1 /*
2 * Copyright (C) 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime_image.h"
18
19 #include <lz4.h>
20 #include <unistd.h>
21
22 #include "android-base/file.h"
23 #include "android-base/stringprintf.h"
24 #include "android-base/strings.h"
25 #include "arch/instruction_set.h"
26 #include "arch/instruction_set_features.h"
27 #include "base/arena_allocator.h"
28 #include "base/arena_containers.h"
29 #include "base/bit_utils.h"
30 #include "base/file_utils.h"
31 #include "base/length_prefixed_array.h"
32 #include "base/scoped_flock.h"
33 #include "base/stl_util.h"
34 #include "base/systrace.h"
35 #include "base/unix_file/fd_file.h"
36 #include "base/utils.h"
37 #include "class_loader_context.h"
38 #include "class_loader_utils.h"
39 #include "class_root-inl.h"
40 #include "dex/class_accessor-inl.h"
41 #include "gc/space/image_space.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_array-alloc-inl.h"
45 #include "mirror/object_array-inl.h"
46 #include "mirror/object_array.h"
47 #include "mirror/string-inl.h"
48 #include "nterp_helpers.h"
49 #include "oat/image.h"
50 #include "oat/oat.h"
51 #include "profile/profile_compilation_info.h"
52 #include "scoped_thread_state_change-inl.h"
53 #include "vdex_file.h"
54
55 namespace art HIDDEN {
56
57 using android::base::StringPrintf;
58
59 /**
60 * The native data structures that we store in the image.
61 */
62 enum class NativeRelocationKind {
63 kArtFieldArray,
64 kArtMethodArray,
65 kArtMethod,
66 kImTable,
67 // For dex cache arrays which can stay in memory even after startup. Those are
68 // dex cache arrays whose size is below a given threshold, defined by
69 // DexCache::ShouldAllocateFullArray.
70 kFullNativeDexCacheArray,
71 // For dex cache arrays which we will want to release after app startup.
72 kStartupNativeDexCacheArray,
73 };
74
75 /**
76 * Helper class to generate an app image at runtime.
77 */
78 class RuntimeImageHelper {
79 public:
RuntimeImageHelper(gc::Heap * heap)80 explicit RuntimeImageHelper(gc::Heap* heap) :
81 allocator_(Runtime::Current()->GetArenaPool()),
82 objects_(allocator_.Adapter()),
83 art_fields_(allocator_.Adapter()),
84 art_methods_(allocator_.Adapter()),
85 im_tables_(allocator_.Adapter()),
86 metadata_(allocator_.Adapter()),
87 dex_cache_arrays_(allocator_.Adapter()),
88 string_reference_offsets_(allocator_.Adapter()),
89 sections_(ImageHeader::kSectionCount, allocator_.Adapter()),
90 object_offsets_(allocator_.Adapter()),
91 classes_(allocator_.Adapter()),
92 array_classes_(allocator_.Adapter()),
93 dex_caches_(allocator_.Adapter()),
94 class_hashes_(allocator_.Adapter()),
95 native_relocations_(allocator_.Adapter()),
96 boot_image_begin_(heap->GetBootImagesStartAddress()),
97 boot_image_size_(heap->GetBootImagesSize()),
98 image_begin_(boot_image_begin_ + boot_image_size_),
99 // Note: image relocation considers the image header in the bitmap.
100 object_section_size_(sizeof(ImageHeader)),
101 intern_table_(InternStringHash(this), InternStringEquals(this)),
102 class_table_(ClassDescriptorHash(this), ClassDescriptorEquals()) {}
103
Generate(std::string * error_msg)104 bool Generate(std::string* error_msg) {
105 if (!WriteObjects(error_msg)) {
106 return false;
107 }
108
109 // Generate the sections information stored in the header.
110 CreateImageSections();
111
112 // Now that all sections have been created and we know their offset and
113 // size, relocate native pointers inside classes and ImTables.
114 RelocateNativePointers();
115
116 // Generate the bitmap section, stored kElfSegmentAlignment-aligned after the sections data and
117 // of size `object_section_size_` rounded up to kCardSize to match the bitmap size expected by
118 // Loader::Init at art::gc::space::ImageSpace.
119 size_t sections_end = sections_[ImageHeader::kSectionMetadata].End();
120 image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
121 "image bitmap",
122 reinterpret_cast<uint8_t*>(image_begin_),
123 RoundUp(object_section_size_, gc::accounting::CardTable::kCardSize));
124 for (uint32_t offset : object_offsets_) {
125 DCHECK(IsAligned<kObjectAlignment>(image_begin_ + sizeof(ImageHeader) + offset));
126 image_bitmap_.Set(
127 reinterpret_cast<mirror::Object*>(image_begin_ + sizeof(ImageHeader) + offset));
128 }
129 const size_t bitmap_bytes = image_bitmap_.Size();
130 auto* bitmap_section = §ions_[ImageHeader::kSectionImageBitmap];
131 // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping
132 // the section from file to memory. However the section size doesn't have to be rounded up as
133 // it is located at the end of the file. When mapping file contents to memory, if the last page
134 // of the mapping is only partially filled with data, the rest will be zero-filled.
135 *bitmap_section = ImageSection(RoundUp(sections_end, kElfSegmentAlignment), bitmap_bytes);
136
137 // Compute boot image checksum and boot image components, to be stored in
138 // the header.
139 gc::Heap* const heap = Runtime::Current()->GetHeap();
140 uint32_t boot_image_components = 0u;
141 uint32_t boot_image_checksums = 0u;
142 const std::vector<gc::space::ImageSpace*>& image_spaces = heap->GetBootImageSpaces();
143 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
144 const ImageHeader& header = image_spaces[i]->GetImageHeader();
145 boot_image_components += header.GetComponentCount();
146 boot_image_checksums ^= header.GetImageChecksum();
147 DCHECK_LE(header.GetImageSpaceCount(), size - i);
148 i += header.GetImageSpaceCount();
149 }
150
151 header_ = ImageHeader(
152 /* image_reservation_size= */ RoundUp(sections_end, kElfSegmentAlignment),
153 /* component_count= */ 1,
154 image_begin_,
155 sections_end,
156 sections_.data(),
157 /* image_roots= */ image_begin_ + sizeof(ImageHeader),
158 /* oat_checksum= */ 0,
159 /* oat_file_begin= */ 0,
160 /* oat_data_begin= */ 0,
161 /* oat_data_end= */ 0,
162 /* oat_file_end= */ 0,
163 heap->GetBootImagesStartAddress(),
164 heap->GetBootImagesSize(),
165 boot_image_components,
166 boot_image_checksums,
167 kRuntimePointerSize);
168
169 // Data size includes everything except the bitmap and the header.
170 header_.data_size_ = sections_end - sizeof(ImageHeader);
171
172 // Write image methods - needs to happen after creation of the header.
173 WriteImageMethods();
174
175 return true;
176 }
177
FillData(std::vector<uint8_t> & data)178 void FillData(std::vector<uint8_t>& data) {
179 // Note we don't put the header, we only have it reserved in `data` as
180 // Image::WriteData expects the object section to contain the image header.
181 auto compute_dest = [&](const ImageSection& section) {
182 return data.data() + section.Offset();
183 };
184
185 auto objects_section = header_.GetImageSection(ImageHeader::kSectionObjects);
186 memcpy(compute_dest(objects_section) + sizeof(ImageHeader), objects_.data(), objects_.size());
187
188 auto fields_section = header_.GetImageSection(ImageHeader::kSectionArtFields);
189 memcpy(compute_dest(fields_section), art_fields_.data(), fields_section.Size());
190
191 auto methods_section = header_.GetImageSection(ImageHeader::kSectionArtMethods);
192 memcpy(compute_dest(methods_section), art_methods_.data(), methods_section.Size());
193
194 auto im_tables_section = header_.GetImageSection(ImageHeader::kSectionImTables);
195 memcpy(compute_dest(im_tables_section), im_tables_.data(), im_tables_section.Size());
196
197 auto intern_section = header_.GetImageSection(ImageHeader::kSectionInternedStrings);
198 intern_table_.WriteToMemory(compute_dest(intern_section));
199
200 auto class_table_section = header_.GetImageSection(ImageHeader::kSectionClassTable);
201 class_table_.WriteToMemory(compute_dest(class_table_section));
202
203 auto string_offsets_section =
204 header_.GetImageSection(ImageHeader::kSectionStringReferenceOffsets);
205 memcpy(compute_dest(string_offsets_section),
206 string_reference_offsets_.data(),
207 string_offsets_section.Size());
208
209 auto dex_cache_section = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays);
210 memcpy(compute_dest(dex_cache_section), dex_cache_arrays_.data(), dex_cache_section.Size());
211
212 auto metadata_section = header_.GetImageSection(ImageHeader::kSectionMetadata);
213 memcpy(compute_dest(metadata_section), metadata_.data(), metadata_section.Size());
214
215 DCHECK_EQ(metadata_section.Offset() + metadata_section.Size(), data.size());
216 }
217
218
GetHeader()219 ImageHeader* GetHeader() {
220 return &header_;
221 }
222
GetImageBitmap() const223 const gc::accounting::ContinuousSpaceBitmap& GetImageBitmap() const {
224 return image_bitmap_;
225 }
226
GetDexLocation() const227 const std::string& GetDexLocation() const {
228 return dex_location_;
229 }
230
231 private:
IsInBootImage(const void * obj) const232 bool IsInBootImage(const void* obj) const {
233 return reinterpret_cast<uintptr_t>(obj) - boot_image_begin_ < boot_image_size_;
234 }
235
236 // Returns the image contents for `cls`. If `cls` is in the boot image, the
237 // method just returns it.
GetClassContent(ObjPtr<mirror::Class> cls)238 mirror::Class* GetClassContent(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
239 if (cls == nullptr || IsInBootImage(cls.Ptr())) {
240 return cls.Ptr();
241 }
242 const dex::ClassDef* class_def = cls->GetClassDef();
243 DCHECK(class_def != nullptr) << cls->PrettyClass();
244 auto it = classes_.find(class_def);
245 DCHECK(it != classes_.end()) << cls->PrettyClass();
246 mirror::Class* result = reinterpret_cast<mirror::Class*>(objects_.data() + it->second);
247 DCHECK(result->GetClass()->IsClass());
248 return result;
249 }
250
251 // Returns a pointer that can be stored in `objects_`:
252 // - The pointer itself for boot image objects,
253 // - The offset in the image for all other objects.
GetOrComputeImageAddress(ObjPtr<T> object)254 template <typename T> T* GetOrComputeImageAddress(ObjPtr<T> object)
255 REQUIRES_SHARED(Locks::mutator_lock_) {
256 if (object == nullptr || IsInBootImage(object.Ptr())) {
257 DCHECK(object == nullptr || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(object));
258 return object.Ptr();
259 }
260
261 if (object->IsClassLoader()) {
262 // DexCache and Class point to class loaders. For runtime-generated app
263 // images, we don't encode the class loader. It will be set when the
264 // runtime is loading the image.
