_INFLECTION_GENDER_MASK = 0b11,
1098     };
1099 
1100     struct {
1101         union {
1102             struct {
1103                 uint8_t keyboard;
1104                 uint8_t navigation;
1105                 uint8_t inputFlags;
1106                 uint8_t inputFieldPad0;
1107             };
1108             struct {
1109                 uint32_t input : 24;
1110                 uint32_t inputFullPad0 : 8;
1111             };
1112             struct {
1113                 uint8_t grammaticalInflectionPad0[3];
1114                 uint8_t grammaticalInflection;
1115             };
1116         };
1117     };
1118 
1119     enum {
1120         SCREENWIDTH_ANY = 0
1121     };
1122 
1123     enum {
1124         SCREENHEIGHT_ANY = 0
1125     };
1126 
1127     union {
1128         struct {
1129             uint16_t screenWidth;
1130             uint16_t screenHeight;
1131         };
1132         uint32_t screenSize;
1133     };
1134 
1135     enum {
1136         SDKVERSION_ANY = 0
1137     };
1138 
1139     enum {
1140         MINORVERSION_ANY = 0
1141     };
1142 
1143     union {
1144         struct {
1145             uint16_t sdkVersion;
1146             // For now minorVersion must always be 0!!!  Its meaning
1147             // is currently undefined.
1148             uint16_t minorVersion;
1149         };
1150         uint32_t version;
1151     };
1152 
1153     enum {
1154         // screenLayout bits for screen size class.
1155         MASK_SCREENSIZE = 0x0f,
1156         SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY,
1157         SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL,
1158         SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL,
1159         SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE,
1160         SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE,
1161 
1162         // screenLayout bits for wide/long screen variation.
1163         MASK_SCREENLONG = 0x30,
1164         SHIFT_SCREENLONG = 4,
1165         SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG,
1166         SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG,
1167         SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG,
1168 
1169         // screenLayout bits for layout direction.
1170         MASK_LAYOUTDIR = 0xC0,
1171         SHIFT_LAYOUTDIR = 6,
1172         LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR,
1173         LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR,
1174         LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR,
1175     };
1176 
1177     enum {
1178         // uiMode bits for the mode type.
1179         MASK_UI_MODE_TYPE = 0x0f,
1180         UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY,
1181         UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL,
1182         UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK,
1183         UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR,
1184         UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION,
1185         UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE,
1186         UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH,
1187         UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET,
1188 
1189         // uiMode bits for the night switch.
1190         MASK_UI_MODE_NIGHT = 0x30,
1191         SHIFT_UI_MODE_NIGHT = 4,
1192         UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT,
1193         UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT,
1194         UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT,
1195     };
1196 
1197     union {
1198         struct {
1199             uint8_t screenLayout;
1200             uint8_t uiMode;
1201             uint16_t smallestScreenWidthDp;
1202         };
1203         uint32_t screenConfig;
1204     };
1205 
1206     union {
1207         struct {
1208             uint16_t screenWidthDp;
1209             uint16_t screenHeightDp;
1210         };
1211         uint32_t screenSizeDp;
1212     };
1213 
1214     // The ISO-15924 short name for the script corresponding to this
1215     // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with
1216     // the locale field.
1217     char localeScript[4];
1218 
1219     // A single BCP-47 variant subtag. Will vary in length between 4 and 8
1220     // chars. Interpreted in conjunction with the locale field.
1221     char localeVariant[8];
1222 
1223     enum {
1224         // screenLayout2 bits for round/notround.
1225         MASK_SCREENROUND = 0x03,
1226         SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY,
1227         SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO,
1228         SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES,
1229     };
1230 
1231     enum {
1232         // colorMode bits for wide-color gamut/narrow-color gamut.
1233         MASK_WIDE_COLOR_GAMUT = 0x03,
1234         WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY,
1235         WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO,
1236         WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES,
1237 
1238         // colorMode bits for HDR/LDR.
1239         MASK_HDR = 0x0c,
1240         SHIFT_COLOR_MODE_HDR = 2,
1241         HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR,
1242         HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR,
1243         HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR,
1244     };
1245 
1246     // An extension of screenConfig.
1247     union {
1248         struct {
1249             uint8_t screenLayout2;      // Contains round/notround qualifier.
1250             uint8_t colorMode;          // Wide-gamut, HDR, etc.
1251             uint16_t screenConfigPad2;  // Reserved padding.
1252         };
1253         uint32_t screenConfig2;
1254     };
1255 
1256     // If false and localeScript is set, it means that the script of the locale
1257     // was explicitly provided.
1258     //
1259     // If true, it means that localeScript was automatically computed.
1260     // localeScript may still not be set in this case, which means that we
1261     // tried but could not compute a script.
1262     bool localeScriptWasComputed;
1263 
1264     // The value of BCP 47 Unicode extension for key 'nu' (numbering system).
1265     // Varies in length from 3 to 8 chars. Zero-filled value.
1266     char localeNumberingSystem[8];
1267 
1268     // Mark all padding explicitly so it's clear how much we can expand it.
1269     char endPadding[3];
1270 
copyFromDeviceNoSwapResTable_config1271     void copyFromDeviceNoSwap(const ResTable_config& o) {
1272       const auto o_size = dtohl(o.size);
1273       if (o_size >= sizeof(ResTable_config)) [[likely]] {
1274         *this = o;
1275       } else {
1276         memcpy(this, &o, o_size);
1277         memset(((uint8_t*)this) + o_size, 0, sizeof(ResTable_config) - o_size);
1278       }
1279       this->size = sizeof(*this);
1280     }
1281 
copyFromDtoHResTable_config1282     void copyFromDtoH(const ResTable_config& o) {
1283       if constexpr (kDeviceEndiannessSame) {
1284         copyFromDeviceNoSwap(o);
1285       } else {
1286         copyFromDtoH_slow(o);
1287       }
1288     }
1289 
swapHtoDResTable_config1290     void swapHtoD() {
1291       if constexpr (kDeviceEndiannessSame) {
1292         ;  // noop
1293       } else {
1294         swapHtoD_slow();
1295       }
1296     }
1297 
1298     int compare(const ResTable_config& o) const;
1299     int compareLogical(const ResTable_config& o) const;
1300 
1301     inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; }
1302 
1303     // Flags indicating a set of config values.  These flag constants must
1304     // match the corresponding ones in android.content.pm.ActivityInfo and
1305     // attrs_manifest.xml.
