• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h>  // for abs()
19 #include <emmintrin.h>
20 
21 #include "src/dsp/common_sse2.h"
22 #include "src/enc/cost_enc.h"
23 #include "src/enc/vp8i_enc.h"
24 
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27 
28 // Does one inverse transform.
ITransform_One_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst)29 static void ITransform_One_SSE2(const uint8_t* WEBP_RESTRICT ref,
30                                 const int16_t* WEBP_RESTRICT in,
31                                 uint8_t* WEBP_RESTRICT dst) {
32   // This implementation makes use of 16-bit fixed point versions of two
33   // multiply constants:
34   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
35   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
36   //
37   // To be able to use signed 16-bit integers, we use the following trick to
38   // have constants within range:
39   // - Associated constants are obtained by subtracting the 16-bit fixed point
40   //   version of one:
41   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
42   //      K1 = 85267  =>  k1 =  20091
43   //      K2 = 35468  =>  k2 = -30068
44   // - The multiplication of a variable by a constant become the sum of the
45   //   variable and the multiplication of that variable by the associated
46   //   constant:
47   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
48   const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
49                                      20091, 20091, 20091, 20091);
50   const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
51                                      -30068, -30068, -30068, -30068);
52   const __m128i zero = _mm_setzero_si128();
53   const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
54   __m128i T01, T23;
55 
56   // Load and concatenate the transform coefficients.
57   const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
58   const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
59   // a00 a10 a20 a30   a01 a11 a21 a31
60   // a02 a12 a22 a32   a03 a13 a23 a33
61 
62   // Vertical pass and subsequent transpose.
63   {
64     const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
65     const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
66 
67     // First pass, c and d calculations are longer because of the "trick"
68     // multiplications.
69     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
70     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
71     const __m128i a_d3 = _mm_add_epi16(in01, in23);
72     const __m128i b_c3 = _mm_sub_epi16(in01, in23);
73     const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
74     const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
75     const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
76     const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
77     const __m128i c = _mm_add_epi16(c3, c4);
78     const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
79     const __m128i du = _mm_add_epi16(a_d3, d4u);
80     const __m128i d = _mm_unpackhi_epi64(du, du);
81 
82     // Second pass.
83     const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
84     const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
85 
86     const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
87     const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
88     const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
89 
90     const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
91     const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
92     // a00 a20 a01 a21   a02 a22 a03 a23
93     // a10 a30 a11 a31   a12 a32 a13 a33
94 
95     T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
96     T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
97     // a00 a10 a20 a30   a01 a11 a21 a31
98     // a02 a12 a22 a32   a03 a13 a23 a33
99   }
100 
101   // Horizontal pass and subsequent transpose.
102   {
103     const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
104     const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
105 
106     // First pass, c and d calculations are longer because of the "trick"
107     // multiplications.
108     const __m128i dc = _mm_add_epi16(T01, zero_four);
109 
110     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
111     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
112     const __m128i a_d3 = _mm_add_epi16(dc, T23);
113     const __m128i b_c3 = _mm_sub_epi16(dc, T23);
114     const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
115     const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
116     const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
117     const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
118     const __m128i c = _mm_add_epi16(c3, c4);
119     const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
120     const __m128i du = _mm_add_epi16(a_d3, d4u);
121     const __m128i d = _mm_unpackhi_epi64(du, du);
122 
123     // Second pass.
124     const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
125     const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
126 
127     const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
128     const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
129     const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
130 
131     const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
132     const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
133     // a00 a01 a02 a03   a10 a11 a12 a13
134     // a20 a21 a22 a23   a30 a31 a32 a33
135 
136     const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
137     const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
138     // a00 a20 a01 a21   a02 a22 a03 a23
139     // a10 a30 a11 a31   a12 a32 a13 a33
140 
141     T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
142     T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
143     // a00 a10 a20 a30   a01 a11 a21 a31
144     // a02 a12 a22 a32   a03 a13 a23 a33
145   }
146 
147   // Add inverse transform to 'ref' and store.
148   {
149     // Load the reference(s).
150     __m128i ref01, ref23, ref0123;
151     int32_t buf[4];
152 
153     // Load four bytes/pixels per line.
154     const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
155     const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
156     const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
157     const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
158     ref01 = _mm_unpacklo_epi32(ref0, ref1);
159     ref23 = _mm_unpacklo_epi32(ref2, ref3);
160 
161     // Convert to 16b.
162     ref01 = _mm_unpacklo_epi8(ref01, zero);
163     ref23 = _mm_unpacklo_epi8(ref23, zero);
164     // Add the inverse transform(s).
165     ref01 = _mm_add_epi16(ref01, T01);
166     ref23 = _mm_add_epi16(ref23, T23);
167     // Unsigned saturate to 8b.
168     ref0123 = _mm_packus_epi16(ref01, ref23);
169 
170     _mm_storeu_si128((__m128i *)buf, ref0123);
171 
172     // Store four bytes/pixels per line.
173     WebPInt32ToMem(&dst[0 * BPS], buf[0]);
174     WebPInt32ToMem(&dst[1 * BPS], buf[1]);
175     WebPInt32ToMem(&dst[2 * BPS], buf[2]);
176     WebPInt32ToMem(&dst[3 * BPS], buf[3]);
177   }
178 }
179 
180 // Does two inverse transforms.
ITransform_Two_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst)181 static void ITransform_Two_SSE2(const uint8_t* WEBP_RESTRICT ref,
182                                 const int16_t* WEBP_RESTRICT in,
183                                 uint8_t* WEBP_RESTRICT dst) {
184   // This implementation makes use of 16-bit fixed point versions of two
185   // multiply constants:
186   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
187   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
188   //
189   // To be able to use signed 16-bit integers, we use the following trick to
190   // have constants within range:
191   // - Associated constants are obtained by subtracting the 16-bit fixed point
192   //   version of one:
193   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
194   //      K1 = 85267  =>  k1 =  20091
195   //      K2 = 35468  =>  k2 = -30068
196   // - The multiplication of a variable by a constant become the sum of the
197   //   variable and the multiplication of that variable by the associated
198   //   constant:
199   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
200   const __m128i k1 = _mm_set1_epi16(20091);
201   const __m128i k2 = _mm_set1_epi16(-30068);
202   __m128i T0, T1, T2, T3;
203 
204   // Load and concatenate the transform coefficients (we'll do two inverse
205   // transforms in parallel).
206   __m128i in0, in1, in2, in3;
207   {
208     const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
209     const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
210     const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
211     const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
212     in0 = _mm_unpacklo_epi64(tmp0, tmp2);
213     in1 = _mm_unpackhi_epi64(tmp0, tmp2);
214     in2 = _mm_unpacklo_epi64(tmp1, tmp3);
215     in3 = _mm_unpackhi_epi64(tmp1, tmp3);
216     // a00 a10 a20 a30   b00 b10 b20 b30
217     // a01 a11 a21 a31   b01 b11 b21 b31
218     // a02 a12 a22 a32   b02 b12 b22 b32
219     // a03 a13 a23 a33   b03 b13 b23 b33
220   }
221 
222   // Vertical pass and subsequent transpose.
