• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) Meta Platforms, Inc. and affiliates.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /* ======   Compiler specifics   ====== */
13 #if defined(_MSC_VER)
14 #  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
15 #endif
16 
17 
18 /* ======   Dependencies   ====== */
19 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
20 #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
21 #include "../common/mem.h"         /* MEM_STATIC */
22 #include "../common/pool.h"        /* threadpool */
23 #include "../common/threading.h"   /* mutex */
24 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
25 #include "zstd_ldm.h"
26 #include "zstdmt_compress.h"
27 
28 /* Guards code to support resizing the SeqPool.
29  * We will want to resize the SeqPool to save memory in the future.
30  * Until then, comment the code out since it is unused.
31  */
32 #define ZSTD_RESIZE_SEQPOOL 0
33 
34 /* ======   Debug   ====== */
35 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
36     && !defined(_MSC_VER) \
37     && !defined(__MINGW32__)
38 
39 #  include <stdio.h>
40 #  include <unistd.h>
41 #  include <sys/times.h>
42 
43 #  define DEBUG_PRINTHEX(l,p,n)                                       \
44     do {                                                              \
45         unsigned debug_u;                                             \
46         for (debug_u=0; debug_u<(n); debug_u++)                       \
47             RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
48         RAWLOG(l, " \n");                                             \
49     } while (0)
50 
GetCurrentClockTimeMicroseconds(void)51 static unsigned long long GetCurrentClockTimeMicroseconds(void)
52 {
53    static clock_t _ticksPerSecond = 0;
54    if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
55 
56    {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
57        return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
58 }  }
59 
60 #define MUTEX_WAIT_TIME_DLEVEL 6
61 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex)                                                  \
62     do {                                                                                \
63         if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {                                     \
64             unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds();    \
65             ZSTD_pthread_mutex_lock(mutex);                                             \
66             {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
67                 unsigned long long const elapsedTime = (afterTime-beforeTime);          \
68                 if (elapsedTime > 1000) {                                               \
69                     /* or whatever threshold you like; I'm using 1 millisecond here */  \
70                     DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL,                                    \
71                         "Thread took %llu microseconds to acquire mutex %s \n",         \
72                         elapsedTime, #mutex);                                           \
73             }   }                                                                       \
74         } else {                                                                        \
75             ZSTD_pthread_mutex_lock(mutex);                                             \
76         }                                                                               \
77     } while (0)
78 
79 #else
80 
81 #  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
82 #  define DEBUG_PRINTHEX(l,p,n) do { } while (0)
83 
84 #endif
85 
86 
87 /* =====   Buffer Pool   ===== */
88 /* a single Buffer Pool can be invoked from multiple threads in parallel */
89 
90 typedef struct buffer_s {
91     void* start;
92     size_t capacity;
93 } Buffer;
94 
95 static const Buffer g_nullBuffer = { NULL, 0 };
96 
97 typedef struct ZSTDMT_bufferPool_s {
98     ZSTD_pthread_mutex_t poolMutex;
99     size_t bufferSize;
100     unsigned totalBuffers;
101     unsigned nbBuffers;
102     ZSTD_customMem cMem;
103     Buffer* buffers;
104 } ZSTDMT_bufferPool;
105 
ZSTDMT_freeBufferPool(ZSTDMT_bufferPool * bufPool)106 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
107 {
108     DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
109     if (!bufPool) return;   /* compatibility with free on NULL */
110     if (bufPool->buffers) {
111         unsigned u;
112         for (u=0; u<bufPool->totalBuffers; u++) {
113             DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start);
114             ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem);
115         }
116         ZSTD_customFree(bufPool->buffers, bufPool->cMem);
117     }
118     ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
119     ZSTD_customFree(bufPool, bufPool->cMem);
120 }
121 
ZSTDMT_createBufferPool(unsigned maxNbBuffers,ZSTD_customMem cMem)122 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
123 {
124     ZSTDMT_bufferPool* const bufPool =
125         (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem);
126     if (bufPool==NULL) return NULL;
127     if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
128         ZSTD_customFree(bufPool, cMem);
129         return NULL;
130     }
131     bufPool->buffers = (Buffer*)ZSTD_customCalloc(maxNbBuffers * sizeof(Buffer), cMem);
132     if (bufPool->buffers==NULL) {
133         ZSTDMT_freeBufferPool(bufPool);
134         return NULL;
135     }
136     bufPool->bufferSize = 64 KB;
137     bufPool->totalBuffers = maxNbBuffers;
138     bufPool->nbBuffers = 0;
139     bufPool->cMem = cMem;
140     return bufPool;
141 }
142 
143 /* only works at initialization, not during compression */
ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool * bufPool)144 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
145 {
146     size_t const poolSize = sizeof(*bufPool);
147     size_t const arraySize = bufPool->totalBuffers * sizeof(Buffer);
148     unsigned u;
149     size_t totalBufferSize = 0;
150     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
151     for (u=0; u<bufPool->totalBuffers; u++)
152         totalBufferSize += bufPool->buffers[u].capacity;
153     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
154 
155     return poolSize + arraySize + totalBufferSize;
156 }
157 
158 /* ZSTDMT_setBufferSize() :
159  * all future buffers provided by this buffer pool will have _at least_ this size
160  * note : it's better for all buffers to have same size,
161  * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
ZSTDMT_setBufferSize(ZSTDMT_bufferPool * const bufPool,size_t const bSize)162 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
163 {
164     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
165     DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
166     bufPool->bufferSize = bSize;
167     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
168 }
169 
170 
ZSTDMT_expandBufferPool(ZSTDMT_bufferPool * srcBufPool,unsigned maxNbBuffers)171 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
172 {
173     if (srcBufPool==NULL) return NULL;
174     if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
175         return srcBufPool;
176     /* need a larger buffer pool */
177     {   ZSTD_customMem const cMem = srcBufPool->cMem;
178         size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
179         ZSTDMT_bufferPool* newBufPool;
180         ZSTDMT_freeBufferPool(srcBufPool);
181         newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
182         if (newBufPool==NULL) return newBufPool;
183         ZSTDMT_setBufferSize(newBufPool, bSize);
184         return newBufPool;
185     }
186 }
187 
188 /** ZSTDMT_getBuffer() :
189  *  assumption : bufPool must be valid
190  * @return : a buffer, with start pointer and size
191  *  note: allocation may fail, in this case, start==NULL and size==0 */
ZSTDMT_getBuffer(ZSTDMT_bufferPool * bufPool)192 static Buffer ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
193 {
194     size_t const bSize = bufPool->bufferSize;
195     DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
196     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
197     if (bufPool->nbBuffers) {   /* try to use an existing buffer */
198         Buffer const buf = bufPool->buffers[--(bufPool->nbBuffers)];
199         size_t const availBufferSize = buf.capacity;
200         bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer;
201         if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
202             /* large enough, but not too much */
203             DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
204                         bufPool->nbBuffers, (U32)buf.capacity);
205             ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
206             return buf;
207         }
208         /* size conditions not respected : scratch this buffer, create new one */
209         DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
210         ZSTD_customFree(buf.start, bufPool->cMem);
211     }
212     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
213     /* create new buffer */
214     DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
215     {   Buffer buffer;
216         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
217         buffer.start = start;   /* note : start can be NULL if malloc fails ! */
218         buffer.capacity = (start==NULL) ? 0 : bSize;
219         if (start==NULL) {
220             DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
221         } else {
222             DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
223         }
224         return buffer;
225     }
226 }
227 
228 #if ZSTD_RESIZE_SEQPOOL
229 /** ZSTDMT_resizeBuffer() :
230  * assumption : bufPool must be valid
231  * @return : a buffer that is at least the buffer pool buffer size.
232  *           If a reallocation happens, the data in the input buffer is copied.