1306     enum {
1307         CONFIG_MCC = ACONFIGURATION_MCC,
1308         CONFIG_MNC = ACONFIGURATION_MNC,
1309         CONFIG_LOCALE = ACONFIGURATION_LOCALE,
1310         CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN,
1311         CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD,
1312         CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN,
1313         CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION,
1314         CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION,
1315         CONFIG_DENSITY = ACONFIGURATION_DENSITY,
1316         CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE,
1317         CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE,
1318         CONFIG_VERSION = ACONFIGURATION_VERSION,
1319         CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT,
1320         CONFIG_UI_MODE = ACONFIGURATION_UI_MODE,
1321         CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR,
1322         CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND,
1323         CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE,
1324         CONFIG_GRAMMATICAL_GENDER = ACONFIGURATION_GRAMMATICAL_GENDER,
1325     };
1326 
1327     // Compare two configuration, returning CONFIG_* flags set for each value
1328     // that is different.
1329     int diff(const ResTable_config& o) const;
1330 
1331     // Return true if 'this' is more specific than 'o'.
1332     bool isMoreSpecificThan(const ResTable_config& o) const;
1333 
1334     // Return true if 'this' is a better match than 'o' for the 'requested'
1335     // configuration.  This assumes that match() has already been used to
1336     // remove any configurations that don't match the requested configuration
1337     // at all; if they are not first filtered, non-matching results can be
1338     // considered better than matching ones.
1339     // The general rule per attribute: if the request cares about an attribute
1340     // (it normally does), if the two (this and o) are equal it's a tie.  If
1341     // they are not equal then one must be generic because only generic and
1342     // '==requested' will pass the match() call.  So if this is not generic,
1343     // it wins.  If this IS generic, o wins (return false).
1344     bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1345 
1346     // Return true if 'this' can be considered a match for the parameters in
1347     // 'settings'.
1348     // Note this is asymetric.  A default piece of data will match every request
1349     // but a request for the default should not match odd specifics
1350     // (ie, request with no mcc should not match a particular mcc's data)
1351     // settings is the requested settings
1352     bool match(const ResTable_config& settings) const;
1353 
1354     // Get the string representation of the locale component of this
1355     // Config. The maximum size of this representation will be
1356     // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0').
1357     //
1358     // Example: en-US, en-Latn-US, en-POSIX.
1359     //
1360     // If canonicalize is set, Tagalog (tl) locales get converted
1361     // to Filipino (fil).
1362     void getBcp47Locale(char* out, bool canonicalize=false) const;
1363 
1364     // Append to str the resource-qualifer string representation of the
1365     // locale component of this Config. If the locale is only country
1366     // and language, it will look like en-rUS. If it has scripts and
1367     // variants, it will be a modified bcp47 tag: b+en+Latn+US.
1368     void appendDirLocale(String8& str) const;
1369 
1370     // Sets the values of language, region, script, variant and numbering
1371     // system to the well formed BCP 47 locale contained in |in|.
1372     // The input locale is assumed to be valid and no validation is performed.
1373     void setBcp47Locale(const char* in);
1374 
clearLocaleResTable_config1375     inline void clearLocale() {
1376         locale = 0;
1377         localeScriptWasComputed = false;
1378         memset(localeScript, 0, sizeof(localeScript));
1379         memset(localeVariant, 0, sizeof(localeVariant));
1380         memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem));
1381     }
1382 
computeScriptResTable_config1383     inline void computeScript() {
1384         localeDataComputeScript(localeScript, language, country);
1385     }
1386 
1387     // Get the 2 or 3 letter language code of this configuration. Trailing
1388     // bytes are set to '\0'.
1389     size_t unpackLanguage(char language[4]) const;
1390     // Get the 2 or 3 letter language code of this configuration. Trailing
1391     // bytes are set to '\0'.
1392     size_t unpackRegion(char region[4]) const;
1393 
1394     // Sets the language code of this configuration to the first three
1395     // chars at |language|.
1396     //
1397     // If |language| is a 2 letter code, the trailing byte must be '\0' or
1398     // the BCP-47 separator '-'.
1399     void packLanguage(const char* language);
1400     // Sets the region code of this configuration to the first three bytes
1401     // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0'
1402     // or the BCP-47 separator '-'.
1403     void packRegion(const char* region);
1404 
1405     // Returns a positive integer if this config is more specific than |o|
1406     // with respect to their locales, a negative integer if |o| is more specific
1407     // and 0 if they're equally specific.
1408     int isLocaleMoreSpecificThan(const ResTable_config &o) const;
1409 
1410     // Returns an integer representng the imporance score of the configuration locale.
1411     int getImportanceScoreOfLocale() const;
1412 
1413     // Return true if 'this' is a better locale match than 'o' for the
1414     // 'requested' configuration. Similar to isBetterThan(), this assumes that
1415     // match() has already been used to remove any configurations that don't
1416     // match the requested configuration at all.
1417     bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1418 
1419     // The first part of isBetterThan() that only compares the fields that are higher priority than
1420     // the locale. Use it when you need to do custom locale matching to filter out the configs prior
1421     // to that.
1422     bool isBetterThanBeforeLocale(const ResTable_config& o, const ResTable_config& requested) const;
1423 
1424     String8 toString() const;
1425 
1426    private:
1427     void copyFromDtoH_slow(const ResTable_config& o);
1428     void swapHtoD_slow();
1429 };
1430 
1431 // Fix the struct size for backward compatibility
1432 static_assert(sizeof(ResTable_config) == 64);
1433 
1434 // Make sure there's no unaccounted padding in the structure.
1435 static_assert(offsetof(ResTable_config, endPadding) +
1436                   sizeof(ResTable_config::endPadding) == sizeof(ResTable_config));
1437 
1438 /**
1439  * A specification of the resources defined by a particular type.
1440  *
1441  * There should be one of these chunks for each resource type.
1442  *
1443  * This structure is followed by an array of integers providing the set of
1444  * configuration change flags (ResTable_config::CONFIG_*) that have multiple
1445  * resources for that configuration.  In addition, the high bit is set if that
1446  * resource has been made public.
