1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // | | Higher address
26 // |-----------------------------------|
27 // | |
28 // | arguments passed on the stack |
29 // | |
30 // |-----------------------------------| <- sp
31 // | | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // | | Higher address
40 // |-----------------------------------|
41 // | |
42 // | arguments passed on the stack |
43 // | |
44 // |-----------------------------------| <- (sp at function entry)
45 // | |
46 // | varargs from registers |
47 // | |
48 // |-----------------------------------|
49 // | |
50 // | prev_lr |
51 // | prev_fp |
52 // | (a.k.a. "frame record") |
53 // | |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // | |
56 // | callee-saved gpr registers |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | callee-saved fp/simd regs |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163
164 #define DEBUG_TYPE "arm-frame-lowering"
165
166 using namespace llvm;
167
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170 cl::desc("Align ARM NEON spills in prolog and epilog"));
171
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174 unsigned NumAlignedDPRCS2Regs);
175
ARMFrameLowering(const ARMSubtarget & sti)176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178 STI(sti) {}
179
keepFramePointer(const MachineFunction & MF) const180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181 // iOS always has a FP for backtracking, force other targets to keep their FP
182 // when doing FastISel. The emitted code is currently superior, and in cases
183 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184 return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 }
186
187 /// Returns true if the target can safely skip saving callee-saved registers
188 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192 !MF.getFunction().hasFnAttribute(Attribute::UWTable));
193
194 // Frame pointer and link register are not treated as normal CSR, thus we
195 // can always skip CSR saves for nonreturning functions.
196 return true;
197 }
198
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register. This is true if the function has variable sized allocas
201 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204 const MachineFrameInfo &MFI = MF.getFrameInfo();
205
206 // ABI-required frame pointer.
207 if (MF.getTarget().Options.DisableFramePointerElim(MF))
208 return true;
209
210 // Frame pointer required for use within this function.
211 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212 MFI.isFrameAddressTaken());
213 }
214
215 /// isFPReserved - Return true if the frame pointer register should be
216 /// considered a reserved register on the scope of the specified function.
isFPReserved(const MachineFunction & MF) const217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218 return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain();
219 }
220
221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222 /// not required, we reserve argument space for call sites in the function
223 /// immediately on entry to the current function. This eliminates the need for
224 /// add/sub sp brackets around call sites. Returns true if the call frame is
225 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227 const MachineFrameInfo &MFI = MF.getFrameInfo();
228 unsigned CFSize = MFI.getMaxCallFrameSize();
229 // It's not always a good idea to include the call frame as part of the
230 // stack frame. ARM (especially Thumb) has small immediate offset to
231 // address the stack frame. So a large call frame can cause poor codegen
232 // and may even makes it impossible to scavenge a register.
233 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
234 return false;
235
236 return !MFI.hasVarSizedObjects();
237 }
238
239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240 /// call frame pseudos can be simplified. Unlike most targets, having a FP
241 /// is not sufficient here since we still may reference some objects via SP
242 /// even when FP is available in Thumb2 mode.
243 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246 }
247
248 // Returns how much of the incoming argument stack area we should clean up in an
249 // epilogue. For the C calling convention this will be 0, for guaranteed tail
250 // call conventions it can be positive (a normal return or a tail call to a
251 // function that uses less stack space for arguments) or negative (for a tail
252 // call to a function that needs more stack space than us for arguments).
getArgumentStackToRestore(MachineFunction & MF,MachineBasicBlock & MBB)253 static int getArgumentStackToRestore(MachineFunction &MF,
254 MachineBasicBlock &MBB) {
255 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256 bool IsTailCallReturn = false;
257 if (MBB.end() != MBBI) {
258 unsigned RetOpcode = MBBI->getOpcode();
259 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260 RetOpcode == ARM::TCRETURNri;
261 }
262 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
263
264 int ArgumentPopSize = 0;
265 if (IsTailCallReturn) {
266 MachineOperand &StackAdjust = MBBI->getOperand(1);
267
268 // For a tail-call in a callee-pops-arguments environment, some or all of
269 // the stack may actually be in use for the call's arguments, this is
270 // calculated during LowerCall and consumed here...
271 ArgumentPopSize = StackAdjust.getImm();
272 } else {
273 // ... otherwise the amount to pop is *all* of the argument space,
274 // conveniently stored in the MachineFunctionInfo by
275 // LowerFormalArguments. This will, of course, be zero for the C calling
276 // convention.
277 ArgumentPopSize = AFI->getArgumentStackToRestore();
278 }
279
280 return ArgumentPopSize;
281 }
282
needsWinCFI(const MachineFunction & MF)283 static bool needsWinCFI(const MachineFunction &MF) {
284 const Function &F = MF.getFunction();
285 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
286 F.needsUnwindTableEntry();
287 }
288
289 // Given a load or a store instruction, generate an appropriate unwinding SEH
290 // code on Windows.
insertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,unsigned Flags)291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
292 const TargetInstrInfo &TII,
293 unsigned Flags) {
294 unsigned Opc = MBBI->getOpcode();
295 MachineBasicBlock *MBB = MBBI->getParent();
296 MachineFunction &MF = *MBB->getParent();
297 DebugLoc DL = MBBI->getDebugLoc();
298 MachineInstrBuilder MIB;
299 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
300 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
301
302 Flags |= MachineInstr::NoMerge;
303
304 switch (Opc) {
305 default:
306 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
307 break;
308 case ARM::t2ADDri: // add.w r11, sp, #xx
309 case ARM::t2ADDri12: // add.w r11, sp, #xx
310 case ARM::t2MOVTi16: // movt r4, #xx
311 case ARM::tBL: // bl __chkstk
312 // These are harmless if used for just setting up a frame pointer,
313 // but that frame pointer can't be relied upon for unwinding, unless
314 // set up with SEH_SaveSP.
315 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316 .addImm(/*Wide=*/1)
317 .setMIFlags(Flags);
318 break;
319
320 case ARM::t2MOVi16: { // mov(w) r4, #xx
321 bool Wide = MBBI->getOperand(1).getImm() >= 256;
322 if (!Wide) {
323 MachineInstrBuilder NewInstr =
324 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
325 NewInstr.add(MBBI->getOperand(0));
326 NewInstr.add(t1CondCodeOp(/*isDead=*/true));
327 for (unsigned i = 1, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
328 NewInstr.add(MBBI->getOperand(i));
329 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
330 MBB->erase(MBBI);
331 MBBI = NewMBBI;
332 }
333 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
334 break;
335 }
336
337 case ARM::tBLXr: // blx r12 (__chkstk)
338 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
339 .addImm(/*Wide=*/0)
340 .setMIFlags(Flags);
341 break;
342
343 case ARM::t2MOVi32imm: // movw+movt
344 // This pseudo instruction expands into two mov instructions. If the
345 // second operand is a symbol reference, this will stay as two wide
346 // instructions, movw+movt. If they're immediates, the first one can
347 // end up as a narrow mov though.
348 // As two SEH instructions are appended here, they won't get interleaved
349 // between the two final movw/movt instructions, but it doesn't make any
350 // practical difference.
351 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
352 .addImm(/*Wide=*/1)
353 .setMIFlags(Flags);
354 MBB->insertAfter(MBBI, MIB);
355 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
356 .addImm(/*Wide=*/1)
357 .setMIFlags(Flags);
358 break;
359
360 case ARM::t2LDMIA_RET:
361 case ARM::t2LDMIA_UPD:
362 case ARM::t2STMDB_UPD: {
363 unsigned Mask = 0;
364 bool Wide = false;
365 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
366 const MachineOperand &MO = MBBI->getOperand(i);
367 if (!MO.isReg() || MO.isImplicit())
368 continue;
369 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
370 if (Reg == 15)
371 Reg = 14;
372 if (Reg >= 8 && Reg <= 13)
373 Wide = true;
374 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
375 Wide = true;
376 Mask |= 1 << Reg;
377 }
378 if (!Wide) {
379 unsigned NewOpc;
380 switch (Opc) {
381 case ARM::t2LDMIA_RET:
382 NewOpc = ARM::tPOP_RET;
383 break;
384 case ARM::t2LDMIA_UPD:
385 NewOpc = ARM::tPOP;
386 break;
387 case ARM::t2STMDB_UPD:
388 NewOpc = ARM::tPUSH;
389 break;
390 default:
391 llvm_unreachable("");
392 }
393 MachineInstrBuilder NewInstr =
394 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
395 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
396 NewInstr.add(MBBI->getOperand(i));
397 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
398 MBB->erase(MBBI);
399 MBBI = NewMBBI;
400 }
401 unsigned SEHOpc =
402 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
403 MIB = BuildMI(MF, DL, TII.get(SEHOpc))
404 .addImm(Mask)
405 .addImm(Wide ? 1 : 0)
406 .setMIFlags(Flags);
407 break;
408 }
409 case ARM::VSTMDDB_UPD:
410 case ARM::VLDMDIA_UPD: {
411 int First = -1, Last = 0;
412 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
413 const MachineOperand &MO = MBBI->getOperand(i);
414 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
415 if (First == -1)
416 First = Reg;
417 Last = Reg;
418 }
419 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
420 .addImm(First)
421 .addImm(Last)
422 .setMIFlags(Flags);
423 break;
424 }
425 case ARM::tSUBspi:
426 case ARM::tADDspi:
427 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
428 .addImm(MBBI->getOperand(2).getImm() * 4)
429 .addImm(/*Wide=*/0)
430 .setMIFlags(Flags);
431 break;
432 case ARM::t2SUBspImm:
433 case ARM::t2SUBspImm12:
434 case ARM::t2ADDspImm:
435 case ARM::t2ADDspImm12:
436 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
437 .addImm(MBBI->getOperand(2).getImm())
438 .addImm(/*Wide=*/1)
439 .setMIFlags(Flags);
440 break;
441
442 case ARM::tMOVr:
443 if (MBBI->getOperand(1).getReg() == ARM::SP &&
444 (Flags & MachineInstr::FrameSetup)) {
445 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
446 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
447 .addImm(Reg)
448 .setMIFlags(Flags);
449 } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
450 (Flags & MachineInstr::FrameDestroy)) {
451 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
452 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
453 .addImm(Reg)
454 .setMIFlags(Flags);
455 } else {
456 report_fatal_error("No SEH Opcode for MOV");
457 }
458 break;
459
460 case ARM::tBX_RET:
461 case ARM::TCRETURNri:
462 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
463 .addImm(/*Wide=*/0)
464 .setMIFlags(Flags);
465 break;
466
467 case ARM::TCRETURNdi:
468 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
469 .addImm(/*Wide=*/1)
470 .setMIFlags(Flags);
471 break;
472 }
473 return MBB->insertAfter(MBBI, MIB);
474 }
475
476 static MachineBasicBlock::iterator
initMBBRange(MachineBasicBlock & MBB,const MachineBasicBlock::iterator & MBBI)477 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
478 if (MBBI == MBB.begin())
479 return MachineBasicBlock::iterator();
480 return std::prev(MBBI);
481 }
482
insertSEHRange(MachineBasicBlock & MBB,MachineBasicBlock::iterator Start,const MachineBasicBlock::iterator & End,const ARMBaseInstrInfo & TII,unsigned MIFlags)483 static void insertSEHRange(MachineBasicBlock &MBB,
484 MachineBasicBlock::iterator Start,
485 const MachineBasicBlock::iterator &End,
486 const ARMBaseInstrInfo &TII, unsigned MIFlags) {
487 if (Start.isValid())
488 Start = std::next(Start);
489 else
490 Start = MBB.begin();
491
492 for (auto MI = Start; MI != End;) {
493 auto Next = std::next(MI);
494 // Check if this instruction already has got a SEH opcode added. In that
495 // case, don't do this generic mapping.
496 if (Next != End && isSEHInstruction(*Next)) {
497 MI = std::next(Next);
498 while (MI != End && isSEHInstruction(*MI))
499 ++MI;
500 continue;
501 }
502 insertSEH(MI, TII, MIFlags);
503 MI = Next;
504 }
505 }
506
emitRegPlusImmediate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,unsigned DestReg,unsigned SrcReg,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)507 static void emitRegPlusImmediate(
508 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
509 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
510 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
511 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
512 if (isARM)
513 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
514 Pred, PredReg, TII, MIFlags);
515 else
516 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
517 Pred, PredReg, TII, MIFlags);
518 }
519
emitSPUpdate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)520 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
521 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
522 const ARMBaseInstrInfo &TII, int NumBytes,
523 unsigned MIFlags = MachineInstr::NoFlags,
524 ARMCC::CondCodes Pred = ARMCC::AL,
525 unsigned PredReg = 0) {
526 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
527 MIFlags, Pred, PredReg);
528 }
529
sizeOfSPAdjustment(const MachineInstr & MI)530 static int sizeOfSPAdjustment(const MachineInstr &MI) {
531 int RegSize;
532 switch (MI.getOpcode()) {
533 case ARM::VSTMDDB_UPD:
534 RegSize = 8;
535 break;
536 case ARM::STMDB_UPD:
537 case ARM::t2STMDB_UPD:
538 RegSize = 4;
539 break;
540 case ARM::t2STR_PRE:
541 case ARM::STR_PRE_IMM:
542 return 4;
543 default:
544 llvm_unreachable("Unknown push or pop like instruction");
545 }
546
547 int count = 0;
548 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
549 // pred) so the list starts at 4.