233  */
ZSTDMT_resizeBuffer(ZSTDMT_bufferPool * bufPool,Buffer buffer)234 static Buffer ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, Buffer buffer)
235 {
236     size_t const bSize = bufPool->bufferSize;
237     if (buffer.capacity < bSize) {
238         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
239         Buffer newBuffer;
240         newBuffer.start = start;
241         newBuffer.capacity = start == NULL ? 0 : bSize;
242         if (start != NULL) {
243             assert(newBuffer.capacity >= buffer.capacity);
244             ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
245             DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
246             return newBuffer;
247         }
248         DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
249     }
250     return buffer;
251 }
252 #endif
253 
254 /* store buffer for later re-use, up to pool capacity */
ZSTDMT_releaseBuffer(ZSTDMT_bufferPool * bufPool,Buffer buf)255 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, Buffer buf)
256 {
257     DEBUGLOG(5, "ZSTDMT_releaseBuffer");
258     if (buf.start == NULL) return;   /* compatible with release on NULL */
259     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
260     if (bufPool->nbBuffers < bufPool->totalBuffers) {
261         bufPool->buffers[bufPool->nbBuffers++] = buf;  /* stored for later use */
262         DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
263                     (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
264         ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
265         return;
266     }
267     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
268     /* Reached bufferPool capacity (note: should not happen) */
269     DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
270     ZSTD_customFree(buf.start, bufPool->cMem);
271 }
272 
273 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
274  * The 3 additional buffers are as follows:
275  *   1 buffer for input loading
276  *   1 buffer for "next input" when submitting current one
277  *   1 buffer stuck in queue */
278 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
279 
280 /* After a worker releases its rawSeqStore, it is immediately ready for reuse.
281  * So we only need one seq buffer per worker. */
282 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
283 
284 /* =====   Seq Pool Wrapper   ====== */
285 
286 typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
287 
ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool * seqPool)288 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
289 {
290     return ZSTDMT_sizeof_bufferPool(seqPool);
291 }
292 
bufferToSeq(Buffer buffer)293 static RawSeqStore_t bufferToSeq(Buffer buffer)
294 {
295     RawSeqStore_t seq = kNullRawSeqStore;
296     seq.seq = (rawSeq*)buffer.start;
297     seq.capacity = buffer.capacity / sizeof(rawSeq);
298     return seq;
299 }
300 
seqToBuffer(RawSeqStore_t seq)301 static Buffer seqToBuffer(RawSeqStore_t seq)
302 {
303     Buffer buffer;
304     buffer.start = seq.seq;
305     buffer.capacity = seq.capacity * sizeof(rawSeq);
306     return buffer;
307 }
308 
ZSTDMT_getSeq(ZSTDMT_seqPool * seqPool)309 static RawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
310 {
311     if (seqPool->bufferSize == 0) {
312         return kNullRawSeqStore;
313     }
314     return bufferToSeq(ZSTDMT_getBuffer(seqPool));
315 }
316 
317 #if ZSTD_RESIZE_SEQPOOL
ZSTDMT_resizeSeq(ZSTDMT_seqPool * seqPool,RawSeqStore_t seq)318 static RawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
319 {
320   return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
321 }
322 #endif
323 
ZSTDMT_releaseSeq(ZSTDMT_seqPool * seqPool,RawSeqStore_t seq)324 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
325 {
326   ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
327 }
328 
ZSTDMT_setNbSeq(ZSTDMT_seqPool * const seqPool,size_t const nbSeq)329 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
330 {
331   ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
332 }
333 
ZSTDMT_createSeqPool(unsigned nbWorkers,ZSTD_customMem cMem)334 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
335 {
336     ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
337     if (seqPool == NULL) return NULL;
338     ZSTDMT_setNbSeq(seqPool, 0);
339     return seqPool;
340 }
341 
ZSTDMT_freeSeqPool(ZSTDMT_seqPool * seqPool)342 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
343 {
344     ZSTDMT_freeBufferPool(seqPool);
345 }
346 
ZSTDMT_expandSeqPool(ZSTDMT_seqPool * pool,U32 nbWorkers)347 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
348 {
349     return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
350 }
351 
352 
353 /* =====   CCtx Pool   ===== */
354 /* a single CCtx Pool can be invoked from multiple threads in parallel */
355 
356 typedef struct {
357     ZSTD_pthread_mutex_t poolMutex;
358     int totalCCtx;
359     int availCCtx;
360     ZSTD_customMem cMem;
361     ZSTD_CCtx** cctxs;
362 } ZSTDMT_CCtxPool;
363 
364 /* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */
ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool * pool)365 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
366 {
367     if (!pool) return;
368     ZSTD_pthread_mutex_destroy(&pool->poolMutex);
369     if (pool->cctxs) {
370         int cid;
371         for (cid=0; cid<pool->totalCCtx; cid++)
372             ZSTD_freeCCtx(pool->cctxs[cid]);  /* free compatible with NULL */
373         ZSTD_customFree(pool->cctxs, pool->cMem);
374     }
375     ZSTD_customFree(pool, pool->cMem);
376 }
377 
378 /* ZSTDMT_createCCtxPool() :
379  * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
ZSTDMT_createCCtxPool(int nbWorkers,ZSTD_customMem cMem)380 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
381                                               ZSTD_customMem cMem)
382 {
383     ZSTDMT_CCtxPool* const cctxPool =
384         (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem);
385     assert(nbWorkers > 0);
386     if (!cctxPool) return NULL;
387     if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
388         ZSTD_customFree(cctxPool, cMem);
389         return NULL;
390     }
391     cctxPool->totalCCtx = nbWorkers;
392     cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem);
393     if (!cctxPool->cctxs) {
394         ZSTDMT_freeCCtxPool(cctxPool);
395         return NULL;
396     }
397     cctxPool->cMem = cMem;
398     cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem);
399     if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
400     cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
401     DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
402     return cctxPool;
403 }
404 
ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool * srcPool,int nbWorkers)405 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
406                                               int nbWorkers)
407 {
408     if (srcPool==NULL) return NULL;
409     if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
410     /* need a larger cctx pool */
411     {   ZSTD_customMem const cMem = srcPool->cMem;
412         ZSTDMT_freeCCtxPool(srcPool);
413         return ZSTDMT_createCCtxPool(nbWorkers, cMem);
414     }
415 }
416 
417 /* only works during initialization phase, not during compression */
ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool * cctxPool)418 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
419 {
420     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421     {   unsigned const nbWorkers = cctxPool->totalCCtx;
422         size_t const poolSize = sizeof(*cctxPool);
423         size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*);
424         size_t totalCCtxSize = 0;
425         unsigned u;
426         for (u=0; u<nbWorkers; u++) {
427             totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]);
428         }
429         ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
430         assert(nbWorkers > 0);
431         return poolSize + arraySize + totalCCtxSize;
432     }
433 }
434 
ZSTDMT_getCCtx(ZSTDMT_CCtxPool * cctxPool)435 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
436 {
437     DEBUGLOG(5, "ZSTDMT_getCCtx");
438     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
439     if (cctxPool->availCCtx) {
440         cctxPool->availCCtx--;
441         {   ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx];
442             ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
443             return cctx;
444     }   }
445     ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
446     DEBUGLOG(5, "create one more CCtx");
447     return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
448 }
449 
ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool * pool,ZSTD_CCtx * cctx)450 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
451 {
452     if (cctx==NULL) return;   /* compatibility with release on NULL */
453     ZSTD_pthread_mutex_lock(&pool->poolMutex);
454     if (pool->availCCtx < pool->totalCCtx)
455         pool->cctxs[pool->availCCtx++] = cctx;
456     else {
457         /* pool overflow : should not happen, since totalCCtx==nbWorkers */
458         DEBUGLOG(4, "CCtx pool overflow : free cctx");
459         ZSTD_freeCCtx(cctx);
460     }
461     ZSTD_pthread_mutex_unlock(&pool->poolMutex);
462 }
463 
464 /* ====   Serial State   ==== */
465 
466 typedef struct {
467     void const* start;
468     size_t size;
469 } Range;
470 
471 typedef struct {
472     /* All variables in the struct are protected by mutex. */
473     ZSTD_pthread_mutex_t mutex;
474     ZSTD_pthread_cond_t cond;
475     ZSTD_CCtx_params params;
476     ldmState_t ldmState;
477     XXH64_state_t xxhState;
478     unsigned nextJobID;
479     /* Protects ldmWindow.
480      * Must be acquired after the main mutex when acquiring both.
