1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13
14 #include "src/dsp/dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h> // for abs()
19 #include <emmintrin.h>
20
21 #include "src/dsp/common_sse2.h"
22 #include "src/enc/cost_enc.h"
23 #include "src/enc/vp8i_enc.h"
24
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27
28 // Does one inverse transform.
ITransform_One_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst)29 static void ITransform_One_SSE2(const uint8_t* WEBP_RESTRICT ref,
30 const int16_t* WEBP_RESTRICT in,
31 uint8_t* WEBP_RESTRICT dst) {
32 // This implementation makes use of 16-bit fixed point versions of two
33 // multiply constants:
34 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
35 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
36 //
37 // To be able to use signed 16-bit integers, we use the following trick to
38 // have constants within range:
39 // - Associated constants are obtained by subtracting the 16-bit fixed point
40 // version of one:
41 // k = K - (1 << 16) => K = k + (1 << 16)
42 // K1 = 85267 => k1 = 20091
43 // K2 = 35468 => k2 = -30068
44 // - The multiplication of a variable by a constant become the sum of the
45 // variable and the multiplication of that variable by the associated
46 // constant:
47 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
48 const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
49 20091, 20091, 20091, 20091);
50 const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
51 -30068, -30068, -30068, -30068);
52 const __m128i zero = _mm_setzero_si128();
53 const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
54 __m128i T01, T23;
55
56 // Load and concatenate the transform coefficients.
57 const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
58 const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
59 // a00 a10 a20 a30 a01 a11 a21 a31
60 // a02 a12 a22 a32 a03 a13 a23 a33
61
62 // Vertical pass and subsequent transpose.
63 {
64 const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
65 const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
66
67 // First pass, c and d calculations are longer because of the "trick"
68 // multiplications.
69 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
70 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
71 const __m128i a_d3 = _mm_add_epi16(in01, in23);
72 const __m128i b_c3 = _mm_sub_epi16(in01, in23);
73 const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
74 const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
75 const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
76 const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
77 const __m128i c = _mm_add_epi16(c3, c4);
78 const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
79 const __m128i du = _mm_add_epi16(a_d3, d4u);
80 const __m128i d = _mm_unpackhi_epi64(du, du);
81
82 // Second pass.
83 const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
84 const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
85
86 const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
87 const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
88 const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
89
90 const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
91 const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
92 // a00 a20 a01 a21 a02 a22 a03 a23
93 // a10 a30 a11 a31 a12 a32 a13 a33
94
95 T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
96 T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
97 // a00 a10 a20 a30 a01 a11 a21 a31
98 // a02 a12 a22 a32 a03 a13 a23 a33
99 }
100
101 // Horizontal pass and subsequent transpose.
102 {
103 const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
104 const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
105
106 // First pass, c and d calculations are longer because of the "trick"
107 // multiplications.
108 const __m128i dc = _mm_add_epi16(T01, zero_four);
109
110 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
111 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
112 const __m128i a_d3 = _mm_add_epi16(dc, T23);
113 const __m128i b_c3 = _mm_sub_epi16(dc, T23);
114 const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
115 const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
116 const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
117 const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
118 const __m128i c = _mm_add_epi16(c3, c4);
119 const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
120 const __m128i du = _mm_add_epi16(a_d3, d4u);
121 const __m128i d = _mm_unpackhi_epi64(du, du);
122
123 // Second pass.
124 const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
125 const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
126
127 const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
128 const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
129 const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
130
131 const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
132 const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
133 // a00 a01 a02 a03 a10 a11 a12 a13
134 // a20 a21 a22 a23 a30 a31 a32 a33
135
136 const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
137 const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
138 // a00 a20 a01 a21 a02 a22 a03 a23
139 // a10 a30 a11 a31 a12 a32 a13 a33
140
141 T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
142 T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
143 // a00 a10 a20 a30 a01 a11 a21 a31
144 // a02 a12 a22 a32 a03 a13 a23 a33
145 }
146
147 // Add inverse transform to 'ref' and store.
148 {
149 // Load the reference(s).
150 __m128i ref01, ref23, ref0123;
151 int32_t buf[4];
152
153 // Load four bytes/pixels per line.
154 const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
155 const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
156 const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
157 const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
158 ref01 = _mm_unpacklo_epi32(ref0, ref1);
159 ref23 = _mm_unpacklo_epi32(ref2, ref3);
160
161 // Convert to 16b.
162 ref01 = _mm_unpacklo_epi8(ref01, zero);
163 ref23 = _mm_unpacklo_epi8(ref23, zero);
164 // Add the inverse transform(s).
165 ref01 = _mm_add_epi16(ref01, T01);
166 ref23 = _mm_add_epi16(ref23, T23);
167 // Unsigned saturate to 8b.
168 ref0123 = _mm_packus_epi16(ref01, ref23);
169
170 _mm_storeu_si128((__m128i *)buf, ref0123);
171
172 // Store four bytes/pixels per line.
173 WebPInt32ToMem(&dst[0 * BPS], buf[0]);
174 WebPInt32ToMem(&dst[1 * BPS], buf[1]);
175 WebPInt32ToMem(&dst[2 * BPS], buf[2]);
176 WebPInt32ToMem(&dst[3 * BPS], buf[3]);
177 }
178 }
179
180 // Does two inverse transforms.
ITransform_Two_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst)181 static void ITransform_Two_SSE2(const uint8_t* WEBP_RESTRICT ref,
182 const int16_t* WEBP_RESTRICT in,
183 uint8_t* WEBP_RESTRICT dst) {
184 // This implementation makes use of 16-bit fixed point versions of two
185 // multiply constants:
186 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
187 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
188 //
189 // To be able to use signed 16-bit integers, we use the following trick to
190 // have constants within range:
191 // - Associated constants are obtained by subtracting the 16-bit fixed point
192 // version of one:
193 // k = K - (1 << 16) => K = k + (1 << 16)
194 // K1 = 85267 => k1 = 20091
195 // K2 = 35468 => k2 = -30068
196 // - The multiplication of a variable by a constant become the sum of the
197 // variable and the multiplication of that variable by the associated
198 // constant:
199 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
200 const __m128i k1 = _mm_set1_epi16(20091);
201 const __m128i k2 = _mm_set1_epi16(-30068);
202 __m128i T0, T1, T2, T3;
203
204 // Load and concatenate the transform coefficients (we'll do two inverse
205 // transforms in parallel).
206 __m128i in0, in1, in2, in3;
207 {
208 const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
209 const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
210 const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
211 const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
212 in0 = _mm_unpacklo_epi64(tmp0, tmp2);
213 in1 = _mm_unpackhi_epi64(tmp0, tmp2);
214 in2 = _mm_unpacklo_epi64(tmp1, tmp3);
215 in3 = _mm_unpackhi_epi64(tmp1, tmp3);
216 // a00 a10 a20 a30 b00 b10 b20 b30
217 // a01 a11 a21 a31 b01 b11 b21 b31
218 // a02 a12 a22 a32 b02 b12 b22 b32
219 // a03 a13 a23 a33 b03 b13 b23 b33
220 }
221
222 // Vertical pass and subsequent transpose.