223   {
224     // First pass, c and d calculations are longer because of the "trick"
225     // multiplications.
226     const __m128i a = _mm_add_epi16(in0, in2);
227     const __m128i b = _mm_sub_epi16(in0, in2);
228     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
229     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
230     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
231     const __m128i c3 = _mm_sub_epi16(in1, in3);
232     const __m128i c4 = _mm_sub_epi16(c1, c2);
233     const __m128i c = _mm_add_epi16(c3, c4);
234     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
235     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
236     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
237     const __m128i d3 = _mm_add_epi16(in1, in3);
238     const __m128i d4 = _mm_add_epi16(d1, d2);
239     const __m128i d = _mm_add_epi16(d3, d4);
240 
241     // Second pass.
242     const __m128i tmp0 = _mm_add_epi16(a, d);
243     const __m128i tmp1 = _mm_add_epi16(b, c);
244     const __m128i tmp2 = _mm_sub_epi16(b, c);
245     const __m128i tmp3 = _mm_sub_epi16(a, d);
246 
247     // Transpose the two 4x4.
248     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
249   }
250 
251   // Horizontal pass and subsequent transpose.
252   {
253     // First pass, c and d calculations are longer because of the "trick"
254     // multiplications.
255     const __m128i four = _mm_set1_epi16(4);
256     const __m128i dc = _mm_add_epi16(T0, four);
257     const __m128i a =  _mm_add_epi16(dc, T2);
258     const __m128i b =  _mm_sub_epi16(dc, T2);
259     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
260     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
261     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
262     const __m128i c3 = _mm_sub_epi16(T1, T3);
263     const __m128i c4 = _mm_sub_epi16(c1, c2);
264     const __m128i c = _mm_add_epi16(c3, c4);
265     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
266     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
267     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
268     const __m128i d3 = _mm_add_epi16(T1, T3);
269     const __m128i d4 = _mm_add_epi16(d1, d2);
270     const __m128i d = _mm_add_epi16(d3, d4);
271 
272     // Second pass.
273     const __m128i tmp0 = _mm_add_epi16(a, d);
274     const __m128i tmp1 = _mm_add_epi16(b, c);
275     const __m128i tmp2 = _mm_sub_epi16(b, c);
276     const __m128i tmp3 = _mm_sub_epi16(a, d);
277     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
278     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
279     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
280     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
281 
282     // Transpose the two 4x4.
283     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
284                            &T2, &T3);
285   }
286 
287   // Add inverse transform to 'ref' and store.
288   {
289     const __m128i zero = _mm_setzero_si128();
290     // Load the reference(s).
291     __m128i ref0, ref1, ref2, ref3;
292     // Load eight bytes/pixels per line.
293     ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
294     ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
295     ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
296     ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
297     // Convert to 16b.
298     ref0 = _mm_unpacklo_epi8(ref0, zero);
299     ref1 = _mm_unpacklo_epi8(ref1, zero);
300     ref2 = _mm_unpacklo_epi8(ref2, zero);
301     ref3 = _mm_unpacklo_epi8(ref3, zero);
302     // Add the inverse transform(s).
303     ref0 = _mm_add_epi16(ref0, T0);
304     ref1 = _mm_add_epi16(ref1, T1);
305     ref2 = _mm_add_epi16(ref2, T2);
306     ref3 = _mm_add_epi16(ref3, T3);
307     // Unsigned saturate to 8b.
308     ref0 = _mm_packus_epi16(ref0, ref0);
309     ref1 = _mm_packus_epi16(ref1, ref1);
310     ref2 = _mm_packus_epi16(ref2, ref2);
311     ref3 = _mm_packus_epi16(ref3, ref3);
312     // Store eight bytes/pixels per line.
313     _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
314     _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
315     _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
316     _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
317   }
318 }
319 
320 // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * WEBP_RESTRICT ref,const int16_t * WEBP_RESTRICT in,uint8_t * WEBP_RESTRICT dst,int do_two)321 static void ITransform_SSE2(const uint8_t* WEBP_RESTRICT ref,
322                             const int16_t* WEBP_RESTRICT in,
323                             uint8_t* WEBP_RESTRICT dst,
324                             int do_two) {
325   if (do_two) {
326     ITransform_Two_SSE2(ref, in, dst);
327   } else {
328     ITransform_One_SSE2(ref, in, dst);
329   }
330 }
331 
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)332 static void FTransformPass1_SSE2(const __m128i* const in01,
333                                  const __m128i* const in23,
334                                  __m128i* const out01,
335                                  __m128i* const out32) {
336   const __m128i k937 = _mm_set1_epi32(937);
337   const __m128i k1812 = _mm_set1_epi32(1812);
338 
339   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
340   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
341   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
342                                             2217, 5352, 2217, 5352);
343   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
344                                             -5352, 2217, -5352, 2217);
345 
346   // *in01 = 00 01 10 11 02 03 12 13
347   // *in23 = 20 21 30 31 22 23 32 33
348   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
349   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
350   // 00 01 10 11 03 02 13 12
351   // 20 21 30 31 23 22 33 32
352   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
353   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
354   // 00 01 10 11 20 21 30 31
355   // 03 02 13 12 23 22 33 32
356   const __m128i a01 = _mm_add_epi16(s01, s32);
357   const __m128i a32 = _mm_sub_epi16(s01, s32);
358   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
359   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
360 
361   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
362   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
363   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
364   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
365   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
366   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
367   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
368   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
369   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
370   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
371   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
372   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
373   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
374   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
375   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
376 }
377 
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * WEBP_RESTRICT out)378 static void FTransformPass2_SSE2(const __m128i* const v01,
379                                  const __m128i* const v32,
380                                  int16_t* WEBP_RESTRICT out) {
381   const __m128i zero = _mm_setzero_si128();
382   const __m128i seven = _mm_set1_epi16(7);
383   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
384                                            5352,  2217, 5352,  2217);
385   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
386                                            2217, -5352, 2217, -5352);
387   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
388   const __m128i k51000 = _mm_set1_epi32(51000);
389 
390   // Same operations are done on the (0,3) and (1,2) pairs.
391   // a3 = v0 - v3
392   // a2 = v1 - v2
393   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
394   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
395 
396   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
397   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
398   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
399   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
400   const __m128i d3 = _mm_add_epi32(c3, k51000);
401   const __m128i e1 = _mm_srai_epi32(d1, 16);
402   const __m128i e3 = _mm_srai_epi32(d3, 16);
403   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
404   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
405   const __m128i f1 = _mm_packs_epi32(e1, e1);
406   const __m128i f3 = _mm_packs_epi32(e3, e3);
407   // g1 = f1 + (a3 != 0);
408   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
409   // desired (0, 1), we add one earlier through k12000_plus_one.