1447  */
1448 struct ResTable_typeSpec
1449 {
1450     struct ResChunk_header header;
1451 
1452     // The type identifier this chunk is holding.  Type IDs start
1453     // at 1 (corresponding to the value of the type bits in a
1454     // resource identifier).  0 is invalid.
1455     uint8_t id;
1456 
1457     // Must be 0.
1458     uint8_t res0;
1459     // Used to be reserved, if >0 specifies the number of ResTable_type entries for this spec.
1460     uint16_t typesCount;
1461 
1462     // Number of uint32_t entry configuration masks that follow.
1463     uint32_t entryCount;
1464 
1465     enum : uint32_t {
1466         // Additional flag indicating an entry is public.
1467         SPEC_PUBLIC = 0x40000000u,
1468 
1469         // Additional flag indicating the resource id for this resource may change in a future
1470         // build. If this flag is set, the SPEC_PUBLIC flag is also set since the resource must be
1471         // public to be exposed as an API to other applications.
1472         SPEC_STAGED_API = 0x20000000u,
1473     };
1474 };
1475 
1476 /**
1477  * A collection of resource entries for a particular resource data
1478  * type.
1479  *
1480  * If the flag FLAG_SPARSE is not set in `flags`, then this struct is
1481  * followed by an array of uint32_t defining the resource
1482  * values, corresponding to the array of type strings in the
1483  * ResTable_package::typeStrings string block. Each of these hold an
1484  * index from entriesStart; a value of NO_ENTRY means that entry is
1485  * not defined.
1486  *
1487  * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed
1488  * by an array of ResTable_sparseTypeEntry defining only the entries that
1489  * have values for this type. Each entry is sorted by their entry ID such
1490  * that a binary search can be performed over the entries. The ID and offset
1491  * are encoded in a uint32_t. See ResTabe_sparseTypeEntry.
1492  *
1493  * There may be multiple of these chunks for a particular resource type,
1494  * supply different configuration variations for the resource values of
1495  * that type.
1496  *
1497  * It would be nice to have an additional ordered index of entries, so
1498  * we can do a binary search if trying to find a resource by string name.
1499  */
1500 struct ResTable_type
1501 {
1502     struct ResChunk_header header;
1503 
1504     enum {
1505         NO_ENTRY = 0xFFFFFFFF
1506     };
1507 
1508     // The type identifier this chunk is holding.  Type IDs start
1509     // at 1 (corresponding to the value of the type bits in a
1510     // resource identifier).  0 is invalid.
1511     uint8_t id;
1512 
1513     enum {
1514         // If set, the entry is sparse, and encodes both the entry ID and offset into each entry,
1515         // and a binary search is used to find the key. Only available on platforms >= O.
1516         // Mark any types that use this with a v26 qualifier to prevent runtime issues on older
1517         // platforms.
1518         FLAG_SPARSE = 0x01,
1519 
1520         // If set, the offsets to the entries are encoded in 16-bit, real_offset = offset * 4u
1521         // An 16-bit offset of 0xffffu means a NO_ENTRY
1522         FLAG_OFFSET16 = 0x02,
1523     };
1524     uint8_t flags;
1525 
1526     // Must be 0.
1527     uint16_t reserved;
1528 
1529     // Number of uint32_t entry indices that follow.
1530     uint32_t entryCount;
1531 
1532     // Offset from header where ResTable_entry data starts.
1533     uint32_t entriesStart;
1534 
1535     // Configuration this collection of entries is designed for. This must always be last.
1536     ResTable_config config;
1537 };
1538 
1539 // Convert a 16-bit offset to 32-bit if FLAG_OFFSET16 is set
offset_from16(uint16_t off16)1540 static inline uint32_t offset_from16(uint16_t off16) {
1541     return dtohs(off16) == 0xffffu ? ResTable_type::NO_ENTRY : dtohs(off16) * 4u;
1542 }
1543 
1544 // The minimum size required to read any version of ResTable_type.
1545 constexpr size_t kResTableTypeMinSize =
1546     sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size);
1547 
1548 // Assert that the ResTable_config is always the last field. This poses a problem for extending
1549 // ResTable_type in the future, as ResTable_config is variable (over different releases).
1550 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config),
1551               "ResTable_config must be last field in ResTable_type");
1552 
1553 /**
1554  * An entry in a ResTable_type with the flag `FLAG_SPARSE` set.
1555  */
1556 union ResTable_sparseTypeEntry {
1557     // Holds the raw uint32_t encoded value. Do not read this.
1558     uint32_t entry;
1559     struct {
1560         // The index of the entry.
1561         uint16_t idx;
1562 
1563         // The offset from ResTable_type::entriesStart, divided by 4.
1564         uint16_t offset;
1565     };
1566 };
1567 
1568 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t),
1569         "ResTable_sparseTypeEntry must be 4 bytes in size");
1570 
1571 struct ResTable_map_entry;
1572 
1573 /**
1574  * This is the beginning of information about an entry in the resource
1575  * table.  It holds the reference to the name of this entry, and is
1576  * immediately followed by one of:
1577  *   * A Res_value structure, if FLAG_COMPLEX is -not- set.
1578  *   * An array of ResTable_map structures, if FLAG_COMPLEX is set.
1579  *     These supply a set of name/value mappings of data.
1580  *   * If FLAG_COMPACT is set, this entry is a compact entry for
1581  *     simple values only
1582  */
1583 union ResTable_entry
1584 {
1585     enum {
1586         // If set, this is a complex entry, holding a set of name/value
1587         // mappings.  It is followed by an array of ResTable_map structures.
1588         FLAG_COMPLEX = 0x0001,
1589         // If set, this resource has been declared public, so libraries
1590         // are allowed to reference it.
1591         FLAG_PUBLIC = 0x0002,
1592         // If set, this is a weak resource and may be overriden by strong
1593         // resources of the same name/type. This is only useful during
1594         // linking with other resource tables.
1595         FLAG_WEAK = 0x0004,
1596         // If set, this is a compact entry with data type and value directly
1597         // encoded in the this entry, see ResTable_entry::compact
1598         FLAG_COMPACT = 0x0008,
1599         // If set, this entry relies on read write android feature flags
1600         FLAG_USES_FEATURE_FLAGS = 0x0010,
1601     };
1602 
1603     struct Full {
1604         // Number of bytes in this structure.