223 {
224 // First pass, c and d calculations are longer because of the "trick"
225 // multiplications.
226 const __m128i a = _mm_add_epi16(in0, in2);
227 const __m128i b = _mm_sub_epi16(in0, in2);
228 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
229 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
230 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
231 const __m128i c3 = _mm_sub_epi16(in1, in3);
232 const __m128i c4 = _mm_sub_epi16(c1, c2);
233 const __m128i c = _mm_add_epi16(c3, c4);
234 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
235 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
236 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
237 const __m128i d3 = _mm_add_epi16(in1, in3);
238 const __m128i d4 = _mm_add_epi16(d1, d2);
239 const __m128i d = _mm_add_epi16(d3, d4);
240
241 // Second pass.
242 const __m128i tmp0 = _mm_add_epi16(a, d);
243 const __m128i tmp1 = _mm_add_epi16(b, c);
244 const __m128i tmp2 = _mm_sub_epi16(b, c);
245 const __m128i tmp3 = _mm_sub_epi16(a, d);
246
247 // Transpose the two 4x4.
248 VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
249 }
250
251 // Horizontal pass and subsequent transpose.
252 {
253 // First pass, c and d calculations are longer because of the "trick"
254 // multiplications.
255 const __m128i four = _mm_set1_epi16(4);
256 const __m128i dc = _mm_add_epi16(T0, four);
257 const __m128i a = _mm_add_epi16(dc, T2);
258 const __m128i b = _mm_sub_epi16(dc, T2);
259 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
260 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
261 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
262 const __m128i c3 = _mm_sub_epi16(T1, T3);
263 const __m128i c4 = _mm_sub_epi16(c1, c2);
264 const __m128i c = _mm_add_epi16(c3, c4);
265 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
266 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
267 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
268 const __m128i d3 = _mm_add_epi16(T1, T3);
269 const __m128i d4 = _mm_add_epi16(d1, d2);
270 const __m128i d = _mm_add_epi16(d3, d4);
271
272 // Second pass.
273 const __m128i tmp0 = _mm_add_epi16(a, d);
274 const __m128i tmp1 = _mm_add_epi16(b, c);
275 const __m128i tmp2 = _mm_sub_epi16(b, c);
276 const __m128i tmp3 = _mm_sub_epi16(a, d);
277 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
278 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
279 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
280 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
281
282 // Transpose the two 4x4.
283 VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
284 &T2, &T3);
285 }
286
287 // Add inverse transform to 'ref' and store.
288 {
289 const __m128i zero = _mm_setzero_si128();
290 // Load the reference(s).
291 __m128i ref0, ref1, ref2, ref3;
292 // Load eight bytes/pixels per line.
293 ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
294 ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
295 ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
296 ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
297 // Convert to 16b.
298 ref0 = _mm_unpacklo_epi8(ref0, zero);
299 ref1 = _mm_unpacklo_epi8(ref1, zero);
300 ref2 = _mm_unpacklo_epi8(ref2, zero);
301 ref3 = _mm_unpacklo_epi8(ref3, zero);
302 // Add the inverse transform(s).
303 ref0 = _mm_add_epi16(ref0, T0);
304 ref1 = _mm_add_epi16(ref1, T1);
305 ref2 = _mm_add_epi16(ref2, T2);
306 ref3 = _mm_add_epi16(ref3, T3);
307 // Unsigned saturate to 8b.
308 ref0 = _mm_packus_epi16(ref0, ref0);
309 ref1 = _mm_packus_epi16(ref1, ref1);
310 ref2 = _mm_packus_epi16(ref2, ref2);
311 ref3 = _mm_packus_epi16(ref3, ref3);
312 // Store eight bytes/pixels per line.
313 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
314 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
315 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
316 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
317 }
318 }
319
320 // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst,int do_two)321 static void ITransform_SSE2(const uint8_t* WEBP_RESTRICT ref,
322 const int16_t* WEBP_RESTRICT in,
323 uint8_t* WEBP_RESTRICT dst,
324 int do_two) {
325 if (do_two) {
326 ITransform_Two_SSE2(ref, in, dst);
327 } else {
328 ITransform_One_SSE2(ref, in, dst);
329 }
330 }
331
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)332 static void FTransformPass1_SSE2(const __m128i* const in01,
333 const __m128i* const in23,
334 __m128i* const out01,
335 __m128i* const out32) {
336 const __m128i k937 = _mm_set1_epi32(937);
337 const __m128i k1812 = _mm_set1_epi32(1812);
338
339 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
340 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
341 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
342 2217, 5352, 2217, 5352);
343 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
344 -5352, 2217, -5352, 2217);
345
346 // *in01 = 00 01 10 11 02 03 12 13
347 // *in23 = 20 21 30 31 22 23 32 33
348 const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
349 const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
350 // 00 01 10 11 03 02 13 12
351 // 20 21 30 31 23 22 33 32
352 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
353 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
354 // 00 01 10 11 20 21 30 31
355 // 03 02 13 12 23 22 33 32
356 const __m128i a01 = _mm_add_epi16(s01, s32);
357 const __m128i a32 = _mm_sub_epi16(s01, s32);
358 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
359 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
360
361 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
362 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
363 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
364 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
365 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
366 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
367 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
368 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
369 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
370 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
371 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
372 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
373 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
374 *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
375 *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
376 }
377
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * WEBP_RESTRICT out)378 static void FTransformPass2_SSE2(const __m128i* const v01,
379 const __m128i* const v32,
380 int16_t* WEBP_RESTRICT out) {
381 const __m128i zero = _mm_setzero_si128();
382 const __m128i seven = _mm_set1_epi16(7);
383 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
384 5352, 2217, 5352, 2217);
385 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
386 2217, -5352, 2217, -5352);
387 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
388 const __m128i k51000 = _mm_set1_epi32(51000);
389
390 // Same operations are done on the (0,3) and (1,2) pairs.
391 // a3 = v0 - v3
392 // a2 = v1 - v2
393 const __m128i a32 = _mm_sub_epi16(*v01, *v32);
394 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
395
396 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
397 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
398 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
399 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
400 const __m128i d3 = _mm_add_epi32(c3, k51000);
401 const __m128i e1 = _mm_srai_epi32(d1, 16);
402 const __m128i e3 = _mm_srai_epi32(d3, 16);
403 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
404 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
405 const __m128i f1 = _mm_packs_epi32(e1, e1);
406 const __m128i f3 = _mm_packs_epi32(e3, e3);
407 // g1 = f1 + (a3 != 0);
408 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
409 // desired (0, 1), we add one earlier through k12000_plus_one.
