• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless decoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 
18 #include "src/dsp/common_sse2.h"
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/lossless_common.h"
21 #include <emmintrin.h>
22 
23 //------------------------------------------------------------------------------
24 // Predictor Transform
25 
ClampedAddSubtractFull_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)26 static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
27                                                         uint32_t c1,
28                                                         uint32_t c2) {
29   const __m128i zero = _mm_setzero_si128();
30   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
31   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
32   const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
33   const __m128i V1 = _mm_add_epi16(C0, C1);
34   const __m128i V2 = _mm_sub_epi16(V1, C2);
35   const __m128i b = _mm_packus_epi16(V2, V2);
36   return (uint32_t)_mm_cvtsi128_si32(b);
37 }
38 
ClampedAddSubtractHalf_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)39 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
40                                                         uint32_t c1,
41                                                         uint32_t c2) {
42   const __m128i zero = _mm_setzero_si128();
43   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
44   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
45   const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
46   const __m128i avg = _mm_add_epi16(C1, C0);
47   const __m128i A0 = _mm_srli_epi16(avg, 1);
48   const __m128i A1 = _mm_sub_epi16(A0, B0);
49   const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
50   const __m128i A2 = _mm_sub_epi16(A1, BgtA);
51   const __m128i A3 = _mm_srai_epi16(A2, 1);
52   const __m128i A4 = _mm_add_epi16(A0, A3);
53   const __m128i A5 = _mm_packus_epi16(A4, A4);
54   return (uint32_t)_mm_cvtsi128_si32(A5);
55 }
56 
Select_SSE2(uint32_t a,uint32_t b,uint32_t c)57 static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
58   int pa_minus_pb;
59   const __m128i zero = _mm_setzero_si128();
60   const __m128i A0 = _mm_cvtsi32_si128((int)a);
61   const __m128i B0 = _mm_cvtsi32_si128((int)b);
62   const __m128i C0 = _mm_cvtsi32_si128((int)c);
63   const __m128i AC0 = _mm_subs_epu8(A0, C0);
64   const __m128i CA0 = _mm_subs_epu8(C0, A0);
65   const __m128i BC0 = _mm_subs_epu8(B0, C0);
66   const __m128i CB0 = _mm_subs_epu8(C0, B0);
67   const __m128i AC = _mm_or_si128(AC0, CA0);
68   const __m128i BC = _mm_or_si128(BC0, CB0);
69   const __m128i pa = _mm_unpacklo_epi8(AC, zero);  // |a - c|
70   const __m128i pb = _mm_unpacklo_epi8(BC, zero);  // |b - c|
71   const __m128i diff = _mm_sub_epi16(pb, pa);
72   {
73     int16_t out[8];
74     _mm_storeu_si128((__m128i*)out, diff);
75     pa_minus_pb = out[0] + out[1] + out[2] + out[3];
76   }
77   return (pa_minus_pb <= 0) ? a : b;
78 }
79 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)80 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
81                                        const __m128i* const a1,
82                                        __m128i* const avg) {
83   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
84   const __m128i ones = _mm_set1_epi8(1);
85   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
86   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
87   *avg = _mm_sub_epi8(avg1, one);
88 }
89 
Average2_uint32_SSE2(const uint32_t a0,const uint32_t a1,__m128i * const avg)90 static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
91                                              const uint32_t a1,
92                                              __m128i* const avg) {
93   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
94   const __m128i ones = _mm_set1_epi8(1);
95   const __m128i A0 = _mm_cvtsi32_si128((int)a0);
96   const __m128i A1 = _mm_cvtsi32_si128((int)a1);
97   const __m128i avg1 = _mm_avg_epu8(A0, A1);
98   const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
99   *avg = _mm_sub_epi8(avg1, one);
100 }
101 
Average2_uint32_16_SSE2(uint32_t a0,uint32_t a1)102 static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
103   const __m128i zero = _mm_setzero_si128();
104   const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
105   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
106   const __m128i sum = _mm_add_epi16(A1, A0);
107   return _mm_srli_epi16(sum, 1);
108 }
109 
Average2_SSE2(uint32_t a0,uint32_t a1)110 static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