1605         uint16_t size;
1606 
1607         uint16_t flags;
1608 
1609         // Reference into ResTable_package::keyStrings identifying this entry.
1610         struct ResStringPool_ref key;
1611     } full;
1612 
1613     /* A compact entry is indicated by FLAG_COMPACT, with flags at the same
1614      * offset as a normal entry. This is only for simple data values where
1615      *
1616      * - size for entry or value can be inferred (both being 8 bytes).
1617      * - key index is encoded in 16-bit
1618      * - dataType is encoded as the higher 8-bit of flags
1619      * - data is encoded directly in this entry
1620      */
1621     struct Compact {
1622         uint16_t key;
1623         uint16_t flags;
1624         uint32_t data;
1625     } compact;
1626 
flags()1627     uint16_t flags()  const { return dtohs(full.flags); };
is_compact()1628     bool is_compact() const { return flags() & FLAG_COMPACT; }
is_complex()1629     bool is_complex() const { return flags() & FLAG_COMPLEX; }
uses_feature_flags()1630     bool uses_feature_flags() const { return flags() & FLAG_USES_FEATURE_FLAGS; }
1631 
size()1632     size_t size() const {
1633         return is_compact() ? sizeof(ResTable_entry) : dtohs(this->full.size);
1634     }
1635 
key()1636     uint32_t key() const {
1637         return is_compact() ? dtohs(this->compact.key) : dtohl(this->full.key.index);
1638     }
1639 
1640     /* Always verify the memory associated with this entry and its value
1641      * before calling value() or map_entry()
1642      */
value()1643     Res_value value() const {
1644         Res_value v;
1645         if (is_compact()) {
1646             v.size = sizeof(Res_value);
1647             v.res0 = 0;
1648             v.data = dtohl(this->compact.data);
1649             v.dataType = dtohs(compact.flags) >> 8;
1650         } else {
1651             auto vaddr = reinterpret_cast<const uint8_t*>(this) + dtohs(this->full.size);
1652             auto value = reinterpret_cast<const Res_value*>(vaddr);
1653             v.size = dtohs(value->size);
1654             v.res0 = value->res0;
1655             v.data = dtohl(value->data);
1656             v.dataType = value->dataType;
1657         }
1658         return v;
1659     }
1660 
map_entry()1661     const ResTable_map_entry* map_entry() const {
1662         return is_complex() && !is_compact() ?
1663             reinterpret_cast<const ResTable_map_entry*>(this) : nullptr;
1664     }
1665 };
1666 
1667 /* Make sure size of ResTable_entry::Full and ResTable_entry::Compact
1668  * be the same as ResTable_entry. This is to allow iteration of entries
1669  * to work in either cases.
1670  *
1671  * The offset of flags must be at the same place for both structures,
1672  * to ensure the correct reading to decide whether this is a full entry
1673  * or a compact entry.
1674  */
1675 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Full));
1676 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Compact));
1677 static_assert(offsetof(ResTable_entry, full.flags) == offsetof(ResTable_entry, compact.flags));
1678 
1679 /**
1680  * Extended form of a ResTable_entry for map entries, defining a parent map
1681  * resource from which to inherit values.
1682  */
1683 struct ResTable_map_entry : public ResTable_entry::Full
1684 {
1685     // Resource identifier of the parent mapping, or 0 if there is none.
1686     // This is always treated as a TYPE_DYNAMIC_REFERENCE.
1687     ResTable_ref parent;
1688     // Number of name/value pairs that follow for FLAG_COMPLEX.
1689     uint32_t count;
1690 };
1691 
1692 /**
1693  * A single name/value mapping that is part of a complex resource
1694  * entry.
1695  */
1696 struct ResTable_map
1697 {
1698     // The resource identifier defining this mapping's name.  For attribute
1699     // resources, 'name' can be one of the following special resource types
1700     // to supply meta-data about the attribute; for all other resource types
1701     // it must be an attribute resource.
1702     ResTable_ref name;
1703 
1704     // Special values for 'name' when defining attribute resources.
1705     enum {
1706         // This entry holds the attribute's type code.
1707         ATTR_TYPE = Res_MAKEINTERNAL(0),
1708 
1709         // For integral attributes, this is the minimum value it can hold.
1710         ATTR_MIN = Res_MAKEINTERNAL(1),
1711 
1712         // For integral attributes, this is the maximum value it can hold.
1713         ATTR_MAX = Res_MAKEINTERNAL(2),
1714 
1715         // Localization of this resource is can be encouraged or required with
1716         // an aapt flag if this is set
1717         ATTR_L10N = Res_MAKEINTERNAL(3),
1718 
1719         // for plural support, see android.content.res.PluralRules#attrForQuantity(int)
1720         ATTR_OTHER = Res_MAKEINTERNAL(4),
1721         ATTR_ZERO = Res_MAKEINTERNAL(5),
1722         ATTR_ONE = Res_MAKEINTERNAL(6),
1723         ATTR_TWO = Res_MAKEINTERNAL(7),
1724         ATTR_FEW = Res_MAKEINTERNAL(8),
1725         ATTR_MANY = Res_MAKEINTERNAL(9)
1726 
1727     };
1728 
1729     // Bit mask of allowed types, for use with ATTR_TYPE.
1730     enum {
1731         // No type has been defined for this attribute, use generic
1732         // type handling.  The low 16 bits are for types that can be
1733         // handled generically; the upper 16 require additional information
1734         // in the bag so can not be handled generically for TYPE_ANY.
1735         TYPE_ANY = 0x0000FFFF,
1736 
1737         // Attribute holds a references to another resource.
1738         TYPE_REFERENCE = 1<<0,
1739 
1740         // Attribute holds a generic string.
1741         TYPE_STRING = 1<<1,
1742 
1743         // Attribute holds an integer value.  ATTR_MIN and ATTR_MIN can
1744         // optionally specify a constrained range of possible integer values.
1745         TYPE_INTEGER = 1<<2,
1746 
1747         // Attribute holds a boolean integer.
1748         TYPE_BOOLEAN = 1<<3,
1749 
1750         // Attribute holds a color value.