550 for (int i = MI.getNumOperands() - 1; i >= 4; --i)
551 count += RegSize;
552 return count;
553 }
554
WindowsRequiresStackProbe(const MachineFunction & MF,size_t StackSizeInBytes)555 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
556 size_t StackSizeInBytes) {
557 const MachineFrameInfo &MFI = MF.getFrameInfo();
558 const Function &F = MF.getFunction();
559 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
560
561 StackProbeSize =
562 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
563 return (StackSizeInBytes >= StackProbeSize) &&
564 !F.hasFnAttribute("no-stack-arg-probe");
565 }
566
567 namespace {
568
569 struct StackAdjustingInsts {
570 struct InstInfo {
571 MachineBasicBlock::iterator I;
572 unsigned SPAdjust;
573 bool BeforeFPSet;
574 };
575
576 SmallVector<InstInfo, 4> Insts;
577
addInst__anon202fde870111::StackAdjustingInsts578 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
579 bool BeforeFPSet = false) {
580 InstInfo Info = {I, SPAdjust, BeforeFPSet};
581 Insts.push_back(Info);
582 }
583
addExtraBytes__anon202fde870111::StackAdjustingInsts584 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
585 auto Info =
586 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
587 assert(Info != Insts.end() && "invalid sp adjusting instruction");
588 Info->SPAdjust += ExtraBytes;
589 }
590
emitDefCFAOffsets__anon202fde870111::StackAdjustingInsts591 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
592 const ARMBaseInstrInfo &TII, bool HasFP) {
593 MachineFunction &MF = *MBB.getParent();
594 unsigned CFAOffset = 0;
595 for (auto &Info : Insts) {
596 if (HasFP && !Info.BeforeFPSet)
597 return;
598
599 CFAOffset += Info.SPAdjust;
600 unsigned CFIIndex = MF.addFrameInst(
601 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
602 BuildMI(MBB, std::next(Info.I), dl,
603 TII.get(TargetOpcode::CFI_INSTRUCTION))
604 .addCFIIndex(CFIIndex)
605 .setMIFlags(MachineInstr::FrameSetup);
606 }
607 }
608 };
609
610 } // end anonymous namespace
611
612 /// Emit an instruction sequence that will align the address in
613 /// register Reg by zero-ing out the lower bits. For versions of the
614 /// architecture that support Neon, this must be done in a single
615 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
616 /// single instruction. That function only gets called when optimizing
617 /// spilling of D registers on a core with the Neon instruction set
618 /// present.
emitAligningInstructions(MachineFunction & MF,ARMFunctionInfo * AFI,const TargetInstrInfo & TII,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const unsigned Reg,const Align Alignment,const bool MustBeSingleInstruction)619 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
620 const TargetInstrInfo &TII,
621 MachineBasicBlock &MBB,
622 MachineBasicBlock::iterator MBBI,
623 const DebugLoc &DL, const unsigned Reg,
624 const Align Alignment,
625 const bool MustBeSingleInstruction) {
626 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
627 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
628 const unsigned AlignMask = Alignment.value() - 1U;
629 const unsigned NrBitsToZero = Log2(Alignment);
630 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
631 if (!AFI->isThumbFunction()) {
632 // if the BFC instruction is available, use that to zero the lower
633 // bits:
634 // bfc Reg, #0, log2(Alignment)
635 // otherwise use BIC, if the mask to zero the required number of bits
636 // can be encoded in the bic immediate field
637 // bic Reg, Reg, Alignment-1
638 // otherwise, emit
639 // lsr Reg, Reg, log2(Alignment)
640 // lsl Reg, Reg, log2(Alignment)
641 if (CanUseBFC) {
642 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
643 .addReg(Reg, RegState::Kill)
644 .addImm(~AlignMask)
645 .add(predOps(ARMCC::AL));
646 } else if (AlignMask <= 255) {
647 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
648 .addReg(Reg, RegState::Kill)
649 .addImm(AlignMask)
650 .add(predOps(ARMCC::AL))
651 .add(condCodeOp());
652 } else {
653 assert(!MustBeSingleInstruction &&
654 "Shouldn't call emitAligningInstructions demanding a single "
655 "instruction to be emitted for large stack alignment for a target "
656 "without BFC.");
657 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
658 .addReg(Reg, RegState::Kill)
659 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
660 .add(predOps(ARMCC::AL))
661 .add(condCodeOp());
662 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
663 .addReg(Reg, RegState::Kill)
664 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
665 .add(predOps(ARMCC::AL))
666 .add(condCodeOp());
667 }
668 } else {
669 // Since this is only reached for Thumb-2 targets, the BFC instruction
670 // should always be available.
671 assert(CanUseBFC);
672 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
673 .addReg(Reg, RegState::Kill)
674 .addImm(~AlignMask)
675 .add(predOps(ARMCC::AL));
676 }
677 }
678
679 /// We need the offset of the frame pointer relative to other MachineFrameInfo
680 /// offsets which are encoded relative to SP at function begin.
681 /// See also emitPrologue() for how the FP is set up.
682 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
683 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
684 /// this to produce a conservative estimate that we check in an assert() later.
getMaxFPOffset(const ARMSubtarget & STI,const ARMFunctionInfo & AFI,const MachineFunction & MF)685 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
686 const MachineFunction &MF) {
687 // For Thumb1, push.w isn't available, so the first push will always push
688 // r7 and lr onto the stack first.
689 if (AFI.isThumb1OnlyFunction())
690 return -AFI.getArgRegsSaveSize() - (2 * 4);
691 // This is a conservative estimation: Assume the frame pointer being r7 and
692 // pc("r15") up to r8 getting spilled before (= 8 registers).
693 int MaxRegBytes = 8 * 4;
694 if (STI.splitFramePointerPush(MF)) {
695 // Here, r11 can be stored below all of r4-r15 (3 registers more than
696 // above), plus d8-d15.
697 MaxRegBytes = 11 * 4 + 8 * 8;
698 }
699 int FPCXTSaveSize =
700 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
701 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
702 }
703
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const704 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
705 MachineBasicBlock &MBB) const {
706 MachineBasicBlock::iterator MBBI = MBB.begin();
707 MachineFrameInfo &MFI = MF.getFrameInfo();
708 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
709 MachineModuleInfo &MMI = MF.getMMI();
710 MCContext &Context = MMI.getContext();
711 const TargetMachine &TM = MF.getTarget();
712 const MCRegisterInfo *MRI = Context.getRegisterInfo();
713 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
714 const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
715 assert(!AFI->isThumb1OnlyFunction() &&
716 "This emitPrologue does not support Thumb1!");
717 bool isARM = !AFI->isThumbFunction();
718 Align Alignment = STI.getFrameLowering()->getStackAlign();
719 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
720 unsigned NumBytes = MFI.getStackSize();
721 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
722 int FPCXTSaveSize = 0;
723 bool NeedsWinCFI = needsWinCFI(MF);
724
725 // Debug location must be unknown since the first debug location is used
726 // to determine the end of the prologue.
727 DebugLoc dl;
728
729 Register FramePtr = RegInfo->getFrameRegister(MF);
730
731 // Determine the sizes of each callee-save spill areas and record which frame
732 // belongs to which callee-save spill areas.
733 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
734 int FramePtrSpillFI = 0;
735 int D8SpillFI = 0;
736
737 // All calls are tail calls in GHC calling conv, and functions have no
738 // prologue/epilogue.
739 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
740 return;
741
742 StackAdjustingInsts DefCFAOffsetCandidates;
743 bool HasFP = hasFP(MF);
744
745 if (!AFI->hasStackFrame() &&
746 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
747 if (NumBytes != 0) {
748 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
749 MachineInstr::FrameSetup);
750 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
751 }
752 if (!NeedsWinCFI)
753 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
754 if (NeedsWinCFI && MBBI != MBB.begin()) {
755 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
756 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
757 .setMIFlag(MachineInstr::FrameSetup);
758 MF.setHasWinCFI(true);
759 }
760 return;
761 }
762
763 // Determine spill area sizes.
764 if (STI.splitFramePointerPush(MF)) {
765 for (const CalleeSavedInfo &I : CSI) {
766 Register Reg = I.getReg();
767 int FI = I.getFrameIdx();
768 switch (Reg) {
769 case ARM::R11:
770 case ARM::LR:
771 if (Reg == FramePtr)
772 FramePtrSpillFI = FI;
773 GPRCS2Size += 4;
774 break;
775 case ARM::R0:
776 case ARM::R1:
777 case ARM::R2:
778 case ARM::R3:
779 case ARM::R4:
780 case ARM::R5:
781 case ARM::R6:
782 case ARM::R7:
783 case ARM::R8:
784 case ARM::R9:
785 case ARM::R10:
786 case ARM::R12:
787 GPRCS1Size += 4;
788 break;
789 case ARM::FPCXTNS:
790 FPCXTSaveSize = 4;
791 break;
792 default:
793 // This is a DPR. Exclude the aligned DPRCS2 spills.
794 if (Reg == ARM::D8)
795 D8SpillFI = FI;
796 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
797 DPRCSSize += 8;
798 }
799 }
800 } else {
801 for (const CalleeSavedInfo &I : CSI) {
802 Register Reg = I.getReg();
803 int FI = I.getFrameIdx();
804 switch (Reg) {
805 case ARM::R8:
806 case ARM::R9:
807 case ARM::R10:
808 case ARM::R11:
809 case ARM::R12:
810 if (STI.splitFramePushPop(MF)) {
811 GPRCS2Size += 4;
812 break;
813 }
814 [[fallthrough]];
815 case ARM::R0:
816 case ARM::R1:
817 case ARM::R2:
818 case ARM::R3:
819 case ARM::R4:
820 case ARM::R5:
821 case ARM::R6:
822 case ARM::R7:
823 case ARM::LR:
824 if (Reg == FramePtr)
825 FramePtrSpillFI = FI;
826 GPRCS1Size += 4;
827 break;
828 case ARM::FPCXTNS:
829 FPCXTSaveSize = 4;
830 break;
831 default:
832 // This is a DPR. Exclude the aligned DPRCS2 spills.
833 if (Reg == ARM::D8)
834 D8SpillFI = FI;
835 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
836 DPRCSSize += 8;
837 }
838 }
839 }
840
841 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
842
843 // Move past the PAC computation.
844 if (AFI->shouldSignReturnAddress())
845 LastPush = MBBI++;
846
847 // Move past FPCXT area.
848 if (FPCXTSaveSize > 0) {
849 LastPush = MBBI++;
850 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
851 }
852
853 // Allocate the vararg register save area.
854 if (ArgRegsSaveSize) {
855 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
856 MachineInstr::FrameSetup);
857 LastPush = std::prev(MBBI);
858 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
859 }
860
861 // Move past area 1.
862 if (GPRCS1Size > 0) {
863 GPRCS1Push = LastPush = MBBI++;
864 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
865 }
866
867 // Determine starting offsets of spill areas.
868 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
869 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
870 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
871 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
872 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
873 if (!STI.splitFramePointerPush(MF)) {
874 DPRGapSize += GPRCS2Size;
875 }
876 DPRGapSize %= DPRAlign.value();
877
878 unsigned DPRCSOffset;
879 if (STI.splitFramePointerPush(MF)) {
880 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
881 GPRCS2Offset = DPRCSOffset - GPRCS2Size;
882 } else {
883 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
884 }
885 int FramePtrOffsetInPush = 0;
886 if (HasFP) {
887 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
888 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
889 "Max FP estimation is wrong");
890 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
891 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
892 NumBytes);
893 }
894 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
895 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
896 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
897
898 // Move past area 2.
899 if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
900 GPRCS2Push = LastPush = MBBI++;
901 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
902 }
903
904 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
905 // .cfi_offset operations will reflect that.
906 if (DPRGapSize) {
907 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
908 if (LastPush != MBB.end() &&
909 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
910 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
911 else {
912 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
913 MachineInstr::FrameSetup);
914 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
915 }
916 }
917
918 // Move past area 3.
919 if (DPRCSSize > 0) {
920 // Since vpush register list cannot have gaps, there may be multiple vpush
921 // instructions in the prologue.
922 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
923 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
924 LastPush = MBBI++;
925 }
926 }
927
928 // Move past the aligned DPRCS2 area.
929 if (AFI->getNumAlignedDPRCS2Regs() > 0) {
930 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
931 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
932 // leaves the stack pointer pointing to the DPRCS2 area.
933 //
934 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
935 NumBytes += MFI.getObjectOffset(D8SpillFI);
936 } else
937 NumBytes = DPRCSOffset;
938
939 if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
940 GPRCS2Push = LastPush = MBBI++;
941 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
942 }
943
944 bool NeedsWinCFIStackAlloc = NeedsWinCFI;
945 if (STI.splitFramePointerPush(MF) && HasFP)
946 NeedsWinCFIStackAlloc = false;
947
948 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
949 uint32_t NumWords = NumBytes >> 2;
950
951 if (NumWords < 65536) {
952 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
953 .addImm(NumWords)
954 .setMIFlags(MachineInstr::FrameSetup)
955 .add(predOps(ARMCC::AL));
956 } else {
957 // Split into two instructions here, instead of using t2MOVi32imm,
958 // to allow inserting accurate SEH instructions (including accurate
959 // instruction size for each of them).