111   __m128i output;
112   Average2_uint32_SSE2(a0, a1, &output);
113   return (uint32_t)_mm_cvtsi128_si32(output);
114 }
115 
Average3_SSE2(uint32_t a0,uint32_t a1,uint32_t a2)116 static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
117                                           uint32_t a2) {
118   const __m128i zero = _mm_setzero_si128();
119   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
120   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
121   const __m128i sum = _mm_add_epi16(avg1, A1);
122   const __m128i avg2 = _mm_srli_epi16(sum, 1);
123   const __m128i A2 = _mm_packus_epi16(avg2, avg2);
124   return (uint32_t)_mm_cvtsi128_si32(A2);
125 }
126 
Average4_SSE2(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)127 static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
128                                           uint32_t a2, uint32_t a3) {
129   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
130   const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
131   const __m128i sum = _mm_add_epi16(avg2, avg1);
132   const __m128i avg3 = _mm_srli_epi16(sum, 1);
133   const __m128i A0 = _mm_packus_epi16(avg3, avg3);
134   return (uint32_t)_mm_cvtsi128_si32(A0);
135 }
136 
Predictor5_SSE2(const uint32_t * const left,const uint32_t * const top)137 static uint32_t Predictor5_SSE2(const uint32_t* const left,
138                                 const uint32_t* const top) {
139   const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
140   return pred;
141 }
Predictor6_SSE2(const uint32_t * const left,const uint32_t * const top)142 static uint32_t Predictor6_SSE2(const uint32_t* const left,
143                                 const uint32_t* const top) {
144   const uint32_t pred = Average2_SSE2(*left, top[-1]);
145   return pred;
146 }
Predictor7_SSE2(const uint32_t * const left,const uint32_t * const top)147 static uint32_t Predictor7_SSE2(const uint32_t* const left,
148                                 const uint32_t* const top) {
149   const uint32_t pred = Average2_SSE2(*left, top[0]);
150   return pred;
151 }
Predictor8_SSE2(const uint32_t * const left,const uint32_t * const top)152 static uint32_t Predictor8_SSE2(const uint32_t* const left,
153                                 const uint32_t* const top) {
154   const uint32_t pred = Average2_SSE2(top[-1], top[0]);
155   (void)left;
156   return pred;
157 }
Predictor9_SSE2(const uint32_t * const left,const uint32_t * const top)158 static uint32_t Predictor9_SSE2(const uint32_t* const left,
159                                 const uint32_t* const top) {
160   const uint32_t pred = Average2_SSE2(top[0], top[1]);
161   (void)left;
162   return pred;
163 }
Predictor10_SSE2(const uint32_t * const left,const uint32_t * const top)164 static uint32_t Predictor10_SSE2(const uint32_t* const left,
165                                  const uint32_t* const top) {
166   const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
167   return pred;
168 }
Predictor11_SSE2(const uint32_t * const left,const uint32_t * const top)169 static uint32_t Predictor11_SSE2(const uint32_t* const left,
170                                  const uint32_t* const top) {
171   const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
172   return pred;
173 }
Predictor12_SSE2(const uint32_t * const left,const uint32_t * const top)174 static uint32_t Predictor12_SSE2(const uint32_t* const left,
175                                  const uint32_t* const top) {
176   const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
177   return pred;
178 }
Predictor13_SSE2(const uint32_t * const left,const uint32_t * const top)179 static uint32_t Predictor13_SSE2(const uint32_t* const left,
180                                  const uint32_t* const top) {
181   const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
182   return pred;
183 }
184 
185 // Batch versions of those functions.
186 
187 // Predictor0: ARGB_BLACK.
PredictorAdd0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)188 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
189                                int num_pixels, uint32_t* WEBP_RESTRICT out) {
190   int i;
191   const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
192   for (i = 0; i + 4 <= num_pixels; i += 4) {
193     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
194     const __m128i res = _mm_add_epi8(src, black);
195     _mm_storeu_si128((__m128i*)&out[i], res);
196   }
197   if (i != num_pixels) {
198     VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
199   }
200   (void)upper;
201 }
202 
203 // Predictor1: left.