1751         TYPE_COLOR = 1<<4,
1752 
1753         // Attribute holds a floating point value.
1754         TYPE_FLOAT = 1<<5,
1755 
1756         // Attribute holds a dimension value, such as "20px".
1757         TYPE_DIMENSION = 1<<6,
1758 
1759         // Attribute holds a fraction value, such as "20%".
1760         TYPE_FRACTION = 1<<7,
1761 
1762         // Attribute holds an enumeration.  The enumeration values are
1763         // supplied as additional entries in the map.
1764         TYPE_ENUM = 1<<16,
1765 
1766         // Attribute holds a bitmaks of flags.  The flag bit values are
1767         // supplied as additional entries in the map.
1768         TYPE_FLAGS = 1<<17
1769     };
1770 
1771     // Enum of localization modes, for use with ATTR_L10N.
1772     enum {
1773         L10N_NOT_REQUIRED = 0,
1774         L10N_SUGGESTED    = 1
1775     };
1776 
1777     // This mapping's value.
1778     Res_value value;
1779 };
1780 
1781 /**
1782  * A package-id to package name mapping for any shared libraries used
1783  * in this resource table. The package-id's encoded in this resource
1784  * table may be different than the id's assigned at runtime. We must
1785  * be able to translate the package-id's based on the package name.
1786  */
1787 struct ResTable_lib_header
1788 {
1789     struct ResChunk_header header;
1790 
1791     // The number of shared libraries linked in this resource table.
1792     uint32_t count;
1793 };
1794 
1795 /**
1796  * A shared library package-id to package name entry.
1797  */
1798 struct ResTable_lib_entry
1799 {
1800     // The package-id this shared library was assigned at build time.
1801     // We use a uint32 to keep the structure aligned on a uint32 boundary.
1802     uint32_t packageId;
1803 
1804     // The package name of the shared library. \0 terminated.
1805     uint16_t packageName[128];
1806 };
1807 
1808 /**
1809  * A map that allows rewriting staged (non-finalized) resource ids to their finalized counterparts.
1810  */
1811 struct ResTable_staged_alias_header
1812 {
1813     struct ResChunk_header header;
1814 
1815     // The number of ResTable_staged_alias_entry that follow this header.
1816     uint32_t count;
1817 };
1818 
1819 /**
1820  * Maps the staged (non-finalized) resource id to its finalized resource id.
1821  */
1822 struct ResTable_staged_alias_entry
1823 {
1824   // The compile-time staged resource id to rewrite.
1825   uint32_t stagedResId;
1826 
1827   // The compile-time finalized resource id to which the staged resource id should be rewritten.
1828   uint32_t finalizedResId;
1829 };
1830 
1831 /**
1832  * Specifies the set of resources that are explicitly allowed to be overlaid by RROs.
1833  */
1834 struct ResTable_overlayable_header
1835 {
1836   struct ResChunk_header header;
1837 
1838   // The name of the overlayable set of resources that overlays target.
1839   uint16_t name[256];
1840 
1841  // The component responsible for enabling and disabling overlays targeting this chunk.
1842   uint16_t actor[256];
1843 };
1844 
1845 /**
1846  * Holds a list of resource ids that are protected from being overlaid by a set of policies. If
1847  * the overlay fulfils at least one of the policies, then the overlay can overlay the list of
1848  * resources.
1849  */
1850 struct ResTable_overlayable_policy_header
1851 {
1852   /**
1853    * Flags for a bitmask for all possible overlayable policy options.
1854    *
1855    * Any changes to this set should also update aidl/android/os/OverlayablePolicy.aidl
1856    */
1857   enum PolicyFlags : uint32_t {
1858     // Base
1859     NONE = 0x00000000,
1860 
1861     // Any overlay can overlay these resources.
1862     PUBLIC = 0x00000001,
1863 
1864     // The overlay must reside of the system partition or must have existed on the system partition
1865     // before an upgrade to overlay these resources.
1866     SYSTEM_PARTITION = 0x00000002,
1867 
1868     // The overlay must reside of the vendor partition or must have existed on the vendor partition
1869     // before an upgrade to overlay these resources.
1870     VENDOR_PARTITION = 0x00000004,
1871 
1872     // The overlay must reside of the product partition or must have existed on the product
1873     // partition before an upgrade to overlay these resources.
1874     PRODUCT_PARTITION = 0x00000008,
1875 
1876     // The overlay must be signed with the same signature as the package containing the target
1877     // resource
1878     SIGNATURE = 0x00000010,
1879 
1880     // The overlay must reside of the odm partition or must have existed on the odm
1881     // partition before an upgrade to overlay these resources.
1882     ODM_PARTITION = 0x00000020,
1883 
1884     // The overlay must reside of the oem partition or must have existed on the oem
1885     // partition before an upgrade to overlay these resources.
1886     OEM_PARTITION = 0x00000040,
1887 
1888     // The overlay must be signed with the same signature as the actor declared for the target
1889     // resource
1890     ACTOR_SIGNATURE = 0x00000080,
1891 
1892     // The overlay must be signed with the same signature as the reference package declared
1893     // in the SystemConfig
1894     CONFIG_SIGNATURE = 0x00000100,
1895   };
1896 
1897   using PolicyBitmask = uint32_t;
1898 
1899   struct ResChunk_header header;
1900 
1901   PolicyFlags policy_flags;
1902 
1903   // The number of ResTable_ref that follow this header.