481      */
482     ZSTD_pthread_mutex_t ldmWindowMutex;
483     ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
484     ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
485 } SerialState;
486 
487 static int
ZSTDMT_serialState_reset(SerialState * serialState,ZSTDMT_seqPool * seqPool,ZSTD_CCtx_params params,size_t jobSize,const void * dict,size_t const dictSize,ZSTD_dictContentType_e dictContentType)488 ZSTDMT_serialState_reset(SerialState* serialState,
489                          ZSTDMT_seqPool* seqPool,
490                          ZSTD_CCtx_params params,
491                          size_t jobSize,
492                          const void* dict, size_t const dictSize,
493                          ZSTD_dictContentType_e dictContentType)
494 {
495     /* Adjust parameters */
496     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
497         DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
498         ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
499         assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
500         assert(params.ldmParams.hashRateLog < 32);
501     } else {
502         ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
503     }
504     serialState->nextJobID = 0;
505     if (params.fParams.checksumFlag)
506         XXH64_reset(&serialState->xxhState, 0);
507     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
508         ZSTD_customMem cMem = params.customMem;
509         unsigned const hashLog = params.ldmParams.hashLog;
510         size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
511         unsigned const bucketLog =
512             params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
513         unsigned const prevBucketLog =
514             serialState->params.ldmParams.hashLog -
515             serialState->params.ldmParams.bucketSizeLog;
516         size_t const numBuckets = (size_t)1 << bucketLog;
517         /* Size the seq pool tables */
518         ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
519         /* Reset the window */
520         ZSTD_window_init(&serialState->ldmState.window);
521         /* Resize tables and output space if necessary. */
522         if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
523             ZSTD_customFree(serialState->ldmState.hashTable, cMem);
524             serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
525         }
526         if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
527             ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
528             serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
529         }
530         if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
531             return 1;
532         /* Zero the tables */
533         ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
534         ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
535 
536         /* Update window state and fill hash table with dict */
537         serialState->ldmState.loadedDictEnd = 0;
538         if (dictSize > 0) {
539             if (dictContentType == ZSTD_dct_rawContent) {
540                 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
541                 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
542                 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
543                 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
544             } else {
545                 /* don't even load anything */
546             }
547         }
548 
549         /* Initialize serialState's copy of ldmWindow. */
550         serialState->ldmWindow = serialState->ldmState.window;
551     }
552 
553     serialState->params = params;
554     serialState->params.jobSize = (U32)jobSize;
555     return 0;
556 }
557 
ZSTDMT_serialState_init(SerialState * serialState)558 static int ZSTDMT_serialState_init(SerialState* serialState)
559 {
560     int initError = 0;
561     ZSTD_memset(serialState, 0, sizeof(*serialState));
562     initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
563     initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
564     initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
565     initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
566     return initError;
567 }
568 
ZSTDMT_serialState_free(SerialState * serialState)569 static void ZSTDMT_serialState_free(SerialState* serialState)
570 {
571     ZSTD_customMem cMem = serialState->params.customMem;
572     ZSTD_pthread_mutex_destroy(&serialState->mutex);
573     ZSTD_pthread_cond_destroy(&serialState->cond);
574     ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
575     ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
576     ZSTD_customFree(serialState->ldmState.hashTable, cMem);
577     ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
578 }
579 
580 static void
ZSTDMT_serialState_genSequences(SerialState * serialState,RawSeqStore_t * seqStore,Range src,unsigned jobID)581 ZSTDMT_serialState_genSequences(SerialState* serialState,
582                                 RawSeqStore_t* seqStore,
583                                 Range src, unsigned jobID)
584 {
585     /* Wait for our turn */
586     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
587     while (serialState->nextJobID < jobID) {
588         DEBUGLOG(5, "wait for serialState->cond");
589         ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
590     }
591     /* A future job may error and skip our job */
592     if (serialState->nextJobID == jobID) {
593         /* It is now our turn, do any processing necessary */
594         if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
595             size_t error;
596             DEBUGLOG(6, "ZSTDMT_serialState_genSequences: LDM update");
597             assert(seqStore->seq != NULL && seqStore->pos == 0 &&
598                    seqStore->size == 0 && seqStore->capacity > 0);
599             assert(src.size <= serialState->params.jobSize);
600             ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
601             error = ZSTD_ldm_generateSequences(
602                 &serialState->ldmState, seqStore,
603                 &serialState->params.ldmParams, src.start, src.size);
604             /* We provide a large enough buffer to never fail. */
605             assert(!ZSTD_isError(error)); (void)error;
606             /* Update ldmWindow to match the ldmState.window and signal the main
607              * thread if it is waiting for a buffer.
608              */
609             ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
610             serialState->ldmWindow = serialState->ldmState.window;
611             ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
612             ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
613         }
614         if (serialState->params.fParams.checksumFlag && src.size > 0)
615             XXH64_update(&serialState->xxhState, src.start, src.size);
616     }
617     /* Now it is the next jobs turn */
618     serialState->nextJobID++;
619     ZSTD_pthread_cond_broadcast(&serialState->cond);
620     ZSTD_pthread_mutex_unlock(&serialState->mutex);
621 }
622 
623 static void
ZSTDMT_serialState_applySequences(const SerialState * serialState,ZSTD_CCtx * jobCCtx,const RawSeqStore_t * seqStore)624 ZSTDMT_serialState_applySequences(const SerialState* serialState, /* just for an assert() check */
625                                   ZSTD_CCtx* jobCCtx,
626                                   const RawSeqStore_t* seqStore)
627 {
628     if (seqStore->size > 0) {
629         DEBUGLOG(5, "ZSTDMT_serialState_applySequences: uploading %u external sequences", (unsigned)seqStore->size);
630         assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); (void)serialState;
631         assert(jobCCtx);
632         ZSTD_referenceExternalSequences(jobCCtx, seqStore->seq, seqStore->size);
633     }
634 }
635 
ZSTDMT_serialState_ensureFinished(SerialState * serialState,unsigned jobID,size_t cSize)636 static void ZSTDMT_serialState_ensureFinished(SerialState* serialState,
637                                               unsigned jobID, size_t cSize)
638 {
639     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
640     if (serialState->nextJobID <= jobID) {
641         assert(ZSTD_isError(cSize)); (void)cSize;
642         DEBUGLOG(5, "Skipping past job %u because of error", jobID);
643         serialState->nextJobID = jobID + 1;
644         ZSTD_pthread_cond_broadcast(&serialState->cond);
645 
646         ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
647         ZSTD_window_clear(&serialState->ldmWindow);
648         ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
649         ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
650     }
651     ZSTD_pthread_mutex_unlock(&serialState->mutex);
652 
653 }
654 
655 
656 /* ------------------------------------------ */
657 /* =====          Worker thread         ===== */
658 /* ------------------------------------------ */
659 
660 static const Range kNullRange = { NULL, 0 };
661 
662 typedef struct {
663     size_t   consumed;                 /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
664     size_t   cSize;                    /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
665     ZSTD_pthread_mutex_t job_mutex;    /* Thread-safe - used by mtctx and worker */
666     ZSTD_pthread_cond_t job_cond;      /* Thread-safe - used by mtctx and worker */
667     ZSTDMT_CCtxPool* cctxPool;         /* Thread-safe - used by mtctx and (all) workers */
668     ZSTDMT_bufferPool* bufPool;        /* Thread-safe - used by mtctx and (all) workers */
669     ZSTDMT_seqPool* seqPool;           /* Thread-safe - used by mtctx and (all) workers */
670     SerialState* serial;               /* Thread-safe - used by mtctx and (all) workers */
671     Buffer dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
672     Range prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
673     Range src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
674     unsigned jobID;                    /* set by mtctx, then read by worker => no barrier */
675     unsigned firstJob;                 /* set by mtctx, then read by worker => no barrier */
676     unsigned lastJob;                  /* set by mtctx, then read by worker => no barrier */
677     ZSTD_CCtx_params params;           /* set by mtctx, then read by worker => no barrier */
678     const ZSTD_CDict* cdict;           /* set by mtctx, then read by worker => no barrier */
679     unsigned long long fullFrameSize;  /* set by mtctx, then read by worker => no barrier */
680     size_t   dstFlushed;               /* used only by mtctx */
681     unsigned frameChecksumNeeded;      /* used only by mtctx */
682 } ZSTDMT_jobDescription;
683 
684 #define JOB_ERROR(e)                                \
685     do {                                            \
686         ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
687         job->cSize = e;                             \
688         ZSTD_pthread_mutex_unlock(&job->job_mutex); \
689         goto _endJob;                               \
690     } while (0)
691 
692 /* ZSTDMT_compressionJob() is a POOL_function type */
ZSTDMT_compressionJob(void * jobDescription)693 static void ZSTDMT_compressionJob(void* jobDescription)
694 {
695     ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
696     ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
697     ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
698     RawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
699     Buffer dstBuff = job->dstBuff;
700     size_t lastCBlockSize = 0;
701 
702     DEBUGLOG(5, "ZSTDMT_compressionJob: job %u", job->jobID);
703     /* resources */
704     if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
705     if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
706         dstBuff = ZSTDMT_getBuffer(job->bufPool);
707         if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
708         job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
709     }
710     if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
711         JOB_ERROR(ERROR(memory_allocation));
712 
713     /* Don't compute the checksum for chunks, since we compute it externally,
714      * but write it in the header.