PredictorAdd1_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)204 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
205                                int num_pixels, uint32_t* WEBP_RESTRICT out) {
206   int i;
207   __m128i prev = _mm_set1_epi32((int)out[-1]);
208   for (i = 0; i + 4 <= num_pixels; i += 4) {
209     // a | b | c | d
210     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
211     // 0 | a | b | c
212     const __m128i shift0 = _mm_slli_si128(src, 4);
213     // a | a + b | b + c | c + d
214     const __m128i sum0 = _mm_add_epi8(src, shift0);
215     // 0 | 0 | a | a + b
216     const __m128i shift1 = _mm_slli_si128(sum0, 8);
217     // a | a + b | a + b + c | a + b + c + d
218     const __m128i sum1 = _mm_add_epi8(sum0, shift1);
219     const __m128i res = _mm_add_epi8(sum1, prev);
220     _mm_storeu_si128((__m128i*)&out[i], res);
221     // replicate prev output on the four lanes
222     prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
223   }
224   if (i != num_pixels) {
225     VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
226   }
227 }
228 
229 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
230 // per 8 bit channel.
231 #define GENERATE_PREDICTOR_1(X, IN)                                           \
232 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
233                                    int num_pixels,                            \
234                                    uint32_t* WEBP_RESTRICT out) {             \
235   int i;                                                                      \
236   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
237     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
238     const __m128i other = _mm_loadu_si128((const __m128i*)&(IN));             \
239     const __m128i res = _mm_add_epi8(src, other);                             \
240     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
241   }                                                                           \
242   if (i != num_pixels) {                                                      \
243     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
244   }                                                                           \
245 }
246 
247 // Predictor2: Top.
248 GENERATE_PREDICTOR_1(2, upper[i])
249 // Predictor3: Top-right.
250 GENERATE_PREDICTOR_1(3, upper[i + 1])
251 // Predictor4: Top-left.
252 GENERATE_PREDICTOR_1(4, upper[i - 1])
253 #undef GENERATE_PREDICTOR_1
254 
255 // Due to averages with integers, values cannot be accumulated in parallel for
256 // predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2,PredictorAdd5_SSE2)257 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
258 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
259 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
260 
261 #define GENERATE_PREDICTOR_2(X, IN)                                           \
262 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
263                                    int num_pixels,                            \
264                                    uint32_t* WEBP_RESTRICT out) {             \
265   int i;                                                                      \
266   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
267     const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN));            \
268     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);             \
269     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
270     __m128i avg, res;                                                         \
271     Average2_m128i(&T, &Tother, &avg);                                        \
272     res = _mm_add_epi8(avg, src);                                             \
273     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
274   }                                                                           \
275   if (i != num_pixels) {                                                      \
276     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
277   }                                                                           \
278 }
279 // Predictor8: average TL T.
280 GENERATE_PREDICTOR_2(8, upper[i - 1])
281 // Predictor9: average T TR.
282 GENERATE_PREDICTOR_2(9, upper[i + 1])
283 #undef GENERATE_PREDICTOR_2
284 
285 // Predictor10: average of (average of (L,TL), average of (T, TR)).
286 #define DO_PRED10(OUT) do {                         \
287   __m128i avgLTL, avg;                              \
288   Average2_m128i(&L, &TL, &avgLTL);                 \
289   Average2_m128i(&avgTTR, &avgLTL, &avg);           \
290   L = _mm_add_epi8(avg, src);                       \
291   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);  \
292 } while (0)
293 
294 #define DO_PRED10_SHIFT do {                                  \
295   /* Rotate the pre-computed values for the next iteration.*/ \
296   avgTTR = _mm_srli_si128(avgTTR, 4);                         \
297   TL = _mm_srli_si128(TL, 4);                                 \
298   src = _mm_srli_si128(src, 4);                               \
299 } while (0)
300 
301 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
302                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
303   int i;
304   __m128i L = _mm_cvtsi32_si128((int)out[-1]);
305   for (i = 0; i + 4 <= num_pixels; i += 4) {
306     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
307     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
308     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
309     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
310     __m128i avgTTR;
311     Average2_m128i(&T, &TR, &avgTTR);
312     DO_PRED10(0);
313     DO_PRED10_SHIFT;
314     DO_PRED10(1);
315     DO_PRED10_SHIFT;
316     DO_PRED10(2);
317     DO_PRED10_SHIFT;
318     DO_PRED10(3);
319   }
320   if (i != num_pixels) {
321     VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
322   }
323 }
324 #undef DO_PRED10
325 #undef DO_PRED10_SHIFT
326 
327 // Predictor11: select.
