1 /*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11
12 /* ====== Compiler specifics ====== */
13 #if defined(_MSC_VER)
14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
15 #endif
16
17
18 /* ====== Dependencies ====== */
19 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
20 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
21 #include "../common/mem.h" /* MEM_STATIC */
22 #include "../common/pool.h" /* threadpool */
23 #include "../common/threading.h" /* mutex */
24 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
25 #include "zstd_ldm.h"
26 #include "zstdmt_compress.h"
27
28 /* Guards code to support resizing the SeqPool.
29 * We will want to resize the SeqPool to save memory in the future.
30 * Until then, comment the code out since it is unused.
31 */
32 #define ZSTD_RESIZE_SEQPOOL 0
33
34 /* ====== Debug ====== */
35 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
36 && !defined(_MSC_VER) \
37 && !defined(__MINGW32__)
38
39 # include <stdio.h>
40 # include <unistd.h>
41 # include <sys/times.h>
42
43 # define DEBUG_PRINTHEX(l,p,n) \
44 do { \
45 unsigned debug_u; \
46 for (debug_u=0; debug_u<(n); debug_u++) \
47 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
48 RAWLOG(l, " \n"); \
49 } while (0)
50
GetCurrentClockTimeMicroseconds(void)51 static unsigned long long GetCurrentClockTimeMicroseconds(void)
52 {
53 static clock_t _ticksPerSecond = 0;
54 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
55
56 { struct tms junk; clock_t newTicks = (clock_t) times(&junk);
57 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
58 } }
59
60 #define MUTEX_WAIT_TIME_DLEVEL 6
61 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) \
62 do { \
63 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
64 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
65 ZSTD_pthread_mutex_lock(mutex); \
66 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
67 unsigned long long const elapsedTime = (afterTime-beforeTime); \
68 if (elapsedTime > 1000) { \
69 /* or whatever threshold you like; I'm using 1 millisecond here */ \
70 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, \
71 "Thread took %llu microseconds to acquire mutex %s \n", \
72 elapsedTime, #mutex); \
73 } } \
74 } else { \
75 ZSTD_pthread_mutex_lock(mutex); \
76 } \
77 } while (0)
78
79 #else
80
81 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
82 # define DEBUG_PRINTHEX(l,p,n) do { } while (0)
83
84 #endif
85
86
87 /* ===== Buffer Pool ===== */
88 /* a single Buffer Pool can be invoked from multiple threads in parallel */
89
90 typedef struct buffer_s {
91 void* start;
92 size_t capacity;
93 } Buffer;
94
95 static const Buffer g_nullBuffer = { NULL, 0 };
96
97 typedef struct ZSTDMT_bufferPool_s {
98 ZSTD_pthread_mutex_t poolMutex;
99 size_t bufferSize;
100 unsigned totalBuffers;
101 unsigned nbBuffers;
102 ZSTD_customMem cMem;
103 Buffer* buffers;
104 } ZSTDMT_bufferPool;
105
ZSTDMT_freeBufferPool(ZSTDMT_bufferPool * bufPool)106 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
107 {
108 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
109 if (!bufPool) return; /* compatibility with free on NULL */
110 if (bufPool->buffers) {
111 unsigned u;
112 for (u=0; u<bufPool->totalBuffers; u++) {
113 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start);
114 ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem);
115 }
116 ZSTD_customFree(bufPool->buffers, bufPool->cMem);
117 }
118 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
119 ZSTD_customFree(bufPool, bufPool->cMem);
120 }
121
ZSTDMT_createBufferPool(unsigned maxNbBuffers,ZSTD_customMem cMem)122 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
123 {
124 ZSTDMT_bufferPool* const bufPool =
125 (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem);
126 if (bufPool==NULL) return NULL;
127 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
128 ZSTD_customFree(bufPool, cMem);
129 return NULL;
130 }
131 bufPool->buffers = (Buffer*)ZSTD_customCalloc(maxNbBuffers * sizeof(Buffer), cMem);
132 if (bufPool->buffers==NULL) {
133 ZSTDMT_freeBufferPool(bufPool);
134 return NULL;
135 }
136 bufPool->bufferSize = 64 KB;
137 bufPool->totalBuffers = maxNbBuffers;
138 bufPool->nbBuffers = 0;
139 bufPool->cMem = cMem;
140 return bufPool;
141 }
142
143 /* only works at initialization, not during compression */
ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool * bufPool)144 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
145 {
146 size_t const poolSize = sizeof(*bufPool);
147 size_t const arraySize = bufPool->totalBuffers * sizeof(Buffer);
148 unsigned u;
149 size_t totalBufferSize = 0;
150 ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
151 for (u=0; u<bufPool->totalBuffers; u++)
152 totalBufferSize += bufPool->buffers[u].capacity;
153 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
154
155 return poolSize + arraySize + totalBufferSize;
156 }
157
158 /* ZSTDMT_setBufferSize() :
159 * all future buffers provided by this buffer pool will have _at least_ this size
160 * note : it's better for all buffers to have same size,
