• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 
13 #include "src/enc/backward_references_enc.h"
14 
15 #include <assert.h>
16 
17 #include "src/dsp/dsp.h"
18 #include "src/dsp/lossless.h"
19 #include "src/dsp/lossless_common.h"
20 #include "src/enc/histogram_enc.h"
21 #include "src/enc/vp8i_enc.h"
22 #include "src/utils/color_cache_utils.h"
23 #include "src/utils/utils.h"
24 #include "src/webp/encode.h"
25 
26 #define MIN_BLOCK_SIZE 256  // minimum block size for backward references
27 
28 // 1M window (4M bytes) minus 120 special codes for short distances.
29 #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
30 
31 // Minimum number of pixels for which it is cheaper to encode a
32 // distance + length instead of each pixel as a literal.
33 #define MIN_LENGTH 4
34 
35 // -----------------------------------------------------------------------------
36 
37 static const uint8_t plane_to_code_lut[128] = {
38  96,   73,  55,  39,  23,  13,   5,  1,  255, 255, 255, 255, 255, 255, 255, 255,
39  101,  78,  58,  42,  26,  16,   8,  2,    0,   3,  9,   17,  27,  43,  59,  79,
40  102,  86,  62,  46,  32,  20,  10,  6,    4,   7,  11,  21,  33,  47,  63,  87,
41  105,  90,  70,  52,  37,  28,  18,  14,  12,  15,  19,  29,  38,  53,  71,  91,
42  110,  99,  82,  66,  48,  35,  30,  24,  22,  25,  31,  36,  49,  67,  83, 100,
43  115, 108,  94,  76,  64,  50,  44,  40,  34,  41,  45,  51,  65,  77,  95, 109,
44  118, 113, 103,  92,  80,  68,  60,  56,  54,  57,  61,  69,  81,  93, 104, 114,
45  119, 116, 111, 106,  97,  88,  84,  74,  72,  75,  85,  89,  98, 107, 112, 117
46 };
47 
48 extern int VP8LDistanceToPlaneCode(int xsize, int dist);
VP8LDistanceToPlaneCode(int xsize,int dist)49 int VP8LDistanceToPlaneCode(int xsize, int dist) {
50   const int yoffset = dist / xsize;
51   const int xoffset = dist - yoffset * xsize;
52   if (xoffset <= 8 && yoffset < 8) {
53     return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
54   } else if (xoffset > xsize - 8 && yoffset < 7) {
55     return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
56   }
57   return dist + 120;
58 }
59 
60 // Returns the exact index where array1 and array2 are different. For an index
61 // inferior or equal to best_len_match, the return value just has to be strictly
62 // inferior to best_len_match. The current behavior is to return 0 if this index
63 // is best_len_match, and the index itself otherwise.
64 // If no two elements are the same, it returns max_limit.
FindMatchLength(const uint32_t * const array1,const uint32_t * const array2,int best_len_match,int max_limit)65 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
66                                        const uint32_t* const array2,
67                                        int best_len_match, int max_limit) {
68   // Before 'expensive' linear match, check if the two arrays match at the
69   // current best length index.
70   if (array1[best_len_match] != array2[best_len_match]) return 0;
71 
72   return VP8LVectorMismatch(array1, array2, max_limit);
73 }
74 
75 // -----------------------------------------------------------------------------
76 //  VP8LBackwardRefs
77 
78 struct PixOrCopyBlock {
79   PixOrCopyBlock* next_;   // next block (or NULL)
80   PixOrCopy* start_;       // data start
81   int size_;               // currently used size
82 };
83 
84 extern void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs);
VP8LClearBackwardRefs(VP8LBackwardRefs * const refs)85 void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) {
86   assert(refs != NULL);
87   if (refs->tail_ != NULL) {
88     *refs->tail_ = refs->free_blocks_;  // recycle all blocks at once
89   }
90   refs->free_blocks_ = refs->refs_;
91   refs->tail_ = &refs->refs_;
92   refs->last_block_ = NULL;
93   refs->refs_ = NULL;
94 }
95 
VP8LBackwardRefsClear(VP8LBackwardRefs * const refs)96 void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
97   assert(refs != NULL);
98   VP8LClearBackwardRefs(refs);
99   while (refs->free_blocks_ != NULL) {
100     PixOrCopyBlock* const next = refs->free_blocks_->next_;
101     WebPSafeFree(refs->free_blocks_);
102     refs->free_blocks_ = next;
103   }
104 }
105 
106 // Swaps the content of two VP8LBackwardRefs.