328 #define DO_PRED11(OUT) do {                                            \
329   const __m128i L_lo = _mm_unpacklo_epi32(L, T);                       \
330   const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);                     \
331   const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/   \
332   const __m128i mask = _mm_cmpgt_epi32(pb, pa);                        \
333   const __m128i A = _mm_and_si128(mask, L);                            \
334   const __m128i B = _mm_andnot_si128(mask, T);                         \
335   const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
336   L = _mm_add_epi8(src, pred);                                         \
337   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);                     \
338 } while (0)
339 
340 #define DO_PRED11_SHIFT do {                                \
341   /* Shift the pre-computed value for the next iteration.*/ \
342   T = _mm_srli_si128(T, 4);                                 \
343   TL = _mm_srli_si128(TL, 4);                               \
344   src = _mm_srli_si128(src, 4);                             \
345   pa = _mm_srli_si128(pa, 4);                               \
346 } while (0)
347 
PredictorAdd11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)348 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
349                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
350   int i;
351   __m128i pa;
352   __m128i L = _mm_cvtsi32_si128((int)out[-1]);
353   for (i = 0; i + 4 <= num_pixels; i += 4) {
354     __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
355     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
356     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
357     {
358       // We can unpack with any value on the upper 32 bits, provided it's the
359       // same on both operands (so that their sum of abs diff is zero). Here we
360       // use T.
361       const __m128i T_lo = _mm_unpacklo_epi32(T, T);
362       const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
363       const __m128i T_hi = _mm_unpackhi_epi32(T, T);
364       const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
365       const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
366       const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
367       pa = _mm_packs_epi32(s_lo, s_hi);  // pa = sum |T-TL|
368     }
369     DO_PRED11(0);
370     DO_PRED11_SHIFT;
371     DO_PRED11(1);
372     DO_PRED11_SHIFT;
373     DO_PRED11(2);
374     DO_PRED11_SHIFT;
375     DO_PRED11(3);
376   }
377   if (i != num_pixels) {
378     VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
379   }
380 }
381 #undef DO_PRED11
382 #undef DO_PRED11_SHIFT
383 
384 // Predictor12: ClampedAddSubtractFull.
385 #define DO_PRED12(DIFF, LANE, OUT) do {              \
386   const __m128i all = _mm_add_epi16(L, (DIFF));      \
387   const __m128i alls = _mm_packus_epi16(all, all);   \
388   const __m128i res = _mm_add_epi8(src, alls);       \
389   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
390   L = _mm_unpacklo_epi8(res, zero);                  \
391 } while (0)
392 
393 #define DO_PRED12_SHIFT(DIFF, LANE) do {                    \
394   /* Shift the pre-computed value for the next iteration.*/ \
395   if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8);      \
396   src = _mm_srli_si128(src, 4);                             \
397 } while (0)
398 
PredictorAdd12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)399 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
400                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
401   int i;
402   const __m128i zero = _mm_setzero_si128();
403   const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
404   __m128i L = _mm_unpacklo_epi8(L8, zero);
405   for (i = 0; i + 4 <= num_pixels; i += 4) {
406     // Load 4 pixels at a time.