265 return nullptr;
266 }
267
268 if (object->GetClass() == GetClassRoot<mirror::ClassExt>()) {
269 // No need to encode `ClassExt`. If needed, it will be reconstructed at
270 // runtime.
271 return nullptr;
272 }
273
274 uint32_t offset = 0u;
275 if (object->IsClass()) {
276 offset = CopyClass(object->AsClass());
277 } else if (object->IsDexCache()) {
278 offset = CopyDexCache(object->AsDexCache());
279 } else {
280 offset = CopyObject(object);
281 }
282 return reinterpret_cast<T*>(image_begin_ + sizeof(ImageHeader) + offset);
283 }
284
CreateImageSections()285 void CreateImageSections() {
286 sections_[ImageHeader::kSectionObjects] = ImageSection(0u, object_section_size_);
287 sections_[ImageHeader::kSectionArtFields] =
288 ImageSection(sections_[ImageHeader::kSectionObjects].End(), art_fields_.size());
289
290 // Round up to the alignment for ArtMethod.
291 static_assert(IsAligned<sizeof(void*)>(ArtMethod::Size(kRuntimePointerSize)));
292 size_t cur_pos = RoundUp(sections_[ImageHeader::kSectionArtFields].End(), sizeof(void*));
293 sections_[ImageHeader::kSectionArtMethods] = ImageSection(cur_pos, art_methods_.size());
294
295 // Round up to the alignment for ImTables.
296 cur_pos = RoundUp(sections_[ImageHeader::kSectionArtMethods].End(), sizeof(void*));
297 sections_[ImageHeader::kSectionImTables] = ImageSection(cur_pos, im_tables_.size());
298
299 // Round up to the alignment for conflict tables.
300 cur_pos = RoundUp(sections_[ImageHeader::kSectionImTables].End(), sizeof(void*));
301 sections_[ImageHeader::kSectionIMTConflictTables] = ImageSection(cur_pos, 0u);
302
303 sections_[ImageHeader::kSectionRuntimeMethods] =
304 ImageSection(sections_[ImageHeader::kSectionIMTConflictTables].End(), 0u);
305
306 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
307 cur_pos = RoundUp(sections_[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
308
309 size_t intern_table_bytes = intern_table_.WriteToMemory(nullptr);
310 sections_[ImageHeader::kSectionInternedStrings] = ImageSection(cur_pos, intern_table_bytes);
311
312 // Obtain the new position and round it up to the appropriate alignment.
313 cur_pos = RoundUp(sections_[ImageHeader::kSectionInternedStrings].End(), sizeof(uint64_t));
314
315 size_t class_table_bytes = class_table_.WriteToMemory(nullptr);
316 sections_[ImageHeader::kSectionClassTable] = ImageSection(cur_pos, class_table_bytes);
317
318 // Round up to the alignment of the offsets we are going to store.
319 cur_pos = RoundUp(sections_[ImageHeader::kSectionClassTable].End(), sizeof(uint32_t));
320 sections_[ImageHeader::kSectionStringReferenceOffsets] = ImageSection(
321 cur_pos, string_reference_offsets_.size() * sizeof(string_reference_offsets_[0]));
322
323 // Round up to the alignment dex caches arrays expects.
324 cur_pos =
325 RoundUp(sections_[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(void*));
326 sections_[ImageHeader::kSectionDexCacheArrays] =
327 ImageSection(cur_pos, dex_cache_arrays_.size());
328
329 // Round up to the alignment expected for the metadata, which holds dex
330 // cache arrays.
331 cur_pos = RoundUp(sections_[ImageHeader::kSectionDexCacheArrays].End(), sizeof(void*));
332 sections_[ImageHeader::kSectionMetadata] = ImageSection(cur_pos, metadata_.size());
333 }
334
335 // Returns the copied mirror Object if in the image, or the object directly if
336 // in the boot image. For the copy, this is really its content, it should not
337 // be returned as an `ObjPtr` (as it's not a GC object), nor stored anywhere.
FromImageOffsetToRuntimeContent(uint32_t offset)338 template<typename T> T* FromImageOffsetToRuntimeContent(uint32_t offset) {
339 if (offset == 0u || IsInBootImage(reinterpret_cast<const void*>(offset))) {
340 return reinterpret_cast<T*>(offset);
341 }
342 uint32_t vector_data_offset = FromImageOffsetToVectorOffset(offset);
343 return reinterpret_cast<T*>(objects_.data() + vector_data_offset);
344 }
345
FromImageOffsetToVectorOffset(uint32_t offset) const346 uint32_t FromImageOffsetToVectorOffset(uint32_t offset) const {
347 DCHECK(!IsInBootImage(reinterpret_cast<const void*>(offset)));
348 return offset - sizeof(ImageHeader) - image_begin_;
349 }
350
351 class InternStringHash {
352 public:
InternStringHash(RuntimeImageHelper * helper)353 explicit InternStringHash(RuntimeImageHelper* helper) : helper_(helper) {}
354
355 // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
operator ()(mirror::String * str) const356 size_t operator()(mirror::String* str) const NO_THREAD_SAFETY_ANALYSIS {
357 int32_t hash = str->GetStoredHashCode();
358 DCHECK_EQ(hash, str->ComputeHashCode());
359 // An additional cast to prevent undesired sign extension.
360 return static_cast<uint32_t>(hash);
361 }
362
operator ()(uint32_t entry) const363 size_t operator()(uint32_t entry) const NO_THREAD_SAFETY_ANALYSIS {
364 return (*this)(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
365 }
366
367 private:
368 RuntimeImageHelper* helper_;
369 };
370
371 class InternStringEquals {
372 public:
InternStringEquals(RuntimeImageHelper * helper)373 explicit InternStringEquals(RuntimeImageHelper* helper) : helper_(helper) {}
374
375 // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
operator ()(uint32_t entry,mirror::String * other) const376 bool operator()(uint32_t entry, mirror::String* other) const NO_THREAD_SAFETY_ANALYSIS {
377 if (kIsDebugBuild) {
378 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
379 }
380 return other->Equals(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
381 }
382
operator ()(uint32_t entry,uint32_t other) const383 bool operator()(uint32_t entry, uint32_t other) const NO_THREAD_SAFETY_ANALYSIS {
384 return (*this)(entry, helper_->FromImageOffsetToRuntimeContent<mirror::String>(other));
385 }
386
387 private:
388 RuntimeImageHelper* helper_;
389 };
390
391 using InternTableSet =
392 HashSet<uint32_t, DefaultEmptyFn<uint32_t>, InternStringHash, InternStringEquals>;
393
394 class ClassDescriptorHash {
395 public:
ClassDescriptorHash(RuntimeImageHelper * helper)396 explicit ClassDescriptorHash(RuntimeImageHelper* helper) : helper_(helper) {}
397
operator ()(const ClassTable::TableSlot & slot) const398 uint32_t operator()(const ClassTable::TableSlot& slot) const NO_THREAD_SAFETY_ANALYSIS {
399 uint32_t ptr = slot.NonHashData();
400 if (helper_->IsInBootImage(reinterpret_cast32<const void*>(ptr))) {
401 return reinterpret_cast32<mirror::Class*>(ptr)->DescriptorHash();
402 }
403 return helper_->class_hashes_.Get(helper_->FromImageOffsetToVectorOffset(ptr));
404 }
405
406 private:
407 RuntimeImageHelper* helper_;
408 };
409
410 class ClassDescriptorEquals {
411 public:
ClassDescriptorEquals()412 ClassDescriptorEquals() {}
413
operator ()(const ClassTable::TableSlot & a,const ClassTable::TableSlot & b) const414 bool operator()(const ClassTable::TableSlot& a, const ClassTable::TableSlot& b)
415 const NO_THREAD_SAFETY_ANALYSIS {
416 // No need to fetch the descriptor: we know the classes we are inserting
417 // in the ClassTable are unique.
418 return a.Data() == b.Data();
419 }
420 };
421
422 using ClassTableSet = HashSet<ClassTable::TableSlot,
423 ClassTable::TableSlotEmptyFn,
424 ClassDescriptorHash,
425 ClassDescriptorEquals>;
426
427 // Helper class to collect classes that we will generate in the image.
428 class ClassTableVisitor {
429 public:
ClassTableVisitor(Handle<mirror::ClassLoader> loader,VariableSizedHandleScope & handles)430 ClassTableVisitor(Handle<mirror::ClassLoader> loader, VariableSizedHandleScope& handles)
431 : loader_(loader), handles_(handles) {}
432
operator ()(ObjPtr<mirror::Class> klass)433 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
434 // Record app classes and boot classpath classes: app classes will be
435 // generated in the image and put in the class table, boot classpath
436 // classes will be put in the class table.
437 ObjPtr<mirror::ClassLoader> class_loader = klass->GetClassLoader();
438 if (klass->IsResolved() && (class_loader == loader_.Get() || class_loader == nullptr)) {
439 handles_.NewHandle(klass);
440 }
441 return true;
442 }
443
444 private:
445 Handle<mirror::ClassLoader> loader_;
446 VariableSizedHandleScope& handles_;
447 };
448
449 // Helper class visitor to filter out classes we cannot emit.
450 class PruneVisitor {
451 public:
PruneVisitor(Thread * self,RuntimeImageHelper * helper,const ArenaSet<const DexFile * > & dex_files,ArenaVector<Handle<mirror::Class>> & classes,ArenaAllocator & allocator)452 PruneVisitor(Thread* self,
453 RuntimeImageHelper* helper,
454 const ArenaSet<const DexFile*>& dex_files,
455 ArenaVector<Handle<mirror::Class>>& classes,
456 ArenaAllocator& allocator)
457 : self_(self),
458 helper_(helper),
459 dex_files_(dex_files),
460 visited_(allocator.Adapter()),
461 classes_to_write_(classes) {}
462
CanEmitHelper(Handle<mirror::Class> cls)463 bool CanEmitHelper(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
464 // If the class comes from a dex file which is not part of the primary
465 // APK, don't encode it.
466 if (!ContainsElement(dex_files_, &cls->GetDexFile())) {
467 return false;
468 }
469
470 // Ensure pointers to classes in `cls` can also be emitted.
471 StackHandleScope<1> hs(self_);
472 MutableHandle<mirror::Class> other_class = hs.NewHandle(cls->GetSuperClass());
473 if (!CanEmit(other_class)) {
474 return false;
475 }
476
477 other_class.Assign(cls->GetComponentType());
478 if (!CanEmit(other_class)) {
479 return false;
480 }
481
482 for (size_t i = 0, num_interfaces = cls->NumDirectInterfaces(); i < num_interfaces; ++i) {
483 other_class.Assign(cls->GetDirectInterface(i));
484 DCHECK(other_class != nullptr);
485 if (!CanEmit(other_class)) {
486 return false;
487 }
488 }
489 return true;
490 }
491
CanEmit(Handle<mirror::Class> cls)492 bool CanEmit(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
493 if (cls == nullptr) {
494 return true;
495 }
496 DCHECK(cls->IsResolved());
497 // Only emit classes that are resolved and not erroneous.