1904   uint32_t entry_count;
1905 };
1906 
1907 inline ResTable_overlayable_policy_header::PolicyFlags& operator |=(
1908     ResTable_overlayable_policy_header::PolicyFlags& first,
1909     ResTable_overlayable_policy_header::PolicyFlags second) {
1910   first = static_cast<ResTable_overlayable_policy_header::PolicyFlags>(first | second);
1911   return first;
1912 }
1913 
1914 using ResourceId = uint32_t;  // 0xpptteeee
1915 
1916 using DataType = uint8_t;    // Res_value::dataType
1917 using DataValue = uint32_t;  // Res_value::data
1918 
1919 struct OverlayManifestInfo {
1920   std::string package_name;     // NOLINT(misc-non-private-member-variables-in-classes)
1921   std::string name;             // NOLINT(misc-non-private-member-variables-in-classes)
1922   std::string target_package;   // NOLINT(misc-non-private-member-variables-in-classes)
1923   std::string target_name;      // NOLINT(misc-non-private-member-variables-in-classes)
1924   ResourceId resource_mapping;  // NOLINT(misc-non-private-member-variables-in-classes)
1925 };
1926 
1927 struct FabricatedOverlayEntryParameters {
1928   std::string resource_name;
1929   DataType data_type;
1930   DataValue data_value;
1931   std::string data_string_value;
1932   std::optional<android::base::borrowed_fd> data_binary_value;
1933   off64_t binary_data_offset;
1934   size_t binary_data_size;
1935   std::string configuration;
1936   bool nine_patch;
1937 };
1938 
1939 class AssetManager2;
1940 
1941 /**
1942  * Holds the shared library ID table. Shared libraries are assigned package IDs at
1943  * build time, but they may be loaded in a different order, so we need to maintain
1944  * a mapping of build-time package ID to run-time assigned package ID.
1945  *
1946  * Dynamic references are not currently supported in overlays. Only the base package
1947  * may have dynamic references.
1948  */
1949 class DynamicRefTable
1950 {
1951     friend class AssetManager2;
1952 public:
1953     DynamicRefTable();
1954     DynamicRefTable(uint8_t packageId, bool appAsLib);
1955     virtual ~DynamicRefTable() = default;
1956 
1957     // Loads an unmapped reference table from the package.
1958     status_t load(const ResTable_lib_header* const header);
1959 
1960     // Adds mappings from the other DynamicRefTable
1961     status_t addMappings(const DynamicRefTable& other);
1962 
1963     // Creates a mapping from build-time package ID to run-time package ID for
1964     // the given package.
1965     status_t addMapping(const String16& packageName, uint8_t packageId);
1966 
1967     void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId);
1968 
1969     using AliasMap = std::vector<std::pair<uint32_t, uint32_t>>;
setAliases(AliasMap aliases)1970     void setAliases(AliasMap aliases) {
1971         mAliasId = std::move(aliases);
1972     }
1973 
1974     // Returns whether or not the value must be looked up.
1975     bool requiresLookup(const Res_value* value) const;
1976 
1977     // Performs the actual conversion of build-time resource ID to run-time
1978     // resource ID.
1979     virtual status_t lookupResourceId(uint32_t* resId) const;
1980     status_t lookupResourceValue(Res_value* value) const;
1981 
entries()1982     inline const KeyedVector<String16, uint8_t>& entries() const {
1983         return mEntries;
1984     }
1985 
1986    private:
1987     uint8_t mLookupTable[256];
1988     uint8_t mAssignedPackageId;
1989     bool mAppAsLib;
1990     KeyedVector<String16, uint8_t> mEntries;
1991     AliasMap mAliasId;
1992 };
1993 
1994 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue);
1995 
1996 template<typename TChar, typename E>
UnpackOptionalString(base::expected<BasicStringPiece<TChar>,E> && result,size_t * outLen)1997 static const TChar* UnpackOptionalString(base::expected<BasicStringPiece<TChar>, E>&& result,
1998                                          size_t* outLen) {
1999   if (result.has_value()) {
2000     *outLen = result->size();
2001     return result->data();
2002   }
2003   return NULL;
2004 }
2005 
2006 /**
2007  * Convenience class for accessing data in a ResTable resource.
2008  */
2009 class ResTable
2010 {
2011 public:
2012     ResTable();
2013     ResTable(const void* data, size_t size, const int32_t cookie,
2014              bool copyData=false);
2015     ~ResTable();
2016 
2017     status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false);
2018     status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2019             const int32_t cookie=-1, bool copyData=false, bool appAsLib=false);
2020 
2021     status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false);
2022     status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false,
2023             bool appAsLib=false, bool isSystemAsset=false);
2024 
2025     status_t add(ResTable* src, bool isSystemAsset=false);
2026     status_t addEmpty(const int32_t cookie);
2027 
2028     status_t getError() const;
2029 
2030     void uninit();
2031 
2032     struct resource_name
2033     {
2034         const char16_t* package = NULL;
2035         size_t packageLen;
2036         const char16_t* type = NULL;
2037         const char* type8 = NULL;
2038         size_t typeLen;
2039         const char16_t* name = NULL;
2040         const char* name8 = NULL;
2041         size_t nameLen;
2042     };
2043 
2044     bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const;
2045 
2046     bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const;
2047 
2048     bool getResourceEntryFlags(uint32_t resID, uint32_t* outFlags) const;
2049 
2050     /**
2051      * Returns whether or not the package for the given resource has been dynamically assigned.
2052      * If the resource can't be found, returns 'false'.
2053      */
2054     bool isResourceDynamic(uint32_t resID) const;
2055 
2056     /**
2057      * Returns whether or not the given package has been dynamically assigned.
2058      * If the package can't be found, returns 'false'.
2059      */
2060     bool isPackageDynamic(uint8_t packageID) const;
2061 
2062     /**
2063      * Retrieve the value of a resource.  If the resource is found, returns a
2064      * value >= 0 indicating the table it is in (for use with
2065      * getTableStringBlock() and getTableCookie()) and fills in 'outValue'.  If
2066      * not found, returns a negative error code.
2067      *
2068      * Note that this function does not do reference traversal.  If you want
2069      * to follow references to other resources to get the "real" value to
2070      * use, you need to call resolveReference() after this function.
2071      *
2072      * @param resID The desired resoruce identifier.
2073      * @param outValue Filled in with the resource data that was found.
2074      *
2075      * @return ssize_t Either a >= 0 table index or a negative error code.
2076      */
2077     ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false,
2078                     uint16_t density = 0,
2079                     uint32_t* outSpecFlags = NULL,
2080                     ResTable_config* outConfig = NULL) const;
2081 
2082     inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue,
2083             uint32_t* outSpecFlags=NULL) const {
2084         return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL);
2085     }
2086 
2087     ssize_t resolveReference(Res_value* inOutValue,
2088                              ssize_t blockIndex,
2089                              uint32_t* outLastRef = NULL,
2090                              uint32_t* inoutTypeSpecFlags = NULL,
2091                              ResTable_config* outConfig = NULL) const;
2092 
2093     enum {
2094         TMP_BUFFER_SIZE = 16
2095     };
2096     const char16_t* valueToString(const Res_value* value, size_t stringBlock,
2097                                   char16_t tmpBuffer[TMP_BUFFER_SIZE],
2098                                   size_t* outLen) const;
2099 
2100     struct bag_entry {
2101         ssize_t stringBlock;
2102         ResTable_map map;
2103     };
2104 
2105     /**
2106      * Retrieve the bag of a resource.  If the resoruce is found, returns the
2107      * number of bags it contains and 'outBag' points to an array of their
2108      * values.  If not found, a negative error code is returned.