BackwardRefsSwap(VP8LBackwardRefs * const refs1,VP8LBackwardRefs * const refs2)107 static void BackwardRefsSwap(VP8LBackwardRefs* const refs1,
108                              VP8LBackwardRefs* const refs2) {
109   const int point_to_refs1 =
110       (refs1->tail_ != NULL && refs1->tail_ == &refs1->refs_);
111   const int point_to_refs2 =
112       (refs2->tail_ != NULL && refs2->tail_ == &refs2->refs_);
113   const VP8LBackwardRefs tmp = *refs1;
114   *refs1 = *refs2;
115   *refs2 = tmp;
116   if (point_to_refs2) refs1->tail_ = &refs1->refs_;
117   if (point_to_refs1) refs2->tail_ = &refs2->refs_;
118 }
119 
VP8LBackwardRefsInit(VP8LBackwardRefs * const refs,int block_size)120 void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
121   assert(refs != NULL);
122   memset(refs, 0, sizeof(*refs));
123   refs->tail_ = &refs->refs_;
124   refs->block_size_ =
125       (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
126 }
127 
VP8LRefsCursorInit(const VP8LBackwardRefs * const refs)128 VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
129   VP8LRefsCursor c;
130   c.cur_block_ = refs->refs_;
131   if (refs->refs_ != NULL) {
132     c.cur_pos = c.cur_block_->start_;
133     c.last_pos_ = c.cur_pos + c.cur_block_->size_;
134   } else {
135     c.cur_pos = NULL;
136     c.last_pos_ = NULL;
137   }
138   return c;
139 }
140 
VP8LRefsCursorNextBlock(VP8LRefsCursor * const c)141 void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
142   PixOrCopyBlock* const b = c->cur_block_->next_;
143   c->cur_pos = (b == NULL) ? NULL : b->start_;
144   c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
145   c->cur_block_ = b;
146 }
147 
148 // Create a new block, either from the free list or allocated
BackwardRefsNewBlock(VP8LBackwardRefs * const refs)149 static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
150   PixOrCopyBlock* b = refs->free_blocks_;
151   if (b == NULL) {   // allocate new memory chunk
152     const size_t total_size =
153         sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
154     b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
155     if (b == NULL) {
156       refs->error_ |= 1;
157       return NULL;
158     }
159     b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b));  // not always aligned
160   } else {  // recycle from free-list
161     refs->free_blocks_ = b->next_;
162   }
163   *refs->tail_ = b;
164   refs->tail_ = &b->next_;
165   refs->last_block_ = b;
166   b->next_ = NULL;
167   b->size_ = 0;
168   return b;
169 }
170 
171 // Return 1 on success, 0 on error.
BackwardRefsClone(const VP8LBackwardRefs * const from,VP8LBackwardRefs * const to)172 static int BackwardRefsClone(const VP8LBackwardRefs* const from,
173                              VP8LBackwardRefs* const to) {
174   const PixOrCopyBlock* block_from = from->refs_;
175   VP8LClearBackwardRefs(to);
176   while (block_from != NULL) {
177     PixOrCopyBlock* const block_to = BackwardRefsNewBlock(to);
178     if (block_to == NULL) return 0;
179     memcpy(block_to->start_, block_from->start_,
180            block_from->size_ * sizeof(PixOrCopy));
181     block_to->size_ = block_from->size_;
182     block_from = block_from->next_;
183   }
184   return 1;
185 }
186 
187 extern void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
188                                       const PixOrCopy v);
VP8LBackwardRefsCursorAdd(VP8LBackwardRefs * const refs,const PixOrCopy v)189 void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
190                                const PixOrCopy v) {
191   PixOrCopyBlock* b = refs->last_block_;
192   if (b == NULL || b->size_ == refs->block_size_) {
193     b = BackwardRefsNewBlock(refs);
194     if (b == NULL) return;   // refs->error_ is set
195   }
196   b->start_[b->size_++] = v;
197 }
198 
199 // -----------------------------------------------------------------------------
200 // Hash chains
201 
VP8LHashChainInit(VP8LHashChain * const p,int size)202 int VP8LHashChainInit(VP8LHashChain* const p, int size) {
203   assert(p->size_ == 0);
204   assert(p->offset_length_ == NULL);
205   assert(size > 0);
206   p->offset_length_ =
207       (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
208   if (p->offset_length_ == NULL) return 0;
209   p->size_ = size;
210 
211   return 1;
212 }
213 
VP8LHashChainClear(VP8LHashChain * const p)214 void VP8LHashChainClear(VP8LHashChain* const p) {
215   assert(p != NULL);
216   WebPSafeFree(p->offset_length_);
217 
218   p->size_ = 0;
219   p->offset_length_ = NULL;
220 }
221 
222 // -----------------------------------------------------------------------------
223 
224 static const uint32_t kHashMultiplierHi = 0xc6a4a793u;
225 static const uint32_t kHashMultiplierLo = 0x5bd1e996u;
226 
227 static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
GetPixPairHash64(const uint32_t * const argb)228 uint32_t GetPixPairHash64(const uint32_t* const argb) {
229   uint32_t key;
230   key  = argb[1] * kHashMultiplierHi;
231   key += argb[0] * kHashMultiplierLo;
232   key = key >> (32 - HASH_BITS);
233   return key;
234 }
235 
236 // Returns the maximum number of hash chain lookups to do for a
237 // given compression quality. Return value in range [8, 86].
GetMaxItersForQuality(int quality)238 static int GetMaxItersForQuality(int quality) {
239   return 8 + (quality * quality) / 128;
240 }
241 
GetWindowSizeForHashChain(int quality,int xsize)242 static int GetWindowSizeForHashChain(int quality, int xsize) {
243   const int max_window_size = (quality > 75) ? WINDOW_SIZE
244                             : (quality > 50) ? (xsize << 8)
245                             : (quality > 25) ? (xsize << 6)
246                             : (xsize << 4);
247   assert(xsize > 0);
248   return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
249 }
250 
MaxFindCopyLength(int len)251 static WEBP_INLINE int MaxFindCopyLength(int len) {
252   return (len < MAX_LENGTH) ? len : MAX_LENGTH;
253 }
254 
VP8LHashChainFill(VP8LHashChain * const p,int quality,const uint32_t * const argb,int xsize,int ysize,int low_effort,const WebPPicture * const pic,int percent_range,int * const percent)255 int VP8LHashChainFill(VP8LHashChain* const p, int quality,
256                       const uint32_t* const argb, int xsize, int ysize,
257                       int low_effort, const WebPPicture* const pic,
258                       int percent_range, int* const percent) {
259   const int size = xsize * ysize;
260   const int iter_max = GetMaxItersForQuality(quality);
261   const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
262   int remaining_percent = percent_range;
263   int percent_start = *percent;
264   int pos;
265   int argb_comp;
266   uint32_t base_position;
267   int32_t* hash_to_first_index;
268   // Temporarily use the p->offset_length_ as a hash chain.