498 if (cls->IsErroneous()) {
499 return false;
500 }
501
502 // Proxy classes are generated at runtime, so don't emit them.
503 if (cls->IsProxyClass()) {
504 return false;
505 }
506
507 // Classes in the boot image can be trivially encoded directly.
508 if (helper_->IsInBootImage(cls.Get())) {
509 return true;
510 }
511
512 if (cls->IsBootStrapClassLoaded()) {
513 // We cannot encode classes that are part of the boot classpath.
514 return false;
515 }
516
517 DCHECK(!cls->IsPrimitive());
518
519 if (cls->IsArrayClass()) {
520 if (cls->IsBootStrapClassLoaded()) {
521 // For boot classpath arrays, we can only emit them if they are
522 // in the boot image already.
523 return helper_->IsInBootImage(cls.Get());
524 }
525 ObjPtr<mirror::Class> temp = cls.Get();
526 while ((temp = temp->GetComponentType())->IsArrayClass()) {}
527 StackHandleScope<1> hs(self_);
528 Handle<mirror::Class> other_class = hs.NewHandle(temp);
529 return CanEmit(other_class);
530 }
531 const dex::ClassDef* class_def = cls->GetClassDef();
532 DCHECK_NE(class_def, nullptr);
533 auto existing = visited_.find(class_def);
534 if (existing != visited_.end()) {
535 // Already processed;
536 return existing->second == VisitState::kCanEmit;
537 }
538
539 visited_.Put(class_def, VisitState::kVisiting);
540 if (CanEmitHelper(cls)) {
541 visited_.Overwrite(class_def, VisitState::kCanEmit);
542 return true;
543 } else {
544 visited_.Overwrite(class_def, VisitState::kCannotEmit);
545 return false;
546 }
547 }
548
Visit(Handle<mirror::Object> obj)549 void Visit(Handle<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
550 MutableHandle<mirror::Class> cls(obj.GetReference());
551 if (CanEmit(cls)) {
552 if (cls->IsBootStrapClassLoaded()) {
553 DCHECK(helper_->IsInBootImage(cls.Get()));
554 // Insert the bootclasspath class in the class table.
555 uint32_t hash = cls->DescriptorHash();
556 helper_->class_table_.InsertWithHash(ClassTable::TableSlot(cls.Get(), hash), hash);
557 } else {
558 classes_to_write_.push_back(cls);
559 }
560 }
561 }
562
563 private:
564 enum class VisitState {
565 kVisiting,
566 kCanEmit,
567 kCannotEmit,
568 };
569
570 Thread* const self_;
571 RuntimeImageHelper* const helper_;
572 const ArenaSet<const DexFile*>& dex_files_;
573 ArenaSafeMap<const dex::ClassDef*, VisitState> visited_;
574 ArenaVector<Handle<mirror::Class>>& classes_to_write_;
575 };
576
EmitClasses(Thread * self,Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array)577 void EmitClasses(Thread* self, Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array)
578 REQUIRES_SHARED(Locks::mutator_lock_) {
579 ScopedTrace trace("Emit strings and classes");
580 ArenaSet<const DexFile*> dex_files(allocator_.Adapter());
581 for (int32_t i = 0; i < dex_cache_array->GetLength(); ++i) {
582 dex_files.insert(dex_cache_array->Get(i)->AsDexCache()->GetDexFile());
583 }
584
585 StackHandleScope<1> hs(self);
586 Handle<mirror::ClassLoader> loader = hs.NewHandle(
587 dex_cache_array->Get(0)->AsDexCache()->GetClassLoader());
588 ClassTable* const class_table = loader->GetClassTable();
589 if (class_table == nullptr) {
590 return;
591 }
592
593 VariableSizedHandleScope handles(self);
594 {
595 ClassTableVisitor class_table_visitor(loader, handles);
596 class_table->Visit(class_table_visitor);
597 }
598
599 ArenaVector<Handle<mirror::Class>> classes_to_write(allocator_.Adapter());
600 classes_to_write.reserve(class_table->Size());
601 {
602 PruneVisitor prune_visitor(self, this, dex_files, classes_to_write, allocator_);
603 handles.VisitHandles(prune_visitor);
604 }
605
606 for (Handle<mirror::Class> cls : classes_to_write) {
607 {
608 ScopedAssertNoThreadSuspension sants("Writing class");
609 CopyClass(cls.Get());
610 }
611 self->AllowThreadSuspension();
612 }
613
614 // Relocate the type array entries. We do this now before creating image
615 // sections because we may add new boot image classes into our
616 // `class_table`_.
617 for (auto entry : dex_caches_) {
618 const DexFile& dex_file = *entry.first;
619 mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[entry.second]);
620 mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
621 if (HasNativeRelocation(old_types_array)) {
622 auto reloc_it = native_relocations_.find(old_types_array);
623 DCHECK(reloc_it != native_relocations_.end());
624 ArenaVector<uint8_t>& data =
625 (reloc_it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
626 ? dex_cache_arrays_ : metadata_;
627 mirror::GcRootArray<mirror::Class>* content_array =
628 reinterpret_cast<mirror::GcRootArray<mirror::Class>*>(
629 data.data() + reloc_it->second.second);
630 for (uint32_t i = 0; i < dex_file.NumTypeIds(); ++i) {
631 ObjPtr<mirror::Class> cls = old_types_array->Get(i);
632 if (cls == nullptr) {
633 content_array->Set(i, nullptr);
634 } else if (IsInBootImage(cls.Ptr())) {
635 if (!cls->IsPrimitive()) {
636 // The dex cache is concurrently updated by the app. If the class
637 // collection logic in `PruneVisitor` did not see this class, insert it now.
638 // Note that application class tables do not contain primitive
639 // classes.
640 uint32_t hash = cls->DescriptorHash();
641 class_table_.InsertWithHash(ClassTable::TableSlot(cls.Ptr(), hash), hash);
642 }
643 content_array->Set(i, cls.Ptr());
644 } else if (cls->IsArrayClass()) {
645 std::string class_name;
646 cls->GetDescriptor(&class_name);
647 auto class_it = array_classes_.find(class_name);
648 if (class_it == array_classes_.end()) {
649 content_array->Set(i, nullptr);
650 } else {
651 mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
652 image_begin_ + sizeof(ImageHeader) + class_it->second);
653 content_array->Set(i, ptr);
654 }
655 } else {
656 DCHECK(!cls->IsPrimitive());
657 DCHECK(!cls->IsProxyClass());
658 const dex::ClassDef* class_def = cls->GetClassDef();
659 DCHECK_NE(class_def, nullptr);
660 auto class_it = classes_.find(class_def);
661 if (class_it == classes_.end()) {
662 content_array->Set(i, nullptr);
663 } else {
664 mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
665 image_begin_ + sizeof(ImageHeader) + class_it->second);
666 content_array->Set(i, ptr);
667 }
668 }
669 }
670 }
671 }
672 }
673
674 // Helper visitor returning the location of a native pointer in the image.
675 class NativePointerVisitor {
676 public:
NativePointerVisitor(RuntimeImageHelper * helper)677 explicit NativePointerVisitor(RuntimeImageHelper* helper) : helper_(helper) {}
678
679 template <typename T>
operator ()(T * ptr,void ** dest_addr) const680 T* operator()(T* ptr, [[maybe_unused]] void** dest_addr) const {
681 return helper_->NativeLocationInImage(ptr, /* must_have_relocation= */ true);
682 }
683
operator ()(T * ptr,bool must_have_relocation=true) const684 template <typename T> T* operator()(T* ptr, bool must_have_relocation = true) const {
685 return helper_->NativeLocationInImage(ptr, must_have_relocation);
686 }
687
688 private:
689 RuntimeImageHelper* helper_;
690 };
691
NativeLocationInImage(T * ptr,bool must_have_relocation) const692 template <typename T> T* NativeLocationInImage(T* ptr, bool must_have_relocation) const {
693 if (ptr == nullptr || IsInBootImage(ptr)) {
694 return ptr;
695 }
696
697 auto it = native_relocations_.find(ptr);
698 if (it == native_relocations_.end()) {
699 DCHECK(!must_have_relocation);
700 return nullptr;
701 }
702 switch (it->second.first) {
703 case NativeRelocationKind::kArtMethod:
704 case NativeRelocationKind::kArtMethodArray: {
705 uint32_t offset = sections_[ImageHeader::kSectionArtMethods].Offset();
706 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
707 }
708 case NativeRelocationKind::kArtFieldArray: {
709 uint32_t offset = sections_[ImageHeader::kSectionArtFields].Offset();
710 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
711 }
712 case NativeRelocationKind::kImTable: {
713 uint32_t offset = sections_[ImageHeader::kSectionImTables].Offset();
714 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
715 }
716 case NativeRelocationKind::kStartupNativeDexCacheArray: {
717 uint32_t offset = sections_[ImageHeader::kSectionMetadata].Offset();
718 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
719 }
720 case NativeRelocationKind::kFullNativeDexCacheArray: {
721 uint32_t offset = sections_[ImageHeader::kSectionDexCacheArrays].Offset();
722 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
723 }
724 }
725 }
726
727 template <typename Visitor>
RelocateMethodPointerArrays(mirror::Class * klass,const Visitor & visitor)728 void RelocateMethodPointerArrays(mirror::Class* klass, const Visitor& visitor)
729 REQUIRES_SHARED(Locks::mutator_lock_) {
730 // A bit of magic here: we cast contents from our buffer to mirror::Class,
731 // and do pointer comparison between 1) these classes, and 2) boot image objects.
732 // Both kinds do not move.
733
734 // See if we need to fixup the vtable field.
735 mirror::Class* super = FromImageOffsetToRuntimeContent<mirror::Class>(
736 reinterpret_cast32<uint32_t>(
737 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>().Ptr()));
738 DCHECK(super != nullptr) << "j.l.Object should never be in an app runtime image";
739 mirror::PointerArray* vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
740 reinterpret_cast32<uint32_t>(klass->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
741 mirror::PointerArray* super_vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
742 reinterpret_cast32<uint32_t>(super->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
743 if (vtable != nullptr && vtable != super_vtable) {
744 DCHECK(!IsInBootImage(vtable));
745 vtable->Fixup(vtable, kRuntimePointerSize, visitor);
746 }
747
748 // See if we need to fixup entries in the IfTable.