410   // -> g1 = f1 + 1 - (a3 == 0)
411   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
412 
413   // a0 = v0 + v3
414   // a1 = v1 + v2
415   const __m128i a01 = _mm_add_epi16(*v01, *v32);
416   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
417   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
418   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
419   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
420   // d0 = (a0 + a1 + 7) >> 4;
421   // d2 = (a0 - a1 + 7) >> 4;
422   const __m128i d0 = _mm_srai_epi16(c0, 4);
423   const __m128i d2 = _mm_srai_epi16(c2, 4);
424 
425   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
426   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
427   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
428   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
429 }
430 
FTransform_SSE2(const uint8_t * WEBP_RESTRICT src,const uint8_t * WEBP_RESTRICT ref,int16_t * WEBP_RESTRICT out)431 static void FTransform_SSE2(const uint8_t* WEBP_RESTRICT src,
432                             const uint8_t* WEBP_RESTRICT ref,
433                             int16_t* WEBP_RESTRICT out) {
434   const __m128i zero = _mm_setzero_si128();
435   // Load src.
436   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
437   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
438   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
439   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
440   // 00 01 02 03 *
441   // 10 11 12 13 *
442   // 20 21 22 23 *
443   // 30 31 32 33 *
444   // Shuffle.
445   const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
446   const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
447   // 00 01 10 11 02 03 12 13 * * ...
448   // 20 21 30 31 22 22 32 33 * * ...
449 
450   // Load ref.
451   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
452   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
453   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
454   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
455   const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
456   const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
457 
458   // Convert both to 16 bit.
459   const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
460   const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
461   const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
462   const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
463 
464   // Compute the difference.
465   const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
466   const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
467   __m128i v01, v32;
468 
469   // First pass
470   FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
471 
472   // Second pass
473   FTransformPass2_SSE2(&v01, &v32, out);
474 }
475 
FTransform2_SSE2(const uint8_t * WEBP_RESTRICT src,const uint8_t * WEBP_RESTRICT ref,int16_t * WEBP_RESTRICT out)476 static void FTransform2_SSE2(const uint8_t* WEBP_RESTRICT src,
477                              const uint8_t* WEBP_RESTRICT ref,
478                              int16_t* WEBP_RESTRICT out) {
479   const __m128i zero = _mm_setzero_si128();
480 
481   // Load src and convert to 16b.
482   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
483   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
484   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
485   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
486   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
487   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
488   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
489   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
490   // Load ref and convert to 16b.
491   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
492   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
493   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
494   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
495   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
496   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
497   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
498   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
499   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
500   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
501   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
502   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
503   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
504 
505   // Unpack and shuffle
506   // 00 01 02 03   0 0 0 0
507   // 10 11 12 13   0 0 0 0
508   // 20 21 22 23   0 0 0 0
509   // 30 31 32 33   0 0 0 0
510   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
511   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
512   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
513   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
514   __m128i v01l, v32l;
515   __m128i v01h, v32h;
516 
517   // First pass
518   FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
519   FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
520 
521   // Second pass
522   FTransformPass2_SSE2(&v01l, &v32l, out + 0);
523   FTransformPass2_SSE2(&v01h, &v32h, out + 16);
524 }
525 
FTransformWHTRow_SSE2(const int16_t * WEBP_RESTRICT const in,__m128i * const out)526 static void FTransformWHTRow_SSE2(const int16_t* WEBP_RESTRICT const in,
527                                   __m128i* const out) {
528   const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
529   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
530   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
531   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
532   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
533   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
534   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
535   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
536   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
537   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
538   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
539   const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
540   *out = _mm_madd_epi16(D, kMult);
541 }
542 
FTransformWHT_SSE2(const int16_t * WEBP_RESTRICT in,int16_t * WEBP_RESTRICT out)543 static void FTransformWHT_SSE2(const int16_t* WEBP_RESTRICT in,
544                                int16_t* WEBP_RESTRICT out) {
545   // Input is 12b signed.
546   __m128i row0, row1, row2, row3;
547   // Rows are 14b signed.
548   FTransformWHTRow_SSE2(in + 0 * 64, &row0);
549   FTransformWHTRow_SSE2(in + 1 * 64, &row1);
550   FTransformWHTRow_SSE2(in + 2 * 64, &row2);
551   FTransformWHTRow_SSE2(in + 3 * 64, &row3);
552 
553   {
554     // The a* are 15b signed.
555     const __m128i a0 = _mm_add_epi32(row0, row2);
556     const __m128i a1 = _mm_add_epi32(row1, row3);
557     const __m128i a2 = _mm_sub_epi32(row1, row3);
558     const __m128i a3 = _mm_sub_epi32(row0, row2);
559     const __m128i a0a3 = _mm_packs_epi32(a0, a3);
560     const __m128i a1a2 = _mm_packs_epi32(a1, a2);
561 
562     // The b* are 16b signed.
563     const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
564     const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
565     const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
566     const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
567 
568     _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
569     _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
570   }
571 }
572 
573 //------------------------------------------------------------------------------
574 // Compute susceptibility based on DCT-coeff histograms:
575 // the higher, the "easier" the macroblock is to compress.
576 
CollectHistogram_SSE2(const uint8_t * WEBP_RESTRICT ref,const uint8_t * WEBP_RESTRICT pred,int start_block,int end_block,VP8Histogram * WEBP_RESTRICT const histo)577 static void CollectHistogram_SSE2(const uint8_t* WEBP_RESTRICT ref,
578                                   const uint8_t* WEBP_RESTRICT pred,
579                                   int start_block, int end_block,
580                                   VP8Histogram* WEBP_RESTRICT const histo) {
581   const __m128i zero = _mm_setzero_si128();
582   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
583   int j;
584   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
585   for (j = start_block; j < end_block; ++j) {
586     int16_t out[16];
587     int k;
588 
589     FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
590 
591     // Convert coefficients to bin (within out[]).
592     {
593       // Load.
594       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
595       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
596       const __m128i d0 = _mm_sub_epi16(zero, out0);
597       const __m128i d1 = _mm_sub_epi16(zero, out1);
598       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
599       const __m128i abs1 = _mm_max_epi16(out1, d1);
600       // v = abs(out) >> 3
601       const __m128i v0 = _mm_srai_epi16(abs0, 3);
602       const __m128i v1 = _mm_srai_epi16(abs1, 3);
603       // bin = min(v, MAX_COEFF_THRESH)
604       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
605       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
606       // Store.
607       _mm_storeu_si128((__m128i*)&out[0], bin0);
608       _mm_storeu_si128((__m128i*)&out[8], bin1);
609     }
610 
611     // Convert coefficients to bin.