269   int32_t* chain = (int32_t*)p->offset_length_;
270   assert(size > 0);
271   assert(p->size_ != 0);
272   assert(p->offset_length_ != NULL);
273 
274   if (size <= 2) {
275     p->offset_length_[0] = p->offset_length_[size - 1] = 0;
276     return 1;
277   }
278 
279   hash_to_first_index =
280       (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
281   if (hash_to_first_index == NULL) {
282     return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
283   }
284 
285   percent_range = remaining_percent / 2;
286   remaining_percent -= percent_range;
287 
288   // Set the int32_t array to -1.
289   memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
290   // Fill the chain linking pixels with the same hash.
291   argb_comp = (argb[0] == argb[1]);
292   for (pos = 0; pos < size - 2;) {
293     uint32_t hash_code;
294     const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
295     if (argb_comp && argb_comp_next) {
296       // Consecutive pixels with the same color will share the same hash.
297       // We therefore use a different hash: the color and its repetition
298       // length.
299       uint32_t tmp[2];
300       uint32_t len = 1;
301       tmp[0] = argb[pos];
302       // Figure out how far the pixels are the same.
303       // The last pixel has a different 64 bit hash, as its next pixel does
304       // not have the same color, so we just need to get to the last pixel equal
305       // to its follower.
306       while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
307         ++len;
308       }
309       if (len > MAX_LENGTH) {
310         // Skip the pixels that match for distance=1 and length>MAX_LENGTH
311         // because they are linked to their predecessor and we automatically
312         // check that in the main for loop below. Skipping means setting no
313         // predecessor in the chain, hence -1.
314         memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
315         pos += len - MAX_LENGTH;
316         len = MAX_LENGTH;
317       }
318       // Process the rest of the hash chain.
319       while (len) {
320         tmp[1] = len--;
321         hash_code = GetPixPairHash64(tmp);
322         chain[pos] = hash_to_first_index[hash_code];
323         hash_to_first_index[hash_code] = pos++;
324       }
325       argb_comp = 0;
326     } else {
327       // Just move one pixel forward.
328       hash_code = GetPixPairHash64(argb + pos);
329       chain[pos] = hash_to_first_index[hash_code];
330       hash_to_first_index[hash_code] = pos++;
331       argb_comp = argb_comp_next;
332     }
333 
334     if (!WebPReportProgress(
335             pic, percent_start + percent_range * pos / (size - 2), percent)) {
336       WebPSafeFree(hash_to_first_index);
337       return 0;
338     }
339   }
340   // Process the penultimate pixel.
341   chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
342 
343   WebPSafeFree(hash_to_first_index);
344 
345   percent_start += percent_range;
346   if (!WebPReportProgress(pic, percent_start, percent)) return 0;
347   percent_range = remaining_percent;
348 
349   // Find the best match interval at each pixel, defined by an offset to the
350   // pixel and a length. The right-most pixel cannot match anything to the right
351   // (hence a best length of 0) and the left-most pixel nothing to the left
352   // (hence an offset of 0).
353   assert(size > 2);
354   p->offset_length_[0] = p->offset_length_[size - 1] = 0;
355   for (base_position = size - 2; base_position > 0;) {
356     const int max_len = MaxFindCopyLength(size - 1 - base_position);
357     const uint32_t* const argb_start = argb + base_position;
358     int iter = iter_max;
359     int best_length = 0;
360     uint32_t best_distance = 0;
361     uint32_t best_argb;
362     const int min_pos =
363         (base_position > window_size) ? base_position - window_size : 0;
364     const int length_max = (max_len < 256) ? max_len : 256;
365     uint32_t max_base_position;
366 
367     pos = chain[base_position];
368     if (!low_effort) {
369       int curr_length;
370       // Heuristic: use the comparison with the above line as an initialization.
371       if (base_position >= (uint32_t)xsize) {
372         curr_length = FindMatchLength(argb_start - xsize, argb_start,
373                                       best_length, max_len);
374         if (curr_length > best_length) {
375           best_length = curr_length;
376           best_distance = xsize;
377         }
378         --iter;
379       }
380       // Heuristic: compare to the previous pixel.
381       curr_length =
382           FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
383       if (curr_length > best_length) {
384         best_length = curr_length;
385         best_distance = 1;
386       }
387       --iter;
388       // Skip the for loop if we already have the maximum.
389       if (best_length == MAX_LENGTH) pos = min_pos - 1;
390     }
391     best_argb = argb_start[best_length];
392 
393     for (; pos >= min_pos && --iter; pos = chain[pos]) {
394       int curr_length;
395       assert(base_position > (uint32_t)pos);
396 
397       if (argb[pos + best_length] != best_argb) continue;
398 
399       curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
400       if (best_length < curr_length) {
401         best_length = curr_length;
402         best_distance = base_position - pos;
403         best_argb = argb_start[best_length];
404         // Stop if we have reached a good enough length.