960 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
961 .addImm(NumWords & 0xffff)
962 .setMIFlags(MachineInstr::FrameSetup)
963 .add(predOps(ARMCC::AL));
964 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
965 .addReg(ARM::R4)
966 .addImm(NumWords >> 16)
967 .setMIFlags(MachineInstr::FrameSetup)
968 .add(predOps(ARMCC::AL));
969 }
970
971 switch (TM.getCodeModel()) {
972 case CodeModel::Tiny:
973 llvm_unreachable("Tiny code model not available on ARM.");
974 case CodeModel::Small:
975 case CodeModel::Medium:
976 case CodeModel::Kernel:
977 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
978 .add(predOps(ARMCC::AL))
979 .addExternalSymbol("__chkstk")
980 .addReg(ARM::R4, RegState::Implicit)
981 .setMIFlags(MachineInstr::FrameSetup);
982 break;
983 case CodeModel::Large:
984 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
985 .addExternalSymbol("__chkstk")
986 .setMIFlags(MachineInstr::FrameSetup);
987
988 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
989 .add(predOps(ARMCC::AL))
990 .addReg(ARM::R12, RegState::Kill)
991 .addReg(ARM::R4, RegState::Implicit)
992 .setMIFlags(MachineInstr::FrameSetup);
993 break;
994 }
995
996 MachineInstrBuilder Instr, SEH;
997 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
998 .addReg(ARM::SP, RegState::Kill)
999 .addReg(ARM::R4, RegState::Kill)
1000 .setMIFlags(MachineInstr::FrameSetup)
1001 .add(predOps(ARMCC::AL))
1002 .add(condCodeOp());
1003 if (NeedsWinCFIStackAlloc) {
1004 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1005 .addImm(NumBytes)
1006 .addImm(/*Wide=*/1)
1007 .setMIFlags(MachineInstr::FrameSetup);
1008 MBB.insertAfter(Instr, SEH);
1009 }
1010 NumBytes = 0;
1011 }
1012
1013 if (NumBytes) {
1014 // Adjust SP after all the callee-save spills.
1015 if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1016 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1017 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1018 else {
1019 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1020 MachineInstr::FrameSetup);
1021 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1022 }
1023
1024 if (HasFP && isARM)
1025 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1026 // Note it's not safe to do this in Thumb2 mode because it would have
1027 // taken two instructions:
1028 // mov sp, r7
1029 // sub sp, #24
1030 // If an interrupt is taken between the two instructions, then sp is in
1031 // an inconsistent state (pointing to the middle of callee-saved area).
1032 // The interrupt handler can end up clobbering the registers.
1033 AFI->setShouldRestoreSPFromFP(true);
1034 }
1035
1036 // Set FP to point to the stack slot that contains the previous FP.
1037 // For iOS, FP is R7, which has now been stored in spill area 1.
1038 // Otherwise, if this is not iOS, all the callee-saved registers go
1039 // into spill area 1, including the FP in R11. In either case, it
1040 // is in area one and the adjustment needs to take place just after
1041 // that push.
1042 // FIXME: The above is not necessary true when PACBTI is enabled.
1043 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1044 // so FP ends up on area two.
1045 MachineBasicBlock::iterator AfterPush;
1046 if (HasFP) {
1047 AfterPush = std::next(GPRCS1Push);
1048 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1049 int FPOffset = PushSize + FramePtrOffsetInPush;
1050 if (STI.splitFramePointerPush(MF)) {
1051 AfterPush = std::next(GPRCS2Push);
1052 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1053 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1054 } else {
1055 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1056 FramePtr, ARM::SP, FPOffset,
1057 MachineInstr::FrameSetup);
1058 }
1059 if (!NeedsWinCFI) {
1060 if (FramePtrOffsetInPush + PushSize != 0) {
1061 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1062 nullptr, MRI->getDwarfRegNum(FramePtr, true),
1063 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1064 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1065 .addCFIIndex(CFIIndex)
1066 .setMIFlags(MachineInstr::FrameSetup);
1067 } else {
1068 unsigned CFIIndex =
1069 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1070 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1071 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1072 .addCFIIndex(CFIIndex)
1073 .setMIFlags(MachineInstr::FrameSetup);
1074 }
1075 }
1076 }
1077
1078 // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1079 // instructions below don't need to be replayed to unwind the stack.
1080 if (NeedsWinCFI && MBBI != MBB.begin()) {
1081 MachineBasicBlock::iterator End = MBBI;
1082 if (HasFP && STI.splitFramePointerPush(MF))
1083 End = AfterPush;
1084 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1085 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1086 .setMIFlag(MachineInstr::FrameSetup);
1087 MF.setHasWinCFI(true);
1088 }
1089
1090 // Now that the prologue's actual instructions are finalised, we can insert
1091 // the necessary DWARF cf instructions to describe the situation. Start by
1092 // recording where each register ended up:
1093 if (GPRCS1Size > 0 && !NeedsWinCFI) {
1094 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1095 int CFIIndex;
1096 for (const auto &Entry : CSI) {
1097 Register Reg = Entry.getReg();
1098 int FI = Entry.getFrameIdx();
1099 switch (Reg) {
1100 case ARM::R8:
1101 case ARM::R9:
1102 case ARM::R10:
1103 case ARM::R11:
1104 case ARM::R12:
1105 if (STI.splitFramePushPop(MF))
1106 break;
1107 [[fallthrough]];
1108 case ARM::R0:
1109 case ARM::R1:
1110 case ARM::R2:
1111 case ARM::R3:
1112 case ARM::R4:
1113 case ARM::R5:
1114 case ARM::R6:
1115 case ARM::R7:
1116 case ARM::LR:
1117 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1118 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1119 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1120 .addCFIIndex(CFIIndex)
1121 .setMIFlags(MachineInstr::FrameSetup);
1122 break;
1123 }
1124 }
1125 }
1126
1127 if (GPRCS2Size > 0 && !NeedsWinCFI) {
1128 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1129 for (const auto &Entry : CSI) {
1130 Register Reg = Entry.getReg();
1131 int FI = Entry.getFrameIdx();
1132 switch (Reg) {
1133 case ARM::R8:
1134 case ARM::R9:
1135 case ARM::R10:
1136 case ARM::R11:
1137 case ARM::R12:
1138 if (STI.splitFramePushPop(MF)) {
1139 unsigned DwarfReg = MRI->getDwarfRegNum(
1140 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1141 unsigned Offset = MFI.getObjectOffset(FI);
1142 unsigned CFIIndex = MF.addFrameInst(
1143 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1144 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1145 .addCFIIndex(CFIIndex)
1146 .setMIFlags(MachineInstr::FrameSetup);
1147 }
1148 break;
1149 }
1150 }
1151 }
1152
1153 if (DPRCSSize > 0 && !NeedsWinCFI) {
1154 // Since vpush register list cannot have gaps, there may be multiple vpush
1155 // instructions in the prologue.
1156 MachineBasicBlock::iterator Pos = std::next(LastPush);
1157 for (const auto &Entry : CSI) {
1158 Register Reg = Entry.getReg();
1159 int FI = Entry.getFrameIdx();
1160 if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1161 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1162 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1163 unsigned Offset = MFI.getObjectOffset(FI);
1164 unsigned CFIIndex = MF.addFrameInst(
1165 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1166 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1167 .addCFIIndex(CFIIndex)
1168 .setMIFlags(MachineInstr::FrameSetup);
1169 }
1170 }
1171 }
1172
1173 // Now we can emit descriptions of where the canonical frame address was
1174 // throughout the process. If we have a frame pointer, it takes over the job
1175 // half-way through, so only the first few .cfi_def_cfa_offset instructions
1176 // actually get emitted.
1177 if (!NeedsWinCFI)
1178 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1179
1180 if (STI.isTargetELF() && hasFP(MF))
1181 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1182 AFI->getFramePtrSpillOffset());
1183
1184 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1185 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1186 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1187 AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1188 AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1189
1190 // If we need dynamic stack realignment, do it here. Be paranoid and make
1191 // sure if we also have VLAs, we have a base pointer for frame access.
1192 // If aligned NEON registers were spilled, the stack has already been
1193 // realigned.
1194 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1195 Align MaxAlign = MFI.getMaxAlign();
1196 assert(!AFI->isThumb1OnlyFunction());
1197 if (!AFI->isThumbFunction()) {
1198 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1199 false);
1200 } else {
1201 // We cannot use sp as source/dest register here, thus we're using r4 to
1202 // perform the calculations. We're emitting the following sequence:
1203 // mov r4, sp
1204 // -- use emitAligningInstructions to produce best sequence to zero
1205 // -- out lower bits in r4
1206 // mov sp, r4
1207 // FIXME: It will be better just to find spare register here.
1208 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1209 .addReg(ARM::SP, RegState::Kill)
1210 .add(predOps(ARMCC::AL));
1211 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1212 false);
1213 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1214 .addReg(ARM::R4, RegState::Kill)
1215 .add(predOps(ARMCC::AL));
1216 }
1217
1218 AFI->setShouldRestoreSPFromFP(true);
1219 }
1220
1221 // If we need a base pointer, set it up here. It's whatever the value
1222 // of the stack pointer is at this point. Any variable size objects
1223 // will be allocated after this, so we can still use the base pointer
1224 // to reference locals.
1225 // FIXME: Clarify FrameSetup flags here.
1226 if (RegInfo->hasBasePointer(MF)) {
1227 if (isARM)
1228 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1229 .addReg(ARM::SP)
1230 .add(predOps(ARMCC::AL))
1231 .add(condCodeOp());
1232 else
1233 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1234 .addReg(ARM::SP)
1235 .add(predOps(ARMCC::AL));
1236 }
1237
1238 // If the frame has variable sized objects then the epilogue must restore
1239 // the sp from fp. We can assume there's an FP here since hasFP already
1240 // checks for hasVarSizedObjects.
1241 if (MFI.hasVarSizedObjects())
1242 AFI->setShouldRestoreSPFromFP(true);
1243 }
1244
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1245 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1246 MachineBasicBlock &MBB) const {
1247 MachineFrameInfo &MFI = MF.getFrameInfo();
1248 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1249 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1250 const ARMBaseInstrInfo &TII =
1251 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1252 assert(!AFI->isThumb1OnlyFunction() &&
1253 "This emitEpilogue does not support Thumb1!");
1254 bool isARM = !AFI->isThumbFunction();
1255
1256 // Amount of stack space we reserved next to incoming args for either
1257 // varargs registers or stack arguments in tail calls made by this function.
1258 unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1259
1260 // How much of the stack used by incoming arguments this function is expected
1261 // to restore in this particular epilogue.
1262 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1263 int NumBytes = (int)MFI.getStackSize();
1264 Register FramePtr = RegInfo->getFrameRegister(MF);
1265
1266 // All calls are tail calls in GHC calling conv, and functions have no
1267 // prologue/epilogue.
1268 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1269 return;
1270
1271 // First put ourselves on the first (from top) terminator instructions.
1272 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1273 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1274
1275 MachineBasicBlock::iterator RangeStart;
1276 if (!AFI->hasStackFrame()) {
1277 if (MF.hasWinCFI()) {
1278 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1279 .setMIFlag(MachineInstr::FrameDestroy);
1280 RangeStart = initMBBRange(MBB, MBBI);
1281 }
1282
1283 if (NumBytes + IncomingArgStackToRestore != 0)
1284 emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1285 NumBytes + IncomingArgStackToRestore,
1286 MachineInstr::FrameDestroy);
1287 } else {
1288 // Unwind MBBI to point to first LDR / VLDRD.
1289 if (MBBI != MBB.begin()) {
1290 do {
1291 --MBBI;
1292 } while (MBBI != MBB.begin() &&
1293 MBBI->getFlag(MachineInstr::FrameDestroy));
1294 if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1295 ++MBBI;
1296 }
1297
1298 if (MF.hasWinCFI()) {
1299 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1300 .setMIFlag(MachineInstr::FrameDestroy);
1301 RangeStart = initMBBRange(MBB, MBBI);
1302 }
1303
1304 // Move SP to start of FP callee save spill area.
1305 NumBytes -= (ReservedArgStack +
1306 AFI->getFPCXTSaveAreaSize() +
1307 AFI->getGPRCalleeSavedArea1Size() +
1308 AFI->getGPRCalleeSavedArea2Size() +
1309 AFI->getDPRCalleeSavedGapSize() +
1310 AFI->getDPRCalleeSavedAreaSize());
1311
1312 // Reset SP based on frame pointer only if the stack frame extends beyond
1313 // frame pointer stack slot or target is ELF and the function has FP.
1314 if (AFI->shouldRestoreSPFromFP()) {
1315 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1316 if (NumBytes) {
1317 if (isARM)
1318 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1319 ARMCC::AL, 0, TII,
1320 MachineInstr::FrameDestroy);
1321 else {
1322 // It's not possible to restore SP from FP in a single instruction.
1323 // For iOS, this looks like:
1324 // mov sp, r7
1325 // sub sp, #24
1326 // This is bad, if an interrupt is taken after the mov, sp is in an
1327 // inconsistent state.
1328 // Use the first callee-saved register as a scratch register.
1329 assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1330 "No scratch register to restore SP from FP!");
1331 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1332 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1333 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1334 .addReg(ARM::R4)
1335 .add(predOps(ARMCC::AL))
1336 .setMIFlag(MachineInstr::FrameDestroy);
1337 }
1338 } else {
1339 // Thumb2 or ARM.
1340 if (isARM)
1341 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1342 .addReg(FramePtr)
1343 .add(predOps(ARMCC::AL))
1344 .add(condCodeOp())
1345 .setMIFlag(MachineInstr::FrameDestroy);
1346 else
1347 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1348 .addReg(FramePtr)
1349 .add(predOps(ARMCC::AL))
1350 .setMIFlag(MachineInstr::FrameDestroy);
1351 }
1352 } else if (NumBytes &&
1353 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1354 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1355 MachineInstr::FrameDestroy);
1356
1357 // Increment past our save areas.
1358 if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1359 MBBI++;
1360
1361 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1362 MBBI++;
1363 // Since vpop register list cannot have gaps, there may be multiple vpop
1364 // instructions in the epilogue.