410 // -> g1 = f1 + 1 - (a3 == 0)
411 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
412
413 // a0 = v0 + v3
414 // a1 = v1 + v2
415 const __m128i a01 = _mm_add_epi16(*v01, *v32);
416 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
417 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
418 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
419 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
420 // d0 = (a0 + a1 + 7) >> 4;
421 // d2 = (a0 - a1 + 7) >> 4;
422 const __m128i d0 = _mm_srai_epi16(c0, 4);
423 const __m128i d2 = _mm_srai_epi16(c2, 4);
424
425 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
426 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
427 _mm_storeu_si128((__m128i*)&out[0], d0_g1);
428 _mm_storeu_si128((__m128i*)&out[8], d2_f3);
429 }
430
FTransform_SSE2(const uint8_t * WEBP_RESTRICT src,const uint8_t * WEBP_RESTRICT ref,int16_t * WEBP_RESTRICT out)431 static void FTransform_SSE2(const uint8_t* WEBP_RESTRICT src,
432 const uint8_t* WEBP_RESTRICT ref,
433 int16_t* WEBP_RESTRICT out) {
434 const __m128i zero = _mm_setzero_si128();
435 // Load src.
436 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
437 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
438 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
439 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
440 // 00 01 02 03 *
441 // 10 11 12 13 *
442 // 20 21 22 23 *
443 // 30 31 32 33 *
444 // Shuffle.
445 const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
446 const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
447 // 00 01 10 11 02 03 12 13 * * ...
448 // 20 21 30 31 22 22 32 33 * * ...
449
450 // Load ref.
451 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
452 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
453 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
454 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
455 const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
456 const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
457
458 // Convert both to 16 bit.
459 const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
460 const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
461 const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
462 const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
463
464 // Compute the difference.
465 const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
466 const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
467 __m128i v01, v32;
468
469 // First pass
470 FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
471
472 // Second pass
473 FTransformPass2_SSE2(&v01, &v32, out);
474 }
475
FTransform2_SSE2(const uint8_t * WEBP_RESTRICT src,const uint8_t * WEBP_RESTRICT ref,int16_t * WEBP_RESTRICT out)476 static void FTransform2_SSE2(const uint8_t* WEBP_RESTRICT src,
477 const uint8_t* WEBP_RESTRICT ref,
478 int16_t* WEBP_RESTRICT out) {
479 const __m128i zero = _mm_setzero_si128();
480
481 // Load src and convert to 16b.
482 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
483 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
484 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
485 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
486 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
487 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
488 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
489 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
490 // Load ref and convert to 16b.
491 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
492 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
493 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
494 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
495 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
496 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
497 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
498 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
499 // Compute difference. -> 00 01 02 03 00' 01' 02' 03'
500 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
501 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
502 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
503 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
504
505 // Unpack and shuffle
506 // 00 01 02 03 0 0 0 0
507 // 10 11 12 13 0 0 0 0
508 // 20 21 22 23 0 0 0 0
509 // 30 31 32 33 0 0 0 0
510 const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
511 const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
512 const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
513 const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
514 __m128i v01l, v32l;
515 __m128i v01h, v32h;
516
517 // First pass
518 FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
519 FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
520
521 // Second pass
522 FTransformPass2_SSE2(&v01l, &v32l, out + 0);
523 FTransformPass2_SSE2(&v01h, &v32h, out + 16);
524 }
525
FTransformWHTRow_SSE2(const int16_t * WEBP_RESTRICT const in,__m128i * const out)526 static void FTransformWHTRow_SSE2(const int16_t* WEBP_RESTRICT const in,
527 __m128i* const out) {
528 const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
529 const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
530 const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
531 const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
532 const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
533 const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ...
534 const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ...
535 const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ...
536 const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ...
537 const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ...
538 const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ...
539 const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1
540 *out = _mm_madd_epi16(D, kMult);
541 }
542
FTransformWHT_SSE2(const int16_t * WEBP_RESTRICT in,int16_t * WEBP_RESTRICT out)543 static void FTransformWHT_SSE2(const int16_t* WEBP_RESTRICT in,
544 int16_t* WEBP_RESTRICT out) {
545 // Input is 12b signed.
546 __m128i row0, row1, row2, row3;
547 // Rows are 14b signed.
548 FTransformWHTRow_SSE2(in + 0 * 64, &row0);
549 FTransformWHTRow_SSE2(in + 1 * 64, &row1);
550 FTransformWHTRow_SSE2(in + 2 * 64, &row2);
551 FTransformWHTRow_SSE2(in + 3 * 64, &row3);
552
553 {
554 // The a* are 15b signed.
555 const __m128i a0 = _mm_add_epi32(row0, row2);
556 const __m128i a1 = _mm_add_epi32(row1, row3);
557 const __m128i a2 = _mm_sub_epi32(row1, row3);
558 const __m128i a3 = _mm_sub_epi32(row0, row2);
559 const __m128i a0a3 = _mm_packs_epi32(a0, a3);
560 const __m128i a1a2 = _mm_packs_epi32(a1, a2);
561
562 // The b* are 16b signed.
563 const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
564 const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
565 const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
566 const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
567
568 _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
569 _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
570 }
571 }
572
573 //------------------------------------------------------------------------------
574 // Compute susceptibility based on DCT-coeff histograms:
575 // the higher, the "easier" the macroblock is to compress.
576
CollectHistogram_SSE2(const uint8_t * WEBP_RESTRICT ref,const uint8_t * WEBP_RESTRICT pred,int start_block,int end_block,VP8Histogram * WEBP_RESTRICT const histo)577 static void CollectHistogram_SSE2(const uint8_t* WEBP_RESTRICT ref,
578 const uint8_t* WEBP_RESTRICT pred,
579 int start_block, int end_block,
580 VP8Histogram* WEBP_RESTRICT const histo) {
581 const __m128i zero = _mm_setzero_si128();
582 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
583 int j;
584 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
585 for (j = start_block; j < end_block; ++j) {
586 int16_t out[16];
587 int k;
588
589 FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
590
591 // Convert coefficients to bin (within out[]).
592 {
593 // Load.
594 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
595 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
596 const __m128i d0 = _mm_sub_epi16(zero, out0);
597 const __m128i d1 = _mm_sub_epi16(zero, out1);
598 const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b
599 const __m128i abs1 = _mm_max_epi16(out1, d1);
600 // v = abs(out) >> 3
601 const __m128i v0 = _mm_srai_epi16(abs0, 3);
602 const __m128i v1 = _mm_srai_epi16(abs1, 3);
603 // bin = min(v, MAX_COEFF_THRESH)
604 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
605 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
606 // Store.
607 _mm_storeu_si128((__m128i*)&out[0], bin0);
608 _mm_storeu_si128((__m128i*)&out[8], bin1);
609 }
610
611 // Convert coefficients to bin.