407     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
408     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
409     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
410     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
411     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
412     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
413     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
414     __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
415     __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
416     DO_PRED12(diff_lo, 0, 0);
417     DO_PRED12_SHIFT(diff_lo, 0);
418     DO_PRED12(diff_lo, 1, 1);
419     DO_PRED12_SHIFT(diff_lo, 1);
420     DO_PRED12(diff_hi, 0, 2);
421     DO_PRED12_SHIFT(diff_hi, 0);
422     DO_PRED12(diff_hi, 1, 3);
423   }
424   if (i != num_pixels) {
425     VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
426   }
427 }
428 #undef DO_PRED12
429 #undef DO_PRED12_SHIFT
430 
431 // Due to averages with integers, values cannot be accumulated in parallel for
432 // predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2,PredictorAdd13_SSE2)433 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
434 
435 //------------------------------------------------------------------------------
436 // Subtract-Green Transform
437 
438 static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
439                                       uint32_t* dst) {
440   int i;
441   for (i = 0; i + 4 <= num_pixels; i += 4) {
442     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
443     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
444     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
445     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
446     const __m128i out = _mm_add_epi8(in, C);
447     _mm_storeu_si128((__m128i*)&dst[i], out);
448   }
449   // fallthrough and finish off with plain-C
450   if (i != num_pixels) {
451     VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
452   }
453 }
454 
455 //------------------------------------------------------------------------------
456 // Color Transform
457 
TransformColorInverse_SSE2(const VP8LMultipliers * const m,const uint32_t * const src,int num_pixels,uint32_t * dst)458 static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
459                                        const uint32_t* const src,
460                                        int num_pixels, uint32_t* dst) {
461 // sign-extended multiplying constants, pre-shifted by 5.
462 #define CST(X)  (((int16_t)(m->X << 8)) >> 5)   // sign-extend
463 #define MK_CST_16(HI, LO) \
464   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
465   const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
466   const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
467 #undef MK_CST_16
468 #undef CST
469   const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00);  // alpha-green masks
470   int i;
471   for (i = 0; i + 4 <= num_pixels; i += 4) {
472     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
473     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
474     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
475     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
476     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
477     const __m128i E = _mm_add_epi8(in, D);             // x r'  x   b'
478     const __m128i F = _mm_slli_epi16(E, 8);            // r' 0   b' 0
479     const __m128i G = _mm_mulhi_epi16(F, mults_b2);    // x db2  0  0
480     const __m128i H = _mm_srli_epi32(G, 8);            // 0  x db2  0
481     const __m128i I = _mm_add_epi8(H, F);              // r' x  b'' 0
482     const __m128i J = _mm_srli_epi16(I, 8);            // 0  r'  0  b''
483     const __m128i out = _mm_or_si128(J, A);
484     _mm_storeu_si128((__m128i*)&dst[i], out);
485   }
486   // Fall-back to C-version for left-overs.
487   if (i != num_pixels) {
488     VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
489   }
490 }
491 
492 //------------------------------------------------------------------------------
493 // Color-space conversion functions
494 
ConvertBGRAToRGB_SSE2(const uint32_t * WEBP_RESTRICT src,int num_pixels,uint8_t * WEBP_RESTRICT dst)495 static void ConvertBGRAToRGB_SSE2(const uint32_t* WEBP_RESTRICT src,
496                                   int num_pixels, uint8_t* WEBP_RESTRICT dst) {
497   const __m128i* in = (const __m128i*)src;
498   __m128i* out = (__m128i*)dst;
499 
500   while (num_pixels >= 32) {
501     // Load the BGRA buffers.
502     __m128i in0 = _mm_loadu_si128(in + 0);
503     __m128i in1 = _mm_loadu_si128(in + 1);
504     __m128i in2 = _mm_loadu_si128(in + 2);
505     __m128i in3 = _mm_loadu_si128(in + 3);
506     __m128i in4 = _mm_loadu_si128(in + 4);
507     __m128i in5 = _mm_loadu_si128(in + 5);
508     __m128i in6 = _mm_loadu_si128(in + 6);
509     __m128i in7 = _mm_loadu_si128(in + 7);
510     VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
511     VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
512     // At this points, in1/in5 contains red only, in2/in6 green only ...
513     // Pack the colors in 24b RGB.