1365 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1366 MBBI++;
1367 }
1368 if (AFI->getDPRCalleeSavedGapSize()) {
1369 assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1370 "unexpected DPR alignment gap");
1371 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1372 MachineInstr::FrameDestroy);
1373 }
1374
1375 if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1376 MBBI++;
1377 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1378
1379 if (ReservedArgStack || IncomingArgStackToRestore) {
1380 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1381 "attempting to restore negative stack amount");
1382 emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1383 ReservedArgStack + IncomingArgStackToRestore,
1384 MachineInstr::FrameDestroy);
1385 }
1386
1387 // Validate PAC, It should have been already popped into R12. For CMSE entry
1388 // function, the validation instruction is emitted during expansion of the
1389 // tBXNS_RET, since the validation must use the value of SP at function
1390 // entry, before saving, resp. after restoring, FPCXTNS.
1391 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1392 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1393 }
1394
1395 if (MF.hasWinCFI()) {
1396 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1397 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1398 .setMIFlag(MachineInstr::FrameDestroy);
1399 }
1400 }
1401
1402 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1403 /// debug info. It's the same as what we use for resolving the code-gen
1404 /// references for now. FIXME: This can go wrong when references are
1405 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const1406 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1407 int FI,
1408 Register &FrameReg) const {
1409 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1410 }
1411
ResolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,int SPAdj) const1412 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1413 int FI, Register &FrameReg,
1414 int SPAdj) const {
1415 const MachineFrameInfo &MFI = MF.getFrameInfo();
1416 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1417 MF.getSubtarget().getRegisterInfo());
1418 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1419 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1420 int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1421 bool isFixed = MFI.isFixedObjectIndex(FI);
1422
1423 FrameReg = ARM::SP;
1424 Offset += SPAdj;
1425
1426 // SP can move around if there are allocas. We may also lose track of SP
1427 // when emergency spilling inside a non-reserved call frame setup.
1428 bool hasMovingSP = !hasReservedCallFrame(MF);
1429
1430 // When dynamically realigning the stack, use the frame pointer for
1431 // parameters, and the stack/base pointer for locals.
1432 if (RegInfo->hasStackRealignment(MF)) {
1433 assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1434 if (isFixed) {
1435 FrameReg = RegInfo->getFrameRegister(MF);
1436 Offset = FPOffset;
1437 } else if (hasMovingSP) {
1438 assert(RegInfo->hasBasePointer(MF) &&
1439 "VLAs and dynamic stack alignment, but missing base pointer!");
1440 FrameReg = RegInfo->getBaseRegister();
1441 Offset -= SPAdj;
1442 }
1443 return Offset;
1444 }
1445
1446 // If there is a frame pointer, use it when we can.
1447 if (hasFP(MF) && AFI->hasStackFrame()) {
1448 // Use frame pointer to reference fixed objects. Use it for locals if
1449 // there are VLAs (and thus the SP isn't reliable as a base).
1450 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1451 FrameReg = RegInfo->getFrameRegister(MF);
1452 return FPOffset;
1453 } else if (hasMovingSP) {
1454 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1455 if (AFI->isThumb2Function()) {
1456 // Try to use the frame pointer if we can, else use the base pointer
1457 // since it's available. This is handy for the emergency spill slot, in
1458 // particular.
1459 if (FPOffset >= -255 && FPOffset < 0) {
1460 FrameReg = RegInfo->getFrameRegister(MF);
1461 return FPOffset;
1462 }
1463 }
1464 } else if (AFI->isThumbFunction()) {
1465 // Prefer SP to base pointer, if the offset is suitably aligned and in
1466 // range as the effective range of the immediate offset is bigger when
1467 // basing off SP.
1468 // Use add <rd>, sp, #<imm8>
1469 // ldr <rd>, [sp, #<imm8>]
1470 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1471 return Offset;
1472 // In Thumb2 mode, the negative offset is very limited. Try to avoid
1473 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1474 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1475 FrameReg = RegInfo->getFrameRegister(MF);
1476 return FPOffset;
1477 }
1478 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1479 // Otherwise, use SP or FP, whichever is closer to the stack slot.
1480 FrameReg = RegInfo->getFrameRegister(MF);
1481 return FPOffset;
1482 }
1483 }
1484 // Use the base pointer if we have one.
1485 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1486 // That can happen if we forced a base pointer for a large call frame.
1487 if (RegInfo->hasBasePointer(MF)) {
1488 FrameReg = RegInfo->getBaseRegister();
1489 Offset -= SPAdj;
1490 }
1491 return Offset;
1492 }
1493
emitPushInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,unsigned StmOpc,unsigned StrOpc,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs,unsigned MIFlags) const1494 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1495 MachineBasicBlock::iterator MI,
1496 ArrayRef<CalleeSavedInfo> CSI,
1497 unsigned StmOpc, unsigned StrOpc,
1498 bool NoGap, bool (*Func)(unsigned, bool),
1499 unsigned NumAlignedDPRCS2Regs,
1500 unsigned MIFlags) const {
1501 MachineFunction &MF = *MBB.getParent();
1502 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1503 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1504
1505 DebugLoc DL;
1506
1507 using RegAndKill = std::pair<unsigned, bool>;
1508
1509 SmallVector<RegAndKill, 4> Regs;
1510 unsigned i = CSI.size();
1511 while (i != 0) {
1512 unsigned LastReg = 0;
1513 for (; i != 0; --i) {
1514 Register Reg = CSI[i-1].getReg();
1515 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1516
1517 // D-registers in the aligned area DPRCS2 are NOT spilled here.
1518 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1519 continue;
1520
1521 const MachineRegisterInfo &MRI = MF.getRegInfo();
1522 bool isLiveIn = MRI.isLiveIn(Reg);
1523 if (!isLiveIn && !MRI.isReserved(Reg))
1524 MBB.addLiveIn(Reg);
1525 // If NoGap is true, push consecutive registers and then leave the rest
1526 // for other instructions. e.g.
1527 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1528 if (NoGap && LastReg && LastReg != Reg-1)
1529 break;
1530 LastReg = Reg;
1531 // Do not set a kill flag on values that are also marked as live-in. This
1532 // happens with the @llvm-returnaddress intrinsic and with arguments
1533 // passed in callee saved registers.
1534 // Omitting the kill flags is conservatively correct even if the live-in
1535 // is not used after all.
1536 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1537 }
1538
1539 if (Regs.empty())
1540 continue;
1541
1542 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1543 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1544 });
1545
1546 if (Regs.size() > 1 || StrOpc== 0) {
1547 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1548 .addReg(ARM::SP)
1549 .setMIFlags(MIFlags)
1550 .add(predOps(ARMCC::AL));
1551 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1552 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1553 } else if (Regs.size() == 1) {
1554 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1555 .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1556 .addReg(ARM::SP)
1557 .setMIFlags(MIFlags)
1558 .addImm(-4)
1559 .add(predOps(ARMCC::AL));
1560 }
1561 Regs.clear();
1562
1563 // Put any subsequent vpush instructions before this one: they will refer to
1564 // higher register numbers so need to be pushed first in order to preserve
1565 // monotonicity.
1566 if (MI != MBB.begin())
1567 --MI;
1568 }
1569 }
1570
emitPopInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,unsigned LdmOpc,unsigned LdrOpc,bool isVarArg,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs) const1571 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1572 MachineBasicBlock::iterator MI,
1573 MutableArrayRef<CalleeSavedInfo> CSI,
1574 unsigned LdmOpc, unsigned LdrOpc,
1575 bool isVarArg, bool NoGap,
1576 bool (*Func)(unsigned, bool),
1577 unsigned NumAlignedDPRCS2Regs) const {
1578 MachineFunction &MF = *MBB.getParent();
1579 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1580 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1581 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1582 bool hasPAC = AFI->shouldSignReturnAddress();
1583 DebugLoc DL;
1584 bool isTailCall = false;
1585 bool isInterrupt = false;
1586 bool isTrap = false;
1587 bool isCmseEntry = false;
1588 if (MBB.end() != MI) {
1589 DL = MI->getDebugLoc();
1590 unsigned RetOpcode = MI->getOpcode();
1591 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1592 isInterrupt =
1593 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1594 isTrap =
1595 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1596 RetOpcode == ARM::tTRAP;
1597 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1598 }
1599
1600 SmallVector<unsigned, 4> Regs;
1601 unsigned i = CSI.size();
1602 while (i != 0) {
1603 unsigned LastReg = 0;
1604 bool DeleteRet = false;
1605 for (; i != 0; --i) {
1606 CalleeSavedInfo &Info = CSI[i-1];
1607 Register Reg = Info.getReg();
1608 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1609
1610 // The aligned reloads from area DPRCS2 are not inserted here.
1611 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1612 continue;
1613 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1614 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1615 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1616 !STI.splitFramePointerPush(MF)) {
1617 Reg = ARM::PC;
1618 // Fold the return instruction into the LDM.
1619 DeleteRet = true;
1620 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1621 // We 'restore' LR into PC so it is not live out of the return block:
1622 // Clear Restored bit.
1623 Info.setRestored(false);
1624 }
1625
1626 // If NoGap is true, pop consecutive registers and then leave the rest
1627 // for other instructions. e.g.
1628 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1629 if (NoGap && LastReg && LastReg != Reg-1)
1630 break;
1631
1632 LastReg = Reg;
1633 Regs.push_back(Reg);
1634 }
1635
1636 if (Regs.empty())
1637 continue;
1638
1639 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1640 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1641 });
1642
1643 if (Regs.size() > 1 || LdrOpc == 0) {
1644 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1645 .addReg(ARM::SP)
1646 .add(predOps(ARMCC::AL))
1647 .setMIFlags(MachineInstr::FrameDestroy);
1648 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1649 MIB.addReg(Regs[i], getDefRegState(true));
1650 if (DeleteRet) {
1651 if (MI != MBB.end()) {
1652 MIB.copyImplicitOps(*MI);
1653 MI->eraseFromParent();
1654 }
1655 }
1656 MI = MIB;
1657 } else if (Regs.size() == 1) {
1658 // If we adjusted the reg to PC from LR above, switch it back here. We
1659 // only do that for LDM.
1660 if (Regs[0] == ARM::PC)
1661 Regs[0] = ARM::LR;
1662 MachineInstrBuilder MIB =
1663 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1664 .addReg(ARM::SP, RegState::Define)
1665 .addReg(ARM::SP)
1666 .setMIFlags(MachineInstr::FrameDestroy);
1667 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1668 // that refactoring is complete (eventually).
1669 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1670 MIB.addReg(0);
1671 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1672 } else
1673 MIB.addImm(4);
1674 MIB.add(predOps(ARMCC::AL));
1675 }
1676 Regs.clear();
1677
1678 // Put any subsequent vpop instructions after this one: they will refer to
1679 // higher register numbers so need to be popped afterwards.
1680 if (MI != MBB.end())
1681 ++MI;
1682 }
1683 }
1684
1685 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1686 /// starting from d8. Also insert stack realignment code and leave the stack
1687 /// pointer pointing to the d8 spill slot.
emitAlignedDPRCS2Spills(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1688 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1689 MachineBasicBlock::iterator MI,
1690 unsigned NumAlignedDPRCS2Regs,
1691 ArrayRef<CalleeSavedInfo> CSI,
1692 const TargetRegisterInfo *TRI) {
1693 MachineFunction &MF = *MBB.getParent();
1694 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1695 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1696 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1697 MachineFrameInfo &MFI = MF.getFrameInfo();
1698
1699 // Mark the D-register spill slots as properly aligned. Since MFI computes
1700 // stack slot layout backwards, this can actually mean that the d-reg stack
1701 // slot offsets can be wrong. The offset for d8 will always be correct.
1702 for (const CalleeSavedInfo &I : CSI) {
1703 unsigned DNum = I.getReg() - ARM::D8;
1704 if (DNum > NumAlignedDPRCS2Regs - 1)
1705 continue;
1706 int FI = I.getFrameIdx();
1707 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1708 // registers will be 8-byte aligned.
1709 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1710
1711 // The stack slot for D8 needs to be maximally aligned because this is
1712 // actually the point where we align the stack pointer. MachineFrameInfo
1713 // computes all offsets relative to the incoming stack pointer which is a
1714 // bit weird when realigning the stack. Any extra padding for this
1715 // over-alignment is not realized because the code inserted below adjusts
1716 // the stack pointer by numregs * 8 before aligning the stack pointer.
1717 if (DNum == 0)
1718 MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1719 }
1720
1721 // Move the stack pointer to the d8 spill slot, and align it at the same
1722 // time. Leave the stack slot address in the scratch register r4.
1723 //
1724 // sub r4, sp, #numregs * 8
1725 // bic r4, r4, #align - 1
1726 // mov sp, r4
1727 //
1728 bool isThumb = AFI->isThumbFunction();
1729 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1730 AFI->setShouldRestoreSPFromFP(true);
1731
1732 // sub r4, sp, #numregs * 8
1733 // The immediate is <= 64, so it doesn't need any special encoding.
1734 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1735 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1736 .addReg(ARM::SP)
1737 .addImm(8 * NumAlignedDPRCS2Regs)
1738 .add(predOps(ARMCC::AL))
1739 .add(condCodeOp());
1740
1741 Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1742 // We must set parameter MustBeSingleInstruction to true, since
1743 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1744 // stack alignment. Luckily, this can always be done since all ARM
1745 // architecture versions that support Neon also support the BFC
1746 // instruction.
1747 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1748
1749 // mov sp, r4
1750 // The stack pointer must be adjusted before spilling anything, otherwise
1751 // the stack slots could be clobbered by an interrupt handler.
1752 // Leave r4 live, it is used below.