405         if (best_length >= length_max) break;
406       }
407     }
408     // We have the best match but in case the two intervals continue matching
409     // to the left, we have the best matches for the left-extended pixels.
410     max_base_position = base_position;
411     while (1) {
412       assert(best_length <= MAX_LENGTH);
413       assert(best_distance <= WINDOW_SIZE);
414       p->offset_length_[base_position] =
415           (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
416       --base_position;
417       // Stop if we don't have a match or if we are out of bounds.
418       if (best_distance == 0 || base_position == 0) break;
419       // Stop if we cannot extend the matching intervals to the left.
420       if (base_position < best_distance ||
421           argb[base_position - best_distance] != argb[base_position]) {
422         break;
423       }
424       // Stop if we are matching at its limit because there could be a closer
425       // matching interval with the same maximum length. Then again, if the
426       // matching interval is as close as possible (best_distance == 1), we will
427       // never find anything better so let's continue.
428       if (best_length == MAX_LENGTH && best_distance != 1 &&
429           base_position + MAX_LENGTH < max_base_position) {
430         break;
431       }
432       if (best_length < MAX_LENGTH) {
433         ++best_length;
434         max_base_position = base_position;
435       }
436     }
437 
438     if (!WebPReportProgress(pic,
439                             percent_start + percent_range *
440                                                 (size - 2 - base_position) /
441                                                 (size - 2),
442                             percent)) {
443       return 0;
444     }
445   }
446 
447   return WebPReportProgress(pic, percent_start + percent_range, percent);
448 }
449 
AddSingleLiteral(uint32_t pixel,int use_color_cache,VP8LColorCache * const hashers,VP8LBackwardRefs * const refs)450 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
451                                          VP8LColorCache* const hashers,
452                                          VP8LBackwardRefs* const refs) {
453   PixOrCopy v;
454   if (use_color_cache) {
455     const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
456     if (VP8LColorCacheLookup(hashers, key) == pixel) {
457       v = PixOrCopyCreateCacheIdx(key);
458     } else {
459       v = PixOrCopyCreateLiteral(pixel);
460       VP8LColorCacheSet(hashers, key, pixel);
461     }
462   } else {
463     v = PixOrCopyCreateLiteral(pixel);
464   }
465   VP8LBackwardRefsCursorAdd(refs, v);
466 }
467 
BackwardReferencesRle(int xsize,int ysize,const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)468 static int BackwardReferencesRle(int xsize, int ysize,
469                                  const uint32_t* const argb,
470                                  int cache_bits, VP8LBackwardRefs* const refs) {
471   const int pix_count = xsize * ysize;
472   int i, k;
473   const int use_color_cache = (cache_bits > 0);
474   VP8LColorCache hashers;
475 
476   if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
477     return 0;
478   }
479   VP8LClearBackwardRefs(refs);
480   // Add first pixel as literal.
481   AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
482   i = 1;
483   while (i < pix_count) {
484     const int max_len = MaxFindCopyLength(pix_count - i);
485     const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
486     const int prev_row_len = (i < xsize) ? 0 :
487         FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
488     if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
489       VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
490       // We don't need to update the color cache here since it is always the
491       // same pixel being copied, and that does not change the color cache
492       // state.
493       i += rle_len;
494     } else if (prev_row_len >= MIN_LENGTH) {
495       VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
496       if (use_color_cache) {
497         for (k = 0; k < prev_row_len; ++k) {
498           VP8LColorCacheInsert(&hashers, argb[i + k]);
499         }
500       }
501       i += prev_row_len;
502     } else {
503       AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
504       i++;
505     }
506   }
507   if (use_color_cache) VP8LColorCacheClear(&hashers);
508   return !refs->error_;
509 }
510 
BackwardReferencesLz77(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)511 static int BackwardReferencesLz77(int xsize, int ysize,
512                                   const uint32_t* const argb, int cache_bits,
513                                   const VP8LHashChain* const hash_chain,
514                                   VP8LBackwardRefs* const refs) {
515   int i;
516   int i_last_check = -1;
517   int ok = 0;
518   int cc_init = 0;
519   const int use_color_cache = (cache_bits > 0);
520   const int pix_count = xsize * ysize;
521   VP8LColorCache hashers;
522 
523   if (use_color_cache) {
524     cc_init = VP8LColorCacheInit(&hashers, cache_bits);
525     if (!cc_init) goto Error;
526   }
527   VP8LClearBackwardRefs(refs);
528   for (i = 0; i < pix_count;) {
529     // Alternative#1: Code the pixels starting at 'i' using backward reference.
530     int offset = 0;
531     int len = 0;
532     int j;
533     VP8LHashChainFindCopy(hash_chain, i, &offset, &len);
534     if (len >= MIN_LENGTH) {
535       const int len_ini = len;
536       int max_reach = 0;
537       const int j_max =
538           (i + len_ini >= pix_count) ? pix_count - 1 : i + len_ini;
539       // Only start from what we have not checked already.
540       i_last_check = (i > i_last_check) ? i : i_last_check;
541       // We know the best match for the current pixel but we try to find the
542       // best matches for the current pixel AND the next one combined.