161 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
ZSTDMT_setBufferSize(ZSTDMT_bufferPool * const bufPool,size_t const bSize)162 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
163 {
164 ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
165 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
166 bufPool->bufferSize = bSize;
167 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
168 }
169
170
ZSTDMT_expandBufferPool(ZSTDMT_bufferPool * srcBufPool,unsigned maxNbBuffers)171 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
172 {
173 if (srcBufPool==NULL) return NULL;
174 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
175 return srcBufPool;
176 /* need a larger buffer pool */
177 { ZSTD_customMem const cMem = srcBufPool->cMem;
178 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
179 ZSTDMT_bufferPool* newBufPool;
180 ZSTDMT_freeBufferPool(srcBufPool);
181 newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
182 if (newBufPool==NULL) return newBufPool;
183 ZSTDMT_setBufferSize(newBufPool, bSize);
184 return newBufPool;
185 }
186 }
187
188 /** ZSTDMT_getBuffer() :
189 * assumption : bufPool must be valid
190 * @return : a buffer, with start pointer and size
191 * note: allocation may fail, in this case, start==NULL and size==0 */
ZSTDMT_getBuffer(ZSTDMT_bufferPool * bufPool)192 static Buffer ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
193 {
194 size_t const bSize = bufPool->bufferSize;
195 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
196 ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
197 if (bufPool->nbBuffers) { /* try to use an existing buffer */
198 Buffer const buf = bufPool->buffers[--(bufPool->nbBuffers)];
199 size_t const availBufferSize = buf.capacity;
200 bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer;
201 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
202 /* large enough, but not too much */
203 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
204 bufPool->nbBuffers, (U32)buf.capacity);
205 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
206 return buf;
207 }
208 /* size conditions not respected : scratch this buffer, create new one */
209 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
210 ZSTD_customFree(buf.start, bufPool->cMem);
211 }
212 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
213 /* create new buffer */
214 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
215 { Buffer buffer;
216 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
217 buffer.start = start; /* note : start can be NULL if malloc fails ! */
218 buffer.capacity = (start==NULL) ? 0 : bSize;
219 if (start==NULL) {
220 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
221 } else {
222 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
223 }
224 return buffer;
225 }
226 }
227
228 #if ZSTD_RESIZE_SEQPOOL
229 /** ZSTDMT_resizeBuffer() :
230 * assumption : bufPool must be valid
231 * @return : a buffer that is at least the buffer pool buffer size.
232 * If a reallocation happens, the data in the input buffer is copied.
233 */
ZSTDMT_resizeBuffer(ZSTDMT_bufferPool * bufPool,Buffer buffer)234 static Buffer ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, Buffer buffer)
235 {
236 size_t const bSize = bufPool->bufferSize;
237 if (buffer.capacity < bSize) {
238 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
239 Buffer newBuffer;
240 newBuffer.start = start;
241 newBuffer.capacity = start == NULL ? 0 : bSize;
242 if (start != NULL) {
243 assert(newBuffer.capacity >= buffer.capacity);
244 ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
245 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
246 return newBuffer;
247 }
248 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
249 }
250 return buffer;
251 }
252 #endif
253
254 /* store buffer for later re-use, up to pool capacity */
ZSTDMT_releaseBuffer(ZSTDMT_bufferPool * bufPool,Buffer buf)255 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, Buffer buf)
256 {
257 DEBUGLOG(5, "ZSTDMT_releaseBuffer");
258 if (buf.start == NULL) return; /* compatible with release on NULL */
259 ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
260 if (bufPool->nbBuffers < bufPool->totalBuffers) {
261 bufPool->buffers[bufPool->nbBuffers++] = buf; /* stored for later use */
262 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
263 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
264 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
265 return;
266 }
267 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
268 /* Reached bufferPool capacity (note: should not happen) */
269 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
270 ZSTD_customFree(buf.start, bufPool->cMem);
271 }
272
273 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
274 * The 3 additional buffers are as follows:
275 * 1 buffer for input loading
276 * 1 buffer for "next input" when submitting current one
277 * 1 buffer stuck in queue */
278 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
279
280 /* After a worker releases its rawSeqStore, it is immediately ready for reuse.