612     for (k = 0; k < 16; ++k) {
613       ++distribution[out[k]];
614     }
615   }
616   VP8SetHistogramData(distribution, histo);
617 }
618 
619 //------------------------------------------------------------------------------
620 // Intra predictions
621 
622 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)623 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
624   int j;
625   const __m128i values = _mm_set1_epi8((char)v);
626   for (j = 0; j < 8; ++j) {
627     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
628   }
629 }
630 
Put16_SSE2(uint8_t v,uint8_t * dst)631 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
632   int j;
633   const __m128i values = _mm_set1_epi8((char)v);
634   for (j = 0; j < 16; ++j) {
635     _mm_store_si128((__m128i*)(dst + j * BPS), values);
636   }
637 }
638 
Fill_SSE2(uint8_t * dst,int value,int size)639 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
640   if (size == 4) {
641     int j;
642     for (j = 0; j < 4; ++j) {
643       memset(dst + j * BPS, value, 4);
644     }
645   } else if (size == 8) {
646     Put8x8uv_SSE2(value, dst);
647   } else {
648     Put16_SSE2(value, dst);
649   }
650 }
651 
VE8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)652 static WEBP_INLINE void VE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
653                                    const uint8_t* WEBP_RESTRICT top) {
654   int j;
655   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
656   for (j = 0; j < 8; ++j) {
657     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
658   }
659 }
660 
VE16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)661 static WEBP_INLINE void VE16_SSE2(uint8_t* WEBP_RESTRICT dst,
662                                   const uint8_t* WEBP_RESTRICT top) {
663   const __m128i top_values = _mm_load_si128((const __m128i*)top);
664   int j;
665   for (j = 0; j < 16; ++j) {
666     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
667   }
668 }
669 
VerticalPred_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top,int size)670 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
671                                           const uint8_t* WEBP_RESTRICT top,
672                                           int size) {
673   if (top != NULL) {
674     if (size == 8) {
675       VE8uv_SSE2(dst, top);
676     } else {
677       VE16_SSE2(dst, top);
678     }
679   } else {
680     Fill_SSE2(dst, 127, size);
681   }
682 }
683 
HE8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)684 static WEBP_INLINE void HE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
685                                    const uint8_t* WEBP_RESTRICT left) {
686   int j;
687   for (j = 0; j < 8; ++j) {
688     const __m128i values = _mm_set1_epi8((char)left[j]);
689     _mm_storel_epi64((__m128i*)dst, values);
690     dst += BPS;
691   }
692 }
693 
HE16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)694 static WEBP_INLINE void HE16_SSE2(uint8_t* WEBP_RESTRICT dst,
695                                   const uint8_t* WEBP_RESTRICT left) {
696   int j;
697   for (j = 0; j < 16; ++j) {
698     const __m128i values = _mm_set1_epi8((char)left[j]);
699     _mm_store_si128((__m128i*)dst, values);
700     dst += BPS;
701   }
702 }
703 
HorizontalPred_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,int size)704 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
705                                             const uint8_t* WEBP_RESTRICT left,
706                                             int size) {
707   if (left != NULL) {
708     if (size == 8) {
709       HE8uv_SSE2(dst, left);
710     } else {
711       HE16_SSE2(dst, left);
712     }
713   } else {
714     Fill_SSE2(dst, 129, size);
715   }
716 }
717 
TM_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top,int size)718 static WEBP_INLINE void TM_SSE2(uint8_t* WEBP_RESTRICT dst,
719                                 const uint8_t* WEBP_RESTRICT left,
720                                 const uint8_t* WEBP_RESTRICT top, int size) {
721   const __m128i zero = _mm_setzero_si128();
722   int y;
723   if (size == 8) {
724     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
725     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
726     for (y = 0; y < 8; ++y, dst += BPS) {
727       const int val = left[y] - left[-1];
728       const __m128i base = _mm_set1_epi16(val);
729       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
730       _mm_storel_epi64((__m128i*)dst, out);
731     }
732   } else {
733     const __m128i top_values = _mm_load_si128((const __m128i*)top);
734     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
735     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
736     for (y = 0; y < 16; ++y, dst += BPS) {
737       const int val = left[y] - left[-1];
738       const __m128i base = _mm_set1_epi16(val);
739       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
740       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
741       const __m128i out = _mm_packus_epi16(out_0, out_1);
742       _mm_store_si128((__m128i*)dst, out);
743     }
744   }
745 }
746 
TrueMotion_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top,int size)747 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* WEBP_RESTRICT dst,
748                                         const uint8_t* WEBP_RESTRICT left,
749                                         const uint8_t* WEBP_RESTRICT top,
750                                         int size) {
751   if (left != NULL) {
752     if (top != NULL) {
753       TM_SSE2(dst, left, top, size);
754     } else {
755       HorizontalPred_SSE2(dst, left, size);
756     }
757   } else {
758     // true motion without left samples (hence: with default 129 value)
759     // is equivalent to VE prediction where you just copy the top samples.
760     // Note that if top samples are not available, the default value is
761     // then 129, and not 127 as in the VerticalPred case.
762     if (top != NULL) {
763       VerticalPred_SSE2(dst, top, size);
764     } else {
765       Fill_SSE2(dst, 129, size);
766     }
767   }
768 }
769 
DC8uv_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)770 static WEBP_INLINE void DC8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
771                                    const uint8_t* WEBP_RESTRICT left,
772                                    const uint8_t* WEBP_RESTRICT top) {
773   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
774   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
775   const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
776   const int DC = VP8HorizontalAdd8b(&combined) + 8;
777   Put8x8uv_SSE2(DC >> 4, dst);
778 }
779 
DC8uvNoLeft_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)780 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
781                                          const uint8_t* WEBP_RESTRICT top) {
782   const __m128i zero = _mm_setzero_si128();
783   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
784   const __m128i sum = _mm_sad_epu8(top_values, zero);
785   const int DC = _mm_cvtsi128_si32(sum) + 4;
786   Put8x8uv_SSE2(DC >> 3, dst);
787 }
788 
DC8uvNoTop_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)789 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
790                                         const uint8_t* WEBP_RESTRICT left) {
791   // 'left' is contiguous so we can reuse the top summation.
792   DC8uvNoLeft_SSE2(dst, left);
793 }
794 
DC8uvNoTopLeft_SSE2(uint8_t * dst)795 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
796   Put8x8uv_SSE2(0x80, dst);
797 }
798 
DC8uvMode_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)799 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* WEBP_RESTRICT dst,
800                                        const uint8_t* WEBP_RESTRICT left,
801                                        const uint8_t* WEBP_RESTRICT top) {
802   if (top != NULL) {
803     if (left != NULL) {  // top and left present
804       DC8uv_SSE2(dst, left, top);
805     } else {  // top, but no left
806       DC8uvNoLeft_SSE2(dst, top);
807     }
808   } else if (left != NULL) {  // left but no top
809     DC8uvNoTop_SSE2(dst, left);
810   } else {  // no top, no left, nothing.