543       // The naive method would use the intervals:
544       // [i,i+len) + [i+len, length of best match at i+len)
545       // while we check if we can use:
546       // [i,j) (where j<=i+len) + [j, length of best match at j)
547       for (j = i_last_check + 1; j <= j_max; ++j) {
548         const int len_j = VP8LHashChainFindLength(hash_chain, j);
549         const int reach =
550             j + (len_j >= MIN_LENGTH ? len_j : 1);  // 1 for single literal.
551         if (reach > max_reach) {
552           len = j - i;
553           max_reach = reach;
554           if (max_reach >= pix_count) break;
555         }
556       }
557     } else {
558       len = 1;
559     }
560     // Go with literal or backward reference.
561     assert(len > 0);
562     if (len == 1) {
563       AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
564     } else {
565       VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
566       if (use_color_cache) {
567         for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
568       }
569     }
570     i += len;
571   }
572 
573   ok = !refs->error_;
574  Error:
575   if (cc_init) VP8LColorCacheClear(&hashers);
576   return ok;
577 }
578 
579 // Compute an LZ77 by forcing matches to happen within a given distance cost.
580 // We therefore limit the algorithm to the lowest 32 values in the PlaneCode
581 // definition.
582 #define WINDOW_OFFSETS_SIZE_MAX 32
BackwardReferencesLz77Box(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain_best,VP8LHashChain * hash_chain,VP8LBackwardRefs * const refs)583 static int BackwardReferencesLz77Box(int xsize, int ysize,
584                                      const uint32_t* const argb, int cache_bits,
585                                      const VP8LHashChain* const hash_chain_best,
586                                      VP8LHashChain* hash_chain,
587                                      VP8LBackwardRefs* const refs) {
588   int i;
589   const int pix_count = xsize * ysize;
590   uint16_t* counts;
591   int window_offsets[WINDOW_OFFSETS_SIZE_MAX] = {0};
592   int window_offsets_new[WINDOW_OFFSETS_SIZE_MAX] = {0};
593   int window_offsets_size = 0;
594   int window_offsets_new_size = 0;
595   uint16_t* const counts_ini =
596       (uint16_t*)WebPSafeMalloc(xsize * ysize, sizeof(*counts_ini));
597   int best_offset_prev = -1, best_length_prev = -1;
598   if (counts_ini == NULL) return 0;
599 
600   // counts[i] counts how many times a pixel is repeated starting at position i.
601   i = pix_count - 2;
602   counts = counts_ini + i;
603   counts[1] = 1;
604   for (; i >= 0; --i, --counts) {
605     if (argb[i] == argb[i + 1]) {
606       // Max out the counts to MAX_LENGTH.
607       counts[0] = counts[1] + (counts[1] != MAX_LENGTH);
608     } else {
609       counts[0] = 1;
610     }
611   }
612 
613   // Figure out the window offsets around a pixel. They are stored in a
614   // spiraling order around the pixel as defined by VP8LDistanceToPlaneCode.
615   {
616     int x, y;
617     for (y = 0; y <= 6; ++y) {
618       for (x = -6; x <= 6; ++x) {
619         const int offset = y * xsize + x;
620         int plane_code;
621         // Ignore offsets that bring us after the pixel.
622         if (offset <= 0) continue;
623         plane_code = VP8LDistanceToPlaneCode(xsize, offset) - 1;
624         if (plane_code >= WINDOW_OFFSETS_SIZE_MAX) continue;
625         window_offsets[plane_code] = offset;
626       }
627     }
628     // For narrow images, not all plane codes are reached, so remove those.
629     for (i = 0; i < WINDOW_OFFSETS_SIZE_MAX; ++i) {
630       if (window_offsets[i] == 0) continue;
631       window_offsets[window_offsets_size++] = window_offsets[i];
632     }
633     // Given a pixel P, find the offsets that reach pixels unreachable from P-1
634     // with any of the offsets in window_offsets[].
635     for (i = 0; i < window_offsets_size; ++i) {
636       int j;
637       int is_reachable = 0;
638       for (j = 0; j < window_offsets_size && !is_reachable; ++j) {
639         is_reachable |= (window_offsets[i] == window_offsets[j] + 1);
640       }
641       if (!is_reachable) {
642         window_offsets_new[window_offsets_new_size] = window_offsets[i];
643         ++window_offsets_new_size;
644       }
645     }
646   }
647 
648   hash_chain->offset_length_[0] = 0;
649   for (i = 1; i < pix_count; ++i) {
650     int ind;
651     int best_length = VP8LHashChainFindLength(hash_chain_best, i);
652     int best_offset;
653     int do_compute = 1;
654 
655     if (best_length >= MAX_LENGTH) {
656       // Do not recompute the best match if we already have a maximal one in the
657       // window.
658       best_offset = VP8LHashChainFindOffset(hash_chain_best, i);
659       for (ind = 0; ind < window_offsets_size; ++ind) {
660         if (best_offset == window_offsets[ind]) {
661           do_compute = 0;
662           break;
663         }
664       }
665     }
666     if (do_compute) {
667       // Figure out if we should use the offset/length from the previous pixel
668       // as an initial guess and therefore only inspect the offsets in
669       // window_offsets_new[].
670       const int use_prev =
671           (best_length_prev > 1) && (best_length_prev < MAX_LENGTH);
672       const int num_ind =
673           use_prev ? window_offsets_new_size : window_offsets_size;
674       best_length = use_prev ? best_length_prev - 1 : 0;
675       best_offset = use_prev ? best_offset_prev : 0;
676       // Find the longest match in a window around the pixel.