749 mirror::IfTable* iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
750 reinterpret_cast32<uint32_t>(
751 klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
752 mirror::IfTable* super_iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
753 reinterpret_cast32<uint32_t>(
754 super->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
755 int32_t iftable_count = iftable->Count();
756 int32_t super_iftable_count = super_iftable->Count();
757 for (int32_t i = 0; i < iftable_count; ++i) {
758 mirror::PointerArray* methods = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
759 reinterpret_cast32<uint32_t>(
760 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()));
761 mirror::PointerArray* super_methods = (i < super_iftable_count)
762 ? FromImageOffsetToRuntimeContent<mirror::PointerArray>(
763 reinterpret_cast32<uint32_t>(
764 super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()))
765 : nullptr;
766 if (methods != super_methods) {
767 DCHECK(!IsInBootImage(methods));
768 methods->Fixup(methods, kRuntimePointerSize, visitor);
769 }
770 }
771 }
772
773 template <typename Visitor, typename T>
RelocateNativeDexCacheArray(mirror::NativeArray<T> * old_method_array,uint32_t num_ids,const Visitor & visitor)774 void RelocateNativeDexCacheArray(mirror::NativeArray<T>* old_method_array,
775 uint32_t num_ids,
776 const Visitor& visitor)
777 REQUIRES_SHARED(Locks::mutator_lock_) {
778 if (old_method_array == nullptr) {
779 return;
780 }
781
782 auto it = native_relocations_.find(old_method_array);
783 DCHECK(it != native_relocations_.end());
784 ArenaVector<uint8_t>& data =
785 (it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
786 ? dex_cache_arrays_ : metadata_;
787
788 mirror::NativeArray<T>* content_array =
789 reinterpret_cast<mirror::NativeArray<T>*>(data.data() + it->second.second);
790 for (uint32_t i = 0; i < num_ids; ++i) {
791 // We may not have relocations for some entries, in which case we'll
792 // just store null.
793 content_array->Set(i, visitor(content_array->Get(i), /* must_have_relocation= */ false));
794 }
795 }
796
797 template <typename Visitor>
RelocateDexCacheArrays(mirror::DexCache * cache,const DexFile & dex_file,const Visitor & visitor)798 void RelocateDexCacheArrays(mirror::DexCache* cache,
799 const DexFile& dex_file,
800 const Visitor& visitor)
801 REQUIRES_SHARED(Locks::mutator_lock_) {
802 mirror::NativeArray<ArtMethod>* old_method_array = cache->GetResolvedMethodsArray();
803 cache->SetResolvedMethodsArray(visitor(old_method_array));
804 RelocateNativeDexCacheArray(old_method_array, dex_file.NumMethodIds(), visitor);
805
806 mirror::NativeArray<ArtField>* old_field_array = cache->GetResolvedFieldsArray();
807 cache->SetResolvedFieldsArray(visitor(old_field_array));
808 RelocateNativeDexCacheArray(old_field_array, dex_file.NumFieldIds(), visitor);
809
810 mirror::GcRootArray<mirror::String>* old_strings_array = cache->GetStringsArray();
811 cache->SetStringsArray(visitor(old_strings_array));
812
813 mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
814 cache->SetResolvedTypesArray(visitor(old_types_array));
815 }
816
RelocateNativePointers()817 void RelocateNativePointers() {
818 ScopedTrace relocate_native_pointers("Relocate native pointers");
819 ScopedObjectAccess soa(Thread::Current());
820 NativePointerVisitor visitor(this);
821 for (auto&& entry : classes_) {
822 mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[entry.second]);
823 cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
824 RelocateMethodPointerArrays(cls, visitor);
825 }
826 for (auto&& entry : array_classes_) {
827 mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[entry.second]);
828 cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
829 RelocateMethodPointerArrays(cls, visitor);
830 }
831 for (auto&& entry : native_relocations_) {
832 if (entry.second.first == NativeRelocationKind::kImTable) {
833 ImTable* im_table = reinterpret_cast<ImTable*>(im_tables_.data() + entry.second.second);
834 RelocateImTable(im_table, visitor);
835 }
836 }
837 for (auto&& entry : dex_caches_) {
838 mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[entry.second]);
839 RelocateDexCacheArrays(cache, *entry.first, visitor);
840 }
841 }
842
RelocateImTable(ImTable * im_table,const NativePointerVisitor & visitor)843 void RelocateImTable(ImTable* im_table, const NativePointerVisitor& visitor) {
844 for (size_t i = 0; i < ImTable::kSize; ++i) {
845 ArtMethod* method = im_table->Get(i, kRuntimePointerSize);
846 ArtMethod* new_method = nullptr;
847 if (method->IsRuntimeMethod() && !IsInBootImage(method)) {
848 // New IMT conflict method: just use the boot image version.
849 // TODO: Consider copying the new IMT conflict method.
850 new_method = Runtime::Current()->GetImtConflictMethod();
851 DCHECK(IsInBootImage(new_method));
852 } else {
853 new_method = visitor(method);
854 }
855 if (method != new_method) {
856 im_table->Set(i, new_method, kRuntimePointerSize);
857 }
858 }
859 }
860
CopyFieldArrays(ObjPtr<mirror::Class> cls,uint32_t class_image_address)861 void CopyFieldArrays(ObjPtr<mirror::Class> cls, uint32_t class_image_address)
862 REQUIRES_SHARED(Locks::mutator_lock_) {
863 LengthPrefixedArray<ArtField>* cur_fields = cls->GetFieldsPtr();
864 if (cur_fields != nullptr) {
865 // Copy the array.
866 size_t number_of_fields = cur_fields->size();
867 size_t size = LengthPrefixedArray<ArtField>::ComputeSize(number_of_fields);
868 size_t offset = art_fields_.size();
869 art_fields_.resize(offset + size);
870 auto* dest_array =
871 reinterpret_cast<LengthPrefixedArray<ArtField>*>(art_fields_.data() + offset);
872 memcpy(dest_array, cur_fields, size);
873 native_relocations_.Put(cur_fields,
874 std::make_pair(NativeRelocationKind::kArtFieldArray, offset));
875
876 // Update the class pointer of individual fields.
877 for (size_t i = 0; i != number_of_fields; ++i) {
878 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier()->Assign(
879 reinterpret_cast<mirror::Class*>(class_image_address));
880 }
881 }
882 }
883
CopyMethodArrays(ObjPtr<mirror::Class> cls,uint32_t class_image_address,bool is_class_initialized)884 void CopyMethodArrays(ObjPtr<mirror::Class> cls,
885 uint32_t class_image_address,
886 bool is_class_initialized)
887 REQUIRES_SHARED(Locks::mutator_lock_) {
888 size_t number_of_methods = cls->NumMethods();
889 if (number_of_methods == 0) {
890 return;
891 }
892
893 size_t size = LengthPrefixedArray<ArtMethod>::ComputeSize(number_of_methods);
894 size_t offset = art_methods_.size();
895 art_methods_.resize(offset + size);
896 auto* dest_array =
897 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(art_methods_.data() + offset);
898 memcpy(dest_array, cls->GetMethodsPtr(), size);
899 native_relocations_.Put(cls->GetMethodsPtr(),
900 std::make_pair(NativeRelocationKind::kArtMethodArray, offset));
901
902 for (size_t i = 0; i != number_of_methods; ++i) {
903 ArtMethod* method = &cls->GetMethodsPtr()->At(i);
904 ArtMethod* copy = &dest_array->At(i);
905
906 // Update the class pointer.
907 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
908 if (declaring_class == cls) {
909 copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
910 reinterpret_cast<mirror::Class*>(class_image_address));
911 } else {
912 DCHECK(method->IsCopied());
913 if (!IsInBootImage(declaring_class.Ptr())) {
914 DCHECK(classes_.find(declaring_class->GetClassDef()) != classes_.end());
915 copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
916 reinterpret_cast<mirror::Class*>(
917 image_begin_ +
918 sizeof(ImageHeader) +
919 classes_.Get(declaring_class->GetClassDef())));
920 }
921 }
922
923 // Record the native relocation of the method.
924 uintptr_t copy_offset =
925 reinterpret_cast<uintptr_t>(copy) - reinterpret_cast<uintptr_t>(art_methods_.data());
926 native_relocations_.Put(method,
927 std::make_pair(NativeRelocationKind::kArtMethod, copy_offset));
928
929 // Ignore the single-implementation info for abstract method.
930 if (method->IsAbstract()) {
931 copy->SetHasSingleImplementation(false);
932 copy->SetSingleImplementation(nullptr, kRuntimePointerSize);
933 }
934
935 // Set the entrypoint and data pointer of the method.
936 StubType stub;
937 if (method->IsNative()) {
938 stub = StubType::kQuickGenericJNITrampoline;
939 } else if (!cls->IsVerified()) {
940 stub = StubType::kQuickToInterpreterBridge;
941 } else if (!is_class_initialized && method->NeedsClinitCheckBeforeCall()) {
942 stub = StubType::kQuickResolutionTrampoline;
943 } else if (interpreter::IsNterpSupported() && CanMethodUseNterp(method)) {
944 stub = StubType::kNterpTrampoline;
945 } else {
946 stub = StubType::kQuickToInterpreterBridge;
947 }
948 const std::vector<gc::space::ImageSpace*>& image_spaces =
949 Runtime::Current()->GetHeap()->GetBootImageSpaces();
950 DCHECK(!image_spaces.empty());
951 const OatFile* oat_file = image_spaces[0]->GetOatFile();
952 DCHECK(oat_file != nullptr);
953 const OatHeader& header = oat_file->GetOatHeader();
954 const void* entrypoint = header.GetOatAddress(stub);
955 if (method->IsNative() && (is_class_initialized || !method->NeedsClinitCheckBeforeCall())) {
956 // Use boot JNI stub if found.
957 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
958 const void* boot_jni_stub = class_linker->FindBootJniStub(method);
959 if (boot_jni_stub != nullptr) {
960 entrypoint = boot_jni_stub;
961 }
962 }
963 copy->SetEntryPointFromQuickCompiledCode(entrypoint);
964
965 if (method->IsNative()) {
966 StubType stub_type = method->IsCriticalNative()
967 ? StubType::kJNIDlsymLookupCriticalTrampoline
968 : StubType::kJNIDlsymLookupTrampoline;
969 copy->SetEntryPointFromJni(header.GetOatAddress(stub_type));
970 } else if (method->HasCodeItem()) {
971 const uint8_t* code_item = reinterpret_cast<const uint8_t*>(method->GetCodeItem());
972 DCHECK_GE(code_item, method->GetDexFile()->DataBegin());
973 uint32_t code_item_offset = dchecked_integral_cast<uint32_t>(
974 code_item - method->GetDexFile()->DataBegin());;
975 copy->SetDataPtrSize(
976 reinterpret_cast<const void*>(code_item_offset), kRuntimePointerSize);
977 }
978 }
979 }
980
CopyImTable(ObjPtr<mirror::Class> cls)981 void CopyImTable(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
982 ImTable* table = cls->GetImt(kRuntimePointerSize);
983
984 // If the table is null or shared and/or already emitted, we can skip.