715      */
716     if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
717     /* Don't run LDM for the chunks, since we handle it externally */
718     jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
719     /* Correct nbWorkers to 0. */
720     jobParams.nbWorkers = 0;
721 
722 
723     /* init */
724 
725     /* Perform serial step as early as possible */
726     ZSTDMT_serialState_genSequences(job->serial, &rawSeqStore, job->src, job->jobID);
727 
728     if (job->cdict) {
729         size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
730         assert(job->firstJob);  /* only allowed for first job */
731         if (ZSTD_isError(initError)) JOB_ERROR(initError);
732     } else {
733         U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
734         {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
735             if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
736         }
737         if (!job->firstJob) {
738             size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
739             if (ZSTD_isError(err)) JOB_ERROR(err);
740         }
741         DEBUGLOG(6, "ZSTDMT_compressionJob: job %u: loading prefix of size %zu", job->jobID, job->prefix.size);
742         {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
743                                         job->prefix.start, job->prefix.size, ZSTD_dct_rawContent,
744                                         ZSTD_dtlm_fast,
745                                         NULL, /*cdict*/
746                                         &jobParams, pledgedSrcSize);
747             if (ZSTD_isError(initError)) JOB_ERROR(initError);
748     }   }
749 
750     /* External Sequences can only be applied after CCtx initialization */
751     ZSTDMT_serialState_applySequences(job->serial, cctx, &rawSeqStore);
752 
753     if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
754         size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
755         if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
756         DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
757         ZSTD_invalidateRepCodes(cctx);
758     }
759 
760     /* compress the entire job by smaller chunks, for better granularity */
761     {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
762         int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
763         const BYTE* ip = (const BYTE*) job->src.start;
764         BYTE* const ostart = (BYTE*)dstBuff.start;
765         BYTE* op = ostart;
766         BYTE* oend = op + dstBuff.capacity;
767         int chunkNb;
768         if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
769         DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
770         assert(job->cSize == 0);
771         for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
772             size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
773             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
774             ip += chunkSize;
775             op += cSize; assert(op < oend);
776             /* stats */
777             ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
778             job->cSize += cSize;
779             job->consumed = chunkSize * chunkNb;
780             DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
781                         (U32)cSize, (U32)job->cSize);
782             ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
783             ZSTD_pthread_mutex_unlock(&job->job_mutex);
784         }
785         /* last block */
786         assert(chunkSize > 0);
787         assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
788         if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
789             size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
790             size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
791             size_t const cSize = (job->lastJob) ?
792                  ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
793                  ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
794             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
795             lastCBlockSize = cSize;
796     }   }
797     if (!job->firstJob) {
798         /* Double check that we don't have an ext-dict, because then our
799          * repcode invalidation doesn't work.
800          */
801         assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
802     }
803     ZSTD_CCtx_trace(cctx, 0);
804 
805 _endJob:
806     ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
807     if (job->prefix.size > 0)
808         DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
809     DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
810     /* release resources */
811     ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
812     ZSTDMT_releaseCCtx(job->cctxPool, cctx);
813     /* report */
814     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
815     if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
816     job->cSize += lastCBlockSize;
817     job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
818     ZSTD_pthread_cond_signal(&job->job_cond);
819     ZSTD_pthread_mutex_unlock(&job->job_mutex);
820 }
821 
822 
823 /* ------------------------------------------ */
824 /* =====   Multi-threaded compression   ===== */
825 /* ------------------------------------------ */
826 
827 typedef struct {
828     Range prefix;         /* read-only non-owned prefix buffer */
829     Buffer buffer;
830     size_t filled;
831 } InBuff_t;
832 
833 typedef struct {
834   BYTE* buffer;     /* The round input buffer. All jobs get references
835                      * to pieces of the buffer. ZSTDMT_tryGetInputRange()
836                      * handles handing out job input buffers, and makes
837                      * sure it doesn't overlap with any pieces still in use.
838                      */
839   size_t capacity;  /* The capacity of buffer. */
840   size_t pos;       /* The position of the current inBuff in the round
841                      * buffer. Updated past the end if the inBuff once
842                      * the inBuff is sent to the worker thread.
843                      * pos <= capacity.
844                      */
845 } RoundBuff_t;
846 
847 static const RoundBuff_t kNullRoundBuff = {NULL, 0, 0};
848 
849 #define RSYNC_LENGTH 32
850 /* Don't create chunks smaller than the zstd block size.
851  * This stops us from regressing compression ratio too much,
852  * and ensures our output fits in ZSTD_compressBound().
853  *
854  * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
855  * ZSTD_COMPRESSBOUND() will need to be updated.
856  */
857 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
858 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
859 
860 typedef struct {
861   U64 hash;
862   U64 hitMask;
863   U64 primePower;
864 } RSyncState_t;
865 
866 struct ZSTDMT_CCtx_s {
867     POOL_ctx* factory;
868     ZSTDMT_jobDescription* jobs;
869     ZSTDMT_bufferPool* bufPool;
870     ZSTDMT_CCtxPool* cctxPool;
871     ZSTDMT_seqPool* seqPool;
872     ZSTD_CCtx_params params;
873     size_t targetSectionSize;
874     size_t targetPrefixSize;
875     int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
876     InBuff_t inBuff;
877     RoundBuff_t roundBuff;
878     SerialState serial;
879     RSyncState_t rsync;
880     unsigned jobIDMask;
881     unsigned doneJobID;
882     unsigned nextJobID;
883     unsigned frameEnded;
884     unsigned allJobsCompleted;
885     unsigned long long frameContentSize;
886     unsigned long long consumed;
887     unsigned long long produced;
888     ZSTD_customMem cMem;
889     ZSTD_CDict* cdictLocal;
890     const ZSTD_CDict* cdict;
891     unsigned providedFactory: 1;
892 };
893 
ZSTDMT_freeJobsTable(ZSTDMT_jobDescription * jobTable,U32 nbJobs,ZSTD_customMem cMem)894 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
895 {
896     U32 jobNb;
897     if (jobTable == NULL) return;
898     for (jobNb=0; jobNb<nbJobs; jobNb++) {
899         ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
900         ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
901     }
902     ZSTD_customFree(jobTable, cMem);
903 }
904 
905 /* ZSTDMT_allocJobsTable()
906  * allocate and init a job table.