612 for (k = 0; k < 16; ++k) {
613 ++distribution[out[k]];
614 }
615 }
616 VP8SetHistogramData(distribution, histo);
617 }
618
619 //------------------------------------------------------------------------------
620 // Intra predictions
621
622 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)623 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
624 int j;
625 const __m128i values = _mm_set1_epi8((char)v);
626 for (j = 0; j < 8; ++j) {
627 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
628 }
629 }
630
Put16_SSE2(uint8_t v,uint8_t * dst)631 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
632 int j;
633 const __m128i values = _mm_set1_epi8((char)v);
634 for (j = 0; j < 16; ++j) {
635 _mm_store_si128((__m128i*)(dst + j * BPS), values);
636 }
637 }
638
Fill_SSE2(uint8_t * dst,int value,int size)639 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
640 if (size == 4) {
641 int j;
642 for (j = 0; j < 4; ++j) {
643 memset(dst + j * BPS, value, 4);
644 }
645 } else if (size == 8) {
646 Put8x8uv_SSE2(value, dst);
647 } else {
648 Put16_SSE2(value, dst);
649 }
650 }
651
VE8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)652 static WEBP_INLINE void VE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
653 const uint8_t* WEBP_RESTRICT top) {
654 int j;
655 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
656 for (j = 0; j < 8; ++j) {
657 _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
658 }
659 }
660
VE16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)661 static WEBP_INLINE void VE16_SSE2(uint8_t* WEBP_RESTRICT dst,
662 const uint8_t* WEBP_RESTRICT top) {
663 const __m128i top_values = _mm_load_si128((const __m128i*)top);
664 int j;
665 for (j = 0; j < 16; ++j) {
666 _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
667 }
668 }
669
VerticalPred_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top,int size)670 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
671 const uint8_t* WEBP_RESTRICT top,
672 int size) {
673 if (top != NULL) {
674 if (size == 8) {
675 VE8uv_SSE2(dst, top);
676 } else {
677 VE16_SSE2(dst, top);
678 }
679 } else {
680 Fill_SSE2(dst, 127, size);
681 }
682 }
683
HE8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)684 static WEBP_INLINE void HE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
685 const uint8_t* WEBP_RESTRICT left) {
686 int j;
687 for (j = 0; j < 8; ++j) {
688 const __m128i values = _mm_set1_epi8((char)left[j]);
689 _mm_storel_epi64((__m128i*)dst, values);
690 dst += BPS;
691 }
692 }
693
HE16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)694 static WEBP_INLINE void HE16_SSE2(uint8_t* WEBP_RESTRICT dst,
695 const uint8_t* WEBP_RESTRICT left) {
696 int j;
697 for (j = 0; j < 16; ++j) {
698 const __m128i values = _mm_set1_epi8((char)left[j]);
699 _mm_store_si128((__m128i*)dst, values);
700 dst += BPS;
701 }
702 }
703
HorizontalPred_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,int size)704 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
705 const uint8_t* WEBP_RESTRICT left,
706 int size) {
707 if (left != NULL) {
708 if (size == 8) {
709 HE8uv_SSE2(dst, left);
710 } else {
711 HE16_SSE2(dst, left);
712 }
713 } else {
714 Fill_SSE2(dst, 129, size);
715 }
716 }
717
TM_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top,int size)718 static WEBP_INLINE void TM_SSE2(uint8_t* WEBP_RESTRICT dst,
719 const uint8_t* WEBP_RESTRICT left,
720 const uint8_t* WEBP_RESTRICT top, int size) {
721 const __m128i zero = _mm_setzero_si128();
722 int y;
723 if (size == 8) {
724 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
725 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
726 for (y = 0; y < 8; ++y, dst += BPS) {
727 const int val = left[y] - left[-1];
728 const __m128i base = _mm_set1_epi16(val);
729 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
730 _mm_storel_epi64((__m128i*)dst, out);
731 }
732 } else {
733 const __m128i top_values = _mm_load_si128((const __m128i*)top);
734 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
735 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
736 for (y = 0; y < 16; ++y, dst += BPS) {
737 const int val = left[y] - left[-1];
738 const __m128i base = _mm_set1_epi16(val);
739 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
740 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
741 const __m128i out = _mm_packus_epi16(out_0, out_1);
742 _mm_store_si128((__m128i*)dst, out);
743 }
744 }
745 }
746
TrueMotion_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top,int size)747 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* WEBP_RESTRICT dst,
748 const uint8_t* WEBP_RESTRICT left,
749 const uint8_t* WEBP_RESTRICT top,
750 int size) {
751 if (left != NULL) {
752 if (top != NULL) {
753 TM_SSE2(dst, left, top, size);
754 } else {
755 HorizontalPred_SSE2(dst, left, size);
756 }
757 } else {
758 // true motion without left samples (hence: with default 129 value)
759 // is equivalent to VE prediction where you just copy the top samples.
760 // Note that if top samples are not available, the default value is
761 // then 129, and not 127 as in the VerticalPred case.
762 if (top != NULL) {
763 VerticalPred_SSE2(dst, top, size);
764 } else {
765 Fill_SSE2(dst, 129, size);
766 }
767 }
768 }
769
DC8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)770 static WEBP_INLINE void DC8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
771 const uint8_t* WEBP_RESTRICT left,
772 const uint8_t* WEBP_RESTRICT top) {
773 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
774 const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
775 const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
776 const int DC = VP8HorizontalAdd8b(&combined) + 8;
777 Put8x8uv_SSE2(DC >> 4, dst);
778 }
779
DC8uvNoLeft_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)780 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
781 const uint8_t* WEBP_RESTRICT top) {
782 const __m128i zero = _mm_setzero_si128();
783 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
784 const __m128i sum = _mm_sad_epu8(top_values, zero);
785 const int DC = _mm_cvtsi128_si32(sum) + 4;
786 Put8x8uv_SSE2(DC >> 3, dst);
787 }
788
DC8uvNoTop_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)789 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
790 const uint8_t* WEBP_RESTRICT left) {
791 // 'left' is contiguous so we can reuse the top summation.
792 DC8uvNoLeft_SSE2(dst, left);
793 }
794
DC8uvNoTopLeft_SSE2(uint8_t * dst)795 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
796 Put8x8uv_SSE2(0x80, dst);
797 }
798
DC8uvMode_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)799 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* WEBP_RESTRICT dst,
800 const uint8_t* WEBP_RESTRICT left,
801 const uint8_t* WEBP_RESTRICT top) {
802 if (top != NULL) {
803 if (left != NULL) { // top and left present
804 DC8uv_SSE2(dst, left, top);
805 } else { // top, but no left
806 DC8uvNoLeft_SSE2(dst, top);
807 }
808 } else if (left != NULL) { // left but no top
809 DC8uvNoTop_SSE2(dst, left);
810 } else { // no top, no left, nothing.