985 if (table == nullptr || IsInBootImage(table) || HasNativeRelocation(table)) {
986 return;
987 }
988 const size_t size = ImTable::SizeInBytes(kRuntimePointerSize);
989 size_t offset = im_tables_.size();
990 im_tables_.resize(offset + size);
991 uint8_t* dest = im_tables_.data() + offset;
992 memcpy(dest, table, size);
993 native_relocations_.Put(table, std::make_pair(NativeRelocationKind::kImTable, offset));
994 }
995
HasNativeRelocation(void * ptr) const996 bool HasNativeRelocation(void* ptr) const {
997 return native_relocations_.find(ptr) != native_relocations_.end();
998 }
999
1000
LoadClassesFromReferenceProfile(Thread * self,const dchecked_vector<Handle<mirror::DexCache>> & dex_caches)1001 static void LoadClassesFromReferenceProfile(
1002 Thread* self,
1003 const dchecked_vector<Handle<mirror::DexCache>>& dex_caches)
1004 REQUIRES_SHARED(Locks::mutator_lock_) {
1005 AppInfo* app_info = Runtime::Current()->GetAppInfo();
1006 std::string profile_file = app_info->GetPrimaryApkReferenceProfile();
1007
1008 if (profile_file.empty()) {
1009 return;
1010 }
1011
1012 // Lock the file, it could be concurrently updated by the system. Don't block
1013 // as this is app startup sensitive.
1014 std::string error;
1015 ScopedFlock profile =
1016 LockedFile::Open(profile_file.c_str(), O_RDONLY, /*block=*/false, &error);
1017
1018 if (profile == nullptr) {
1019 LOG(DEBUG) << "Couldn't lock the profile file " << profile_file << ": " << error;
1020 return;
1021 }
1022
1023 ProfileCompilationInfo profile_info(/* for_boot_image= */ false);
1024
1025 if (!profile_info.Load(profile->Fd())) {
1026 LOG(DEBUG) << "Could not load profile file";
1027 return;
1028 }
1029
1030 StackHandleScope<1> hs(self);
1031 Handle<mirror::ClassLoader> class_loader =
1032 hs.NewHandle<mirror::ClassLoader>(dex_caches[0]->GetClassLoader());
1033 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1034 ScopedTrace loading_classes("Loading classes from profile");
1035 for (auto dex_cache : dex_caches) {
1036 const DexFile* dex_file = dex_cache->GetDexFile();
1037 const ArenaSet<dex::TypeIndex>* class_types = profile_info.GetClasses(*dex_file);
1038 if (class_types == nullptr) {
1039 // This means the profile file did not reference the dex file, which is the case
1040 // if there's no classes and methods of that dex file in the profile.
1041 continue;
1042 }
1043
1044 for (dex::TypeIndex idx : *class_types) {
1045 // The index is greater or equal to NumTypeIds if the type is an extra
1046 // descriptor, not referenced by the dex file.
1047 if (idx.index_ < dex_file->NumTypeIds()) {
1048 ObjPtr<mirror::Class> klass = class_linker->ResolveType(idx, dex_cache, class_loader);
1049 if (klass == nullptr) {
1050 self->ClearException();
1051 LOG(DEBUG) << "Failed to preload " << dex_file->PrettyType(idx);
1052 continue;
1053 }
1054 }
1055 }
1056 }
1057 }
1058
WriteObjects(std::string * error_msg)1059 bool WriteObjects(std::string* error_msg) {
1060 ScopedTrace write_objects("Writing objects");
1061 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1062 ScopedObjectAccess soa(Thread::Current());
1063 VariableSizedHandleScope handles(soa.Self());
1064
1065 Handle<mirror::Class> object_array_class = handles.NewHandle(
1066 GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
1067
1068 Handle<mirror::ObjectArray<mirror::Object>> image_roots = handles.NewHandle(
1069 mirror::ObjectArray<mirror::Object>::Alloc(
1070 soa.Self(), object_array_class.Get(), ImageHeader::kImageRootsMax));
1071
1072 if (image_roots == nullptr) {
1073 DCHECK(soa.Self()->IsExceptionPending());
1074 soa.Self()->ClearException();
1075 *error_msg = "Out of memory when trying to generate a runtime app image";
1076 return false;
1077 }
1078
1079 // Find the dex files that will be used for generating the app image.
1080 dchecked_vector<Handle<mirror::DexCache>> dex_caches;
1081 FindDexCaches(soa.Self(), dex_caches, handles);
1082
1083 if (dex_caches.size() == 0) {
1084 *error_msg = "Did not find dex caches to generate an app image";
1085 return false;
1086 }
1087 const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
1088 VdexFile* vdex_file = oat_dex_file->GetOatFile()->GetVdexFile();
1089 // The first entry in `dex_caches` contains the location of the primary APK.
1090 dex_location_ = oat_dex_file->GetDexFileLocation();
1091
1092 size_t number_of_dex_files = vdex_file->GetNumberOfDexFiles();
1093 if (number_of_dex_files != dex_caches.size()) {
1094 // This means some dex files haven't been executed. For simplicity, just
1095 // register them and recollect dex caches.
1096 Handle<mirror::ClassLoader> loader = handles.NewHandle(dex_caches[0]->GetClassLoader());
1097 VisitClassLoaderDexFiles(soa.Self(), loader, [&](const art::DexFile* dex_file)
1098 REQUIRES_SHARED(Locks::mutator_lock_) {
1099 class_linker->RegisterDexFile(*dex_file, dex_caches[0]->GetClassLoader());
1100 return true; // Continue with other dex files.
1101 });
1102 dex_caches.clear();
1103 FindDexCaches(soa.Self(), dex_caches, handles);
1104 if (number_of_dex_files != dex_caches.size()) {
1105 *error_msg = "Number of dex caches does not match number of dex files in the primary APK";
1106 return false;
1107 }
1108 }
1109
1110 // If classes referenced in the reference profile are not loaded, preload
1111 // them. This makes sure we generate a good runtime app image, even if this
1112 // current app run did not load all startup classes.
1113 LoadClassesFromReferenceProfile(soa.Self(), dex_caches);
1114
1115 // We store the checksums of the dex files used at runtime. These can be
1116 // different compared to the vdex checksums due to compact dex.
1117 std::vector<uint32_t> checksums(number_of_dex_files);
1118 uint32_t checksum_index = 0;
1119 for (const OatDexFile* current_oat_dex_file : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
1120 const DexFile::Header* header =
1121 reinterpret_cast<const DexFile::Header*>(current_oat_dex_file->GetDexFilePointer());
1122 checksums[checksum_index++] = header->checksum_;
1123 }
1124 DCHECK_EQ(checksum_index, number_of_dex_files);
1125
1126 // Create the fake OatHeader to store the dependencies of the image.
1127 SafeMap<std::string, std::string> key_value_store;
1128 Runtime* runtime = Runtime::Current();
1129 key_value_store.Put(OatHeader::kApexVersionsKey, runtime->GetApexVersions());
1130 key_value_store.Put(OatHeader::kBootClassPathKey,
1131 android::base::Join(runtime->GetBootClassPathLocations(), ':'));
1132 key_value_store.Put(OatHeader::kBootClassPathChecksumsKey,
1133 runtime->GetBootClassPathChecksums());
1134 key_value_store.Put(OatHeader::kClassPathKey,
1135 oat_dex_file->GetOatFile()->GetClassLoaderContext());
1136 key_value_store.Put(OatHeader::kConcurrentCopying,
1137 gUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue);
1138
1139 std::unique_ptr<const InstructionSetFeatures> isa_features =
1140 InstructionSetFeatures::FromCppDefines();
1141 std::unique_ptr<OatHeader, decltype(&OatHeader::Delete)> oat_header(
1142 OatHeader::Create(kRuntimeQuickCodeISA,
1143 isa_features.get(),
1144 number_of_dex_files,
1145 &key_value_store),
1146 &OatHeader::Delete);
1147
1148 // Create the byte array containing the oat header and dex checksums.
1149 uint32_t checksums_size = checksums.size() * sizeof(uint32_t);
1150 Handle<mirror::ByteArray> header_data = handles.NewHandle(
1151 mirror::ByteArray::Alloc(soa.Self(), oat_header->GetHeaderSize() + checksums_size));
1152
1153 if (header_data == nullptr) {
1154 DCHECK(soa.Self()->IsExceptionPending());
1155 soa.Self()->ClearException();
1156 *error_msg = "Out of memory when trying to generate a runtime app image";
1157 return false;
1158 }
1159
1160 memcpy(header_data->GetData(), oat_header.get(), oat_header->GetHeaderSize());
1161 memcpy(header_data->GetData() + oat_header->GetHeaderSize(), checksums.data(), checksums_size);
1162
1163 // Create and populate the dex caches aray.
1164 Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array = handles.NewHandle(
1165 mirror::ObjectArray<mirror::Object>::Alloc(
1166 soa.Self(), object_array_class.Get(), dex_caches.size()));
1167
1168 if (dex_cache_array == nullptr) {
1169 DCHECK(soa.Self()->IsExceptionPending());
1170 soa.Self()->ClearException();
1171 *error_msg = "Out of memory when trying to generate a runtime app image";
1172 return false;
1173 }
1174
1175 for (uint32_t i = 0; i < dex_caches.size(); ++i) {
1176 dex_cache_array->Set(i, dex_caches[i].Get());
1177 }
1178
1179 image_roots->Set(ImageHeader::kDexCaches, dex_cache_array.Get());
1180 image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1181 image_roots->Set(ImageHeader::kAppImageOatHeader, header_data.Get());
1182
1183 {
1184 // Now that we have created all objects needed for the `image_roots`, copy
1185 // it into the buffer. Note that this will recursively copy all objects
1186 // contained in `image_roots`. That's acceptable as we don't have cycles,
1187 // nor a deep graph.
1188 ScopedAssertNoThreadSuspension sants("Writing runtime app image");
1189 CopyObject(image_roots.Get());
1190 }
1191
1192 // Emit classes defined in the app class loader (which will also indirectly
1193 // emit dex caches and their arrays).
1194 EmitClasses(soa.Self(), dex_cache_array);
1195
1196 return true;
1197 }
1198
1199 class FixupVisitor {
1200 public:
FixupVisitor(RuntimeImageHelper * image,size_t copy_offset)1201 FixupVisitor(RuntimeImageHelper* image, size_t copy_offset)
1202 : image_(image), copy_offset_(copy_offset) {}
1203
1204 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1205 void VisitRootIfNonNull(
1206 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1207 LOG(FATAL) << "UNREACHABLE";
1208 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1209 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1210 LOG(FATAL) << "UNREACHABLE";
1211 }
1212
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1213 void operator()(ObjPtr<mirror::Object> obj,
1214 MemberOffset offset,
1215 bool is_static) const
1216 REQUIRES_SHARED(Locks::mutator_lock_) {
1217 // We don't copy static fields, they are being handled when we try to
1218 // initialize the class.