907  * update *nbJobsPtr to next power of 2 value, as size of table */
ZSTDMT_createJobsTable(U32 * nbJobsPtr,ZSTD_customMem cMem)908 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
909 {
910     U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
911     U32 const nbJobs = 1 << nbJobsLog2;
912     U32 jobNb;
913     ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
914                 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
915     int initError = 0;
916     if (jobTable==NULL) return NULL;
917     *nbJobsPtr = nbJobs;
918     for (jobNb=0; jobNb<nbJobs; jobNb++) {
919         initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
920         initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
921     }
922     if (initError != 0) {
923         ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
924         return NULL;
925     }
926     return jobTable;
927 }
928 
ZSTDMT_expandJobsTable(ZSTDMT_CCtx * mtctx,U32 nbWorkers)929 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
930     U32 nbJobs = nbWorkers + 2;
931     if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
932         ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
933         mtctx->jobIDMask = 0;
934         mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
935         if (mtctx->jobs==NULL) return ERROR(memory_allocation);
936         assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
937         mtctx->jobIDMask = nbJobs - 1;
938     }
939     return 0;
940 }
941 
942 
943 /* ZSTDMT_CCtxParam_setNbWorkers():
944  * Internal use only */
ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params * params,unsigned nbWorkers)945 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
946 {
947     return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
948 }
949 
ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers,ZSTD_customMem cMem,ZSTD_threadPool * pool)950 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
951 {
952     ZSTDMT_CCtx* mtctx;
953     U32 nbJobs = nbWorkers + 2;
954     int initError;
955     DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
956 
957     if (nbWorkers < 1) return NULL;
958     nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
959     if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
960         /* invalid custom allocator */
961         return NULL;
962 
963     mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
964     if (!mtctx) return NULL;
965     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
966     mtctx->cMem = cMem;
967     mtctx->allJobsCompleted = 1;
968     if (pool != NULL) {
969       mtctx->factory = pool;
970       mtctx->providedFactory = 1;
971     }
972     else {
973       mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
974       mtctx->providedFactory = 0;
975     }
976     mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
977     assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
978     mtctx->jobIDMask = nbJobs - 1;
979     mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
980     mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
981     mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
982     initError = ZSTDMT_serialState_init(&mtctx->serial);
983     mtctx->roundBuff = kNullRoundBuff;
984     if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
985         ZSTDMT_freeCCtx(mtctx);
986         return NULL;
987     }
988     DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
989     return mtctx;
990 }
991 
ZSTDMT_createCCtx_advanced(unsigned nbWorkers,ZSTD_customMem cMem,ZSTD_threadPool * pool)992 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
993 {
994 #ifdef ZSTD_MULTITHREAD
995     return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
996 #else
997     (void)nbWorkers;
998     (void)cMem;
999     (void)pool;
1000     return NULL;
1001 #endif
1002 }
1003 
1004 
1005 /* ZSTDMT_releaseAllJobResources() :
1006  * note : ensure all workers are killed first ! */
ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx * mtctx)1007 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
1008 {
1009     unsigned jobID;
1010     DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
1011     for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
1012         /* Copy the mutex/cond out */
1013         ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
1014         ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
1015 
1016         DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
1017         ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
1018 
1019         /* Clear the job description, but keep the mutex/cond */
1020         ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
1021         mtctx->jobs[jobID].job_mutex = mutex;
1022         mtctx->jobs[jobID].job_cond = cond;
1023     }
1024     mtctx->inBuff.buffer = g_nullBuffer;
1025     mtctx->inBuff.filled = 0;
1026     mtctx->allJobsCompleted = 1;
1027 }
1028 
ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx * mtctx)1029 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
1030 {
1031     DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1032     while (mtctx->doneJobID < mtctx->nextJobID) {
1033         unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1034         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1035         while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1036             DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
1037             ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1038         }
1039         ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1040         mtctx->doneJobID++;
1041     }
1042 }
1043 
ZSTDMT_freeCCtx(ZSTDMT_CCtx * mtctx)1044 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1045 {
1046     if (mtctx==NULL) return 0;   /* compatible with free on NULL */
1047     if (!mtctx->providedFactory)
1048         POOL_free(mtctx->factory);   /* stop and free worker threads */
1049     ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
1050     ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1051     ZSTDMT_freeBufferPool(mtctx->bufPool);
1052     ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1053     ZSTDMT_freeSeqPool(mtctx->seqPool);
1054     ZSTDMT_serialState_free(&mtctx->serial);
1055     ZSTD_freeCDict(mtctx->cdictLocal);
1056     if (mtctx->roundBuff.buffer)
1057         ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1058     ZSTD_customFree(mtctx, mtctx->cMem);
1059     return 0;
1060 }
1061 
ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx * mtctx)1062 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1063 {
1064     if (mtctx == NULL) return 0;   /* supports sizeof NULL */
1065     return sizeof(*mtctx)
1066             + POOL_sizeof(mtctx->factory)
1067             + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1068             + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1069             + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1070             + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1071             + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1072             + mtctx->roundBuff.capacity;
1073 }
1074 
1075 
1076 /* ZSTDMT_resize() :
1077  * @return : error code if fails, 0 on success */
ZSTDMT_resize(ZSTDMT_CCtx * mtctx,unsigned nbWorkers)1078 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1079 {
1080     if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1081     FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1082     mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1083     if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1084     mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1085     if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1086     mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1087     if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1088     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1089     return 0;
1090 }
1091 
1092 
1093 /*! ZSTDMT_updateCParams_whileCompressing() :
1094  *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
1095  *  New parameters will be applied to next compression job. */
ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx * mtctx,const ZSTD_CCtx_params * cctxParams)1096 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1097 {
1098     U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
1099     int const compressionLevel = cctxParams->compressionLevel;
1100     DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1101                 compressionLevel);
1102     mtctx->params.compressionLevel = compressionLevel;
1103     {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1104         cParams.windowLog = saved_wlog;
1105         mtctx->params.cParams = cParams;
1106     }
1107 }
1108 
1109 /* ZSTDMT_getFrameProgression():
1110  * tells how much data has been consumed (input) and produced (output) for current frame.
1111  * able to count progression inside worker threads.
1112  * Note : mutex will be acquired during statistics collection inside workers. */
ZSTDMT_getFrameProgression(ZSTDMT_CCtx * mtctx)1113 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1114 {
1115     ZSTD_frameProgression fps;
1116     DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1117     fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1118     fps.consumed = mtctx->consumed;
1119     fps.produced = fps.flushed = mtctx->produced;
1120     fps.currentJobID = mtctx->nextJobID;
1121     fps.nbActiveWorkers = 0;
1122     {   unsigned jobNb;
1123         unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1124         DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1125                     mtctx->doneJobID, lastJobNb, mtctx->jobReady);
1126         for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1127             unsigned const wJobID = jobNb & mtctx->jobIDMask;
1128             ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1129             ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1130             {   size_t const cResult = jobPtr->cSize;
1131                 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1132                 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1133                 assert(flushed <= produced);
1134                 fps.ingested += jobPtr->src.size;
1135                 fps.consumed += jobPtr->consumed;
1136                 fps.produced += produced;
1137                 fps.flushed  += flushed;
1138                 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1139             }
1140             ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1141         }
1142     }
1143     return fps;
1144 }
1145 
1146 
ZSTDMT_toFlushNow(ZSTDMT_CCtx * mtctx)1147 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1148 {
1149     size_t toFlush;
1150     unsigned const jobID = mtctx->doneJobID;
1151     assert(jobID <= mtctx->nextJobID);
1152     if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
1153 
1154     /* look into oldest non-fully-flushed job */
1155     {   unsigned const wJobID = jobID & mtctx->jobIDMask;
1156         ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1157         ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1158         {   size_t const cResult = jobPtr->cSize;
1159             size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1160             size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1161             assert(flushed <= produced);
1162             assert(jobPtr->consumed <= jobPtr->src.size);
1163             toFlush = produced - flushed;
1164             /* if toFlush==0, nothing is available to flush.
1165              * However, jobID is expected to still be active:
1166              * if jobID was already completed and fully flushed,
1167              * ZSTDMT_flushProduced() should have already moved onto next job.
1168              * Therefore, some input has not yet been consumed. */
1169             if (toFlush==0) {
1170                 assert(jobPtr->consumed < jobPtr->src.size);
1171             }
1172         }
1173         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1174     }
1175 
1176     return toFlush;
1177 }
1178 
1179 
1180 /* ------------------------------------------ */
1181 /* =====   Multi-threaded compression   ===== */
1182 /* ------------------------------------------ */
1183 
ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params * params)1184 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1185 {
1186     unsigned jobLog;
1187     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1188         /* In Long Range Mode, the windowLog is typically oversized.