811 DC8uvNoTopLeft_SSE2(dst);
812 }
813 }
814
DC16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)815 static WEBP_INLINE void DC16_SSE2(uint8_t* WEBP_RESTRICT dst,
816 const uint8_t* WEBP_RESTRICT left,
817 const uint8_t* WEBP_RESTRICT top) {
818 const __m128i top_row = _mm_load_si128((const __m128i*)top);
819 const __m128i left_row = _mm_load_si128((const __m128i*)left);
820 const int DC =
821 VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
822 Put16_SSE2(DC >> 5, dst);
823 }
824
DC16NoLeft_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)825 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
826 const uint8_t* WEBP_RESTRICT top) {
827 const __m128i top_row = _mm_load_si128((const __m128i*)top);
828 const int DC = VP8HorizontalAdd8b(&top_row) + 8;
829 Put16_SSE2(DC >> 4, dst);
830 }
831
DC16NoTop_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)832 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
833 const uint8_t* WEBP_RESTRICT left) {
834 // 'left' is contiguous so we can reuse the top summation.
835 DC16NoLeft_SSE2(dst, left);
836 }
837
DC16NoTopLeft_SSE2(uint8_t * dst)838 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
839 Put16_SSE2(0x80, dst);
840 }
841
DC16Mode_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)842 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* WEBP_RESTRICT dst,
843 const uint8_t* WEBP_RESTRICT left,
844 const uint8_t* WEBP_RESTRICT top) {
845 if (top != NULL) {
846 if (left != NULL) { // top and left present
847 DC16_SSE2(dst, left, top);
848 } else { // top, but no left
849 DC16NoLeft_SSE2(dst, top);
850 }
851 } else if (left != NULL) { // left but no top
852 DC16NoTop_SSE2(dst, left);
853 } else { // no top, no left, nothing.
854 DC16NoTopLeft_SSE2(dst);
855 }
856 }
857
858 //------------------------------------------------------------------------------
859 // 4x4 predictions
860
861 #define DST(x, y) dst[(x) + (y) * BPS]
862 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
863 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
864
865 // We use the following 8b-arithmetic tricks:
866 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
867 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
868 // and:
869 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
870 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
871 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
872
873 // vertical
VE4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)874 static WEBP_INLINE void VE4_SSE2(uint8_t* WEBP_RESTRICT dst,
875 const uint8_t* WEBP_RESTRICT top) {
876 const __m128i one = _mm_set1_epi8(1);
877 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
878 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
879 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
880 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
881 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
882 const __m128i b = _mm_subs_epu8(a, lsb);
883 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
884 const int vals = _mm_cvtsi128_si32(avg);
885 int i;
886 for (i = 0; i < 4; ++i) {
887 WebPInt32ToMem(dst + i * BPS, vals);
888 }
889 }
890
891 // horizontal
HE4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)892 static WEBP_INLINE void HE4_SSE2(uint8_t* WEBP_RESTRICT dst,
893 const uint8_t* WEBP_RESTRICT top) {
894 const int X = top[-1];
895 const int I = top[-2];
896 const int J = top[-3];
897 const int K = top[-4];
898 const int L = top[-5];
899 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
900 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
901 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
902 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
903 }
904
DC4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)905 static WEBP_INLINE void DC4_SSE2(uint8_t* WEBP_RESTRICT dst,
906 const uint8_t* WEBP_RESTRICT top) {
907 uint32_t dc = 4;
908 int i;
909 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
910 Fill_SSE2(dst, dc >> 3, 4);
911 }
912
913 // Down-Left
LD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)914 static WEBP_INLINE void LD4_SSE2(uint8_t* WEBP_RESTRICT dst,
915 const uint8_t* WEBP_RESTRICT top) {
916 const __m128i one = _mm_set1_epi8(1);
917 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
918 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
919 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
920 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
921 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
922 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
923 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
924 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
925 WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
926 WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
927 WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
928 WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
929 }
930
931 // Vertical-Right
VR4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)932 static WEBP_INLINE void VR4_SSE2(uint8_t* WEBP_RESTRICT dst,
933 const uint8_t* WEBP_RESTRICT top) {
934 const __m128i one = _mm_set1_epi8(1);
935 const int I = top[-2];
936 const int J = top[-3];
937 const int K = top[-4];
938 const int X = top[-1];
939 const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
940 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
941 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
942 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
943 const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
944 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
945 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
946 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
947 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
948 WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
949 WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
950 WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
951 WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
952
953 // these two are hard to implement in SSE2, so we keep the C-version:
954 DST(0, 2) = AVG3(J, I, X);
955 DST(0, 3) = AVG3(K, J, I);
956 }
957
958 // Vertical-Left
VL4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)959 static WEBP_INLINE void VL4_SSE2(uint8_t* WEBP_RESTRICT dst,
960 const uint8_t* WEBP_RESTRICT top) {
961 const __m128i one = _mm_set1_epi8(1);
962 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
963 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
964 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
965 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
966 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
967 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
968 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
969 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
970 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
971 const __m128i abbc = _mm_or_si128(ab, bc);
972 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
973 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
974 const uint32_t extra_out =
975 (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
976 WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
977 WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
978 WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
979 WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
980
981 // these two are hard to get and irregular
982 DST(3, 2) = (extra_out >> 0) & 0xff;
983 DST(3, 3) = (extra_out >> 8) & 0xff;
984 }
985
986 // Down-right
RD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)987 static WEBP_INLINE void RD4_SSE2(uint8_t* WEBP_RESTRICT dst,
988 const uint8_t* WEBP_RESTRICT top) {
989 const __m128i one = _mm_set1_epi8(1);
990 const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
991 const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
992 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
993 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
994 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
995 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
996 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
997 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