811     DC8uvNoTopLeft_SSE2(dst);
812   }
813 }
814 
DC16_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)815 static WEBP_INLINE void DC16_SSE2(uint8_t* WEBP_RESTRICT dst,
816                                   const uint8_t* WEBP_RESTRICT left,
817                                   const uint8_t* WEBP_RESTRICT top) {
818   const __m128i top_row = _mm_load_si128((const __m128i*)top);
819   const __m128i left_row = _mm_load_si128((const __m128i*)left);
820   const int DC =
821       VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
822   Put16_SSE2(DC >> 5, dst);
823 }
824 
DC16NoLeft_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)825 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
826                                         const uint8_t* WEBP_RESTRICT top) {
827   const __m128i top_row = _mm_load_si128((const __m128i*)top);
828   const int DC = VP8HorizontalAdd8b(&top_row) + 8;
829   Put16_SSE2(DC >> 4, dst);
830 }
831 
DC16NoTop_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left)832 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
833                                        const uint8_t* WEBP_RESTRICT left) {
834   // 'left' is contiguous so we can reuse the top summation.
835   DC16NoLeft_SSE2(dst, left);
836 }
837 
DC16NoTopLeft_SSE2(uint8_t * dst)838 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
839   Put16_SSE2(0x80, dst);
840 }
841 
DC16Mode_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)842 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* WEBP_RESTRICT dst,
843                                       const uint8_t* WEBP_RESTRICT left,
844                                       const uint8_t* WEBP_RESTRICT top) {
845   if (top != NULL) {
846     if (left != NULL) {  // top and left present
847       DC16_SSE2(dst, left, top);
848     } else {  // top, but no left
849       DC16NoLeft_SSE2(dst, top);
850     }
851   } else if (left != NULL) {  // left but no top
852     DC16NoTop_SSE2(dst, left);
853   } else {  // no top, no left, nothing.
854     DC16NoTopLeft_SSE2(dst);
855   }
856 }
857 
858 //------------------------------------------------------------------------------
859 // 4x4 predictions
860 
861 #define DST(x, y) dst[(x) + (y) * BPS]
862 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
863 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
864 
865 // We use the following 8b-arithmetic tricks:
866 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
867 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
868 // and:
869 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
870 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
871 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
872 
873 // vertical
VE4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)874 static WEBP_INLINE void VE4_SSE2(uint8_t* WEBP_RESTRICT dst,
875                                  const uint8_t* WEBP_RESTRICT top) {
876   const __m128i one = _mm_set1_epi8(1);
877   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
878   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
879   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
880   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
881   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
882   const __m128i b = _mm_subs_epu8(a, lsb);
883   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
884   const int vals = _mm_cvtsi128_si32(avg);
885   int i;
886   for (i = 0; i < 4; ++i) {
887     WebPInt32ToMem(dst + i * BPS, vals);
888   }
889 }
890 
891 // horizontal
HE4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)892 static WEBP_INLINE void HE4_SSE2(uint8_t* WEBP_RESTRICT dst,
893                                  const uint8_t* WEBP_RESTRICT top) {
894   const int X = top[-1];
895   const int I = top[-2];
896   const int J = top[-3];
897   const int K = top[-4];
898   const int L = top[-5];
899   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
900   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
901   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
902   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
903 }
904 
DC4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)905 static WEBP_INLINE void DC4_SSE2(uint8_t* WEBP_RESTRICT dst,
906                                  const uint8_t* WEBP_RESTRICT top) {
907   uint32_t dc = 4;
908   int i;
909   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
910   Fill_SSE2(dst, dc >> 3, 4);
911 }
912 
913 // Down-Left
LD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)914 static WEBP_INLINE void LD4_SSE2(uint8_t* WEBP_RESTRICT dst,
915                                  const uint8_t* WEBP_RESTRICT top) {
916   const __m128i one = _mm_set1_epi8(1);
917   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
918   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
919   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
920   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
921   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
922   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
923   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
924   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
925   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
926   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
927   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
928   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
929 }
930 
931 // Vertical-Right
VR4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)932 static WEBP_INLINE void VR4_SSE2(uint8_t* WEBP_RESTRICT dst,
933                                  const uint8_t* WEBP_RESTRICT top) {
934   const __m128i one = _mm_set1_epi8(1);
935   const int I = top[-2];
936   const int J = top[-3];
937   const int K = top[-4];
938   const int X = top[-1];
939   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
940   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
941   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
942   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
943   const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
944   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
945   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
946   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
947   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
948   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
949   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
950   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
951   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
952 
953   // these two are hard to implement in SSE2, so we keep the C-version:
954   DST(0, 2) = AVG3(J, I, X);
955   DST(0, 3) = AVG3(K, J, I);
956 }
957 
958 // Vertical-Left
VL4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)959 static WEBP_INLINE void VL4_SSE2(uint8_t* WEBP_RESTRICT dst,
960                                  const uint8_t* WEBP_RESTRICT top) {
961   const __m128i one = _mm_set1_epi8(1);
962   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
963   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
964   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
965   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
966   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
967   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
968   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
969   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
970   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
971   const __m128i abbc = _mm_or_si128(ab, bc);
972   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
973   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
974   const uint32_t extra_out =
975       (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
976   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
977   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
978   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
979   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
980 
981   // these two are hard to get and irregular
982   DST(3, 2) = (extra_out >> 0) & 0xff;
983   DST(3, 3) = (extra_out >> 8) & 0xff;
984 }
985 
986 // Down-right
RD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)987 static WEBP_INLINE void RD4_SSE2(uint8_t* WEBP_RESTRICT dst,
988                                  const uint8_t* WEBP_RESTRICT top) {
989   const __m128i one = _mm_set1_epi8(1);
990   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
991   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
992   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
993   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
994   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
995   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
996   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
997   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
998   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