1219 ObjPtr<mirror::Object> ref =
1220 is_static ? nullptr : obj->GetFieldObject<mirror::Object>(offset);
1221 mirror::Object* address = image_->GetOrComputeImageAddress(ref);
1222 mirror::Object* copy =
1223 reinterpret_cast<mirror::Object*>(image_->objects_.data() + copy_offset_);
1224 copy->GetFieldObjectReferenceAddr<kVerifyNone>(offset)->Assign(address);
1225 }
1226
1227 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1228 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
1229 ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1230 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1231 }
1232
1233 private:
1234 RuntimeImageHelper* image_;
1235 size_t copy_offset_;
1236 };
1237
1238 template <typename T>
CopyNativeDexCacheArray(uint32_t num_entries,uint32_t max_entries,mirror::NativeArray<T> * array)1239 void CopyNativeDexCacheArray(uint32_t num_entries,
1240 uint32_t max_entries,
1241 mirror::NativeArray<T>* array) {
1242 if (array == nullptr) {
1243 return;
1244 }
1245
1246 bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
1247 ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
1248 NativeRelocationKind relocation_kind = only_startup
1249 ? NativeRelocationKind::kStartupNativeDexCacheArray
1250 : NativeRelocationKind::kFullNativeDexCacheArray;
1251
1252 size_t size = num_entries * sizeof(void*);
1253 // We need to reserve space to store `num_entries` because ImageSpace doesn't have
1254 // access to the dex files when relocating dex caches.
1255 size_t offset = RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t);
1256 data.resize(RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t) + size);
1257 reinterpret_cast<uintptr_t*>(data.data() + offset)[-1] = num_entries;
1258
1259 // Copy each entry individually. We cannot use memcpy, as the entries may be
1260 // updated concurrently by other mutator threads.
1261 mirror::NativeArray<T>* copy = reinterpret_cast<mirror::NativeArray<T>*>(data.data() + offset);
1262 for (uint32_t i = 0; i < num_entries; ++i) {
1263 copy->Set(i, array->Get(i));
1264 }
1265 native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
1266 }
1267
1268 template <typename T>
CreateGcRootDexCacheArray(uint32_t num_entries,uint32_t max_entries,mirror::GcRootArray<T> * array)1269 mirror::GcRootArray<T>* CreateGcRootDexCacheArray(uint32_t num_entries,
1270 uint32_t max_entries,
1271 mirror::GcRootArray<T>* array) {
1272 if (array == nullptr) {
1273 return nullptr;
1274 }
1275 bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
1276 ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
1277 NativeRelocationKind relocation_kind = only_startup
1278 ? NativeRelocationKind::kStartupNativeDexCacheArray
1279 : NativeRelocationKind::kFullNativeDexCacheArray;
1280 size_t size = num_entries * sizeof(GcRoot<T>);
1281 // We need to reserve space to store `num_entries` because ImageSpace doesn't have
1282 // access to the dex files when relocating dex caches.
1283 static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
1284 size_t offset = data.size() + sizeof(uint32_t);
1285 data.resize(data.size() + sizeof(uint32_t) + size);
1286 reinterpret_cast<uint32_t*>(data.data() + offset)[-1] = num_entries;
1287 native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
1288
1289 return reinterpret_cast<mirror::GcRootArray<T>*>(data.data() + offset);
1290 }
EmitDexCacheArrays()1291 static bool EmitDexCacheArrays() {
1292 // We need to treat dex cache arrays specially in an image for userfaultfd.
1293 // Disable for now. See b/270936884.
1294 return !gUseUserfaultfd;
1295 }
1296
CopyDexCache(ObjPtr<mirror::DexCache> cache)1297 uint32_t CopyDexCache(ObjPtr<mirror::DexCache> cache) REQUIRES_SHARED(Locks::mutator_lock_) {
1298 auto it = dex_caches_.find(cache->GetDexFile());
1299 if (it != dex_caches_.end()) {
1300 return it->second;
1301 }
1302 uint32_t offset = CopyObject(cache);
1303 dex_caches_.Put(cache->GetDexFile(), offset);
1304 // For dex caches, clear pointers to data that will be set at runtime.
1305 mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
1306 reinterpret_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
1307 reinterpret_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
1308
1309 if (!EmitDexCacheArrays()) {
1310 return offset;
1311 }
1312
1313 // Copy the ArtMethod array.
1314 mirror::NativeArray<ArtMethod>* resolved_methods = cache->GetResolvedMethodsArray();
1315 CopyNativeDexCacheArray(cache->GetDexFile()->NumMethodIds(),
1316 mirror::DexCache::kDexCacheMethodCacheSize,
1317 resolved_methods);
1318 // Store the array pointer in the dex cache, which will be relocated at the end.
1319 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedMethodsArray(resolved_methods);
1320
1321 // Copy the ArtField array.
1322 mirror::NativeArray<ArtField>* resolved_fields = cache->GetResolvedFieldsArray();
1323 CopyNativeDexCacheArray(cache->GetDexFile()->NumFieldIds(),
1324 mirror::DexCache::kDexCacheFieldCacheSize,
1325 resolved_fields);
1326 // Store the array pointer in the dex cache, which will be relocated at the end.
1327 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedFieldsArray(resolved_fields);
1328
1329 // Copy the type array.
1330 mirror::GcRootArray<mirror::Class>* resolved_types = cache->GetResolvedTypesArray();
1331 CreateGcRootDexCacheArray(cache->GetDexFile()->NumTypeIds(),
1332 mirror::DexCache::kDexCacheTypeCacheSize,
1333 resolved_types);
1334 // Store the array pointer in the dex cache, which will be relocated at the end.
1335 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedTypesArray(resolved_types);
1336
1337 // Copy the string array.
1338 mirror::GcRootArray<mirror::String>* strings = cache->GetStringsArray();
1339 // Note: `new_strings` points to temporary data, and is only valid here.
1340 mirror::GcRootArray<mirror::String>* new_strings =
1341 CreateGcRootDexCacheArray(cache->GetDexFile()->NumStringIds(),
1342 mirror::DexCache::kDexCacheStringCacheSize,
1343 strings);
1344 // Store the array pointer in the dex cache, which will be relocated at the end.
1345 reinterpret_cast<mirror::DexCache*>(copy)->SetStringsArray(strings);
1346
1347 // The code below copies new objects, so invalidate the address we have for
1348 // `copy`.
1349 copy = nullptr;
1350 if (strings != nullptr) {
1351 for (uint32_t i = 0; i < cache->GetDexFile()->NumStringIds(); ++i) {
1352 ObjPtr<mirror::String> str = strings->Get(i);
1353 if (str == nullptr || IsInBootImage(str.Ptr())) {
1354 new_strings->Set(i, str.Ptr());
1355 } else {
1356 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
1357 DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
1358 << "Dex cache strings should be interned";
1359 auto it2 = intern_table_.FindWithHash(str.Ptr(), hash);
1360 if (it2 == intern_table_.end()) {
1361 uint32_t string_offset = CopyObject(str);
1362 uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
1363 intern_table_.InsertWithHash(address, hash);
1364 new_strings->Set(i, reinterpret_cast<mirror::String*>(address));
1365 } else {
1366 new_strings->Set(i, reinterpret_cast<mirror::String*>(*it2));
1367 }
1368 // To not confuse string references from the dex cache object and
1369 // string references from the array, we put an offset bigger than the
1370 // size of a DexCache object. ClassLinker::VisitInternedStringReferences
1371 // knows how to decode this offset.
1372 string_reference_offsets_.emplace_back(
1373 sizeof(ImageHeader) + offset, sizeof(mirror::DexCache) + i);
1374 }
1375 }
1376 }
1377
1378 return offset;
1379 }
1380
IsInitialized(mirror::Class * cls)1381 bool IsInitialized(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
1382 if (IsInBootImage(cls)) {
1383 const OatDexFile* oat_dex_file = cls->GetDexFile().GetOatDexFile();
1384 DCHECK(oat_dex_file != nullptr) << "We should always have an .oat file for a boot image";
1385 uint16_t class_def_index = cls->GetDexClassDefIndex();
1386 ClassStatus oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
1387 return oat_file_class_status == ClassStatus::kVisiblyInitialized;
1388 } else {
1389 return cls->IsVisiblyInitialized<kVerifyNone>();
1390 }
1391 }
1392 // Try to initialize `copy`. Note that `cls` may not be initialized.
1393 // This is called after the image generation logic has visited super classes
1394 // and super interfaces, so we can just check those directly.
TryInitializeClass(mirror::Class * copy,ObjPtr<mirror::Class> cls,uint32_t class_offset)1395 bool TryInitializeClass(mirror::Class* copy, ObjPtr<mirror::Class> cls, uint32_t class_offset)
1396 REQUIRES_SHARED(Locks::mutator_lock_) {
1397 if (!cls->IsVerified()) {
1398 return false;
1399 }
1400 if (cls->IsArrayClass()) {
1401 return true;
1402 }
1403
1404 // Check if we have been able to initialize the super class.
1405 mirror::Class* super = GetClassContent(cls->GetSuperClass());
1406 DCHECK(super != nullptr)
1407 << "App image classes should always have a super class: " << cls->PrettyClass();
1408 if (!IsInitialized(super)) {
1409 return false;
1410 }
1411
1412 // We won't initialize class with class initializers.
1413 if (cls->FindClassInitializer(kRuntimePointerSize) != nullptr) {
1414 return false;
1415 }
1416
1417 // For non-interface classes, we require all implemented interfaces to be
1418 // initialized.
1419 if (!cls->IsInterface()) {
1420 for (size_t i = 0; i < cls->NumDirectInterfaces(); i++) {
1421 mirror::Class* itf = GetClassContent(cls->GetDirectInterface(i));
1422 if (!IsInitialized(itf)) {
1423 return false;
1424 }
1425 }
1426 }
1427
1428 // Trivial case: no static fields.
1429 if (!cls->HasStaticFields()) {
1430 return true;
1431 }
1432
1433 // Go over all static fields and try to initialize them.
1434 EncodedStaticFieldValueIterator it(cls->GetDexFile(), *cls->GetClassDef());
1435 if (!it.HasNext()) {
1436 return true;
1437 }
1438
1439 // Temporary string offsets in case we failed to initialize the class. We
1440 // will add the offsets at the end of this method if we are successful.