998 WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
999 WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1000 WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1001 WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1002 }
1003
HU4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1004 static WEBP_INLINE void HU4_SSE2(uint8_t* WEBP_RESTRICT dst,
1005 const uint8_t* WEBP_RESTRICT top) {
1006 const int I = top[-2];
1007 const int J = top[-3];
1008 const int K = top[-4];
1009 const int L = top[-5];
1010 DST(0, 0) = AVG2(I, J);
1011 DST(2, 0) = DST(0, 1) = AVG2(J, K);
1012 DST(2, 1) = DST(0, 2) = AVG2(K, L);
1013 DST(1, 0) = AVG3(I, J, K);
1014 DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
1015 DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
1016 DST(3, 2) = DST(2, 2) =
1017 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
1018 }
1019
HD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1020 static WEBP_INLINE void HD4_SSE2(uint8_t* WEBP_RESTRICT dst,
1021 const uint8_t* WEBP_RESTRICT top) {
1022 const int X = top[-1];
1023 const int I = top[-2];
1024 const int J = top[-3];
1025 const int K = top[-4];
1026 const int L = top[-5];
1027 const int A = top[0];
1028 const int B = top[1];
1029 const int C = top[2];
1030
1031 DST(0, 0) = DST(2, 1) = AVG2(I, X);
1032 DST(0, 1) = DST(2, 2) = AVG2(J, I);
1033 DST(0, 2) = DST(2, 3) = AVG2(K, J);
1034 DST(0, 3) = AVG2(L, K);
1035
1036 DST(3, 0) = AVG3(A, B, C);
1037 DST(2, 0) = AVG3(X, A, B);
1038 DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1039 DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1040 DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1041 DST(1, 3) = AVG3(L, K, J);
1042 }
1043
TM4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1044 static WEBP_INLINE void TM4_SSE2(uint8_t* WEBP_RESTRICT dst,
1045 const uint8_t* WEBP_RESTRICT top) {
1046 const __m128i zero = _mm_setzero_si128();
1047 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1048 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1049 int y;
1050 for (y = 0; y < 4; ++y, dst += BPS) {
1051 const int val = top[-2 - y] - top[-1];
1052 const __m128i base = _mm_set1_epi16(val);
1053 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1054 WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1055 }
1056 }
1057
1058 #undef DST
1059 #undef AVG3
1060 #undef AVG2
1061
1062 //------------------------------------------------------------------------------
1063 // luma 4x4 prediction
1064
1065 // Left samples are top[-5 .. -2], top_left is top[-1], top are
1066 // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1067 static void Intra4Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1068 const uint8_t* WEBP_RESTRICT top) {
1069 DC4_SSE2(I4DC4 + dst, top);
1070 TM4_SSE2(I4TM4 + dst, top);
1071 VE4_SSE2(I4VE4 + dst, top);
1072 HE4_SSE2(I4HE4 + dst, top);
1073 RD4_SSE2(I4RD4 + dst, top);
1074 VR4_SSE2(I4VR4 + dst, top);
1075 LD4_SSE2(I4LD4 + dst, top);
1076 VL4_SSE2(I4VL4 + dst, top);
1077 HD4_SSE2(I4HD4 + dst, top);
1078 HU4_SSE2(I4HU4 + dst, top);
1079 }
1080
1081 //------------------------------------------------------------------------------
1082 // Chroma 8x8 prediction (paragraph 12.2)
1083
IntraChromaPreds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)1084 static void IntraChromaPreds_SSE2(uint8_t* WEBP_RESTRICT dst,
1085 const uint8_t* WEBP_RESTRICT left,
1086 const uint8_t* WEBP_RESTRICT top) {
1087 // U block
1088 DC8uvMode_SSE2(C8DC8 + dst, left, top);
1089 VerticalPred_SSE2(C8VE8 + dst, top, 8);
1090 HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1091 TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1092 // V block
1093 dst += 8;
1094 if (top != NULL) top += 8;
1095 if (left != NULL) left += 16;
1096 DC8uvMode_SSE2(C8DC8 + dst, left, top);
1097 VerticalPred_SSE2(C8VE8 + dst, top, 8);
1098 HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1099 TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1100 }
1101
1102 //------------------------------------------------------------------------------
1103 // luma 16x16 prediction (paragraph 12.3)
1104
Intra16Preds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)1105 static void Intra16Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1106 const uint8_t* WEBP_RESTRICT left,
1107 const uint8_t* WEBP_RESTRICT top) {
1108 DC16Mode_SSE2(I16DC16 + dst, left, top);
1109 VerticalPred_SSE2(I16VE16 + dst, top, 16);
1110 HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1111 TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1112 }
1113
1114 //------------------------------------------------------------------------------
1115 // Metric
1116
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)1117 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1118 const __m128i b,
1119 __m128i* const sum) {
1120 // take abs(a-b) in 8b
1121 const __m128i a_b = _mm_subs_epu8(a, b);
1122 const __m128i b_a = _mm_subs_epu8(b, a);
1123 const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1124 // zero-extend to 16b
1125 const __m128i zero = _mm_setzero_si128();
1126 const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1127 const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1128 // multiply with self
1129 const __m128i sum1 = _mm_madd_epi16(C0, C0);
1130 const __m128i sum2 = _mm_madd_epi16(C1, C1);
1131 *sum = _mm_add_epi32(sum1, sum2);
1132 }
1133
SSE_16xN_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b,int num_pairs)1134 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* WEBP_RESTRICT a,
1135 const uint8_t* WEBP_RESTRICT b,
1136 int num_pairs) {
1137 __m128i sum = _mm_setzero_si128();
1138 int32_t tmp[4];
1139 int i;
1140
1141 for (i = 0; i < num_pairs; ++i) {
1142 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1143 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1144 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1145 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1146 __m128i sum1, sum2;
1147 SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1148 SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1149 sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1150 a += 2 * BPS;
1151 b += 2 * BPS;
1152 }
1153 _mm_storeu_si128((__m128i*)tmp, sum);
1154 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1155 }
1156
SSE16x16_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1157 static int SSE16x16_SSE2(const uint8_t* WEBP_RESTRICT a,
1158 const uint8_t* WEBP_RESTRICT b) {
1159 return SSE_16xN_SSE2(a, b, 8);
1160 }
1161
SSE16x8_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1162 static int SSE16x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1163 const uint8_t* WEBP_RESTRICT b) {
1164 return SSE_16xN_SSE2(a, b, 4);
1165 }
1166
1167 #define LOAD_8x16b(ptr) \
1168 _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1169
SSE8x8_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1170 static int SSE8x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1171 const uint8_t* WEBP_RESTRICT b) {
1172 const __m128i zero = _mm_setzero_si128();
1173 int num_pairs = 4;
1174 __m128i sum = zero;
1175 int32_t tmp[4];
1176 while (num_pairs-- > 0) {
1177 const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1178 const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1179 const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1180 const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1181 // subtract
1182 const __m128i c0 = _mm_subs_epi16(a0, b0);
1183 const __m128i c1 = _mm_subs_epi16(a1, b1);
1184 // multiply/accumulate with self
1185 const __m128i d0 = _mm_madd_epi16(c0, c0);
1186 const __m128i d1 = _mm_madd_epi16(c1, c1);
1187 // collect
1188 const __m128i sum01 = _mm_add_epi32(d0, d1);
1189 sum = _mm_add_epi32(sum, sum01);
1190 a += 2 * BPS;
1191 b += 2 * BPS;
1192 }
1193 _mm_storeu_si128((__m128i*)tmp, sum);
1194 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1195 }
1196 #undef LOAD_8x16b
1197
SSE4x4_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1198 static int SSE4x4_SSE2(const uint8_t* WEBP_RESTRICT a,
1199 const uint8_t* WEBP_RESTRICT b) {
1200 const __m128i zero = _mm_setzero_si128();
1201
1202 // Load values. Note that we read 8 pixels instead of 4,
1203 // but the a/b buffers are over-allocated to that effect.