281 * So we only need one seq buffer per worker. */
282 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
283
284 /* ===== Seq Pool Wrapper ====== */
285
286 typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
287
ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool * seqPool)288 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
289 {
290 return ZSTDMT_sizeof_bufferPool(seqPool);
291 }
292
bufferToSeq(Buffer buffer)293 static RawSeqStore_t bufferToSeq(Buffer buffer)
294 {
295 RawSeqStore_t seq = kNullRawSeqStore;
296 seq.seq = (rawSeq*)buffer.start;
297 seq.capacity = buffer.capacity / sizeof(rawSeq);
298 return seq;
299 }
300
seqToBuffer(RawSeqStore_t seq)301 static Buffer seqToBuffer(RawSeqStore_t seq)
302 {
303 Buffer buffer;
304 buffer.start = seq.seq;
305 buffer.capacity = seq.capacity * sizeof(rawSeq);
306 return buffer;
307 }
308
ZSTDMT_getSeq(ZSTDMT_seqPool * seqPool)309 static RawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
310 {
311 if (seqPool->bufferSize == 0) {
312 return kNullRawSeqStore;
313 }
314 return bufferToSeq(ZSTDMT_getBuffer(seqPool));
315 }
316
317 #if ZSTD_RESIZE_SEQPOOL
ZSTDMT_resizeSeq(ZSTDMT_seqPool * seqPool,RawSeqStore_t seq)318 static RawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
319 {
320 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
321 }
322 #endif
323
ZSTDMT_releaseSeq(ZSTDMT_seqPool * seqPool,RawSeqStore_t seq)324 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
325 {
326 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
327 }
328
ZSTDMT_setNbSeq(ZSTDMT_seqPool * const seqPool,size_t const nbSeq)329 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
330 {
331 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
332 }
333
ZSTDMT_createSeqPool(unsigned nbWorkers,ZSTD_customMem cMem)334 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
335 {
336 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
337 if (seqPool == NULL) return NULL;
338 ZSTDMT_setNbSeq(seqPool, 0);
339 return seqPool;
340 }
341
ZSTDMT_freeSeqPool(ZSTDMT_seqPool * seqPool)342 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
343 {
344 ZSTDMT_freeBufferPool(seqPool);
345 }
346
ZSTDMT_expandSeqPool(ZSTDMT_seqPool * pool,U32 nbWorkers)347 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
348 {
349 return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
350 }
351
352
353 /* ===== CCtx Pool ===== */
354 /* a single CCtx Pool can be invoked from multiple threads in parallel */
355
356 typedef struct {
357 ZSTD_pthread_mutex_t poolMutex;
358 int totalCCtx;
359 int availCCtx;
360 ZSTD_customMem cMem;
361 ZSTD_CCtx** cctxs;
362 } ZSTDMT_CCtxPool;
363
364 /* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */
ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool * pool)365 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
366 {
367 if (!pool) return;
368 ZSTD_pthread_mutex_destroy(&pool->poolMutex);
369 if (pool->cctxs) {
370 int cid;
371 for (cid=0; cid<pool->totalCCtx; cid++)
372 ZSTD_freeCCtx(pool->cctxs[cid]); /* free compatible with NULL */
373 ZSTD_customFree(pool->cctxs, pool->cMem);
374 }
375 ZSTD_customFree(pool, pool->cMem);
376 }
377
378 /* ZSTDMT_createCCtxPool() :
379 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
ZSTDMT_createCCtxPool(int nbWorkers,ZSTD_customMem cMem)380 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
381 ZSTD_customMem cMem)
382 {
383 ZSTDMT_CCtxPool* const cctxPool =
384 (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem);
385 assert(nbWorkers > 0);
386 if (!cctxPool) return NULL;
387 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
388 ZSTD_customFree(cctxPool, cMem);
389 return NULL;
390 }
391 cctxPool->totalCCtx = nbWorkers;
392 cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem);
393 if (!cctxPool->cctxs) {
394 ZSTDMT_freeCCtxPool(cctxPool);
395 return NULL;
396 }
397 cctxPool->cMem = cMem;
398 cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem);
399 if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
400 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
401 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
402 return cctxPool;
403 }
404
ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool * srcPool,int nbWorkers)405 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
406 int nbWorkers)
407 {
408 if (srcPool==NULL) return NULL;
409 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
410 /* need a larger cctx pool */
411 { ZSTD_customMem const cMem = srcPool->cMem;
412 ZSTDMT_freeCCtxPool(srcPool);
413 return ZSTDMT_createCCtxPool(nbWorkers, cMem);
414 }
415 }
416
417 /* only works during initialization phase, not during compression */
ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool * cctxPool)418 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
419 {
420 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421 { unsigned const nbWorkers = cctxPool->totalCCtx;
422 size_t const poolSize = sizeof(*cctxPool);
423 size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*);
424 size_t totalCCtxSize = 0;
425 unsigned u;
426 for (u=0; u<nbWorkers; u++) {
427 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]);
428 }
429 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
430 assert(nbWorkers > 0);
431 return poolSize + arraySize + totalCCtxSize;
432 }
433 }
434