999   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1000   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1001   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1002 }
1003 
HU4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1004 static WEBP_INLINE void HU4_SSE2(uint8_t* WEBP_RESTRICT dst,
1005                                  const uint8_t* WEBP_RESTRICT top) {
1006   const int I = top[-2];
1007   const int J = top[-3];
1008   const int K = top[-4];
1009   const int L = top[-5];
1010   DST(0, 0) =             AVG2(I, J);
1011   DST(2, 0) = DST(0, 1) = AVG2(J, K);
1012   DST(2, 1) = DST(0, 2) = AVG2(K, L);
1013   DST(1, 0) =             AVG3(I, J, K);
1014   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
1015   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
1016   DST(3, 2) = DST(2, 2) =
1017   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
1018 }
1019 
HD4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1020 static WEBP_INLINE void HD4_SSE2(uint8_t* WEBP_RESTRICT dst,
1021                                  const uint8_t* WEBP_RESTRICT top) {
1022   const int X = top[-1];
1023   const int I = top[-2];
1024   const int J = top[-3];
1025   const int K = top[-4];
1026   const int L = top[-5];
1027   const int A = top[0];
1028   const int B = top[1];
1029   const int C = top[2];
1030 
1031   DST(0, 0) = DST(2, 1) = AVG2(I, X);
1032   DST(0, 1) = DST(2, 2) = AVG2(J, I);
1033   DST(0, 2) = DST(2, 3) = AVG2(K, J);
1034   DST(0, 3)             = AVG2(L, K);
1035 
1036   DST(3, 0)             = AVG3(A, B, C);
1037   DST(2, 0)             = AVG3(X, A, B);
1038   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1039   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1040   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1041   DST(1, 3)             = AVG3(L, K, J);
1042 }
1043 
TM4_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1044 static WEBP_INLINE void TM4_SSE2(uint8_t* WEBP_RESTRICT dst,
1045                                  const uint8_t* WEBP_RESTRICT top) {
1046   const __m128i zero = _mm_setzero_si128();
1047   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1048   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1049   int y;
1050   for (y = 0; y < 4; ++y, dst += BPS) {
1051     const int val = top[-2 - y] - top[-1];
1052     const __m128i base = _mm_set1_epi16(val);
1053     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1054     WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1055   }
1056 }
1057 
1058 #undef DST
1059 #undef AVG3
1060 #undef AVG2
1061 
1062 //------------------------------------------------------------------------------
1063 // luma 4x4 prediction
1064 
1065 // Left samples are top[-5 .. -2], top_left is top[-1], top are
1066 // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT top)1067 static void Intra4Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1068                              const uint8_t* WEBP_RESTRICT top) {
1069   DC4_SSE2(I4DC4 + dst, top);
1070   TM4_SSE2(I4TM4 + dst, top);
1071   VE4_SSE2(I4VE4 + dst, top);
1072   HE4_SSE2(I4HE4 + dst, top);
1073   RD4_SSE2(I4RD4 + dst, top);
1074   VR4_SSE2(I4VR4 + dst, top);
1075   LD4_SSE2(I4LD4 + dst, top);
1076   VL4_SSE2(I4VL4 + dst, top);
1077   HD4_SSE2(I4HD4 + dst, top);
1078   HU4_SSE2(I4HU4 + dst, top);
1079 }
1080 
1081 //------------------------------------------------------------------------------
1082 // Chroma 8x8 prediction (paragraph 12.2)
1083 
IntraChromaPreds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)1084 static void IntraChromaPreds_SSE2(uint8_t* WEBP_RESTRICT dst,
1085                                   const uint8_t* WEBP_RESTRICT left,
1086                                   const uint8_t* WEBP_RESTRICT top) {
1087   // U block
1088   DC8uvMode_SSE2(C8DC8 + dst, left, top);
1089   VerticalPred_SSE2(C8VE8 + dst, top, 8);
1090   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1091   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1092   // V block
1093   dst += 8;
1094   if (top != NULL) top += 8;
1095   if (left != NULL) left += 16;
1096   DC8uvMode_SSE2(C8DC8 + dst, left, top);
1097   VerticalPred_SSE2(C8VE8 + dst, top, 8);
1098   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1099   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1100 }
1101 
1102 //------------------------------------------------------------------------------
1103 // luma 16x16 prediction (paragraph 12.3)
1104 
Intra16Preds_SSE2(uint8_t * WEBP_RESTRICT dst,const uint8_t * WEBP_RESTRICT left,const uint8_t * WEBP_RESTRICT top)1105 static void Intra16Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1106                               const uint8_t* WEBP_RESTRICT left,
1107                               const uint8_t* WEBP_RESTRICT top) {
1108   DC16Mode_SSE2(I16DC16 + dst, left, top);
1109   VerticalPred_SSE2(I16VE16 + dst, top, 16);
1110   HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1111   TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1112 }
1113 
1114 //------------------------------------------------------------------------------
1115 // Metric
1116 
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)1117 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1118                                                    const __m128i b,
1119                                                    __m128i* const sum) {
1120   // take abs(a-b) in 8b
1121   const __m128i a_b = _mm_subs_epu8(a, b);
1122   const __m128i b_a = _mm_subs_epu8(b, a);
1123   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1124   // zero-extend to 16b
1125   const __m128i zero = _mm_setzero_si128();
1126   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1127   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1128   // multiply with self
1129   const __m128i sum1 = _mm_madd_epi16(C0, C0);
1130   const __m128i sum2 = _mm_madd_epi16(C1, C1);
1131   *sum = _mm_add_epi32(sum1, sum2);
1132 }
1133 
SSE_16xN_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b,int num_pairs)1134 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* WEBP_RESTRICT a,
1135                                      const uint8_t* WEBP_RESTRICT b,
1136                                      int num_pairs) {
1137   __m128i sum = _mm_setzero_si128();
1138   int32_t tmp[4];
1139   int i;
1140 
1141   for (i = 0; i < num_pairs; ++i) {
1142     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1143     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1144     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1145     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1146     __m128i sum1, sum2;
1147     SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1148     SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1149     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1150     a += 2 * BPS;
1151     b += 2 * BPS;
1152   }
1153   _mm_storeu_si128((__m128i*)tmp, sum);
1154   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1155 }
1156 
SSE16x16_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1157 static int SSE16x16_SSE2(const uint8_t* WEBP_RESTRICT a,
1158                          const uint8_t* WEBP_RESTRICT b) {
1159   return SSE_16xN_SSE2(a, b, 8);
1160 }
1161 
SSE16x8_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1162 static int SSE16x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1163                         const uint8_t* WEBP_RESTRICT b) {
1164   return SSE_16xN_SSE2(a, b, 4);
1165 }
1166 
1167 #define LOAD_8x16b(ptr) \
1168   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1169 
SSE8x8_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1170 static int SSE8x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1171                        const uint8_t* WEBP_RESTRICT b) {
1172   const __m128i zero = _mm_setzero_si128();
1173   int num_pairs = 4;
1174   __m128i sum = zero;
1175   int32_t tmp[4];
1176   while (num_pairs-- > 0) {
1177     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1178     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1179     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1180     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1181     // subtract
1182     const __m128i c0 = _mm_subs_epi16(a0, b0);
1183     const __m128i c1 = _mm_subs_epi16(a1, b1);
1184     // multiply/accumulate with self
1185     const __m128i d0 = _mm_madd_epi16(c0, c0);
1186     const __m128i d1 = _mm_madd_epi16(c1, c1);
1187     // collect
1188     const __m128i sum01 = _mm_add_epi32(d0, d1);
1189     sum = _mm_add_epi32(sum, sum01);
1190     a += 2 * BPS;
1191     b += 2 * BPS;
1192   }
1193   _mm_storeu_si128((__m128i*)tmp, sum);
1194   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1195 }
1196 #undef LOAD_8x16b
1197 
SSE4x4_SSE2(const uint8_t * WEBP_RESTRICT a,const uint8_t * WEBP_RESTRICT b)1198 static int SSE4x4_SSE2(const uint8_t* WEBP_RESTRICT a,
1199                        const uint8_t* WEBP_RESTRICT b) {
1200   const __m128i zero = _mm_setzero_si128();
1201 
1202   // Load values. Note that we read 8 pixels instead of 4,
1203   // but the a/b buffers are over-allocated to that effect.