1753 Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1754 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1755 .addReg(ARM::R4)
1756 .add(predOps(ARMCC::AL));
1757 if (!isThumb)
1758 MIB.add(condCodeOp());
1759
1760 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1761 // r4 holds the stack slot address.
1762 unsigned NextReg = ARM::D8;
1763
1764 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1765 // The writeback is only needed when emitting two vst1.64 instructions.
1766 if (NumAlignedDPRCS2Regs >= 6) {
1767 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1768 &ARM::QQPRRegClass);
1769 MBB.addLiveIn(SupReg);
1770 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1771 .addReg(ARM::R4, RegState::Kill)
1772 .addImm(16)
1773 .addReg(NextReg)
1774 .addReg(SupReg, RegState::ImplicitKill)
1775 .add(predOps(ARMCC::AL));
1776 NextReg += 4;
1777 NumAlignedDPRCS2Regs -= 4;
1778 }
1779
1780 // We won't modify r4 beyond this point. It currently points to the next
1781 // register to be spilled.
1782 unsigned R4BaseReg = NextReg;
1783
1784 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1785 if (NumAlignedDPRCS2Regs >= 4) {
1786 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1787 &ARM::QQPRRegClass);
1788 MBB.addLiveIn(SupReg);
1789 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1790 .addReg(ARM::R4)
1791 .addImm(16)
1792 .addReg(NextReg)
1793 .addReg(SupReg, RegState::ImplicitKill)
1794 .add(predOps(ARMCC::AL));
1795 NextReg += 4;
1796 NumAlignedDPRCS2Regs -= 4;
1797 }
1798
1799 // 16-byte aligned vst1.64 with 2 d-regs.
1800 if (NumAlignedDPRCS2Regs >= 2) {
1801 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1802 &ARM::QPRRegClass);
1803 MBB.addLiveIn(SupReg);
1804 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1805 .addReg(ARM::R4)
1806 .addImm(16)
1807 .addReg(SupReg)
1808 .add(predOps(ARMCC::AL));
1809 NextReg += 2;
1810 NumAlignedDPRCS2Regs -= 2;
1811 }
1812
1813 // Finally, use a vanilla vstr.64 for the odd last register.
1814 if (NumAlignedDPRCS2Regs) {
1815 MBB.addLiveIn(NextReg);
1816 // vstr.64 uses addrmode5 which has an offset scale of 4.
1817 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1818 .addReg(NextReg)
1819 .addReg(ARM::R4)
1820 .addImm((NextReg - R4BaseReg) * 2)
1821 .add(predOps(ARMCC::AL));
1822 }
1823
1824 // The last spill instruction inserted should kill the scratch register r4.
1825 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1826 }
1827
1828 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1829 /// iterator to the following instruction.
1830 static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs)1831 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1832 unsigned NumAlignedDPRCS2Regs) {
1833 // sub r4, sp, #numregs * 8
1834 // bic r4, r4, #align - 1
1835 // mov sp, r4
1836 ++MI; ++MI; ++MI;
1837 assert(MI->mayStore() && "Expecting spill instruction");
1838
1839 // These switches all fall through.
1840 switch(NumAlignedDPRCS2Regs) {
1841 case 7:
1842 ++MI;
1843 assert(MI->mayStore() && "Expecting spill instruction");
1844 [[fallthrough]];
1845 default:
1846 ++MI;
1847 assert(MI->mayStore() && "Expecting spill instruction");
1848 [[fallthrough]];
1849 case 1:
1850 case 2:
1851 case 4:
1852 assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1853 ++MI;
1854 }
1855 return MI;
1856 }
1857
1858 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1859 /// starting from d8. These instructions are assumed to execute while the
1860 /// stack is still aligned, unlike the code inserted by emitPopInst.
emitAlignedDPRCS2Restores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1861 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1862 MachineBasicBlock::iterator MI,
1863 unsigned NumAlignedDPRCS2Regs,
1864 ArrayRef<CalleeSavedInfo> CSI,
1865 const TargetRegisterInfo *TRI) {
1866 MachineFunction &MF = *MBB.getParent();
1867 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1868 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1869 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1870
1871 // Find the frame index assigned to d8.
1872 int D8SpillFI = 0;
1873 for (const CalleeSavedInfo &I : CSI)
1874 if (I.getReg() == ARM::D8) {
1875 D8SpillFI = I.getFrameIdx();
1876 break;
1877 }
1878
1879 // Materialize the address of the d8 spill slot into the scratch register r4.
1880 // This can be fairly complicated if the stack frame is large, so just use
1881 // the normal frame index elimination mechanism to do it. This code runs as
1882 // the initial part of the epilog where the stack and base pointers haven't
1883 // been changed yet.
1884 bool isThumb = AFI->isThumbFunction();
1885 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1886
1887 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1888 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1889 .addFrameIndex(D8SpillFI)
1890 .addImm(0)
1891 .add(predOps(ARMCC::AL))
1892 .add(condCodeOp());
1893
1894 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1895 unsigned NextReg = ARM::D8;
1896
1897 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1898 if (NumAlignedDPRCS2Regs >= 6) {
1899 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1900 &ARM::QQPRRegClass);
1901 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1902 .addReg(ARM::R4, RegState::Define)
1903 .addReg(ARM::R4, RegState::Kill)
1904 .addImm(16)
1905 .addReg(SupReg, RegState::ImplicitDefine)
1906 .add(predOps(ARMCC::AL));
1907 NextReg += 4;
1908 NumAlignedDPRCS2Regs -= 4;
1909 }
1910
1911 // We won't modify r4 beyond this point. It currently points to the next
1912 // register to be spilled.
1913 unsigned R4BaseReg = NextReg;
1914
1915 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1916 if (NumAlignedDPRCS2Regs >= 4) {
1917 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1918 &ARM::QQPRRegClass);
1919 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1920 .addReg(ARM::R4)
1921 .addImm(16)
1922 .addReg(SupReg, RegState::ImplicitDefine)
1923 .add(predOps(ARMCC::AL));
1924 NextReg += 4;
1925 NumAlignedDPRCS2Regs -= 4;
1926 }
1927
1928 // 16-byte aligned vld1.64 with 2 d-regs.
1929 if (NumAlignedDPRCS2Regs >= 2) {
1930 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1931 &ARM::QPRRegClass);
1932 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1933 .addReg(ARM::R4)
1934 .addImm(16)
1935 .add(predOps(ARMCC::AL));
1936 NextReg += 2;
1937 NumAlignedDPRCS2Regs -= 2;
1938 }
1939
1940 // Finally, use a vanilla vldr.64 for the remaining odd register.
1941 if (NumAlignedDPRCS2Regs)
1942 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1943 .addReg(ARM::R4)
1944 .addImm(2 * (NextReg - R4BaseReg))
1945 .add(predOps(ARMCC::AL));
1946
1947 // Last store kills r4.
1948 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1949 }
1950
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1951 bool ARMFrameLowering::spillCalleeSavedRegisters(
1952 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1953 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1954 if (CSI.empty())
1955 return false;
1956
1957 MachineFunction &MF = *MBB.getParent();
1958 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1959
1960 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1961 unsigned PushOneOpc = AFI->isThumbFunction() ?
1962 ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1963 unsigned FltOpc = ARM::VSTMDDB_UPD;
1964 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1965 // Compute PAC in R12.
1966 if (AFI->shouldSignReturnAddress()) {
1967 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1968 .setMIFlags(MachineInstr::FrameSetup);
1969 }
1970 // Save the non-secure floating point context.
1971 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1972 return C.getReg() == ARM::FPCXTNS;
1973 })) {
1974 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1975 ARM::SP)
1976 .addReg(ARM::SP)
1977 .addImm(-4)
1978 .add(predOps(ARMCC::AL));
1979 }
1980 if (STI.splitFramePointerPush(MF)) {
1981 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1982 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
1983 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1984 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1985 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1986 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
1987 } else {
1988 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
1989 0, MachineInstr::FrameSetup);
1990 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
1991 0, MachineInstr::FrameSetup);
1992 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1993 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1994 }
1995
1996 // The code above does not insert spill code for the aligned DPRCS2 registers.
1997 // The stack realignment code will be inserted between the push instructions
1998 // and these spills.
1999 if (NumAlignedDPRCS2Regs)
2000 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2001
2002 return true;
2003 }
2004
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2005 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2006 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2007 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2008 if (CSI.empty())
2009 return false;
2010
2011 MachineFunction &MF = *MBB.getParent();
2012 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2013 bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2014 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2015
2016 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2017 // registers. Do that here instead.
2018 if (NumAlignedDPRCS2Regs)
2019 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2020
2021 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2022 unsigned LdrOpc =
2023 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2024 unsigned FltOpc = ARM::VLDMDIA_UPD;
2025 if (STI.splitFramePointerPush(MF)) {
2026 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2027 &isSplitFPArea2Register, 0);
2028 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2029 NumAlignedDPRCS2Regs);
2030 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2031 &isSplitFPArea1Register, 0);
2032 } else {
2033 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2034 NumAlignedDPRCS2Regs);
2035 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2036 &isARMArea2Register, 0);
2037 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2038 &isARMArea1Register, 0);
2039 }
2040
2041 return true;
2042 }
2043
2044 // FIXME: Make generic?
EstimateFunctionSizeInBytes(const MachineFunction & MF,const ARMBaseInstrInfo & TII)2045 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2046 const ARMBaseInstrInfo &TII) {
2047 unsigned FnSize = 0;
2048 for (auto &MBB : MF) {
2049 for (auto &MI : MBB)
2050 FnSize += TII.getInstSizeInBytes(MI);
2051 }
2052 if (MF.getJumpTableInfo())
2053 for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2054 FnSize += Table.MBBs.size() * 4;
2055 FnSize += MF.getConstantPool()->getConstants().size() * 4;
2056 return FnSize;
2057 }
2058
2059 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2060 /// frames and return the stack size limit beyond which some of these
2061 /// instructions will require a scratch register during their expansion later.
2062 // FIXME: Move to TII?
estimateRSStackSizeLimit(MachineFunction & MF,const TargetFrameLowering * TFI,bool & HasNonSPFrameIndex)2063 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2064 const TargetFrameLowering *TFI,
2065 bool &HasNonSPFrameIndex) {
2066 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2067 const ARMBaseInstrInfo &TII =
2068 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2069 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2070 unsigned Limit = (1 << 12) - 1;
2071 for (auto &MBB : MF) {
2072 for (auto &MI : MBB) {
2073 if (MI.isDebugInstr())
2074 continue;
2075 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2076 if (!MI.getOperand(i).isFI())
2077 continue;
2078
2079 // When using ADDri to get the address of a stack object, 255 is the
2080 // largest offset guaranteed to fit in the immediate offset.
2081 if (MI.getOpcode() == ARM::ADDri) {
2082 Limit = std::min(Limit, (1U << 8) - 1);
2083 break;
2084 }
2085 // t2ADDri will not require an extra register, it can reuse the
2086 // destination.
2087 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2088 break;
2089
2090 const MCInstrDesc &MCID = MI.getDesc();
2091 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2092 if (RegClass && !RegClass->contains(ARM::SP))
2093 HasNonSPFrameIndex = true;
2094
2095 // Otherwise check the addressing mode.
2096 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2097 case ARMII::AddrMode_i12:
2098 case ARMII::AddrMode2:
2099 // Default 12 bit limit.
2100 break;
2101 case ARMII::AddrMode3:
2102 case ARMII::AddrModeT2_i8neg:
2103 Limit = std::min(Limit, (1U << 8) - 1);
2104 break;
2105 case ARMII::AddrMode5FP16:
2106 Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2107 break;
2108 case ARMII::AddrMode5:
2109 case ARMII::AddrModeT2_i8s4:
2110 case ARMII::AddrModeT2_ldrex:
2111 Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2112 break;
2113 case ARMII::AddrModeT2_i12:
2114 // i12 supports only positive offset so these will be converted to
2115 // i8 opcodes. See llvm::rewriteT2FrameIndex.
2116 if (TFI->hasFP(MF) && AFI->hasStackFrame())
2117 Limit = std::min(Limit, (1U << 8) - 1);
2118 break;
2119 case ARMII::AddrMode4:
2120 case ARMII::AddrMode6:
2121 // Addressing modes 4 & 6 (load/store) instructions can't encode an
2122 // immediate offset for stack references.
2123 return 0;
2124 case ARMII::AddrModeT2_i7:
2125 Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2126 break;
2127 case ARMII::AddrModeT2_i7s2:
2128 Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2129 break;
2130 case ARMII::AddrModeT2_i7s4:
2131 Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2132 break;
2133 default:
2134 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2135 }
2136 break; // At most one FI per instruction
2137 }
2138 }
2139 }
2140
2141 return Limit;
2142 }
2143
2144 // In functions that realign the stack, it can be an advantage to spill the
2145 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2146 // instructions take alignment hints that can improve performance.
2147 static void
checkNumAlignedDPRCS2Regs(MachineFunction & MF,BitVector & SavedRegs)2148 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2149 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2150 if (!SpillAlignedNEONRegs)
2151 return;
2152
2153 // Naked functions don't spill callee-saved registers.
2154 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2155 return;
2156
2157 // We are planning to use NEON instructions vst1 / vld1.
2158 if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2159 return;
2160
2161 // Don't bother if the default stack alignment is sufficiently high.
2162 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2163 return;
2164
2165 // Aligned spills require stack realignment.
2166 if (!static_cast<const ARMBaseRegisterInfo *>(
2167 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2168 return;
2169
2170 // We always spill contiguous d-registers starting from d8. Count how many
2171 // needs spilling. The register allocator will almost always use the
2172 // callee-saved registers in order, but it can happen that there are holes in
2173 // the range. Registers above the hole will be spilled to the standard DPRCS
2174 // area.