514     VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
515     _mm_storeu_si128(out + 0, in1);
516     _mm_storeu_si128(out + 1, in5);
517     _mm_storeu_si128(out + 2, in2);
518     _mm_storeu_si128(out + 3, in6);
519     _mm_storeu_si128(out + 4, in3);
520     _mm_storeu_si128(out + 5, in7);
521     in += 8;
522     out += 6;
523     num_pixels -= 32;
524   }
525   // left-overs
526   if (num_pixels > 0) {
527     VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
528   }
529 }
530 
ConvertBGRAToRGBA_SSE2(const uint32_t * WEBP_RESTRICT src,int num_pixels,uint8_t * WEBP_RESTRICT dst)531 static void ConvertBGRAToRGBA_SSE2(const uint32_t* WEBP_RESTRICT src,
532                                    int num_pixels, uint8_t* WEBP_RESTRICT dst) {
533   const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
534   const __m128i* in = (const __m128i*)src;
535   __m128i* out = (__m128i*)dst;
536   while (num_pixels >= 8) {
537     const __m128i A1 = _mm_loadu_si128(in++);
538     const __m128i A2 = _mm_loadu_si128(in++);
539     const __m128i B1 = _mm_and_si128(A1, red_blue_mask);     // R 0 B 0
540     const __m128i B2 = _mm_and_si128(A2, red_blue_mask);     // R 0 B 0
541     const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1);  // 0 G 0 A
542     const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2);  // 0 G 0 A
543     const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
544     const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
545     const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
546     const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
547     const __m128i F1 = _mm_or_si128(E1, C1);
548     const __m128i F2 = _mm_or_si128(E2, C2);
549     _mm_storeu_si128(out++, F1);
550     _mm_storeu_si128(out++, F2);
551     num_pixels -= 8;
552   }
553   // left-overs
554   if (num_pixels > 0) {
555     VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
556   }
557 }
558 
ConvertBGRAToRGBA4444_SSE2(const uint32_t * WEBP_RESTRICT src,int num_pixels,uint8_t * WEBP_RESTRICT dst)559 static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* WEBP_RESTRICT src,
560                                        int num_pixels,
561                                        uint8_t* WEBP_RESTRICT dst) {
562   const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
563   const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
564   const __m128i* in = (const __m128i*)src;
565   __m128i* out = (__m128i*)dst;
566   while (num_pixels >= 8) {
567     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
568     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
569     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
570     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
571     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);    // b0b2b4b6g0g2g4g6...
572     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);    // b1b3b5b7g1g3g5g7...
573     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);    // b0...b7 | g0...g7
574     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);    // r0...r7 | a0...a7
575     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);   // g0...g7 | a0...a7
576     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);   // r0...r7 | b0...b7
577     const __m128i ga1 = _mm_srli_epi16(ga0, 4);         // g0-|g1-|...|a6-|a7-
578     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0);  // -r0|-r1|...|-b6|-a7
579     const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f);  // g0-|g1-|...|a6-|a7-
580     const __m128i rgba0 = _mm_or_si128(ga2, rb1);       // rg0..rg7 | ba0..ba7
581     const __m128i rgba1 = _mm_srli_si128(rgba0, 8);     // ba0..ba7 | 0
582 #if (WEBP_SWAP_16BIT_CSP == 1)
583     const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0);  // barg0...barg7
584 #else
585     const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1);  // rgba0...rgba7
586 #endif
587     _mm_storeu_si128(out++, rgba);
588     num_pixels -= 8;
589   }
590   // left-overs
591   if (num_pixels > 0) {
592     VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
593   }
594 }
595 
ConvertBGRAToRGB565_SSE2(const uint32_t * WEBP_RESTRICT src,int num_pixels,uint8_t * WEBP_RESTRICT dst)596 static void ConvertBGRAToRGB565_SSE2(const uint32_t* WEBP_RESTRICT src,
597                                      int num_pixels,
598                                      uint8_t* WEBP_RESTRICT dst) {
599   const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
600   const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
601   const __m128i mask_0x07 = _mm_set1_epi8(0x07);
602   const __m128i* in = (const __m128i*)src;
603   __m128i* out = (__m128i*)dst;
604   while (num_pixels >= 8) {
605     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
606     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
607     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
608     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
609     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);      // b0b2b4b6g0g2g4g6...
610     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);      // b1b3b5b7g1g3g5g7...