1204   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1205   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1206   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1207   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1208   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1209   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1210   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1211   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1212   // Combine pair of lines.
1213   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1214   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1215   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1216   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1217   // Convert to 16b.
1218   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1219   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1220   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1221   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1222   // subtract, square and accumulate
1223   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1224   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1225   const __m128i e0 = _mm_madd_epi16(d0, d0);
1226   const __m128i e1 = _mm_madd_epi16(d1, d1);
1227   const __m128i sum = _mm_add_epi32(e0, e1);
1228 
1229   int32_t tmp[4];
1230   _mm_storeu_si128((__m128i*)tmp, sum);
1231   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1232 }
1233 
1234 //------------------------------------------------------------------------------
1235 
Mean16x4_SSE2(const uint8_t * WEBP_RESTRICT ref,uint32_t dc[4])1236 static void Mean16x4_SSE2(const uint8_t* WEBP_RESTRICT ref, uint32_t dc[4]) {
1237   const __m128i mask = _mm_set1_epi16(0x00ff);
1238   const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1239   const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1240   const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1241   const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1242   const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1243   const __m128i b1 = _mm_srli_epi16(a1, 8);
1244   const __m128i b2 = _mm_srli_epi16(a2, 8);
1245   const __m128i b3 = _mm_srli_epi16(a3, 8);
1246   const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1247   const __m128i c1 = _mm_and_si128(a1, mask);
1248   const __m128i c2 = _mm_and_si128(a2, mask);
1249   const __m128i c3 = _mm_and_si128(a3, mask);
1250   const __m128i d0 = _mm_add_epi32(b0, c0);
1251   const __m128i d1 = _mm_add_epi32(b1, c1);
1252   const __m128i d2 = _mm_add_epi32(b2, c2);
1253   const __m128i d3 = _mm_add_epi32(b3, c3);
1254   const __m128i e0 = _mm_add_epi32(d0, d1);
1255   const __m128i e1 = _mm_add_epi32(d2, d3);
1256   const __m128i f0 = _mm_add_epi32(e0, e1);
1257   uint16_t tmp[8];
1258   _mm_storeu_si128((__m128i*)tmp, f0);
1259   dc[0] = tmp[0] + tmp[1];
1260   dc[1] = tmp[2] + tmp[3];
1261   dc[2] = tmp[4] + tmp[5];
1262   dc[3] = tmp[6] + tmp[7];
1263 }
1264 
1265 //------------------------------------------------------------------------------
1266 // Texture distortion
1267 //
1268 // We try to match the spectral content (weighted) between source and
1269 // reconstructed samples.
1270 
1271 // Hadamard transform
1272 // Returns the weighted sum of the absolute value of transformed coefficients.
1273 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * WEBP_RESTRICT inA,const uint8_t * WEBP_RESTRICT inB,const uint16_t * WEBP_RESTRICT const w)1274 static int TTransform_SSE2(const uint8_t* WEBP_RESTRICT inA,
1275                            const uint8_t* WEBP_RESTRICT inB,
1276                            const uint16_t* WEBP_RESTRICT const w) {
1277   int32_t sum[4];
1278   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1279   const __m128i zero = _mm_setzero_si128();
1280 
1281   // Load and combine inputs.
1282   {
1283     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1284     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1285     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1286     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1287     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1288     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1289     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1290     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1291 
1292     // Combine inA and inB (we'll do two transforms in parallel).
1293     const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1294     const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1295     const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1296     const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1297     tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1298     tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1299     tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1300     tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1301     // a00 a01 a02 a03   b00 b01 b02 b03
1302     // a10 a11 a12 a13   b10 b11 b12 b13
1303     // a20 a21 a22 a23   b20 b21 b22 b23
1304     // a30 a31 a32 a33   b30 b31 b32 b33
1305   }
1306 
1307   // Vertical pass first to avoid a transpose (vertical and horizontal passes
1308   // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1309   {
1310     // Calculate a and b (two 4x4 at once).
1311     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1312     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1313     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1314     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1315     const __m128i b0 = _mm_add_epi16(a0, a1);
1316     const __m128i b1 = _mm_add_epi16(a3, a2);
1317     const __m128i b2 = _mm_sub_epi16(a3, a2);
1318     const __m128i b3 = _mm_sub_epi16(a0, a1);
1319     // a00 a01 a02 a03   b00 b01 b02 b03
1320     // a10 a11 a12 a13   b10 b11 b12 b13
1321     // a20 a21 a22 a23   b20 b21 b22 b23
1322     // a30 a31 a32 a33   b30 b31 b32 b33
1323 
1324     // Transpose the two 4x4.
1325     VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1326   }
1327 
1328   // Horizontal pass and difference of weighted sums.
1329   {
1330     // Load all inputs.
1331     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1332     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1333 
1334     // Calculate a and b (two 4x4 at once).
1335     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1336     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1337     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1338     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1339     const __m128i b0 = _mm_add_epi16(a0, a1);
1340     const __m128i b1 = _mm_add_epi16(a3, a2);
1341     const __m128i b2 = _mm_sub_epi16(a3, a2);
1342     const __m128i b3 = _mm_sub_epi16(a0, a1);
1343 
1344     // Separate the transforms of inA and inB.
1345     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1346     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1347     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1348     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1349 
1350     {
1351       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1352       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1353       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1354       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1355       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1356       A_b2 = _mm_max_epi16(A_b2, d1);
1357       B_b0 = _mm_max_epi16(B_b0, d2);
1358       B_b2 = _mm_max_epi16(B_b2, d3);
1359     }
1360 
1361     // weighted sums
1362     A_b0 = _mm_madd_epi16(A_b0, w_0);
1363     A_b2 = _mm_madd_epi16(A_b2, w_8);
1364     B_b0 = _mm_madd_epi16(B_b0, w_0);
1365     B_b2 = _mm_madd_epi16(B_b2, w_8);
1366     A_b0 = _mm_add_epi32(A_b0, A_b2);
1367     B_b0 = _mm_add_epi32(B_b0, B_b2);
1368 
1369     // difference of weighted sums
1370     A_b0 = _mm_sub_epi32(A_b0, B_b0);
1371     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1372   }
1373   return sum[0] + sum[1] + sum[2] + sum[3];
1374 }
1375 
Disto4x4_SSE2(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)1376 static int Disto4x4_SSE2(const uint8_t* WEBP_RESTRICT const a,
1377                          const uint8_t* WEBP_RESTRICT const b,
1378                          const uint16_t* WEBP_RESTRICT const w) {
1379   const int diff_sum = TTransform_SSE2(a, b, w);
1380   return abs(diff_sum) >> 5;
1381 }
1382 
Disto16x16_SSE2(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)1383 static int Disto16x16_SSE2(const uint8_t* WEBP_RESTRICT const a,
1384                            const uint8_t* WEBP_RESTRICT const b,
1385                            const uint16_t* WEBP_RESTRICT const w) {
1386   int D = 0;
1387   int x, y;
1388   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1389     for (x = 0; x < 16; x += 4) {
1390       D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1391     }
1392   }
1393   return D;
1394 }
1395 
1396 //------------------------------------------------------------------------------
1397 // Quantization
1398 //
1399 
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * WEBP_RESTRICT const sharpen,const VP8Matrix * WEBP_RESTRICT const mtx)1400 static WEBP_INLINE int DoQuantizeBlock_SSE2(
1401     int16_t in[16], int16_t out[16],
1402     const uint16_t* WEBP_RESTRICT const sharpen,
1403     const VP8Matrix* WEBP_RESTRICT const mtx) {
1404   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1405   const __m128i zero = _mm_setzero_si128();
1406   __m128i coeff0, coeff8;
1407   __m128i out0, out8;
1408   __m128i packed_out;
1409 
1410   // Load all inputs.