2109      *
2110      * Note that this function -does- do reference traversal of the bag data.
2111      *
2112      * @param resID The desired resource identifier.
2113      * @param outBag Filled inm with a pointer to the bag mappings.
2114      *
2115      * @return ssize_t Either a >= 0 bag count of negative error code.
2116      */
2117     ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const;
2118 
2119     void unlockBag(const bag_entry* bag) const;
2120 
2121     void lock() const;
2122 
2123     ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag,
2124             uint32_t* outTypeSpecFlags=NULL) const;
2125 
2126     void unlock() const;
2127 
2128     class Theme {
2129     public:
2130         explicit Theme(const ResTable& table);
2131         ~Theme();
2132 
getResTable()2133         inline const ResTable& getResTable() const { return mTable; }
2134 
2135         status_t applyStyle(uint32_t resID, bool force=false);
2136         status_t setTo(const Theme& other);
2137         status_t clear();
2138 
2139         /**
2140          * Retrieve a value in the theme.  If the theme defines this
2141          * value, returns a value >= 0 indicating the table it is in
2142          * (for use with getTableStringBlock() and getTableCookie) and
2143          * fills in 'outValue'.  If not found, returns a negative error
2144          * code.
2145          *
2146          * Note that this function does not do reference traversal.  If you want
2147          * to follow references to other resources to get the "real" value to
2148          * use, you need to call resolveReference() after this function.
2149          *
2150          * @param resID A resource identifier naming the desired theme
2151          *              attribute.
2152          * @param outValue Filled in with the theme value that was
2153          *                 found.
2154          *
2155          * @return ssize_t Either a >= 0 table index or a negative error code.
2156          */
2157         ssize_t getAttribute(uint32_t resID, Res_value* outValue,
2158                 uint32_t* outTypeSpecFlags = NULL) const;
2159 
2160         /**
2161          * This is like ResTable::resolveReference(), but also takes
2162          * care of resolving attribute references to the theme.
2163          */
2164         ssize_t resolveAttributeReference(Res_value* inOutValue,
2165                 ssize_t blockIndex, uint32_t* outLastRef = NULL,
2166                 uint32_t* inoutTypeSpecFlags = NULL,
2167                 ResTable_config* inoutConfig = NULL) const;
2168 
2169         /**
2170          * Returns a bit mask of configuration changes that will impact this
2171          * theme (and thus require completely reloading it).
2172          */
2173         uint32_t getChangingConfigurations() const;
2174 
2175         void dumpToLog() const;
2176 
2177     private:
2178         Theme(const Theme&);
2179         Theme& operator=(const Theme&);
2180 
2181         struct theme_entry {
2182             ssize_t stringBlock;
2183             uint32_t typeSpecFlags;
2184             Res_value value;
2185         };
2186 
2187         struct type_info {
2188             size_t numEntries;
2189             theme_entry* entries;
2190         };
2191 
2192         struct package_info {
2193             type_info types[Res_MAXTYPE + 1];
2194         };
2195 
2196         void free_package(package_info* pi);
2197         package_info* copy_package(package_info* pi);
2198 
2199         const ResTable& mTable;
2200         package_info*   mPackages[Res_MAXPACKAGE];
2201         uint32_t        mTypeSpecFlags;
2202     };
2203 
2204     void setParameters(const ResTable_config* params);
2205     void getParameters(ResTable_config* params) const;
2206 
2207     // Retrieve an identifier (which can be passed to getResource)
2208     // for a given resource name.  The 'name' can be fully qualified
2209     // (<package>:<type>.<basename>) or the package or type components
2210     // can be dropped if default values are supplied here.
2211     //
2212     // Returns 0 if no such resource was found, else a valid resource ID.
2213     uint32_t identifierForName(const char16_t* name, size_t nameLen,
2214                                const char16_t* type = 0, size_t typeLen = 0,
2215                                const char16_t* defPackage = 0,
2216                                size_t defPackageLen = 0,
2217                                uint32_t* outTypeSpecFlags = NULL) const;
2218 
2219     static bool expandResourceRef(const char16_t* refStr, size_t refLen,
2220                                   String16* outPackage,
2221                                   String16* outType,
2222                                   String16* outName,
2223                                   const String16* defType = NULL,
2224                                   const String16* defPackage = NULL,
2225                                   const char** outErrorMsg = NULL,
2226                                   bool* outPublicOnly = NULL);
2227 
2228     static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue);
2229     static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue);
2230     static bool stringToDouble(const char16_t* s, size_t len, double& outValue);
2231 
2232     // Used with stringToValue.
2233     class Accessor
2234     {
2235     public:
~Accessor()2236         inline virtual ~Accessor() { }
2237 
2238         virtual const String16& getAssetsPackage() const = 0;
2239 
2240         virtual uint32_t getCustomResource(const String16& package,
2241                                            const String16& type,
2242                                            const String16& name) const = 0;
2243         virtual uint32_t getCustomResourceWithCreation(const String16& package,
2244                                                        const String16& type,
2245                                                        const String16& name,
2246                                                        const bool createIfNeeded = false) = 0;
2247         virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0;
2248         virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0;
2249         virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0;
2250         virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0;
2251         virtual bool getAttributeEnum(uint32_t attrID,
2252                                       const char16_t* name, size_t nameLen,
2253                                       Res_value* outValue) = 0;
2254         virtual bool getAttributeFlags(uint32_t attrID,
2255                                        const char16_t* name, size_t nameLen,
2256                                        Res_value* outValue) = 0;
2257         virtual uint32_t getAttributeL10N(uint32_t attrID) = 0;
2258         virtual bool getLocalizationSetting() = 0;
2259         virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0;
2260     };
2261 
2262     // Convert a string to a resource value.  Handles standard "@res",
2263     // "#color", "123", and "0x1bd" types; performs escaping of strings.