677       for (ind = 0; ind < num_ind; ++ind) {
678         int curr_length = 0;
679         int j = i;
680         int j_offset =
681             use_prev ? i - window_offsets_new[ind] : i - window_offsets[ind];
682         if (j_offset < 0 || argb[j_offset] != argb[i]) continue;
683         // The longest match is the sum of how many times each pixel is
684         // repeated.
685         do {
686           const int counts_j_offset = counts_ini[j_offset];
687           const int counts_j = counts_ini[j];
688           if (counts_j_offset != counts_j) {
689             curr_length +=
690                 (counts_j_offset < counts_j) ? counts_j_offset : counts_j;
691             break;
692           }
693           // The same color is repeated counts_pos times at j_offset and j.
694           curr_length += counts_j_offset;
695           j_offset += counts_j_offset;
696           j += counts_j_offset;
697         } while (curr_length <= MAX_LENGTH && j < pix_count &&
698                  argb[j_offset] == argb[j]);
699         if (best_length < curr_length) {
700           best_offset =
701               use_prev ? window_offsets_new[ind] : window_offsets[ind];
702           if (curr_length >= MAX_LENGTH) {
703             best_length = MAX_LENGTH;
704             break;
705           } else {
706             best_length = curr_length;
707           }
708         }
709       }
710     }
711 
712     assert(i + best_length <= pix_count);
713     assert(best_length <= MAX_LENGTH);
714     if (best_length <= MIN_LENGTH) {
715       hash_chain->offset_length_[i] = 0;
716       best_offset_prev = 0;
717       best_length_prev = 0;
718     } else {
719       hash_chain->offset_length_[i] =
720           (best_offset << MAX_LENGTH_BITS) | (uint32_t)best_length;
721       best_offset_prev = best_offset;
722       best_length_prev = best_length;
723     }
724   }
725   hash_chain->offset_length_[0] = 0;
726   WebPSafeFree(counts_ini);
727 
728   return BackwardReferencesLz77(xsize, ysize, argb, cache_bits, hash_chain,
729                                 refs);
730 }
731 
732 // -----------------------------------------------------------------------------
733 
BackwardReferences2DLocality(int xsize,const VP8LBackwardRefs * const refs)734 static void BackwardReferences2DLocality(int xsize,
735                                          const VP8LBackwardRefs* const refs) {
736   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
737   while (VP8LRefsCursorOk(&c)) {
738     if (PixOrCopyIsCopy(c.cur_pos)) {
739       const int dist = c.cur_pos->argb_or_distance;
740       const int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
741       c.cur_pos->argb_or_distance = transformed_dist;
742     }
743     VP8LRefsCursorNext(&c);
744   }
745 }
746 
747 // Evaluate optimal cache bits for the local color cache.
748 // The input *best_cache_bits sets the maximum cache bits to use (passing 0
749 // implies disabling the local color cache). The local color cache is also
750 // disabled for the lower (<= 25) quality.
751 // Returns 0 in case of memory error.
CalculateBestCacheSize(const uint32_t * argb,int quality,const VP8LBackwardRefs * const refs,int * const best_cache_bits)752 static int CalculateBestCacheSize(const uint32_t* argb, int quality,
753                                   const VP8LBackwardRefs* const refs,
754                                   int* const best_cache_bits) {
755   int i;
756   const int cache_bits_max = (quality <= 25) ? 0 : *best_cache_bits;
757   uint64_t entropy_min = WEBP_UINT64_MAX;
758   int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
759   VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
760   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
761   VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
762   int ok = 0;
763 
764   assert(cache_bits_max >= 0 && cache_bits_max <= MAX_COLOR_CACHE_BITS);
765 
766   if (cache_bits_max == 0) {
767     *best_cache_bits = 0;
768     // Local color cache is disabled.
769     return 1;
770   }
771 
772   // Allocate data.
773   for (i = 0; i <= cache_bits_max; ++i) {
774     histos[i] = VP8LAllocateHistogram(i);
775     if (histos[i] == NULL) goto Error;
776     VP8LHistogramInit(histos[i], i, /*init_arrays=*/ 1);
777     if (i == 0) continue;
778     cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
779     if (!cc_init[i]) goto Error;
780   }
781 
782   // Find the cache_bits giving the lowest entropy. The search is done in a
783   // brute-force way as the function (entropy w.r.t cache_bits) can be
784   // anything in practice.
785   while (VP8LRefsCursorOk(&c)) {
786     const PixOrCopy* const v = c.cur_pos;
787     if (PixOrCopyIsLiteral(v)) {
788       const uint32_t pix = *argb++;
789       const uint32_t a = (pix >> 24) & 0xff;
790       const uint32_t r = (pix >> 16) & 0xff;
791       const uint32_t g = (pix >>  8) & 0xff;
792       const uint32_t b = (pix >>  0) & 0xff;
793       // The keys of the caches can be derived from the longest one.
794       int key = VP8LHashPix(pix, 32 - cache_bits_max);
795       // Do not use the color cache for cache_bits = 0.
796       ++histos[0]->blue_[b];
797       ++histos[0]->literal_[g];
798       ++histos[0]->red_[r];
799       ++histos[0]->alpha_[a];
800       // Deal with cache_bits > 0.