2175 unsigned NumSpills = 0;
2176 for (; NumSpills < 8; ++NumSpills)
2177 if (!SavedRegs.test(ARM::D8 + NumSpills))
2178 break;
2179
2180 // Don't do this for just one d-register. It's not worth it.
2181 if (NumSpills < 2)
2182 return;
2183
2184 // Spill the first NumSpills D-registers after realigning the stack.
2185 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2186
2187 // A scratch register is required for the vst1 / vld1 instructions.
2188 SavedRegs.set(ARM::R4);
2189 }
2190
enableShrinkWrapping(const MachineFunction & MF) const2191 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2192 // For CMSE entry functions, we want to save the FPCXT_NS immediately
2193 // upon function entry (resp. restore it immmediately before return)
2194 if (STI.hasV8_1MMainlineOps() &&
2195 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2196 return false;
2197
2198 // We are disabling shrinkwrapping for now when PAC is enabled, as
2199 // shrinkwrapping can cause clobbering of r12 when the PAC code is
2200 // generated. A follow-up patch will fix this in a more performant manner.
2201 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2202 true /* SpillsLR */))
2203 return false;
2204
2205 return true;
2206 }
2207
requiresAAPCSFrameRecord(const MachineFunction & MF)2208 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) {
2209 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2210 return Subtarget.createAAPCSFrameChainLeaf() ||
2211 (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls());
2212 }
2213
2214 // Thumb1 may require a spill when storing to a frame index through FP, for
2215 // cases where FP is a high register (R11). This scans the function for cases
2216 // where this may happen.
canSpillOnFrameIndexAccess(const MachineFunction & MF,const TargetFrameLowering & TFI)2217 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2218 const TargetFrameLowering &TFI) {
2219 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2220 if (!AFI->isThumb1OnlyFunction())
2221 return false;
2222
2223 for (const auto &MBB : MF)
2224 for (const auto &MI : MBB)
2225 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi)
2226 for (const auto &Op : MI.operands())
2227 if (Op.isFI()) {
2228 Register Reg;
2229 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2230 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2231 return true;
2232 }
2233 return false;
2234 }
2235
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2236 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2237 BitVector &SavedRegs,
2238 RegScavenger *RS) const {
2239 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2240 // This tells PEI to spill the FP as if it is any other callee-save register
2241 // to take advantage the eliminateFrameIndex machinery. This also ensures it
2242 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2243 // to combine multiple loads / stores.
2244 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2245 bool CS1Spilled = false;
2246 bool LRSpilled = false;
2247 unsigned NumGPRSpills = 0;
2248 unsigned NumFPRSpills = 0;
2249 SmallVector<unsigned, 4> UnspilledCS1GPRs;
2250 SmallVector<unsigned, 4> UnspilledCS2GPRs;
2251 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2252 MF.getSubtarget().getRegisterInfo());
2253 const ARMBaseInstrInfo &TII =
2254 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2255 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2256 MachineFrameInfo &MFI = MF.getFrameInfo();
2257 MachineRegisterInfo &MRI = MF.getRegInfo();
2258 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2259 (void)TRI; // Silence unused warning in non-assert builds.
2260 Register FramePtr = RegInfo->getFrameRegister(MF);
2261
2262 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2263 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2264 // since it's not always possible to restore sp from fp in a single
2265 // instruction.
2266 // FIXME: It will be better just to find spare register here.
2267 if (AFI->isThumb2Function() &&
2268 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2269 SavedRegs.set(ARM::R4);
2270
2271 // If a stack probe will be emitted, spill R4 and LR, since they are
2272 // clobbered by the stack probe call.
2273 // This estimate should be a safe, conservative estimate. The actual
2274 // stack probe is enabled based on the size of the local objects;
2275 // this estimate also includes the varargs store size.
2276 if (STI.isTargetWindows() &&
2277 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2278 SavedRegs.set(ARM::R4);
2279 SavedRegs.set(ARM::LR);
2280 }
2281
2282 if (AFI->isThumb1OnlyFunction()) {
2283 // Spill LR if Thumb1 function uses variable length argument lists.
2284 if (AFI->getArgRegsSaveSize() > 0)
2285 SavedRegs.set(ARM::LR);
2286
2287 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2288 // requires stack alignment. We don't know for sure what the stack size
2289 // will be, but for this, an estimate is good enough. If there anything
2290 // changes it, it'll be a spill, which implies we've used all the registers
2291 // and so R4 is already used, so not marking it here will be OK.
2292 // FIXME: It will be better just to find spare register here.
2293 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2294 MFI.estimateStackSize(MF) > 508)
2295 SavedRegs.set(ARM::R4);
2296 }
2297
2298 // See if we can spill vector registers to aligned stack.
2299 checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2300
2301 // Spill the BasePtr if it's used.
2302 if (RegInfo->hasBasePointer(MF))
2303 SavedRegs.set(RegInfo->getBaseRegister());
2304
2305 // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2306 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2307 CanEliminateFrame = false;
2308
2309 // Don't spill FP if the frame can be eliminated. This is determined
2310 // by scanning the callee-save registers to see if any is modified.
2311 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2312 for (unsigned i = 0; CSRegs[i]; ++i) {
2313 unsigned Reg = CSRegs[i];
2314 bool Spilled = false;
2315 if (SavedRegs.test(Reg)) {
2316 Spilled = true;
2317 CanEliminateFrame = false;
2318 }
2319
2320 if (!ARM::GPRRegClass.contains(Reg)) {
2321 if (Spilled) {
2322 if (ARM::SPRRegClass.contains(Reg))
2323 NumFPRSpills++;
2324 else if (ARM::DPRRegClass.contains(Reg))
2325 NumFPRSpills += 2;
2326 else if (ARM::QPRRegClass.contains(Reg))
2327 NumFPRSpills += 4;
2328 }
2329 continue;
2330 }
2331
2332 if (Spilled) {
2333 NumGPRSpills++;
2334
2335 if (!STI.splitFramePushPop(MF)) {
2336 if (Reg == ARM::LR)
2337 LRSpilled = true;
2338 CS1Spilled = true;
2339 continue;
2340 }
2341
2342 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2343 switch (Reg) {
2344 case ARM::LR:
2345 LRSpilled = true;
2346 [[fallthrough]];
2347 case ARM::R0: case ARM::R1:
2348 case ARM::R2: case ARM::R3:
2349 case ARM::R4: case ARM::R5:
2350 case ARM::R6: case ARM::R7:
2351 CS1Spilled = true;
2352 break;
2353 default:
2354 break;
2355 }
2356 } else {
2357 if (!STI.splitFramePushPop(MF)) {
2358 UnspilledCS1GPRs.push_back(Reg);
2359 continue;
2360 }
2361
2362 switch (Reg) {
2363 case ARM::R0: case ARM::R1:
2364 case ARM::R2: case ARM::R3:
2365 case ARM::R4: case ARM::R5:
2366 case ARM::R6: case ARM::R7:
2367 case ARM::LR:
2368 UnspilledCS1GPRs.push_back(Reg);
2369 break;
2370 default:
2371 UnspilledCS2GPRs.push_back(Reg);
2372 break;
2373 }
2374 }
2375 }
2376
2377 bool ForceLRSpill = false;
2378 if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2379 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2380 // Force LR to be spilled if the Thumb function size is > 2048. This enables
2381 // use of BL to implement far jump.
2382 if (FnSize >= (1 << 11)) {
2383 CanEliminateFrame = false;
2384 ForceLRSpill = true;
2385 }
2386 }
2387
2388 // If any of the stack slot references may be out of range of an immediate
2389 // offset, make sure a register (or a spill slot) is available for the
2390 // register scavenger. Note that if we're indexing off the frame pointer, the
2391 // effective stack size is 4 bytes larger since the FP points to the stack
2392 // slot of the previous FP. Also, if we have variable sized objects in the
2393 // function, stack slot references will often be negative, and some of
2394 // our instructions are positive-offset only, so conservatively consider
2395 // that case to want a spill slot (or register) as well. Similarly, if
2396 // the function adjusts the stack pointer during execution and the
2397 // adjustments aren't already part of our stack size estimate, our offset
2398 // calculations may be off, so be conservative.
2399 // FIXME: We could add logic to be more precise about negative offsets
2400 // and which instructions will need a scratch register for them. Is it
2401 // worth the effort and added fragility?
2402 unsigned EstimatedStackSize =
2403 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2404
2405 // Determine biggest (positive) SP offset in MachineFrameInfo.
2406 int MaxFixedOffset = 0;
2407 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2408 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2409 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2410 }
2411
2412 bool HasFP = hasFP(MF);
2413 if (HasFP) {
2414 if (AFI->hasStackFrame())
2415 EstimatedStackSize += 4;
2416 } else {
2417 // If FP is not used, SP will be used to access arguments, so count the
2418 // size of arguments into the estimation.
2419 EstimatedStackSize += MaxFixedOffset;
2420 }
2421 EstimatedStackSize += 16; // For possible paddings.
2422
2423 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2424 bool HasNonSPFrameIndex = false;
2425 if (AFI->isThumb1OnlyFunction()) {
2426 // For Thumb1, don't bother to iterate over the function. The only
2427 // instruction that requires an emergency spill slot is a store to a
2428 // frame index.
2429 //
2430 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2431 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2432 // a 5-bit unsigned immediate.
2433 //
2434 // We could try to check if the function actually contains a tSTRspi
2435 // that might need the spill slot, but it's not really important.
2436 // Functions with VLAs or extremely large call frames are rare, and
2437 // if a function is allocating more than 1KB of stack, an extra 4-byte
2438 // slot probably isn't relevant.
2439 //
2440 // A special case is the scenario where r11 is used as FP, where accesses
2441 // to a frame index will require its value to be moved into a low reg.
2442 // This is handled later on, once we are able to determine if we have any
2443 // fp-relative accesses.
2444 if (RegInfo->hasBasePointer(MF))
2445 EstimatedRSStackSizeLimit = (1U << 5) * 4;
2446 else
2447 EstimatedRSStackSizeLimit = (1U << 8) * 4;
2448 EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2449 } else {
2450 EstimatedRSStackSizeLimit =
2451 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2452 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2453 }
2454 // Final estimate of whether sp or bp-relative accesses might require
2455 // scavenging.
2456 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2457
2458 // If the stack pointer moves and we don't have a base pointer, the
2459 // estimate logic doesn't work. The actual offsets might be larger when
2460 // we're constructing a call frame, or we might need to use negative
2461 // offsets from fp.
2462 bool HasMovingSP = MFI.hasVarSizedObjects() ||
2463 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2464 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2465
2466 // If we have a frame pointer, we assume arguments will be accessed
2467 // relative to the frame pointer. Check whether fp-relative accesses to
2468 // arguments require scavenging.
2469 //
2470 // We could do slightly better on Thumb1; in some cases, an sp-relative
2471 // offset would be legal even though an fp-relative offset is not.
2472 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2473 bool HasLargeArgumentList =
2474 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2475
2476 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2477 HasLargeArgumentList || HasNonSPFrameIndex;
2478 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2479 << "; EstimatedStack: " << EstimatedStackSize
2480 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2481 << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2482 if (BigFrameOffsets ||
2483 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2484 AFI->setHasStackFrame(true);
2485
2486 if (HasFP) {
2487 SavedRegs.set(FramePtr);
2488 // If the frame pointer is required by the ABI, also spill LR so that we
2489 // emit a complete frame record.
2490 if ((requiresAAPCSFrameRecord(MF) ||
2491 MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2492 !LRSpilled) {
2493 SavedRegs.set(ARM::LR);
2494 LRSpilled = true;
2495 NumGPRSpills++;
2496 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2497 if (LRPos != UnspilledCS1GPRs.end())
2498 UnspilledCS1GPRs.erase(LRPos);
2499 }
2500 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2501 if (FPPos != UnspilledCS1GPRs.end())
2502 UnspilledCS1GPRs.erase(FPPos);
2503 NumGPRSpills++;
2504 if (FramePtr == ARM::R7)
2505 CS1Spilled = true;
2506 }
2507
2508 // This is true when we inserted a spill for a callee-save GPR which is
2509 // not otherwise used by the function. This guaranteees it is possible
2510 // to scavenge a register to hold the address of a stack slot. On Thumb1,
2511 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2512 // subtargets, this is any GPR, i.e. r4-r11 or lr.
2513 //
2514 // If we don't insert a spill, we instead allocate an emergency spill
2515 // slot, which can be used by scavenging to spill an arbitrary register.
2516 //
2517 // We currently don't try to figure out whether any specific instruction
2518 // requires scavening an additional register.
2519 bool ExtraCSSpill = false;
2520
2521 if (AFI->isThumb1OnlyFunction()) {
2522 // For Thumb1-only targets, we need some low registers when we save and
2523 // restore the high registers (which aren't allocatable, but could be
2524 // used by inline assembly) because the push/pop instructions can not
2525 // access high registers. If necessary, we might need to push more low
2526 // registers to ensure that there is at least one free that can be used
2527 // for the saving & restoring, and preferably we should ensure that as
2528 // many as are needed are available so that fewer push/pop instructions
2529 // are required.
2530
2531 // Low registers which are not currently pushed, but could be (r4-r7).
2532 SmallVector<unsigned, 4> AvailableRegs;
2533
2534 // Unused argument registers (r0-r3) can be clobbered in the prologue for
2535 // free.
2536 int EntryRegDeficit = 0;
2537 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2538 if (!MF.getRegInfo().isLiveIn(Reg)) {
2539 --EntryRegDeficit;
2540 LLVM_DEBUG(dbgs()
2541 << printReg(Reg, TRI)
2542 << " is unused argument register, EntryRegDeficit = "
2543 << EntryRegDeficit << "\n");
2544 }
2545 }
2546
2547 // Unused return registers can be clobbered in the epilogue for free.