1204 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1205 const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1206 const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1207 const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1208 const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1209 const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1210 const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1211 const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1212 // Combine pair of lines.
1213 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1214 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1215 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1216 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1217 // Convert to 16b.
1218 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1219 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1220 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1221 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1222 // subtract, square and accumulate
1223 const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1224 const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1225 const __m128i e0 = _mm_madd_epi16(d0, d0);
1226 const __m128i e1 = _mm_madd_epi16(d1, d1);
1227 const __m128i sum = _mm_add_epi32(e0, e1);
1228
1229 int32_t tmp[4];
1230 _mm_storeu_si128((__m128i*)tmp, sum);
1231 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1232 }
1233
1234 //------------------------------------------------------------------------------
1235
Mean16x4_SSE2(const uint8_t * WEBP_RESTRICT ref,uint32_t dc[4])1236 static void Mean16x4_SSE2(const uint8_t* WEBP_RESTRICT ref, uint32_t dc[4]) {
1237 const __m128i mask = _mm_set1_epi16(0x00ff);
1238 const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1239 const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1240 const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1241 const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1242 const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte
1243 const __m128i b1 = _mm_srli_epi16(a1, 8);
1244 const __m128i b2 = _mm_srli_epi16(a2, 8);
1245 const __m128i b3 = _mm_srli_epi16(a3, 8);
1246 const __m128i c0 = _mm_and_si128(a0, mask); // lo byte
1247 const __m128i c1 = _mm_and_si128(a1, mask);
1248 const __m128i c2 = _mm_and_si128(a2, mask);
1249 const __m128i c3 = _mm_and_si128(a3, mask);
1250 const __m128i d0 = _mm_add_epi32(b0, c0);
1251 const __m128i d1 = _mm_add_epi32(b1, c1);
1252 const __m128i d2 = _mm_add_epi32(b2, c2);
1253 const __m128i d3 = _mm_add_epi32(b3, c3);
1254 const __m128i e0 = _mm_add_epi32(d0, d1);
1255 const __m128i e1 = _mm_add_epi32(d2, d3);
1256 const __m128i f0 = _mm_add_epi32(e0, e1);
1257 uint16_t tmp[8];
1258 _mm_storeu_si128((__m128i*)tmp, f0);
1259 dc[0] = tmp[0] + tmp[1];
1260 dc[1] = tmp[2] + tmp[3];
1261 dc[2] = tmp[4] + tmp[5];
1262 dc[3] = tmp[6] + tmp[7];
1263 }
1264
1265 //------------------------------------------------------------------------------
1266 // Texture distortion
1267 //
1268 // We try to match the spectral content (weighted) between source and
1269 // reconstructed samples.
1270
1271 // Hadamard transform
1272 // Returns the weighted sum of the absolute value of transformed coefficients.
1273 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * WEBP_RESTRICT inA,const uint8_t * WEBP_RESTRICT inB,const uint16_t * WEBP_RESTRICT const w)1274 static int TTransform_SSE2(const uint8_t* WEBP_RESTRICT inA,
1275 const uint8_t* WEBP_RESTRICT inB,
1276 const uint16_t* WEBP_RESTRICT const w) {
1277 int32_t sum[4];
1278 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1279 const __m128i zero = _mm_setzero_si128();
1280
1281 // Load and combine inputs.
1282 {
1283 const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1284 const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1285 const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1286 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1287 const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1288 const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1289 const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1290 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1291
1292 // Combine inA and inB (we'll do two transforms in parallel).
1293 const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1294 const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1295 const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1296 const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1297 tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1298 tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1299 tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1300 tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1301 // a00 a01 a02 a03 b00 b01 b02 b03
1302 // a10 a11 a12 a13 b10 b11 b12 b13
1303 // a20 a21 a22 a23 b20 b21 b22 b23
1304 // a30 a31 a32 a33 b30 b31 b32 b33
1305 }
1306
1307 // Vertical pass first to avoid a transpose (vertical and horizontal passes
1308 // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1309 {
1310 // Calculate a and b (two 4x4 at once).
1311 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1312 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1313 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1314 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1315 const __m128i b0 = _mm_add_epi16(a0, a1);
1316 const __m128i b1 = _mm_add_epi16(a3, a2);
1317 const __m128i b2 = _mm_sub_epi16(a3, a2);
1318 const __m128i b3 = _mm_sub_epi16(a0, a1);
1319 // a00 a01 a02 a03 b00 b01 b02 b03
1320 // a10 a11 a12 a13 b10 b11 b12 b13
1321 // a20 a21 a22 a23 b20 b21 b22 b23
1322 // a30 a31 a32 a33 b30 b31 b32 b33
1323
1324 // Transpose the two 4x4.
1325 VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1326 }
1327
1328 // Horizontal pass and difference of weighted sums.
1329 {
1330 // Load all inputs.
1331 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1332 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1333
1334 // Calculate a and b (two 4x4 at once).
1335 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1336 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1337 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1338 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1339 const __m128i b0 = _mm_add_epi16(a0, a1);
1340 const __m128i b1 = _mm_add_epi16(a3, a2);
1341 const __m128i b2 = _mm_sub_epi16(a3, a2);
1342 const __m128i b3 = _mm_sub_epi16(a0, a1);
1343
1344 // Separate the transforms of inA and inB.
1345 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1346 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1347 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1348 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1349
1350 {
1351 const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1352 const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1353 const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1354 const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1355 A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b
1356 A_b2 = _mm_max_epi16(A_b2, d1);
1357 B_b0 = _mm_max_epi16(B_b0, d2);
1358 B_b2 = _mm_max_epi16(B_b2, d3);
1359 }
1360
1361 // weighted sums
1362 A_b0 = _mm_madd_epi16(A_b0, w_0);
1363 A_b2 = _mm_madd_epi16(A_b2, w_8);
1364 B_b0 = _mm_madd_epi16(B_b0, w_0);
1365 B_b2 = _mm_madd_epi16(B_b2, w_8);
1366 A_b0 = _mm_add_epi32(A_b0, A_b2);
1367 B_b0 = _mm_add_epi32(B_b0, B_b2);
1368
1369 // difference of weighted sums
1370 A_b0 = _mm_sub_epi32(A_b0, B_b0);
1371 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1372 }
1373 return sum[0] + sum[1] + sum[2] + sum[3];
1374 }
1375
Disto4x4_SSE2(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)1376 static int Disto4x4_SSE2(const uint8_t* WEBP_RESTRICT const a,
1377 const uint8_t* WEBP_RESTRICT const b,
1378 const uint16_t* WEBP_RESTRICT const w) {
1379 const int diff_sum = TTransform_SSE2(a, b, w);
1380 return abs(diff_sum) >> 5;
1381 }
1382
Disto16x16_SSE2(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)1383 static int Disto16x16_SSE2(const uint8_t* WEBP_RESTRICT const a,
1384 const uint8_t* WEBP_RESTRICT const b,
1385 const uint16_t* WEBP_RESTRICT const w) {
1386 int D = 0;
1387 int x, y;
1388 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1389 for (x = 0; x < 16; x += 4) {
1390 D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1391 }
1392 }
1393 return D;
1394 }
1395
1396 //------------------------------------------------------------------------------
1397 // Quantization
1398 //
1399
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * WEBP_RESTRICT const sharpen,const VP8Matrix * WEBP_RESTRICT const mtx)1400 static WEBP_INLINE int DoQuantizeBlock_SSE2(
1401 int16_t in[16], int16_t out[16],
1402 const uint16_t* WEBP_RESTRICT const sharpen,
1403 const VP8Matrix* WEBP_RESTRICT const mtx) {
1404 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1405 const __m128i zero = _mm_setzero_si128();
1406 __m128i coeff0, coeff8;
1407 __m128i out0, out8;
1408 __m128i packed_out;
1409
1410 // Load all inputs.