801       for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
802         if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
803           ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
804         } else {
805           VP8LColorCacheSet(&hashers[i], key, pix);
806           ++histos[i]->blue_[b];
807           ++histos[i]->literal_[g];
808           ++histos[i]->red_[r];
809           ++histos[i]->alpha_[a];
810         }
811       }
812     } else {
813       int code, extra_bits, extra_bits_value;
814       // We should compute the contribution of the (distance,length)
815       // histograms but those are the same independently from the cache size.
816       // As those constant contributions are in the end added to the other
817       // histogram contributions, we can ignore them, except for the length
818       // prefix that is part of the literal_ histogram.
819       int len = PixOrCopyLength(v);
820       uint32_t argb_prev = *argb ^ 0xffffffffu;
821       VP8LPrefixEncode(len, &code, &extra_bits, &extra_bits_value);
822       for (i = 0; i <= cache_bits_max; ++i) {
823         ++histos[i]->literal_[NUM_LITERAL_CODES + code];
824       }
825       // Update the color caches.
826       do {
827         if (*argb != argb_prev) {
828           // Efficiency: insert only if the color changes.
829           int key = VP8LHashPix(*argb, 32 - cache_bits_max);
830           for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
831             hashers[i].colors_[key] = *argb;
832           }
833           argb_prev = *argb;
834         }
835         argb++;
836       } while (--len != 0);
837     }
838     VP8LRefsCursorNext(&c);
839   }
840 
841   for (i = 0; i <= cache_bits_max; ++i) {
842     const uint64_t entropy = VP8LHistogramEstimateBits(histos[i]);
843     if (i == 0 || entropy < entropy_min) {
844       entropy_min = entropy;
845       *best_cache_bits = i;
846     }
847   }
848   ok = 1;
849  Error:
850   for (i = 0; i <= cache_bits_max; ++i) {
851     if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
852     VP8LFreeHistogram(histos[i]);
853   }
854   return ok;
855 }
856 
857 // Update (in-place) backward references for specified cache_bits.
BackwardRefsWithLocalCache(const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)858 static int BackwardRefsWithLocalCache(const uint32_t* const argb,
859                                       int cache_bits,
860                                       VP8LBackwardRefs* const refs) {
861   int pixel_index = 0;
862   VP8LColorCache hashers;
863   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
864   if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
865 
866   while (VP8LRefsCursorOk(&c)) {
867     PixOrCopy* const v = c.cur_pos;
868     if (PixOrCopyIsLiteral(v)) {
869       const uint32_t argb_literal = v->argb_or_distance;
870       const int ix = VP8LColorCacheContains(&hashers, argb_literal);
871       if (ix >= 0) {
872         // hashers contains argb_literal
873         *v = PixOrCopyCreateCacheIdx(ix);
874       } else {
875         VP8LColorCacheInsert(&hashers, argb_literal);
876       }
877       ++pixel_index;
878     } else {
879       // refs was created without local cache, so it can not have cache indexes.
880       int k;
881       assert(PixOrCopyIsCopy(v));
882       for (k = 0; k < v->len; ++k) {
883         VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
884       }
885     }
886     VP8LRefsCursorNext(&c);
887   }
888   VP8LColorCacheClear(&hashers);
889   return 1;
890 }
891 
GetBackwardReferencesLowEffort(int width,int height,const uint32_t * const argb,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_lz77)892 static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
893     int width, int height, const uint32_t* const argb,
894     int* const cache_bits, const VP8LHashChain* const hash_chain,
895     VP8LBackwardRefs* const refs_lz77) {
896   *cache_bits = 0;
897   if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
898     return NULL;
899   }
900   BackwardReferences2DLocality(width, refs_lz77);
901   return refs_lz77;
902 }
903 
904 extern int VP8LBackwardReferencesTraceBackwards(
905     int xsize, int ysize, const uint32_t* const argb, int cache_bits,
906     const VP8LHashChain* const hash_chain,
907     const VP8LBackwardRefs* const refs_src, VP8LBackwardRefs* const refs_dst);
GetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int lz77_types_to_try,int cache_bits_max,int do_no_cache,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,int * const cache_bits_best)908 static int GetBackwardReferences(int width, int height,
909                                  const uint32_t* const argb, int quality,
910                                  int lz77_types_to_try, int cache_bits_max,
911                                  int do_no_cache,
912                                  const VP8LHashChain* const hash_chain,
913                                  VP8LBackwardRefs* const refs,
914                                  int* const cache_bits_best) {
915   VP8LHistogram* histo = NULL;
916   int i, lz77_type;
917   // Index 0 is for a color cache, index 1 for no cache (if needed).
918   int lz77_types_best[2] = {0, 0};
919   uint64_t bit_costs_best[2] = {WEBP_UINT64_MAX, WEBP_UINT64_MAX};
920   VP8LHashChain hash_chain_box;
921   VP8LBackwardRefs* const refs_tmp = &refs[do_no_cache ? 2 : 1];
922   int status = 0;
923   memset(&hash_chain_box, 0, sizeof(hash_chain_box));
924 
925   histo = VP8LAllocateHistogram(MAX_COLOR_CACHE_BITS);
926   if (histo == NULL) goto Error;
927 
928   for (lz77_type = 1; lz77_types_to_try;
929        lz77_types_to_try &= ~lz77_type, lz77_type <<= 1) {
930     int res = 0;
931     uint64_t bit_cost = 0u;
932     if ((lz77_types_to_try & lz77_type) == 0) continue;
933     switch (lz77_type) {
934       case kLZ77RLE:
935         res = BackwardReferencesRle(width, height, argb, 0, refs_tmp);
936         break;
937       case kLZ77Standard:
938         // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color
939         // cache is not that different in practice.