2264     // The resulting value is placed in 'outValue'; if it is a string type,
2265     // 'outString' receives the string.  If 'attrID' is supplied, the value is
2266     // type checked against this attribute and it is used to perform enum
2267     // evaluation.  If 'acccessor' is supplied, it will be used to attempt to
2268     // resolve resources that do not exist in this ResTable.  If 'attrType' is
2269     // supplied, the value will be type checked for this format if 'attrID'
2270     // is not supplied or found.
2271     bool stringToValue(Res_value* outValue, String16* outString,
2272                        const char16_t* s, size_t len,
2273                        bool preserveSpaces, bool coerceType,
2274                        uint32_t attrID = 0,
2275                        const String16* defType = NULL,
2276                        const String16* defPackage = NULL,
2277                        Accessor* accessor = NULL,
2278                        void* accessorCookie = NULL,
2279                        uint32_t attrType = ResTable_map::TYPE_ANY,
2280                        bool enforcePrivate = true) const;
2281 
2282     // Perform processing of escapes and quotes in a string.
2283     static bool collectString(String16* outString,
2284                               const char16_t* s, size_t len,
2285                               bool preserveSpaces,
2286                               const char** outErrorMsg = NULL,
2287                               bool append = false);
2288 
2289     size_t getBasePackageCount() const;
2290     const String16 getBasePackageName(size_t idx) const;
2291     uint32_t getBasePackageId(size_t idx) const;
2292     uint32_t getLastTypeIdForPackage(size_t idx) const;
2293 
2294     // Return the number of resource tables that the object contains.
2295     size_t getTableCount() const;
2296     // Return the values string pool for the resource table at the given
2297     // index.  This string pool contains all of the strings for values
2298     // contained in the resource table -- that is the item values themselves,
2299     // but not the names their entries or types.
2300     const ResStringPool* getTableStringBlock(size_t index) const;
2301     // Return unique cookie identifier for the given resource table.
2302     int32_t getTableCookie(size_t index) const;
2303 
2304     const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const;
2305 
2306     // Return the configurations (ResTable_config) that we know about
2307     void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false,
2308             bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const;
2309 
2310     void getLocales(Vector<String8>* locales, bool includeSystemLocales=true,
2311             bool mergeEquivalentLangs=false) const;
2312 
2313     // Generate an idmap.
2314     //
2315     // Return value: on success: NO_ERROR; caller is responsible for free-ing
2316     // outData (using free(3)). On failure, any status_t value other than
2317     // NO_ERROR; the caller should not free outData.
2318     status_t createIdmap(const ResTable& targetResTable,
2319             uint32_t targetCrc, uint32_t overlayCrc,
2320             const char* targetPath, const char* overlayPath,
2321             void** outData, size_t* outSize) const;
2322 
2323     static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256;
2324     static const size_t IDMAP_CONSTRAINTS_COUNT_SIZE_BYTES = sizeof(uint32_t);
2325 
2326     // Retrieve idmap meta-data.
2327     //
2328     // This function only requires the idmap header (the first
2329     // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file.
2330     static bool getIdmapInfo(const void* idmap, size_t size,
2331             uint32_t* pVersion,
2332             uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
2333             String8* pTargetPath, String8* pOverlayPath);
2334 
2335     void print(bool inclValues) const;
2336     static String8 normalizeForOutput(const char* input);
2337 
2338 private:
2339     struct Header;
2340     struct Type;
2341     struct Entry;
2342     struct Package;
2343     struct PackageGroup;
2344     typedef Vector<Type*> TypeList;
2345 
2346     struct bag_set {
2347         size_t numAttrs;    // number in array
2348         size_t availAttrs;  // total space in array
2349         uint32_t typeSpecFlags;
2350         // Followed by 'numAttr' bag_entry structures.
2351     };
2352 
2353     /**
2354      * Configuration dependent cached data. This must be cleared when the configuration is
2355      * changed (setParameters).
2356      */
2357     struct TypeCacheEntry {
TypeCacheEntryTypeCacheEntry2358         TypeCacheEntry() : cachedBags(NULL) {}
2359 
2360         // Computed attribute bags for this type.
2361         bag_set** cachedBags;
2362 
2363         // Pre-filtered list of configurations (per asset path) that match the parameters set on this
2364         // ResTable.
2365         Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs;
2366     };
2367 
2368     status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2369             bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false);
2370 
2371     ssize_t getResourcePackageIndex(uint32_t resID) const;
2372     ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const;
2373 
2374     status_t getEntry(
2375         const PackageGroup* packageGroup, int typeIndex, int entryIndex,
2376         const ResTable_config* config,
2377         Entry* outEntry) const;
2378 
2379     uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name,
2380             size_t nameLen, uint32_t* outTypeSpecFlags) const;
2381 
2382     status_t parsePackage(
2383         const ResTable_package* const pkg, const Header* const header,
2384         bool appAsLib, bool isSystemAsset);
2385 
2386     void print_value(const Package* pkg, const Res_value& value) const;
2387 
2388     template <typename Func>
2389     void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage,
2390                               bool includeSystemConfigs, const Func& f) const;
2391 
2392     mutable Mutex               mLock;
2393 
2394     // Mutex that controls access to the list of pre-filtered configurations
2395     // to check when looking up entries.
2396     // When iterating over a bag, the mLock mutex is locked. While mLock is locked,
2397     // we do resource lookups.
2398     // Mutex is not reentrant, so we must use a different lock than mLock.
2399     mutable Mutex               mFilteredConfigLock;
2400 
2401     status_t                    mError;
2402 
2403     ResTable_config             mParams;
2404 
2405     // Array of all resource tables.
2406     Vector<Header*>             mHeaders;
2407 
2408     // Array of packages in all resource tables.
2409     Vector<PackageGroup*>       mPackageGroups;
2410 
2411     // Mapping from resource package IDs to indices into the internal
2412     // package array.
2413     uint8_t                     mPackageMap[256];
2414 
2415     uint8_t                     mNextPackageId;
2416 };
2417 
2418 }   // namespace android
2419 
2420 #endif // _LIBS_UTILS_RESOURCE_TYPES_H
2421