1411 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1412 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1413 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1414 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1415 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1416 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1417
1418 // extract sign(in) (0x0000 if positive, 0xffff if negative)
1419 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1420 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1421
1422 // coeff = abs(in) = (in ^ sign) - sign
1423 coeff0 = _mm_xor_si128(in0, sign0);
1424 coeff8 = _mm_xor_si128(in8, sign8);
1425 coeff0 = _mm_sub_epi16(coeff0, sign0);
1426 coeff8 = _mm_sub_epi16(coeff8, sign8);
1427
1428 // coeff = abs(in) + sharpen
1429 if (sharpen != NULL) {
1430 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1431 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1432 coeff0 = _mm_add_epi16(coeff0, sharpen0);
1433 coeff8 = _mm_add_epi16(coeff8, sharpen8);
1434 }
1435
1436 // out = (coeff * iQ + B) >> QFIX
1437 {
1438 // doing calculations with 32b precision (QFIX=17)
1439 // out = (coeff * iQ)
1440 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1441 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1442 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1443 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1444 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1445 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1446 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1447 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1448 // out = (coeff * iQ + B)
1449 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1450 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1451 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1452 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1453 out_00 = _mm_add_epi32(out_00, bias_00);
1454 out_04 = _mm_add_epi32(out_04, bias_04);
1455 out_08 = _mm_add_epi32(out_08, bias_08);
1456 out_12 = _mm_add_epi32(out_12, bias_12);
1457 // out = QUANTDIV(coeff, iQ, B, QFIX)
1458 out_00 = _mm_srai_epi32(out_00, QFIX);
1459 out_04 = _mm_srai_epi32(out_04, QFIX);
1460 out_08 = _mm_srai_epi32(out_08, QFIX);
1461 out_12 = _mm_srai_epi32(out_12, QFIX);
1462
1463 // pack result as 16b
1464 out0 = _mm_packs_epi32(out_00, out_04);
1465 out8 = _mm_packs_epi32(out_08, out_12);
1466
1467 // if (coeff > 2047) coeff = 2047
1468 out0 = _mm_min_epi16(out0, max_coeff_2047);
1469 out8 = _mm_min_epi16(out8, max_coeff_2047);
1470 }
1471
1472 // get sign back (if (sign[j]) out_n = -out_n)
1473 out0 = _mm_xor_si128(out0, sign0);
1474 out8 = _mm_xor_si128(out8, sign8);
1475 out0 = _mm_sub_epi16(out0, sign0);
1476 out8 = _mm_sub_epi16(out8, sign8);
1477
1478 // in = out * Q
1479 in0 = _mm_mullo_epi16(out0, q0);
1480 in8 = _mm_mullo_epi16(out8, q8);
1481
1482 _mm_storeu_si128((__m128i*)&in[0], in0);
1483 _mm_storeu_si128((__m128i*)&in[8], in8);
1484
1485 // zigzag the output before storing it.
1486 //
1487 // The zigzag pattern can almost be reproduced with a small sequence of
1488 // shuffles. After it, we only need to swap the 7th (ending up in third
1489 // position instead of twelfth) and 8th values.
1490 {
1491 __m128i outZ0, outZ8;
1492 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1493 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1494 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1495 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1496 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1497 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1498 _mm_storeu_si128((__m128i*)&out[0], outZ0);
1499 _mm_storeu_si128((__m128i*)&out[8], outZ8);
1500 packed_out = _mm_packs_epi16(outZ0, outZ8);
1501 }
1502 {
1503 const int16_t outZ_12 = out[12];
1504 const int16_t outZ_3 = out[3];
1505 out[3] = outZ_12;
1506 out[12] = outZ_3;
1507 }
1508
1509 // detect if all 'out' values are zeroes or not
1510 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1511 }
1512
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)1513 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1514 const VP8Matrix* WEBP_RESTRICT const mtx) {
1515 return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1516 }
1517
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)1518 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1519 const VP8Matrix* WEBP_RESTRICT const mtx) {
1520 return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1521 }
1522
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * WEBP_RESTRICT const mtx)1523 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1524 const VP8Matrix* WEBP_RESTRICT const mtx) {
1525 int nz;
1526 const uint16_t* const sharpen = &mtx->sharpen_[0];
1527 nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1528 nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1529 return nz;
1530 }
1531
1532 //------------------------------------------------------------------------------
1533 // Entry point
1534
1535 extern void VP8EncDspInitSSE2(void);
1536
VP8EncDspInitSSE2(void)1537 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1538 VP8CollectHistogram = CollectHistogram_SSE2;
1539 VP8EncPredLuma16 = Intra16Preds_SSE2;
1540 VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1541 VP8EncPredLuma4 = Intra4Preds_SSE2;
1542 VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1543 VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1544 VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1545 VP8ITransform = ITransform_SSE2;
1546 VP8FTransform = FTransform_SSE2;
1547 VP8FTransform2 = FTransform2_SSE2;
1548 VP8FTransformWHT = FTransformWHT_SSE2;
1549 VP8SSE16x16 = SSE16x16_SSE2;
1550 VP8SSE16x8 = SSE16x8_SSE2;
1551 VP8SSE8x8 = SSE8x8_SSE2;
1552 VP8SSE4x4 = SSE4x4_SSE2;
1553 VP8TDisto4x4 = Disto4x4_SSE2;
1554 VP8TDisto16x16 = Disto16x16_SSE2;
1555 VP8Mean16x4 = Mean16x4_SSE2;
1556 }
1557
1558 #else // !WEBP_USE_SSE2
1559
1560 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1561
1562 #endif // WEBP_USE_SSE2
1563