940         res = BackwardReferencesLz77(width, height, argb, 0, hash_chain,
941                                      refs_tmp);
942         break;
943       case kLZ77Box:
944         if (!VP8LHashChainInit(&hash_chain_box, width * height)) goto Error;
945         res = BackwardReferencesLz77Box(width, height, argb, 0, hash_chain,
946                                         &hash_chain_box, refs_tmp);
947         break;
948       default:
949         assert(0);
950     }
951     if (!res) goto Error;
952 
953     // Start with the no color cache case.
954     for (i = 1; i >= 0; --i) {
955       int cache_bits = (i == 1) ? 0 : cache_bits_max;
956 
957       if (i == 1 && !do_no_cache) continue;
958 
959       if (i == 0) {
960         // Try with a color cache.
961         if (!CalculateBestCacheSize(argb, quality, refs_tmp, &cache_bits)) {
962           goto Error;
963         }
964         if (cache_bits > 0) {
965           if (!BackwardRefsWithLocalCache(argb, cache_bits, refs_tmp)) {
966             goto Error;
967           }
968         }
969       }
970 
971       if (i == 0 && do_no_cache && cache_bits == 0) {
972         // No need to re-compute bit_cost as it was computed at i == 1.
973       } else {
974         VP8LHistogramCreate(histo, refs_tmp, cache_bits);
975         bit_cost = VP8LHistogramEstimateBits(histo);
976       }
977 
978       if (bit_cost < bit_costs_best[i]) {
979         if (i == 1) {
980           // Do not swap as the full cache analysis would have the wrong
981           // VP8LBackwardRefs to start with.
982           if (!BackwardRefsClone(refs_tmp, &refs[1])) goto Error;
983         } else {
984           BackwardRefsSwap(refs_tmp, &refs[0]);
985         }
986         bit_costs_best[i] = bit_cost;
987         lz77_types_best[i] = lz77_type;
988         if (i == 0) *cache_bits_best = cache_bits;
989       }
990     }
991   }
992   assert(lz77_types_best[0] > 0);
993   assert(!do_no_cache || lz77_types_best[1] > 0);
994 
995   // Improve on simple LZ77 but only for high quality (TraceBackwards is
996   // costly).
997   for (i = 1; i >= 0; --i) {
998     if (i == 1 && !do_no_cache) continue;
999     if ((lz77_types_best[i] == kLZ77Standard ||
1000          lz77_types_best[i] == kLZ77Box) &&
1001         quality >= 25) {
1002       const VP8LHashChain* const hash_chain_tmp =
1003           (lz77_types_best[i] == kLZ77Standard) ? hash_chain : &hash_chain_box;
1004       const int cache_bits = (i == 1) ? 0 : *cache_bits_best;
1005       uint64_t bit_cost_trace;
1006       if (!VP8LBackwardReferencesTraceBackwards(width, height, argb, cache_bits,
1007                                                 hash_chain_tmp, &refs[i],
1008                                                 refs_tmp)) {
1009         goto Error;
1010       }
1011       VP8LHistogramCreate(histo, refs_tmp, cache_bits);
1012       bit_cost_trace = VP8LHistogramEstimateBits(histo);
1013       if (bit_cost_trace < bit_costs_best[i]) {
1014         BackwardRefsSwap(refs_tmp, &refs[i]);
1015       }
1016     }
1017 
1018     BackwardReferences2DLocality(width, &refs[i]);
1019 
1020     if (i == 1 && lz77_types_best[0] == lz77_types_best[1] &&
1021         *cache_bits_best == 0) {
1022       // If the best cache size is 0 and we have the same best LZ77, just copy
1023       // the data over and stop here.
1024       if (!BackwardRefsClone(&refs[1], &refs[0])) goto Error;
1025       break;
1026     }
1027   }
1028   status = 1;
1029 
1030  Error:
1031   VP8LHashChainClear(&hash_chain_box);
1032   VP8LFreeHistogram(histo);
1033   return status;
1034 }
1035 
VP8LGetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int low_effort,int lz77_types_to_try,int cache_bits_max,int do_no_cache,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,int * const cache_bits_best,const WebPPicture * const pic,int percent_range,int * const percent)1036 int VP8LGetBackwardReferences(
1037     int width, int height, const uint32_t* const argb, int quality,
1038     int low_effort, int lz77_types_to_try, int cache_bits_max, int do_no_cache,
1039     const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs,
1040     int* const cache_bits_best, const WebPPicture* const pic, int percent_range,
1041     int* const percent) {
1042   if (low_effort) {
1043     VP8LBackwardRefs* refs_best;
1044     *cache_bits_best = cache_bits_max;
1045     refs_best = GetBackwardReferencesLowEffort(
1046         width, height, argb, cache_bits_best, hash_chain, refs);
1047     if (refs_best == NULL) {
1048       return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1049     }
1050     // Set it in first position.
1051     BackwardRefsSwap(refs_best, &refs[0]);
1052   } else {
1053     if (!GetBackwardReferences(width, height, argb, quality, lz77_types_to_try,
1054                                cache_bits_max, do_no_cache, hash_chain, refs,
1055                                cache_bits_best)) {
1056       return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1057     }
1058   }
1059 
1060   return WebPReportProgress(pic, *percent + percent_range, percent);
1061 }
1062