1189          * In which case, it's preferable to determine the jobSize
1190          * based on cycleLog instead. */
1191         jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1192     } else {
1193         jobLog = MAX(20, params->cParams.windowLog + 2);
1194     }
1195     return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1196 }
1197 
ZSTDMT_overlapLog_default(ZSTD_strategy strat)1198 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1199 {
1200     switch(strat)
1201     {
1202         case ZSTD_btultra2:
1203             return 9;
1204         case ZSTD_btultra:
1205         case ZSTD_btopt:
1206             return 8;
1207         case ZSTD_btlazy2:
1208         case ZSTD_lazy2:
1209             return 7;
1210         case ZSTD_lazy:
1211         case ZSTD_greedy:
1212         case ZSTD_dfast:
1213         case ZSTD_fast:
1214         default:;
1215     }
1216     return 6;
1217 }
1218 
ZSTDMT_overlapLog(int ovlog,ZSTD_strategy strat)1219 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1220 {
1221     assert(0 <= ovlog && ovlog <= 9);
1222     if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1223     return ovlog;
1224 }
1225 
ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params * params)1226 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1227 {
1228     int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1229     int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1230     assert(0 <= overlapRLog && overlapRLog <= 8);
1231     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1232         /* In Long Range Mode, the windowLog is typically oversized.
1233          * In which case, it's preferable to determine the jobSize
1234          * based on chainLog instead.
1235          * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1236         ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1237                 - overlapRLog;
1238     }
1239     assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1240     DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1241     DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1242     return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1243 }
1244 
1245 /* ====================================== */
1246 /* =======      Streaming API     ======= */
1247 /* ====================================== */
1248 
ZSTDMT_initCStream_internal(ZSTDMT_CCtx * mtctx,const void * dict,size_t dictSize,ZSTD_dictContentType_e dictContentType,const ZSTD_CDict * cdict,ZSTD_CCtx_params params,unsigned long long pledgedSrcSize)1249 size_t ZSTDMT_initCStream_internal(
1250         ZSTDMT_CCtx* mtctx,
1251         const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1252         const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1253         unsigned long long pledgedSrcSize)
1254 {
1255     DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1256                 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1257 
1258     /* params supposed partially fully validated at this point */
1259     assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1260     assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
1261 
1262     /* init */
1263     if (params.nbWorkers != mtctx->params.nbWorkers)
1264         FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, (unsigned)params.nbWorkers) , "");
1265 
1266     if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1267     if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1268 
1269     if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
1270         ZSTDMT_waitForAllJobsCompleted(mtctx);
1271         ZSTDMT_releaseAllJobResources(mtctx);
1272         mtctx->allJobsCompleted = 1;
1273     }
1274 
1275     mtctx->params = params;
1276     mtctx->frameContentSize = pledgedSrcSize;
1277     ZSTD_freeCDict(mtctx->cdictLocal);
1278     if (dict) {
1279         mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1280                                                     ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1281                                                     params.cParams, mtctx->cMem);
1282         mtctx->cdict = mtctx->cdictLocal;
1283         if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1284     } else {
1285         mtctx->cdictLocal = NULL;
1286         mtctx->cdict = cdict;
1287     }
1288 
1289     mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1290     DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1291     mtctx->targetSectionSize = params.jobSize;
1292     if (mtctx->targetSectionSize == 0) {
1293         mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1294     }
1295     assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1296 
1297     if (params.rsyncable) {
1298         /* Aim for the targetsectionSize as the average job size. */
1299         U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1300         U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1301         /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1302          * expected job size is at least 4x larger. */
1303         assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1304         DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1305         mtctx->rsync.hash = 0;
1306         mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1307         mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1308     }
1309     if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
1310     DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1311     DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1312     ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1313     {
1314         /* If ldm is enabled we need windowSize space. */
1315         size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1316         /* Two buffers of slack, plus extra space for the overlap
1317          * This is the minimum slack that LDM works with. One extra because
1318          * flush might waste up to targetSectionSize-1 bytes. Another extra
1319          * for the overlap (if > 0), then one to fill which doesn't overlap
1320          * with the LDM window.
1321          */
1322         size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1323         size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1324         /* Compute the total size, and always have enough slack */
1325         size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1326         size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1327         size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1328         if (mtctx->roundBuff.capacity < capacity) {
1329             if (mtctx->roundBuff.buffer)
1330                 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1331             mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1332             if (mtctx->roundBuff.buffer == NULL) {
1333                 mtctx->roundBuff.capacity = 0;
1334                 return ERROR(memory_allocation);
1335             }
1336             mtctx->roundBuff.capacity = capacity;
1337         }
1338     }
1339     DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1340     mtctx->roundBuff.pos = 0;
1341     mtctx->inBuff.buffer = g_nullBuffer;
1342     mtctx->inBuff.filled = 0;
1343     mtctx->inBuff.prefix = kNullRange;
1344     mtctx->doneJobID = 0;
1345     mtctx->nextJobID = 0;
1346     mtctx->frameEnded = 0;
1347     mtctx->allJobsCompleted = 0;
1348     mtctx->consumed = 0;
1349     mtctx->produced = 0;
1350 
1351     /* update dictionary */
1352     ZSTD_freeCDict(mtctx->cdictLocal);
1353     mtctx->cdictLocal = NULL;
1354     mtctx->cdict = NULL;
1355     if (dict) {
1356         if (dictContentType == ZSTD_dct_rawContent) {
1357             mtctx->inBuff.prefix.start = (const BYTE*)dict;
1358             mtctx->inBuff.prefix.size = dictSize;
1359         } else {
1360             /* note : a loadPrefix becomes an internal CDict */
1361             mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1362                                                         ZSTD_dlm_byRef, dictContentType,
1363                                                         params.cParams, mtctx->cMem);
1364             mtctx->cdict = mtctx->cdictLocal;
1365             if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1366         }
1367     } else {
1368         mtctx->cdict = cdict;
1369     }
1370 
1371     if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1372                                  dict, dictSize, dictContentType))
1373         return ERROR(memory_allocation);
1374 
1375 
1376     return 0;
1377 }
1378 
1379 
1380 /* ZSTDMT_writeLastEmptyBlock()
1381  * Write a single empty block with an end-of-frame to finish a frame.
1382  * Job must be created from streaming variant.
1383  * This function is always successful if expected conditions are fulfilled.
1384  */
ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription * job)1385 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1386 {
1387     assert(job->lastJob == 1);
1388     assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
1389     assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
1390     assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1391     job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1392     if (job->dstBuff.start == NULL) {
1393       job->cSize = ERROR(memory_allocation);
1394       return;
1395     }
1396     assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
1397     job->src = kNullRange;
1398     job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1399     assert(!ZSTD_isError(job->cSize));
1400     assert(job->consumed == 0);
1401 }
1402 
ZSTDMT_createCompressionJob(ZSTDMT_CCtx * mtctx,size_t srcSize,ZSTD_EndDirective endOp)1403 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1404 {
1405     unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1406     int const endFrame = (endOp == ZSTD_e_end);
1407 
1408     if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1409         DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1410         assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1411         return 0;
1412     }
1413 
1414     if (!mtctx->jobReady) {
1415         BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1416         DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1417                     mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1418         mtctx->jobs[jobID].src.start = src;
1419         mtctx->jobs[jobID].src.size = srcSize;
1420         assert(mtctx->inBuff.filled >= srcSize);
1421         mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1422         mtctx->jobs[jobID].consumed = 0;
1423         mtctx->jobs[jobID].cSize = 0;
1424         mtctx->jobs[jobID].params = mtctx->params;
1425         mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1426         mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1427         mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1428         mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1429         mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1430         mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1431         mtctx->jobs[jobID].serial = &mtctx->serial;
1432         mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1433         mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1434         mtctx->jobs[jobID].lastJob = endFrame;
1435         mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1436         mtctx->jobs[jobID].dstFlushed = 0;
1437 
1438         /* Update the round buffer pos and clear the input buffer to be reset */
1439         mtctx->roundBuff.pos += srcSize;
1440         mtctx->inBuff.buffer = g_nullBuffer;
1441         mtctx->inBuff.filled = 0;
1442         /* Set the prefix for next job */
1443         if (!endFrame) {
1444             size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1445             mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1446             mtctx->inBuff.prefix.size = newPrefixSize;
1447         } else {   /* endFrame==1 => no need for another input buffer */
1448             mtctx->inBuff.prefix = kNullRange;
1449             mtctx->frameEnded = endFrame;
1450             if (mtctx->nextJobID == 0) {
1451                 /* single job exception : checksum is already calculated directly within worker thread */
1452                 mtctx->params.fParams.checksumFlag = 0;
1453         }   }
1454 
1455         if ( (srcSize == 0)
1456           && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1457             DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1458             assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
1459             ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1460             mtctx->nextJobID++;
1461             return 0;
1462         }
1463     }
1464 
1465     DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
1466                 mtctx->nextJobID,
1467                 (U32)mtctx->jobs[jobID].src.size,
1468                 mtctx->jobs[jobID].lastJob,
1469                 mtctx->nextJobID,
1470                 jobID);
1471     if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1472         mtctx->nextJobID++;
1473         mtctx->jobReady = 0;
1474     } else {
1475         DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1476         mtctx->jobReady = 1;
1477     }
1478     return 0;
1479 }
1480 
1481 
1482 /*! ZSTDMT_flushProduced() :
1483  *  flush whatever data has been produced but not yet flushed in current job.