2548 int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2549 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2550 << " return regs used, ExitRegDeficit = "
2551 << ExitRegDeficit << "\n");
2552
2553 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2554 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2555
2556 // r4-r6 can be used in the prologue if they are pushed by the first push
2557 // instruction.
2558 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2559 if (SavedRegs.test(Reg)) {
2560 --RegDeficit;
2561 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2562 << " is saved low register, RegDeficit = "
2563 << RegDeficit << "\n");
2564 } else {
2565 AvailableRegs.push_back(Reg);
2566 LLVM_DEBUG(
2567 dbgs()
2568 << printReg(Reg, TRI)
2569 << " is non-saved low register, adding to AvailableRegs\n");
2570 }
2571 }
2572
2573 // r7 can be used if it is not being used as the frame pointer.
2574 if (!HasFP || FramePtr != ARM::R7) {
2575 if (SavedRegs.test(ARM::R7)) {
2576 --RegDeficit;
2577 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2578 << RegDeficit << "\n");
2579 } else {
2580 AvailableRegs.push_back(ARM::R7);
2581 LLVM_DEBUG(
2582 dbgs()
2583 << "%r7 is non-saved low register, adding to AvailableRegs\n");
2584 }
2585 }
2586
2587 // Each of r8-r11 needs to be copied to a low register, then pushed.
2588 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2589 if (SavedRegs.test(Reg)) {
2590 ++RegDeficit;
2591 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2592 << " is saved high register, RegDeficit = "
2593 << RegDeficit << "\n");
2594 }
2595 }
2596
2597 // LR can only be used by PUSH, not POP, and can't be used at all if the
2598 // llvm.returnaddress intrinsic is used. This is only worth doing if we
2599 // are more limited at function entry than exit.
2600 if ((EntryRegDeficit > ExitRegDeficit) &&
2601 !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2602 MF.getFrameInfo().isReturnAddressTaken())) {
2603 if (SavedRegs.test(ARM::LR)) {
2604 --RegDeficit;
2605 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2606 << RegDeficit << "\n");
2607 } else {
2608 AvailableRegs.push_back(ARM::LR);
2609 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2610 }
2611 }
2612
2613 // If there are more high registers that need pushing than low registers
2614 // available, push some more low registers so that we can use fewer push
2615 // instructions. This might not reduce RegDeficit all the way to zero,
2616 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2617 // need saving.
2618 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2619 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2620 unsigned Reg = AvailableRegs.pop_back_val();
2621 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2622 << " to make up reg deficit\n");
2623 SavedRegs.set(Reg);
2624 NumGPRSpills++;
2625 CS1Spilled = true;
2626 assert(!MRI.isReserved(Reg) && "Should not be reserved");
2627 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2628 ExtraCSSpill = true;
2629 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2630 if (Reg == ARM::LR)
2631 LRSpilled = true;
2632 }
2633 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2634 << "\n");
2635 }
2636
2637 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2638 // restore LR in that case.
2639 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2640
2641 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2642 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2643 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2644 SavedRegs.set(ARM::LR);
2645 NumGPRSpills++;
2646 SmallVectorImpl<unsigned>::iterator LRPos;
2647 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2648 if (LRPos != UnspilledCS1GPRs.end())
2649 UnspilledCS1GPRs.erase(LRPos);
2650
2651 ForceLRSpill = false;
2652 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2653 !AFI->isThumb1OnlyFunction())
2654 ExtraCSSpill = true;
2655 }
2656
2657 // If stack and double are 8-byte aligned and we are spilling an odd number
2658 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2659 // the integer and double callee save areas.
2660 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2661 const Align TargetAlign = getStackAlign();
2662 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2663 if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2664 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2665 unsigned Reg = UnspilledCS1GPRs[i];
2666 // Don't spill high register if the function is thumb. In the case of
2667 // Windows on ARM, accept R11 (frame pointer)
2668 if (!AFI->isThumbFunction() ||
2669 (STI.isTargetWindows() && Reg == ARM::R11) ||
2670 isARMLowRegister(Reg) ||
2671 (Reg == ARM::LR && !ExpensiveLRRestore)) {
2672 SavedRegs.set(Reg);
2673 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2674 << " to make up alignment\n");
2675 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2676 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2677 ExtraCSSpill = true;
2678 break;
2679 }
2680 }
2681 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2682 unsigned Reg = UnspilledCS2GPRs.front();
2683 SavedRegs.set(Reg);
2684 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2685 << " to make up alignment\n");
2686 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2687 ExtraCSSpill = true;
2688 }
2689 }
2690
2691 // Estimate if we might need to scavenge a register at some point in order
2692 // to materialize a stack offset. If so, either spill one additional
2693 // callee-saved register or reserve a special spill slot to facilitate
2694 // register scavenging. Thumb1 needs a spill slot for stack pointer
2695 // adjustments and for frame index accesses when FP is high register,
2696 // even when the frame itself is small.
2697 if (!ExtraCSSpill &&
2698 (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this))) {
2699 // If any non-reserved CS register isn't spilled, just spill one or two
2700 // extra. That should take care of it!
2701 unsigned NumExtras = TargetAlign.value() / 4;
2702 SmallVector<unsigned, 2> Extras;
2703 while (NumExtras && !UnspilledCS1GPRs.empty()) {
2704 unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2705 if (!MRI.isReserved(Reg) &&
2706 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2707 Extras.push_back(Reg);
2708 NumExtras--;
2709 }
2710 }
2711 // For non-Thumb1 functions, also check for hi-reg CS registers
2712 if (!AFI->isThumb1OnlyFunction()) {
2713 while (NumExtras && !UnspilledCS2GPRs.empty()) {
2714 unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2715 if (!MRI.isReserved(Reg)) {
2716 Extras.push_back(Reg);
2717 NumExtras--;
2718 }
2719 }
2720 }
2721 if (NumExtras == 0) {
2722 for (unsigned Reg : Extras) {
2723 SavedRegs.set(Reg);
2724 if (!MRI.isPhysRegUsed(Reg))
2725 ExtraCSSpill = true;
2726 }
2727 }
2728 if (!ExtraCSSpill && RS) {
2729 // Reserve a slot closest to SP or frame pointer.
2730 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2731 const TargetRegisterClass &RC = ARM::GPRRegClass;
2732 unsigned Size = TRI->getSpillSize(RC);
2733 Align Alignment = TRI->getSpillAlign(RC);
2734 RS->addScavengingFrameIndex(
2735 MFI.CreateStackObject(Size, Alignment, false));
2736 }
2737 }
2738 }
2739
2740 if (ForceLRSpill)
2741 SavedRegs.set(ARM::LR);
2742 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2743 }
2744
getCalleeSaves(const MachineFunction & MF,BitVector & SavedRegs) const2745 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2746 BitVector &SavedRegs) const {
2747 TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2748
2749 // If we have the "returned" parameter attribute which guarantees that we
2750 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2751 // record that fact for IPRA.
2752 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2753 if (AFI->getPreservesR0())
2754 SavedRegs.set(ARM::R0);
2755 }
2756
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2757 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2758 MachineFunction &MF, const TargetRegisterInfo *TRI,
2759 std::vector<CalleeSavedInfo> &CSI) const {
2760 // For CMSE entry functions, handle floating-point context as if it was a
2761 // callee-saved register.
2762 if (STI.hasV8_1MMainlineOps() &&
2763 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2764 CSI.emplace_back(ARM::FPCXTNS);
2765 CSI.back().setRestored(false);
2766 }
2767
2768 // For functions, which sign their return address, upon function entry, the
2769 // return address PAC is computed in R12. Treat R12 as a callee-saved register
2770 // in this case.
2771 const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2772 if (AFI.shouldSignReturnAddress()) {
2773 // The order of register must match the order we push them, because the
2774 // PEI assigns frame indices in that order. When compiling for return
2775 // address sign and authenication, we use split push, therefore the orders
2776 // we want are:
2777 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8
2778 CSI.insert(find_if(CSI,
2779 [=](const auto &CS) {
2780 Register Reg = CS.getReg();
2781 return Reg == ARM::R10 || Reg == ARM::R11 ||
2782 Reg == ARM::R8 || Reg == ARM::R9 ||
2783 ARM::DPRRegClass.contains(Reg);
2784 }),
2785 CalleeSavedInfo(ARM::R12));
2786 }
2787
2788 return false;
2789 }
2790
2791 const TargetFrameLowering::SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries) const2792 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2793 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2794 NumEntries = std::size(FixedSpillOffsets);
2795 return FixedSpillOffsets;
2796 }
2797
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2798 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2799 MachineFunction &MF, MachineBasicBlock &MBB,
2800 MachineBasicBlock::iterator I) const {
2801 const ARMBaseInstrInfo &TII =
2802 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2803 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2804 bool isARM = !AFI->isThumbFunction();
2805 DebugLoc dl = I->getDebugLoc();
2806 unsigned Opc = I->getOpcode();
2807 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2808 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2809
2810 assert(!AFI->isThumb1OnlyFunction() &&
2811 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2812
2813 int PIdx = I->findFirstPredOperandIdx();
2814 ARMCC::CondCodes Pred = (PIdx == -1)
2815 ? ARMCC::AL
2816 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2817 unsigned PredReg = TII.getFramePred(*I);
2818
2819 if (!hasReservedCallFrame(MF)) {
2820 // Bail early if the callee is expected to do the adjustment.
2821 if (IsDestroy && CalleePopAmount != -1U)
2822 return MBB.erase(I);
2823
2824 // If we have alloca, convert as follows:
2825 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2826 // ADJCALLSTACKUP -> add, sp, sp, amount
2827 unsigned Amount = TII.getFrameSize(*I);
2828 if (Amount != 0) {
2829 // We need to keep the stack aligned properly. To do this, we round the
2830 // amount of space needed for the outgoing arguments up to the next
2831 // alignment boundary.
2832 Amount = alignSPAdjust(Amount);
2833
2834 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2835 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2836 Pred, PredReg);
2837 } else {
2838 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2839 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2840 Pred, PredReg);
2841 }
2842 }
2843 } else if (CalleePopAmount != -1U) {
2844 // If the calling convention demands that the callee pops arguments from the
2845 // stack, we want to add it back if we have a reserved call frame.
2846 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2847 MachineInstr::NoFlags, Pred, PredReg);
2848 }
2849 return MBB.erase(I);
2850 }
2851
2852 /// Get the minimum constant for ARM that is greater than or equal to the
2853 /// argument. In ARM, constants can have any value that can be produced by
2854 /// rotating an 8-bit value to the right by an even number of bits within a
2855 /// 32-bit word.
alignToARMConstant(uint32_t Value)2856 static uint32_t alignToARMConstant(uint32_t Value) {
2857 unsigned Shifted = 0;
2858
2859 if (Value == 0)
2860 return 0;
2861
2862 while (!(Value & 0xC0000000)) {
2863 Value = Value << 2;
2864 Shifted += 2;
2865 }
2866
2867 bool Carry = (Value & 0x00FFFFFF);
2868 Value = ((Value & 0xFF000000) >> 24) + Carry;
2869
2870 if (Value & 0x0000100)
2871 Value = Value & 0x000001FC;
2872
2873 if (Shifted > 24)
2874 Value = Value >> (Shifted - 24);
2875 else
2876 Value = Value << (24 - Shifted);
2877
2878 return Value;
2879 }
2880
2881 // The stack limit in the TCB is set to this many bytes above the actual
2882 // stack limit.
2883 static const uint64_t kSplitStackAvailable = 256;
2884
2885 // Adjust the function prologue to enable split stacks. This currently only
2886 // supports android and linux.
2887 //
2888 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2889 // must be well defined in order to allow for consistent implementations of the
2890 // __morestack helper function. The ABI is also not a normal ABI in that it
2891 // doesn't follow the normal calling conventions because this allows the
2892 // prologue of each function to be optimized further.
2893 //
2894 // Currently, the ABI looks like (when calling __morestack)
2895 //
2896 // * r4 holds the minimum stack size requested for this function call
2897 // * r5 holds the stack size of the arguments to the function
2898 // * the beginning of the function is 3 instructions after the call to
2899 // __morestack
2900 //
2901 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2902 // place the arguments on to the new stack, and the 3-instruction knowledge to
2903 // jump directly to the body of the function when working on the new stack.
2904 //
2905 // An old (and possibly no longer compatible) implementation of __morestack for
2906 // ARM can be found at [1].
2907 //
2908 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2909 void ARMFrameLowering::adjustForSegmentedStacks(
2910 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2911 unsigned Opcode;
2912 unsigned CFIIndex;
2913 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2914 bool Thumb = ST->isThumb();
2915 bool Thumb2 = ST->isThumb2();
2916
2917 // Sadly, this currently doesn't support varargs, platforms other than
2918 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2919 if (MF.getFunction().isVarArg())
2920 report_fatal_error("Segmented stacks do not support vararg functions.");
2921 if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2922 report_fatal_error("Segmented stacks not supported on this platform.");
2923
2924 MachineFrameInfo &MFI = MF.getFrameInfo();
2925 MachineModuleInfo &MMI = MF.getMMI();
2926 MCContext &Context = MMI.getContext();
2927 const MCRegisterInfo *MRI = Context.getRegisterInfo();
2928 const ARMBaseInstrInfo &TII =
2929 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2930 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2931 DebugLoc DL;
2932
2933 if (!MFI.needsSplitStackProlog())
2934 return;
2935
2936 uint64_t StackSize = MFI.getStackSize();
2937
2938 // Use R4 and R5 as scratch registers.