1441 ArenaVector<AppImageReferenceOffsetInfo> string_offsets(allocator_.Adapter());
1442 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1443 ClassAccessor accessor(cls->GetDexFile(), *cls->GetClassDef());
1444 for (const ClassAccessor::Field& field : accessor.GetStaticFields()) {
1445 if (!it.HasNext()) {
1446 break;
1447 }
1448 ArtField* art_field = linker->LookupResolvedField(field.GetIndex(),
1449 cls->GetDexCache(),
1450 cls->GetClassLoader(),
1451 /* is_static= */ true);
1452 DCHECK_NE(art_field, nullptr);
1453 MemberOffset offset(art_field->GetOffset());
1454 switch (it.GetValueType()) {
1455 case EncodedArrayValueIterator::ValueType::kBoolean:
1456 copy->SetFieldBoolean<false>(offset, it.GetJavaValue().z);
1457 break;
1458 case EncodedArrayValueIterator::ValueType::kByte:
1459 copy->SetFieldByte<false>(offset, it.GetJavaValue().b);
1460 break;
1461 case EncodedArrayValueIterator::ValueType::kShort:
1462 copy->SetFieldShort<false>(offset, it.GetJavaValue().s);
1463 break;
1464 case EncodedArrayValueIterator::ValueType::kChar:
1465 copy->SetFieldChar<false>(offset, it.GetJavaValue().c);
1466 break;
1467 case EncodedArrayValueIterator::ValueType::kInt:
1468 copy->SetField32<false>(offset, it.GetJavaValue().i);
1469 break;
1470 case EncodedArrayValueIterator::ValueType::kLong:
1471 copy->SetField64<false>(offset, it.GetJavaValue().j);
1472 break;
1473 case EncodedArrayValueIterator::ValueType::kFloat:
1474 copy->SetField32<false>(offset, it.GetJavaValue().i);
1475 break;
1476 case EncodedArrayValueIterator::ValueType::kDouble:
1477 copy->SetField64<false>(offset, it.GetJavaValue().j);
1478 break;
1479 case EncodedArrayValueIterator::ValueType::kNull:
1480 copy->SetFieldObject<false>(offset, nullptr);
1481 break;
1482 case EncodedArrayValueIterator::ValueType::kString: {
1483 ObjPtr<mirror::String> str =
1484 linker->LookupString(dex::StringIndex(it.GetJavaValue().i), cls->GetDexCache());
1485 mirror::String* str_copy = nullptr;
1486 if (str == nullptr) {
1487 // String wasn't created yet.
1488 return false;
1489 } else if (IsInBootImage(str.Ptr())) {
1490 str_copy = str.Ptr();
1491 } else {
1492 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
1493 DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
1494 << "Dex cache strings should be interned";
1495 auto string_it = intern_table_.FindWithHash(str.Ptr(), hash);
1496 if (string_it == intern_table_.end()) {
1497 // The string must be interned.
1498 uint32_t string_offset = CopyObject(str);
1499 // Reload the class copy after having copied the string.
1500 copy = reinterpret_cast<mirror::Class*>(objects_.data() + class_offset);
1501 uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
1502 intern_table_.InsertWithHash(address, hash);
1503 str_copy = reinterpret_cast<mirror::String*>(address);
1504 } else {
1505 str_copy = reinterpret_cast<mirror::String*>(*string_it);
1506 }
1507 string_offsets.emplace_back(sizeof(ImageHeader) + class_offset, offset.Int32Value());
1508 }
1509 uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
1510 mirror::HeapReference<mirror::Object>* objref_addr =
1511 reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
1512 objref_addr->Assign</* kIsVolatile= */ false>(str_copy);
1513 break;
1514 }
1515 case EncodedArrayValueIterator::ValueType::kType: {
1516 // Note that it may be that the referenced type hasn't been processed
1517 // yet by the image generation logic. In this case we bail out for
1518 // simplicity.
1519 ObjPtr<mirror::Class> type =
1520 linker->LookupResolvedType(dex::TypeIndex(it.GetJavaValue().i), cls);
1521 mirror::Class* type_copy = nullptr;
1522 if (type == nullptr) {
1523 // Class wasn't resolved yet.
1524 return false;
1525 } else if (IsInBootImage(type.Ptr())) {
1526 // Make sure the type is in our class table.
1527 uint32_t hash = type->DescriptorHash();
1528 class_table_.InsertWithHash(ClassTable::TableSlot(type.Ptr(), hash), hash);
1529 type_copy = type.Ptr();
1530 } else if (type->IsArrayClass()) {
1531 std::string class_name;
1532 type->GetDescriptor(&class_name);
1533 auto class_it = array_classes_.find(class_name);
1534 if (class_it == array_classes_.end()) {
1535 return false;
1536 }
1537 type_copy = reinterpret_cast<mirror::Class*>(
1538 image_begin_ + sizeof(ImageHeader) + class_it->second);
1539 } else {
1540 const dex::ClassDef* class_def = type->GetClassDef();
1541 DCHECK_NE(class_def, nullptr);
1542 auto class_it = classes_.find(class_def);
1543 if (class_it == classes_.end()) {
1544 return false;
1545 }
1546 type_copy = reinterpret_cast<mirror::Class*>(
1547 image_begin_ + sizeof(ImageHeader) + class_it->second);
1548 }
1549 uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
1550 mirror::HeapReference<mirror::Object>* objref_addr =
1551 reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
1552 objref_addr->Assign</* kIsVolatile= */ false>(type_copy);
1553 break;
1554 }
1555 default:
1556 LOG(FATAL) << "Unreachable";
1557 }
1558 it.Next();
1559 }
1560 // We have successfully initialized the class, we can now record the string
1561 // offsets.
1562 string_reference_offsets_.insert(
1563 string_reference_offsets_.end(), string_offsets.begin(), string_offsets.end());
1564 return true;
1565 }
1566
CopyClass(ObjPtr<mirror::Class> cls)1567 uint32_t CopyClass(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
1568 DCHECK(!cls->IsBootStrapClassLoaded());
1569 uint32_t offset = 0u;
1570 if (cls->IsArrayClass()) {
1571 std::string class_name;
1572 cls->GetDescriptor(&class_name);
1573 auto it = array_classes_.find(class_name);
1574 if (it != array_classes_.end()) {
1575 return it->second;
1576 }
1577 offset = CopyObject(cls);
1578 array_classes_.Put(class_name, offset);
1579 } else {
1580 const dex::ClassDef* class_def = cls->GetClassDef();
1581 auto it = classes_.find(class_def);
1582 if (it != classes_.end()) {
1583 return it->second;
1584 }
1585 offset = CopyObject(cls);
1586 classes_.Put(class_def, offset);
1587 }
1588
1589 uint32_t hash = cls->DescriptorHash();
1590 // Save the hash, the `HashSet` implementation requires to find it.
1591 class_hashes_.Put(offset, hash);
1592 uint32_t class_image_address = image_begin_ + sizeof(ImageHeader) + offset;
1593 bool inserted =
1594 class_table_.InsertWithHash(ClassTable::TableSlot(class_image_address, hash), hash).second;
1595 DCHECK(inserted) << "Class " << cls->PrettyDescriptor()
1596 << " (" << cls.Ptr() << ") already inserted";
1597
1598 // Clear internal state.
1599 mirror::Class* copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
1600 copy->SetClinitThreadId(static_cast<pid_t>(0u));
1601 if (cls->IsArrayClass()) {
1602 DCHECK(copy->IsVisiblyInitialized());
1603 } else {
1604 copy->SetStatusInternal(cls->IsVerified() ? ClassStatus::kVerified : ClassStatus::kResolved);
1605 }
1606
1607 // Clear static field values.
1608 auto clear_class = [&] () REQUIRES_SHARED(Locks::mutator_lock_) {
1609 MemberOffset static_offset = cls->GetFirstReferenceStaticFieldOffset(kRuntimePointerSize);
1610 uint32_t ref_offsets = cls->GetReferenceInstanceOffsets();
1611 size_t size = cls->GetClassSize() - static_offset.Uint32Value();
1612 // Adjust for overflow instance-offset bitmap, which is after the static
1613 // fields.
1614 if ((ref_offsets & mirror::Class::kVisitReferencesSlowpathMask) != 0) {
1615 ref_offsets &= ~mirror::Class::kVisitReferencesSlowpathMask;
1616 size -= ref_offsets * sizeof(uint32_t);
1617 }
1618 memset(objects_.data() + offset + static_offset.Uint32Value(), 0, size);
1619 };
1620 clear_class();
1621
1622 bool is_class_initialized = TryInitializeClass(copy, cls, offset);
1623 // Reload the copy, it may have moved after `TryInitializeClass`.
1624 copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
1625 if (is_class_initialized) {
1626 copy->SetStatusInternal(ClassStatus::kVisiblyInitialized);
1627 if (!cls->IsArrayClass() && !cls->IsFinalizable()) {
1628 copy->SetObjectSizeAllocFastPath(RoundUp(cls->GetObjectSize(), kObjectAlignment));
1629 }
1630 if (cls->IsInterface()) {
1631 copy->SetAccessFlags(copy->GetAccessFlags() | kAccRecursivelyInitialized);
1632 }
1633 } else {
1634 // If we fail to initialize, remove initialization related flags and
1635 // clear again.
1636 copy->SetObjectSizeAllocFastPath(std::numeric_limits<uint32_t>::max());
1637 copy->SetAccessFlags(copy->GetAccessFlags() & ~kAccRecursivelyInitialized);
1638 clear_class();
1639 }
1640
1641 CopyFieldArrays(cls, class_image_address);
1642 CopyMethodArrays(cls, class_image_address, is_class_initialized);
1643 if (cls->ShouldHaveImt()) {
1644 CopyImTable(cls);
1645 }
1646
1647 return offset;
1648 }
1649
1650 // Copy `obj` in `objects_` and relocate references. Returns the offset
1651 // within our buffer.
CopyObject(ObjPtr<mirror::Object> obj)1652 uint32_t CopyObject(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1653 // Copy the object in `objects_`.
1654 size_t object_size = obj->SizeOf();
1655 size_t offset = objects_.size();
1656 DCHECK(IsAligned<kObjectAlignment>(offset));
1657 object_offsets_.push_back(offset);
1658 objects_.resize(RoundUp(offset + object_size, kObjectAlignment));
1659
1660 mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
1661 mirror::Object::CopyRawObjectData(
1662 reinterpret_cast<uint8_t*>(copy), obj, object_size - sizeof(mirror::Object));
1663 // Clear any lockword data.
1664 copy->SetLockWord(LockWord::Default(), /* as_volatile= */ false);
1665 copy->SetClass(obj->GetClass());
1666
1667 // Fixup reference pointers.
1668 FixupVisitor visitor(this, offset);
1669 obj->VisitReferences</*kVisitNativeRoots=*/ false>(visitor, visitor);
1670
1671 if (obj->IsString()) {
1672 // Ensure a string always has a hashcode stored. This is checked at
1673 // runtime because boot images don't want strings dirtied due to hashcode.
1674 reinterpret_cast<mirror::String*>(copy)->GetHashCode();
1675 }
1676
1677 object_section_size_ += RoundUp(object_size, kObjectAlignment);
1678 return offset;
1679 }
1680
1681 class CollectDexCacheVisitor : public DexCacheVisitor {
1682 public:
CollectDexCacheVisitor(VariableSizedHandleScope & handles)1683 explicit CollectDexCacheVisitor(VariableSizedHandleScope& handles) : handles_(handles) {}
1684
Visit(ObjPtr<mirror::DexCache> dex_cache)1685 void Visit(ObjPtr<mirror::DexCache> dex_cache)
1686 REQUIRES_SHARED(Locks::dex_lock_, Locks::mutator_lock_) override {
1687 dex_caches_.push_back(handles_.NewHandle(dex_cache));
1688 }
GetDexCaches() const1689 const std::vector<Handle<mirror::DexCache>>& GetDexCaches() const {
1690 return dex_caches_;
1691 }
1692 private:
1693 VariableSizedHandleScope& handles_;
1694 std::vector<Handle<mirror::DexCache>> dex_caches_;
1695 };
1696
1697 // Find dex caches corresponding to the primary APK.