1484  *  move to next job if current one is fully flushed.
1485  * `output` : `pos` will be updated with amount of data flushed .
1486  * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1487  * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
ZSTDMT_flushProduced(ZSTDMT_CCtx * mtctx,ZSTD_outBuffer * output,unsigned blockToFlush,ZSTD_EndDirective end)1488 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1489 {
1490     unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1491     DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1492                 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1493     assert(output->size >= output->pos);
1494 
1495     ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1496     if (  blockToFlush
1497       && (mtctx->doneJobID < mtctx->nextJobID) ) {
1498         assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1499         while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
1500             if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1501                 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1502                             mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1503                 break;
1504             }
1505             DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1506                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1507             ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
1508     }   }
1509 
1510     /* try to flush something */
1511     {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
1512         size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
1513         size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1514         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1515         if (ZSTD_isError(cSize)) {
1516             DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1517                         mtctx->doneJobID, ZSTD_getErrorName(cSize));
1518             ZSTDMT_waitForAllJobsCompleted(mtctx);
1519             ZSTDMT_releaseAllJobResources(mtctx);
1520             return cSize;
1521         }
1522         /* add frame checksum if necessary (can only happen once) */
1523         assert(srcConsumed <= srcSize);
1524         if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
1525           && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1526             U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1527             DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1528             MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1529             cSize += 4;
1530             mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
1531             mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1532         }
1533 
1534         if (cSize > 0) {   /* compression is ongoing or completed */
1535             size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1536             DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1537                         (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1538             assert(mtctx->doneJobID < mtctx->nextJobID);
1539             assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1540             assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1541             if (toFlush > 0) {
1542                 ZSTD_memcpy((char*)output->dst + output->pos,
1543                     (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1544                     toFlush);
1545             }
1546             output->pos += toFlush;
1547             mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
1548 
1549             if ( (srcConsumed == srcSize)    /* job is completed */
1550               && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
1551                 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1552                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1553                 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1554                 DEBUGLOG(5, "dstBuffer released");
1555                 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1556                 mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
1557                 mtctx->consumed += srcSize;
1558                 mtctx->produced += cSize;
1559                 mtctx->doneJobID++;
1560         }   }
1561 
1562         /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1563         if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1564         if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
1565     }
1566     if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
1567     if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
1568     if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
1569     mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
1570     if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1571     return 0;   /* internal buffers fully flushed */
1572 }
1573 
1574 /**
1575  * Returns the range of data used by the earliest job that is not yet complete.
1576  * If the data of the first job is broken up into two segments, we cover both
1577  * sections.
1578  */
ZSTDMT_getInputDataInUse(ZSTDMT_CCtx * mtctx)1579 static Range ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1580 {
1581     unsigned const firstJobID = mtctx->doneJobID;
1582     unsigned const lastJobID = mtctx->nextJobID;
1583     unsigned jobID;
1584 
1585     /* no need to check during first round */
1586     size_t roundBuffCapacity = mtctx->roundBuff.capacity;
1587     size_t nbJobs1stRoundMin = roundBuffCapacity / mtctx->targetSectionSize;
1588     if (lastJobID < nbJobs1stRoundMin) return kNullRange;
1589 
1590     for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1591         unsigned const wJobID = jobID & mtctx->jobIDMask;
1592         size_t consumed;
1593 
1594         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1595         consumed = mtctx->jobs[wJobID].consumed;
1596         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1597 
1598         if (consumed < mtctx->jobs[wJobID].src.size) {
1599             Range range = mtctx->jobs[wJobID].prefix;
1600             if (range.size == 0) {
1601                 /* Empty prefix */
1602                 range = mtctx->jobs[wJobID].src;
1603             }
1604             /* Job source in multiple segments not supported yet */
1605             assert(range.start <= mtctx->jobs[wJobID].src.start);
1606             return range;
1607         }
1608     }
1609     return kNullRange;
1610 }
1611 
1612 /**
1613  * Returns non-zero iff buffer and range overlap.
1614  */
ZSTDMT_isOverlapped(Buffer buffer,Range range)1615 static int ZSTDMT_isOverlapped(Buffer buffer, Range range)
1616 {
1617     BYTE const* const bufferStart = (BYTE const*)buffer.start;
1618     BYTE const* const rangeStart = (BYTE const*)range.start;
1619 
1620     if (rangeStart == NULL || bufferStart == NULL)
1621         return 0;
1622 
1623     {
1624         BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1625         BYTE const* const rangeEnd = rangeStart + range.size;
1626 
1627         /* Empty ranges cannot overlap */
1628         if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1629             return 0;
1630 
1631         return bufferStart < rangeEnd && rangeStart < bufferEnd;
1632     }
1633 }
1634 
ZSTDMT_doesOverlapWindow(Buffer buffer,ZSTD_window_t window)1635 static int ZSTDMT_doesOverlapWindow(Buffer buffer, ZSTD_window_t window)
1636 {
1637     Range extDict;
1638     Range prefix;
1639 
1640     DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1641     extDict.start = window.dictBase + window.lowLimit;
1642     extDict.size = window.dictLimit - window.lowLimit;
1643 
1644     prefix.start = window.base + window.dictLimit;
1645     prefix.size = window.nextSrc - (window.base + window.dictLimit);
1646     DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1647                 (size_t)extDict.start,
1648                 (size_t)extDict.start + extDict.size);
1649     DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
1650                 (size_t)prefix.start,
1651                 (size_t)prefix.start + prefix.size);
1652 
1653     return ZSTDMT_isOverlapped(buffer, extDict)
1654         || ZSTDMT_isOverlapped(buffer, prefix);
1655 }
1656 
ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx * mtctx,Buffer buffer)1657 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, Buffer buffer)
1658 {
1659     if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1660         ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1661         DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1662         DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
1663                     (size_t)buffer.start,
1664                     (size_t)buffer.start + buffer.capacity);
1665         ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1666         while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1667             DEBUGLOG(5, "Waiting for LDM to finish...");
1668             ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1669         }
1670         DEBUGLOG(6, "Done waiting for LDM to finish");
1671         ZSTD_pthread_mutex_unlock(mutex);
1672     }
1673 }
1674 
1675 /**
1676  * Attempts to set the inBuff to the next section to fill.
1677  * If any part of the new section is still in use we give up.
1678  * Returns non-zero if the buffer is filled.
1679  */
ZSTDMT_tryGetInputRange(ZSTDMT_CCtx * mtctx)1680 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1681 {
1682     Range const inUse = ZSTDMT_getInputDataInUse(mtctx);
1683     size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1684     size_t const spaceNeeded = mtctx->targetSectionSize;
1685     Buffer buffer;
1686 
1687     DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1688     assert(mtctx->inBuff.buffer.start == NULL);
1689     assert(mtctx->roundBuff.capacity >= spaceNeeded);
1690 
1691     if (spaceLeft < spaceNeeded) {
1692         /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1693          * Simply copy the prefix to the beginning in that case.