1411   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1412   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1413   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1414   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1415   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1416   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1417 
1418   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1419   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1420   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1421 
1422   // coeff = abs(in) = (in ^ sign) - sign
1423   coeff0 = _mm_xor_si128(in0, sign0);
1424   coeff8 = _mm_xor_si128(in8, sign8);
1425   coeff0 = _mm_sub_epi16(coeff0, sign0);
1426   coeff8 = _mm_sub_epi16(coeff8, sign8);
1427 
1428   // coeff = abs(in) + sharpen
1429   if (sharpen != NULL) {
1430     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1431     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1432     coeff0 = _mm_add_epi16(coeff0, sharpen0);
1433     coeff8 = _mm_add_epi16(coeff8, sharpen8);
1434   }
1435 
1436   // out = (coeff * iQ + B) >> QFIX
1437   {
1438     // doing calculations with 32b precision (QFIX=17)
1439     // out = (coeff * iQ)
1440     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1441     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1442     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1443     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1444     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1445     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1446     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1447     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1448     // out = (coeff * iQ + B)
1449     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1450     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1451     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1452     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1453     out_00 = _mm_add_epi32(out_00, bias_00);
1454     out_04 = _mm_add_epi32(out_04, bias_04);
1455     out_08 = _mm_add_epi32(out_08, bias_08);
1456     out_12 = _mm_add_epi32(out_12, bias_12);
1457     // out = QUANTDIV(coeff, iQ, B, QFIX)
1458     out_00 = _mm_srai_epi32(out_00, QFIX);
1459     out_04 = _mm_srai_epi32(out_04, QFIX);
1460     out_08 = _mm_srai_epi32(out_08, QFIX);
1461     out_12 = _mm_srai_epi32(out_12, QFIX);
1462 
1463     // pack result as 16b
1464     out0 = _mm_packs_epi32(out_00, out_04);
1465     out8 = _mm_packs_epi32(out_08, out_12);
1466 
1467     // if (coeff > 2047) coeff = 2047
1468     out0 = _mm_min_epi16(out0, max_coeff_2047);
1469     out8 = _mm_min_epi16(out8, max_coeff_2047);
1470   }
1471 
1472   // get sign back (if (sign[j]) out_n = -out_n)
1473   out0 = _mm_xor_si128(out0, sign0);
1474   out8 = _mm_xor_si128(out8, sign8);
1475   out0 = _mm_sub_epi16(out0, sign0);
1476   out8 = _mm_sub_epi16(out8, sign8);
1477 
1478   // in = out * Q
1479   in0 = _mm_mullo_epi16(out0, q0);
1480   in8 = _mm_mullo_epi16(out8, q8);
1481 
1482   _mm_storeu_si128((__m128i*)&in[0], in0);
1483   _mm_storeu_si128((__m128i*)&in[8], in8);
1484 
1485   // zigzag the output before storing it.
1486   //
1487   // The zigzag pattern can almost be reproduced with a small sequence of
1488   // shuffles. After it, we only need to swap the 7th (ending up in third
1489   // position instead of twelfth) and 8th values.
1490   {
1491     __m128i outZ0, outZ8;
1492     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1493     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1494     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1495     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1496     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1497     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1498     _mm_storeu_si128((__m128i*)&out[0], outZ0);
1499     _mm_storeu_si128((__m128i*)&out[8], outZ8);
1500     packed_out = _mm_packs_epi16(outZ0, outZ8);
1501   }
1502   {
1503     const int16_t outZ_12 = out[12];
1504     const int16_t outZ_3 = out[3];
1505     out[3] = outZ_12;
1506     out[12] = outZ_3;
1507   }
1508 
1509   // detect if all 'out' values are zeroes or not
1510   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1511 }
1512 
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)1513 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1514                               const VP8Matrix* WEBP_RESTRICT const mtx) {
1515   return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1516 }
1517 
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)1518 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1519                                  const VP8Matrix* WEBP_RESTRICT const mtx) {
1520   return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1521 }
1522 
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * WEBP_RESTRICT const mtx)1523 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1524                                 const VP8Matrix* WEBP_RESTRICT const mtx) {
1525   int nz;
1526   const uint16_t* const sharpen = &mtx->sharpen_[0];
1527   nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1528   nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1529   return nz;
1530 }
1531 
1532 //------------------------------------------------------------------------------
1533 // Entry point
1534 
1535 extern void VP8EncDspInitSSE2(void);
1536 
VP8EncDspInitSSE2(void)1537 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1538   VP8CollectHistogram = CollectHistogram_SSE2;
1539   VP8EncPredLuma16 = Intra16Preds_SSE2;
1540   VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1541   VP8EncPredLuma4 = Intra4Preds_SSE2;
1542   VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1543   VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1544   VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1545   VP8ITransform = ITransform_SSE2;
1546   VP8FTransform = FTransform_SSE2;
1547   VP8FTransform2 = FTransform2_SSE2;
1548   VP8FTransformWHT = FTransformWHT_SSE2;
1549   VP8SSE16x16 = SSE16x16_SSE2;
1550   VP8SSE16x8 = SSE16x8_SSE2;
1551   VP8SSE8x8 = SSE8x8_SSE2;
1552   VP8SSE4x4 = SSE4x4_SSE2;
1553   VP8TDisto4x4 = Disto4x4_SSE2;
1554   VP8TDisto16x16 = Disto16x16_SSE2;
1555   VP8Mean16x4 = Mean16x4_SSE2;
1556 }
1557 
1558 #else  // !WEBP_USE_SSE2
1559 
1560 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1561 
1562 #endif  // WEBP_USE_SSE2
1563