2939 // We save R4 and R5 before use and restore them before leaving the function.
2940 unsigned ScratchReg0 = ARM::R4;
2941 unsigned ScratchReg1 = ARM::R5;
2942 uint64_t AlignedStackSize;
2943
2944 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2945 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2946 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2947 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2948 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2949
2950 // Grab everything that reaches PrologueMBB to update there liveness as well.
2951 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2952 SmallVector<MachineBasicBlock *, 2> WalkList;
2953 WalkList.push_back(&PrologueMBB);
2954
2955 do {
2956 MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2957 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2958 if (BeforePrologueRegion.insert(PredBB).second)
2959 WalkList.push_back(PredBB);
2960 }
2961 } while (!WalkList.empty());
2962
2963 // The order in that list is important.
2964 // The blocks will all be inserted before PrologueMBB using that order.
2965 // Therefore the block that should appear first in the CFG should appear
2966 // first in the list.
2967 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2968 PostStackMBB};
2969
2970 for (MachineBasicBlock *B : AddedBlocks)
2971 BeforePrologueRegion.insert(B);
2972
2973 for (const auto &LI : PrologueMBB.liveins()) {
2974 for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2975 PredBB->addLiveIn(LI);
2976 }
2977
2978 // Remove the newly added blocks from the list, since we know
2979 // we do not have to do the following updates for them.
2980 for (MachineBasicBlock *B : AddedBlocks) {
2981 BeforePrologueRegion.erase(B);
2982 MF.insert(PrologueMBB.getIterator(), B);
2983 }
2984
2985 for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2986 // Make sure the LiveIns are still sorted and unique.
2987 MBB->sortUniqueLiveIns();
2988 // Replace the edges to PrologueMBB by edges to the sequences
2989 // we are about to add, but only update for immediate predecessors.
2990 if (MBB->isSuccessor(&PrologueMBB))
2991 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2992 }
2993
2994 // The required stack size that is aligned to ARM constant criterion.
2995 AlignedStackSize = alignToARMConstant(StackSize);
2996
2997 // When the frame size is less than 256 we just compare the stack
2998 // boundary directly to the value of the stack pointer, per gcc.
2999 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3000
3001 // We will use two of the callee save registers as scratch registers so we
3002 // need to save those registers onto the stack.
3003 // We will use SR0 to hold stack limit and SR1 to hold the stack size
3004 // requested and arguments for __morestack().
3005 // SR0: Scratch Register #0
3006 // SR1: Scratch Register #1
3007 // push {SR0, SR1}
3008 if (Thumb) {
3009 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3010 .add(predOps(ARMCC::AL))
3011 .addReg(ScratchReg0)
3012 .addReg(ScratchReg1);
3013 } else {
3014 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3015 .addReg(ARM::SP, RegState::Define)
3016 .addReg(ARM::SP)
3017 .add(predOps(ARMCC::AL))
3018 .addReg(ScratchReg0)
3019 .addReg(ScratchReg1);
3020 }
3021
3022 // Emit the relevant DWARF information about the change in stack pointer as
3023 // well as where to find both r4 and r5 (the callee-save registers)
3024 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3025 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3026 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3027 .addCFIIndex(CFIIndex);
3028 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3029 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3030 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3031 .addCFIIndex(CFIIndex);
3032 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3033 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3034 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3035 .addCFIIndex(CFIIndex);
3036 }
3037
3038 // mov SR1, sp
3039 if (Thumb) {
3040 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3041 .addReg(ARM::SP)
3042 .add(predOps(ARMCC::AL));
3043 } else if (CompareStackPointer) {
3044 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3045 .addReg(ARM::SP)
3046 .add(predOps(ARMCC::AL))
3047 .add(condCodeOp());
3048 }
3049
3050 // sub SR1, sp, #StackSize
3051 if (!CompareStackPointer && Thumb) {
3052 if (AlignedStackSize < 256) {
3053 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3054 .add(condCodeOp())
3055 .addReg(ScratchReg1)
3056 .addImm(AlignedStackSize)
3057 .add(predOps(ARMCC::AL));
3058 } else {
3059 if (Thumb2) {
3060 BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3061 .addImm(AlignedStackSize);
3062 } else {
3063 auto MBBI = McrMBB->end();
3064 auto RegInfo = STI.getRegisterInfo();
3065 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3066 AlignedStackSize);
3067 }
3068 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3069 .add(condCodeOp())
3070 .addReg(ScratchReg1)
3071 .addReg(ScratchReg0)
3072 .add(predOps(ARMCC::AL));
3073 }
3074 } else if (!CompareStackPointer) {
3075 if (AlignedStackSize < 256) {
3076 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3077 .addReg(ARM::SP)
3078 .addImm(AlignedStackSize)
3079 .add(predOps(ARMCC::AL))
3080 .add(condCodeOp());
3081 } else {
3082 auto MBBI = McrMBB->end();
3083 auto RegInfo = STI.getRegisterInfo();
3084 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3085 AlignedStackSize);
3086 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3087 .addReg(ARM::SP)
3088 .addReg(ScratchReg0)
3089 .add(predOps(ARMCC::AL))
3090 .add(condCodeOp());
3091 }
3092 }
3093
3094 if (Thumb && ST->isThumb1Only()) {
3095 unsigned PCLabelId = ARMFI->createPICLabelUId();
3096 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3097 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3098 MachineConstantPool *MCP = MF.getConstantPool();
3099 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3100
3101 // ldr SR0, [pc, offset(STACK_LIMIT)]
3102 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3103 .addConstantPoolIndex(CPI)
3104 .add(predOps(ARMCC::AL));
3105
3106 // ldr SR0, [SR0]
3107 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3108 .addReg(ScratchReg0)
3109 .addImm(0)
3110 .add(predOps(ARMCC::AL));
3111 } else {
3112 // Get TLS base address from the coprocessor
3113 // mrc p15, #0, SR0, c13, c0, #3
3114 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3115 ScratchReg0)
3116 .addImm(15)
3117 .addImm(0)
3118 .addImm(13)
3119 .addImm(0)
3120 .addImm(3)
3121 .add(predOps(ARMCC::AL));
3122
3123 // Use the last tls slot on android and a private field of the TCP on linux.
3124 assert(ST->isTargetAndroid() || ST->isTargetLinux());
3125 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3126
3127 // Get the stack limit from the right offset
3128 // ldr SR0, [sr0, #4 * TlsOffset]
3129 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3130 ScratchReg0)
3131 .addReg(ScratchReg0)
3132 .addImm(4 * TlsOffset)
3133 .add(predOps(ARMCC::AL));
3134 }
3135
3136 // Compare stack limit with stack size requested.
3137 // cmp SR0, SR1
3138 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3139 BuildMI(GetMBB, DL, TII.get(Opcode))
3140 .addReg(ScratchReg0)
3141 .addReg(ScratchReg1)
3142 .add(predOps(ARMCC::AL));
3143
3144 // This jump is taken if StackLimit < SP - stack required.
3145 Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3146 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3147 .addImm(ARMCC::LO)
3148 .addReg(ARM::CPSR);
3149
3150
3151 // Calling __morestack(StackSize, Size of stack arguments).
3152 // __morestack knows that the stack size requested is in SR0(r4)
3153 // and amount size of stack arguments is in SR1(r5).
3154
3155 // Pass first argument for the __morestack by Scratch Register #0.
3156 // The amount size of stack required
3157 if (Thumb) {
3158 if (AlignedStackSize < 256) {
3159 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3160 .add(condCodeOp())
3161 .addImm(AlignedStackSize)
3162 .add(predOps(ARMCC::AL));
3163 } else {
3164 if (Thumb2) {
3165 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3166 .addImm(AlignedStackSize);
3167 } else {
3168 auto MBBI = AllocMBB->end();
3169 auto RegInfo = STI.getRegisterInfo();
3170 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3171 AlignedStackSize);
3172 }
3173 }
3174 } else {
3175 if (AlignedStackSize < 256) {
3176 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3177 .addImm(AlignedStackSize)
3178 .add(predOps(ARMCC::AL))
3179 .add(condCodeOp());
3180 } else {
3181 auto MBBI = AllocMBB->end();
3182 auto RegInfo = STI.getRegisterInfo();
3183 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3184 AlignedStackSize);
3185 }
3186 }
3187
3188 // Pass second argument for the __morestack by Scratch Register #1.
3189 // The amount size of stack consumed to save function arguments.
3190 if (Thumb) {
3191 if (ARMFI->getArgumentStackSize() < 256) {
3192 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3193 .add(condCodeOp())
3194 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3195 .add(predOps(ARMCC::AL));
3196 } else {
3197 if (Thumb2) {
3198 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3199 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3200 } else {
3201 auto MBBI = AllocMBB->end();
3202 auto RegInfo = STI.getRegisterInfo();
3203 RegInfo->emitLoadConstPool(
3204 *AllocMBB, MBBI, DL, ScratchReg1, 0,
3205 alignToARMConstant(ARMFI->getArgumentStackSize()));
3206 }
3207 }
3208 } else {
3209 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3210 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3211 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3212 .add(predOps(ARMCC::AL))
3213 .add(condCodeOp());
3214 } else {
3215 auto MBBI = AllocMBB->end();
3216 auto RegInfo = STI.getRegisterInfo();
3217 RegInfo->emitLoadConstPool(
3218 *AllocMBB, MBBI, DL, ScratchReg1, 0,
3219 alignToARMConstant(ARMFI->getArgumentStackSize()));
3220 }
3221 }
3222
3223 // push {lr} - Save return address of this function.
3224 if (Thumb) {
3225 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3226 .add(predOps(ARMCC::AL))
3227 .addReg(ARM::LR);
3228 } else {
3229 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3230 .addReg(ARM::SP, RegState::Define)
3231 .addReg(ARM::SP)
3232 .add(predOps(ARMCC::AL))
3233 .addReg(ARM::LR);
3234 }
3235
3236 // Emit the DWARF info about the change in stack as well as where to find the
3237 // previous link register
3238 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3239 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3240 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3241 .addCFIIndex(CFIIndex);
3242 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3243 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3244 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3245 .addCFIIndex(CFIIndex);
3246 }
3247
3248 // Call __morestack().
3249 if (Thumb) {
3250 BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3251 .add(predOps(ARMCC::AL))
3252 .addExternalSymbol("__morestack");
3253 } else {
3254 BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3255 .addExternalSymbol("__morestack");
3256 }
3257
3258 // pop {lr} - Restore return address of this original function.
3259 if (Thumb) {
3260 if (ST->isThumb1Only()) {
3261 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3262 .add(predOps(ARMCC::AL))
3263 .addReg(ScratchReg0);
3264 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3265 .addReg(ScratchReg0)
3266 .add(predOps(ARMCC::AL));
3267 } else {
3268 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3269 .addReg(ARM::LR, RegState::Define)
3270 .addReg(ARM::SP, RegState::Define)
3271 .addReg(ARM::SP)
3272 .addImm(4)
3273 .add(predOps(ARMCC::AL));
3274 }
3275 } else {
3276 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3277 .addReg(ARM::SP, RegState::Define)
3278 .addReg(ARM::SP)
3279 .add(predOps(ARMCC::AL))
3280 .addReg(ARM::LR);
3281 }
3282
3283 // Restore SR0 and SR1 in case of __morestack() was called.
3284 // __morestack() will skip PostStackMBB block so we need to restore
3285 // scratch registers from here.
3286 // pop {SR0, SR1}
3287 if (Thumb) {
3288 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3289 .add(predOps(ARMCC::AL))
3290 .addReg(ScratchReg0)
3291 .addReg(ScratchReg1);
3292 } else {
3293 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3294 .addReg(ARM::SP, RegState::Define)
3295 .addReg(ARM::SP)
3296 .add(predOps(ARMCC::AL))
3297 .addReg(ScratchReg0)
3298 .addReg(ScratchReg1);
3299 }
3300
3301 // Update the CFA offset now that we've popped
3302 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3303 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3304 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3305 .addCFIIndex(CFIIndex);
3306 }
3307
3308 // Return from this function.
3309 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3310
3311 // Restore SR0 and SR1 in case of __morestack() was not called.
3312 // pop {SR0, SR1}
3313 if (Thumb) {
3314 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3315 .add(predOps(ARMCC::AL))
3316 .addReg(ScratchReg0)
3317 .addReg(ScratchReg1);
3318 } else {
3319 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3320 .addReg(ARM::SP, RegState::Define)
3321 .addReg(ARM::SP)
3322 .add(predOps(ARMCC::AL))
3323 .addReg(ScratchReg0)
3324 .addReg(ScratchReg1);
3325 }
3326
3327 // Update the CFA offset now that we've popped
3328 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3329 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3330 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3331 .addCFIIndex(CFIIndex);
3332
3333 // Tell debuggers that r4 and r5 are now the same as they were in the
3334 // previous function, that they're the "Same Value".
3335 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3336 nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3337 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3338 .addCFIIndex(CFIIndex);
3339 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3340 nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3341 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3342 .addCFIIndex(CFIIndex);
3343 }
3344
3345 // Organizing MBB lists
3346 PostStackMBB->addSuccessor(&PrologueMBB);
3347
3348 AllocMBB->addSuccessor(PostStackMBB);
3349
3350 GetMBB->addSuccessor(PostStackMBB);
3351 GetMBB->addSuccessor(AllocMBB);
3352
3353 McrMBB->addSuccessor(GetMBB);
3354
3355 PrevStackMBB->addSuccessor(McrMBB);
3356
3357 #ifdef EXPENSIVE_CHECKS
3358 MF.verify();
3359 #endif
3360 }
3361