611     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);      // b0...b7 | g0...g7
612     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);      // r0...r7 | a0...a7
613     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);     // g0...g7 | a0...a7
614     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);     // r0...r7 | b0...b7
615     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8);    // -r0..-r7|-b0..-b7
616     const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
617     const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07);  // g0-...g7-|xx (3b)
618     const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
619     const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0);  // -g0...-g7|xx (3b)
620     const __m128i b0 = _mm_srli_si128(rb1, 8);              // -b0...-b7|0
621     const __m128i rg1 = _mm_or_si128(rb1, g_lo2);           // gr0...gr7|xx
622     const __m128i b1 = _mm_srli_epi16(b0, 3);
623     const __m128i gb1 = _mm_or_si128(b1, g_hi2);            // bg0...bg7|xx
624 #if (WEBP_SWAP_16BIT_CSP == 1)
625     const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1);     // rggb0...rggb7
626 #else
627     const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1);     // bgrb0...bgrb7
628 #endif
629     _mm_storeu_si128(out++, rgba);
630     num_pixels -= 8;
631   }
632   // left-overs
633   if (num_pixels > 0) {
634     VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
635   }
636 }
637 
ConvertBGRAToBGR_SSE2(const uint32_t * WEBP_RESTRICT src,int num_pixels,uint8_t * WEBP_RESTRICT dst)638 static void ConvertBGRAToBGR_SSE2(const uint32_t* WEBP_RESTRICT src,
639                                   int num_pixels, uint8_t* WEBP_RESTRICT dst) {
640   const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
641   const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
642   const __m128i* in = (const __m128i*)src;
643   const uint8_t* const end = dst + num_pixels * 3;
644   // the last storel_epi64 below writes 8 bytes starting at offset 18
645   while (dst + 26 <= end) {
646     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
647     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
648     const __m128i a0l = _mm_and_si128(bgra0, mask_l);   // bgr0|0|bgr0|0
649     const __m128i a4l = _mm_and_si128(bgra4, mask_l);   // bgr0|0|bgr0|0
650     const __m128i a0h = _mm_and_si128(bgra0, mask_h);   // 0|bgr0|0|bgr0
651     const __m128i a4h = _mm_and_si128(bgra4, mask_h);   // 0|bgr0|0|bgr0
652     const __m128i b0h = _mm_srli_epi64(a0h, 8);         // 000b|gr00|000b|gr00
653     const __m128i b4h = _mm_srli_epi64(a4h, 8);         // 000b|gr00|000b|gr00
654     const __m128i c0 = _mm_or_si128(a0l, b0h);          // rgbrgb00|rgbrgb00
655     const __m128i c4 = _mm_or_si128(a4l, b4h);          // rgbrgb00|rgbrgb00
656     const __m128i c2 = _mm_srli_si128(c0, 8);
657     const __m128i c6 = _mm_srli_si128(c4, 8);
658     _mm_storel_epi64((__m128i*)(dst +   0), c0);
659     _mm_storel_epi64((__m128i*)(dst +   6), c2);
660     _mm_storel_epi64((__m128i*)(dst +  12), c4);
661     _mm_storel_epi64((__m128i*)(dst +  18), c6);
662     dst += 24;
663     num_pixels -= 8;
664   }
665   // left-overs
666   if (num_pixels > 0) {
667     VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
668   }
669 }
670 
671 //------------------------------------------------------------------------------
672 // Entry point
673 
674 extern void VP8LDspInitSSE2(void);
675 
VP8LDspInitSSE2(void)676 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
677   VP8LPredictors[5] = Predictor5_SSE2;
678   VP8LPredictors[6] = Predictor6_SSE2;
679   VP8LPredictors[7] = Predictor7_SSE2;
680   VP8LPredictors[8] = Predictor8_SSE2;
681   VP8LPredictors[9] = Predictor9_SSE2;
682   VP8LPredictors[10] = Predictor10_SSE2;
683   VP8LPredictors[11] = Predictor11_SSE2;
684   VP8LPredictors[12] = Predictor12_SSE2;
685   VP8LPredictors[13] = Predictor13_SSE2;
686 
687   VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
688   VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
689   VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
690   VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
691   VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
692   VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
693   VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
694   VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
695   VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
696   VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
697   VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
698   VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
699   VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
700   VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
701 
702   VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
703   VP8LTransformColorInverse = TransformColorInverse_SSE2;
704 
705   VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
706   VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
707   VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
708   VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
709   VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
710 }
711 
712 #else  // !WEBP_USE_SSE2
713 
714 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
715 
716 #endif  // WEBP_USE_SSE2
717