FindDexCaches(Thread * self,dchecked_vector<Handle<mirror::DexCache>> & dex_caches,VariableSizedHandleScope & handles)1698 void FindDexCaches(Thread* self,
1699 dchecked_vector<Handle<mirror::DexCache>>& dex_caches,
1700 VariableSizedHandleScope& handles)
1701 REQUIRES_SHARED(Locks::mutator_lock_) {
1702 ScopedTrace trace("Find dex caches");
1703 DCHECK(dex_caches.empty());
1704 // Collect all dex caches.
1705 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1706 CollectDexCacheVisitor visitor(handles);
1707 {
1708 ReaderMutexLock mu(self, *Locks::dex_lock_);
1709 class_linker->VisitDexCaches(&visitor);
1710 }
1711
1712 // Find the primary APK.
1713 AppInfo* app_info = Runtime::Current()->GetAppInfo();
1714 for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
1715 if (app_info->GetRegisteredCodeType(cache->GetDexFile()->GetLocation()) ==
1716 AppInfo::CodeType::kPrimaryApk) {
1717 dex_caches.push_back(handles.NewHandle(cache.Get()));
1718 break;
1719 }
1720 }
1721
1722 if (dex_caches.empty()) {
1723 return;
1724 }
1725
1726 const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
1727 if (oat_dex_file == nullptr) {
1728 // We need a .oat file for loading an app image;
1729 dex_caches.clear();
1730 return;
1731 }
1732
1733 // Store the dex caches in the order in which their corresponding dex files
1734 // are stored in the oat file. When we check for checksums at the point of
1735 // loading the image, we rely on this order.
1736 for (const OatDexFile* current : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
1737 if (current != oat_dex_file) {
1738 for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
1739 if (cache->GetDexFile()->GetOatDexFile() == current) {
1740 dex_caches.push_back(handles.NewHandle(cache.Get()));
1741 }
1742 }
1743 }
1744 }
1745 }
1746
PointerToUint64(void * ptr)1747 static uint64_t PointerToUint64(void* ptr) {
1748 return reinterpret_cast64<uint64_t>(ptr);
1749 }
1750
WriteImageMethods()1751 void WriteImageMethods() {
1752 ScopedObjectAccess soa(Thread::Current());
1753 // We can just use plain runtime pointers.
1754 Runtime* runtime = Runtime::Current();
1755 header_.image_methods_[ImageHeader::kResolutionMethod] =
1756 PointerToUint64(runtime->GetResolutionMethod());
1757 header_.image_methods_[ImageHeader::kImtConflictMethod] =
1758 PointerToUint64(runtime->GetImtConflictMethod());
1759 header_.image_methods_[ImageHeader::kImtUnimplementedMethod] =
1760 PointerToUint64(runtime->GetImtUnimplementedMethod());
1761 header_.image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
1762 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves));
1763 header_.image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
1764 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly));
1765 header_.image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
1766 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
1767 header_.image_methods_[ImageHeader::kSaveEverythingMethod] =
1768 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything));
1769 header_.image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
1770 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit));
1771 header_.image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
1772 PointerToUint64(
1773 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck));
1774 }
1775
1776 // Header for the image, created at the end once we know the size of all
1777 // sections.
1778 ImageHeader header_;
1779
1780 // Allocator for the various data structures to allocate while generating the
1781 // image.
1782 ArenaAllocator allocator_;
1783
1784 // Contents of the various sections.
1785 ArenaVector<uint8_t> objects_;
1786 ArenaVector<uint8_t> art_fields_;
1787 ArenaVector<uint8_t> art_methods_;
1788 ArenaVector<uint8_t> im_tables_;
1789 ArenaVector<uint8_t> metadata_;
1790 ArenaVector<uint8_t> dex_cache_arrays_;
1791
1792 ArenaVector<AppImageReferenceOffsetInfo> string_reference_offsets_;
1793
1794 // Bitmap of live objects in `objects_`. Populated from `object_offsets_`
1795 // once we know `object_section_size`.
1796 gc::accounting::ContinuousSpaceBitmap image_bitmap_;
1797
1798 // Sections stored in the header.
1799 ArenaVector<ImageSection> sections_;
1800
1801 // A list of offsets in `objects_` where objects begin.
1802 ArenaVector<uint32_t> object_offsets_;
1803
1804 ArenaSafeMap<const dex::ClassDef*, uint32_t> classes_;
1805 ArenaSafeMap<std::string, uint32_t> array_classes_;
1806 ArenaSafeMap<const DexFile*, uint32_t> dex_caches_;
1807 ArenaSafeMap<uint32_t, uint32_t> class_hashes_;
1808
1809 ArenaSafeMap<void*, std::pair<NativeRelocationKind, uint32_t>> native_relocations_;
1810
1811 // Cached values of boot image information.
1812 const uint32_t boot_image_begin_;
1813 const uint32_t boot_image_size_;
1814
1815 // Where the image begins: just after the boot image.
1816 const uint32_t image_begin_;
1817
1818 // Size of the `kSectionObjects` section.
1819 size_t object_section_size_;
1820
1821 // The location of the primary APK / dex file.
1822 std::string dex_location_;
1823
1824 // The intern table for strings that we will write to disk.
1825 InternTableSet intern_table_;
1826
1827 // The class table holding classes that we will write to disk.
1828 ClassTableSet class_table_;
1829
1830 friend class ClassDescriptorHash;
1831 friend class PruneVisitor;
1832 friend class NativePointerVisitor;
1833 };
1834
GetRuntimeImageDir(const std::string & app_data_dir)1835 std::string RuntimeImage::GetRuntimeImageDir(const std::string& app_data_dir) {
1836 if (app_data_dir.empty()) {
1837 // The data directory is empty for tests.
1838 return "";
1839 }
1840 return app_data_dir + "/cache/oat_primary/";
1841 }
1842
1843 // Note: this may return a relative path for tests.
GetRuntimeImagePath(const std::string & app_data_dir,const std::string & dex_location,const std::string & isa)1844 std::string RuntimeImage::GetRuntimeImagePath(const std::string& app_data_dir,
1845 const std::string& dex_location,
1846 const std::string& isa) {
1847 std::string basename = android::base::Basename(dex_location);
1848 std::string filename = ReplaceFileExtension(basename, kArtExtension);
1849
1850 return GetRuntimeImageDir(app_data_dir) + isa + "/" + filename;
1851 }
1852
GetRuntimeImagePath(const std::string & dex_location)1853 std::string RuntimeImage::GetRuntimeImagePath(const std::string& dex_location) {
1854 return GetRuntimeImagePath(Runtime::Current()->GetProcessDataDirectory(),
1855 dex_location,
1856 GetInstructionSetString(kRuntimeQuickCodeISA));
1857 }
1858
EnsureDirectoryExists(const std::string & directory,std::string * error_msg)1859 static bool EnsureDirectoryExists(const std::string& directory, std::string* error_msg) {
1860 if (!OS::DirectoryExists(directory.c_str())) {
1861 static constexpr mode_t kDirectoryMode = S_IRWXU | S_IRGRP | S_IXGRP| S_IROTH | S_IXOTH;
1862 if (mkdir(directory.c_str(), kDirectoryMode) != 0) {
1863 *error_msg =
1864 StringPrintf("Could not create directory %s: %s", directory.c_str(), strerror(errno));
1865 return false;
1866 }
1867 }
1868 return true;
1869 }
1870
WriteImageToDisk(std::string * error_msg)1871 bool RuntimeImage::WriteImageToDisk(std::string* error_msg) {
1872 gc::Heap* heap = Runtime::Current()->GetHeap();
1873 if (!heap->HasBootImageSpace()) {
1874 *error_msg = "Cannot generate an app image without a boot image";
1875 return false;
1876 }
1877 std::string oat_path = GetRuntimeImageDir(Runtime::Current()->GetProcessDataDirectory());
1878 if (!oat_path.empty() && !EnsureDirectoryExists(oat_path, error_msg)) {
1879 return false;
1880 }
1881
1882 ScopedTrace generate_image_trace("Generating runtime image");
1883 std::unique_ptr<RuntimeImageHelper> image(new RuntimeImageHelper(heap));
1884 if (!image->Generate(error_msg)) {
1885 return false;
1886 }
1887
1888 ScopedTrace write_image_trace("Writing runtime image to disk");
1889
1890 const std::string path = GetRuntimeImagePath(image->GetDexLocation());
1891 if (!EnsureDirectoryExists(android::base::Dirname(path), error_msg)) {
1892 return false;
1893 }
1894
1895 // We first generate the app image in a temporary file, which we will then
1896 // move to `path`.
1897 const std::string temp_path = ReplaceFileExtension(path, std::to_string(getpid()) + ".tmp");
1898 ImageFileGuard image_file;
1899 image_file.reset(OS::CreateEmptyFileWriteOnly(temp_path.c_str()));
1900
1901 if (image_file == nullptr) {
1902 *error_msg = "Could not open " + temp_path + " for writing";
1903 return false;
1904 }
1905
1906 std::vector<uint8_t> full_data(image->GetHeader()->GetImageSize());
1907 image->FillData(full_data);
1908
1909 // Specify default block size of 512K to enable parallel image decompression.
1910 static constexpr size_t kMaxImageBlockSize = 524288;
1911 // Use LZ4 as good compromise between CPU time and compression. LZ4HC
1912 // empirically takes 10x more time compressing.
1913 static constexpr ImageHeader::StorageMode kImageStorageMode = ImageHeader::kStorageModeLZ4;
1914 // Note: no need to update the checksum of the runtime app image: we have no
1915 // use for it, and computing it takes CPU time.
1916 if (!image->GetHeader()->WriteData(
1917 image_file,
1918 full_data.data(),
1919 reinterpret_cast<const uint8_t*>(image->GetImageBitmap().Begin()),
1920 kImageStorageMode,
1921 kMaxImageBlockSize,
1922 /* update_checksum= */ false,
1923 error_msg)) {
1924 return false;
1925 }
1926
1927 if (!image_file.WriteHeaderAndClose(temp_path, image->GetHeader(), error_msg)) {
1928 return false;
1929 }
1930
1931 if (rename(temp_path.c_str(), path.c_str()) != 0) {
1932 *error_msg =
1933 "Failed to move runtime app image to " + path + ": " + std::string(strerror(errno));
1934 // Unlink directly: we cannot use `out` as we have closed it.
1935 unlink(temp_path.c_str());
1936 return false;
1937 }
1938
1939 return true;
1940 }
1941
1942 } // namespace art
1943