1694          */
1695         BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1696         size_t const prefixSize = mtctx->inBuff.prefix.size;
1697 
1698         buffer.start = start;
1699         buffer.capacity = prefixSize;
1700         if (ZSTDMT_isOverlapped(buffer, inUse)) {
1701             DEBUGLOG(5, "Waiting for buffer...");
1702             return 0;
1703         }
1704         ZSTDMT_waitForLdmComplete(mtctx, buffer);
1705         ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1706         mtctx->inBuff.prefix.start = start;
1707         mtctx->roundBuff.pos = prefixSize;
1708     }
1709     buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1710     buffer.capacity = spaceNeeded;
1711 
1712     if (ZSTDMT_isOverlapped(buffer, inUse)) {
1713         DEBUGLOG(5, "Waiting for buffer...");
1714         return 0;
1715     }
1716     assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1717 
1718     ZSTDMT_waitForLdmComplete(mtctx, buffer);
1719 
1720     DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1721                 (size_t)mtctx->inBuff.prefix.start,
1722                 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1723     DEBUGLOG(5, "Using source range [%zx, %zx)",
1724                 (size_t)buffer.start,
1725                 (size_t)buffer.start + buffer.capacity);
1726 
1727 
1728     mtctx->inBuff.buffer = buffer;
1729     mtctx->inBuff.filled = 0;
1730     assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1731     return 1;
1732 }
1733 
1734 typedef struct {
1735   size_t toLoad;  /* The number of bytes to load from the input. */
1736   int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
1737 } SyncPoint;
1738 
1739 /**
1740  * Searches through the input for a synchronization point. If one is found, we
1741  * will instruct the caller to flush, and return the number of bytes to load.
1742  * Otherwise, we will load as many bytes as possible and instruct the caller
1743  * to continue as normal.
1744  */
1745 static SyncPoint
findSynchronizationPoint(ZSTDMT_CCtx const * mtctx,ZSTD_inBuffer const input)1746 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1747 {
1748     BYTE const* const istart = (BYTE const*)input.src + input.pos;
1749     U64 const primePower = mtctx->rsync.primePower;
1750     U64 const hitMask = mtctx->rsync.hitMask;
1751 
1752     SyncPoint syncPoint;
1753     U64 hash;
1754     BYTE const* prev;
1755     size_t pos;
1756 
1757     syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1758     syncPoint.flush = 0;
1759     if (!mtctx->params.rsyncable)
1760         /* Rsync is disabled. */
1761         return syncPoint;
1762     if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1763         /* We don't emit synchronization points if it would produce too small blocks.
1764          * We don't have enough input to find a synchronization point, so don't look.
1765          */
1766         return syncPoint;
1767     if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1768         /* Not enough to compute the hash.
1769          * We will miss any synchronization points in this RSYNC_LENGTH byte
1770          * window. However, since it depends only in the internal buffers, if the
1771          * state is already synchronized, we will remain synchronized.
1772          * Additionally, the probability that we miss a synchronization point is
1773          * low: RSYNC_LENGTH / targetSectionSize.
1774          */
1775         return syncPoint;
1776     /* Initialize the loop variables. */
1777     if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1778         /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1779          * because they can't possibly be a sync point. So we can start
1780          * part way through the input buffer.
1781          */
1782         pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1783         if (pos >= RSYNC_LENGTH) {
1784             prev = istart + pos - RSYNC_LENGTH;
1785             hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1786         } else {
1787             assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1788             prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1789             hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1790             hash = ZSTD_rollingHash_append(hash, istart, pos);
1791         }
1792     } else {
1793         /* We have enough bytes buffered to initialize the hash,
1794          * and have processed enough bytes to find a sync point.
1795          * Start scanning at the beginning of the input.
1796          */
1797         assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1798         assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1799         pos = 0;
1800         prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1801         hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1802         if ((hash & hitMask) == hitMask) {
1803             /* We're already at a sync point so don't load any more until
1804              * we're able to flush this sync point.
1805              * This likely happened because the job table was full so we
1806              * couldn't add our job.
1807              */
1808             syncPoint.toLoad = 0;
1809             syncPoint.flush = 1;
1810             return syncPoint;
1811         }
1812     }
1813     /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1814      * through the input. If we hit a synchronization point, then cut the
1815      * job off, and tell the compressor to flush the job. Otherwise, load
1816      * all the bytes and continue as normal.
1817      * If we go too long without a synchronization point (targetSectionSize)
1818      * then a block will be emitted anyways, but this is okay, since if we
1819      * are already synchronized we will remain synchronized.
1820      */
1821     assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1822     for (; pos < syncPoint.toLoad; ++pos) {
1823         BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1824         /* This assert is very expensive, and Debian compiles with asserts enabled.
1825          * So disable it for now. We can get similar coverage by checking it at the
1826          * beginning & end of the loop.
1827          * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1828          */
1829         hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1830         assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1831         if ((hash & hitMask) == hitMask) {
1832             syncPoint.toLoad = pos + 1;
1833             syncPoint.flush = 1;
1834             ++pos; /* for assert */
1835             break;
1836         }
1837     }
1838     assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1839     return syncPoint;
1840 }
1841 
ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx * mtctx)1842 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1843 {
1844     size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1845     if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1846     return hintInSize;
1847 }
1848 
1849 /** ZSTDMT_compressStream_generic() :
1850  *  internal use only - exposed to be invoked from zstd_compress.c
1851  *  assumption : output and input are valid (pos <= size)
1852  * @return : minimum amount of data remaining to flush, 0 if none */
ZSTDMT_compressStream_generic(ZSTDMT_CCtx * mtctx,ZSTD_outBuffer * output,ZSTD_inBuffer * input,ZSTD_EndDirective endOp)1853 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1854                                      ZSTD_outBuffer* output,
1855                                      ZSTD_inBuffer* input,
1856                                      ZSTD_EndDirective endOp)
1857 {
1858     unsigned forwardInputProgress = 0;
1859     DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1860                 (U32)endOp, (U32)(input->size - input->pos));
1861     assert(output->pos <= output->size);
1862     assert(input->pos  <= input->size);
1863 
1864     if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1865         /* current frame being ended. Only flush/end are allowed */
1866         return ERROR(stage_wrong);
1867     }
1868 
1869     /* fill input buffer */
1870     if ( (!mtctx->jobReady)
1871       && (input->size > input->pos) ) {   /* support NULL input */
1872         if (mtctx->inBuff.buffer.start == NULL) {
1873             assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1874             if (!ZSTDMT_tryGetInputRange(mtctx)) {
1875                 /* It is only possible for this operation to fail if there are
1876                  * still compression jobs ongoing.
1877                  */
1878                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1879                 assert(mtctx->doneJobID != mtctx->nextJobID);
1880             } else
1881                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1882         }
1883         if (mtctx->inBuff.buffer.start != NULL) {
1884             SyncPoint const syncPoint = findSynchronizationPoint(mtctx, *input);
1885             if (syncPoint.flush && endOp == ZSTD_e_continue) {
1886                 endOp = ZSTD_e_flush;
1887             }
1888             assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1889             DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1890                         (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1891             ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1892             input->pos += syncPoint.toLoad;
1893             mtctx->inBuff.filled += syncPoint.toLoad;
1894             forwardInputProgress = syncPoint.toLoad>0;
1895         }
1896     }
1897     if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1898         /* Can't end yet because the input is not fully consumed.
1899             * We are in one of these cases:
1900             * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1901             * - We filled the input buffer: flush this job but don't end the frame.
1902             * - We hit a synchronization point: flush this job but don't end the frame.
1903             */
1904         assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1905         endOp = ZSTD_e_flush;
1906     }
1907 
1908     if ( (mtctx->jobReady)
1909       || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
1910       || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
1911       || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
1912         size_t const jobSize = mtctx->inBuff.filled;
1913         assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1914         FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1915     }
1916 
1917     /* check for potential compressed data ready to be flushed */
1918     {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1919         if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
1920         DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1921         return remainingToFlush;
1922     }
1923 }
1924