ZSTDMT_getCCtx(ZSTDMT_CCtxPool * cctxPool)435 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
436 {
437 DEBUGLOG(5, "ZSTDMT_getCCtx");
438 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
439 if (cctxPool->availCCtx) {
440 cctxPool->availCCtx--;
441 { ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx];
442 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
443 return cctx;
444 } }
445 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
446 DEBUGLOG(5, "create one more CCtx");
447 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
448 }
449
ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool * pool,ZSTD_CCtx * cctx)450 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
451 {
452 if (cctx==NULL) return; /* compatibility with release on NULL */
453 ZSTD_pthread_mutex_lock(&pool->poolMutex);
454 if (pool->availCCtx < pool->totalCCtx)
455 pool->cctxs[pool->availCCtx++] = cctx;
456 else {
457 /* pool overflow : should not happen, since totalCCtx==nbWorkers */
458 DEBUGLOG(4, "CCtx pool overflow : free cctx");
459 ZSTD_freeCCtx(cctx);
460 }
461 ZSTD_pthread_mutex_unlock(&pool->poolMutex);
462 }
463
464 /* ==== Serial State ==== */
465
466 typedef struct {
467 void const* start;
468 size_t size;
469 } Range;
470
471 typedef struct {
472 /* All variables in the struct are protected by mutex. */
473 ZSTD_pthread_mutex_t mutex;
474 ZSTD_pthread_cond_t cond;
475 ZSTD_CCtx_params params;
476 ldmState_t ldmState;
477 XXH64_state_t xxhState;
478 unsigned nextJobID;
479 /* Protects ldmWindow.
480 * Must be acquired after the main mutex when acquiring both.
481 */
482 ZSTD_pthread_mutex_t ldmWindowMutex;
483 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
484 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
485 } SerialState;
486
487 static int
ZSTDMT_serialState_reset(SerialState * serialState,ZSTDMT_seqPool * seqPool,ZSTD_CCtx_params params,size_t jobSize,const void * dict,size_t const dictSize,ZSTD_dictContentType_e dictContentType)488 ZSTDMT_serialState_reset(SerialState* serialState,
489 ZSTDMT_seqPool* seqPool,
490 ZSTD_CCtx_params params,
491 size_t jobSize,
492 const void* dict, size_t const dictSize,
493 ZSTD_dictContentType_e dictContentType)
494 {
495 /* Adjust parameters */
496 if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
497 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
498 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams);
499 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
500 assert(params.ldmParams.hashRateLog < 32);
501 } else {
502 ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams));
503 }
504 serialState->nextJobID = 0;
505 if (params.fParams.checksumFlag)
506 XXH64_reset(&serialState->xxhState, 0);
507 if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
508 ZSTD_customMem cMem = params.customMem;
509 unsigned const hashLog = params.ldmParams.hashLog;
510 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
511 unsigned const bucketLog =
512 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
513 unsigned const prevBucketLog =
514 serialState->params.ldmParams.hashLog -
515 serialState->params.ldmParams.bucketSizeLog;
516 size_t const numBuckets = (size_t)1 << bucketLog;
517 /* Size the seq pool tables */
518 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
519 /* Reset the window */
520 ZSTD_window_init(&serialState->ldmState.window);
521 /* Resize tables and output space if necessary. */
522 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
523 ZSTD_customFree(serialState->ldmState.hashTable, cMem);
524 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
525 }
526 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
527 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
528 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
529 }
530 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
531 return 1;
532 /* Zero the tables */
533 ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
534 ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
535
536 /* Update window state and fill hash table with dict */
537 serialState->ldmState.loadedDictEnd = 0;
538 if (dictSize > 0) {
539 if (dictContentType == ZSTD_dct_rawContent) {
540 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
541 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
542 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams);
543 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
544 } else {
545 /* don't even load anything */
546 }
547 }
548
549 /* Initialize serialState's copy of ldmWindow. */
550 serialState->ldmWindow = serialState->ldmState.window;
551 }
552
553 serialState->params = params;
554 serialState->params.jobSize = (U32)jobSize;
555 return 0;
556 }
557
ZSTDMT_serialState_init(SerialState * serialState)558 static int ZSTDMT_serialState_init(SerialState* serialState)
559 {
560 int initError = 0;
561 ZSTD_memset(serialState, 0, sizeof(*serialState));
562 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
563 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
564 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
565 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
566 return initError;
567 }
568
ZSTDMT_serialState_free(SerialState * serialState)569 static void ZSTDMT_serialState_free(SerialState* serialState)
570 {
571 ZSTD_customMem cMem = serialState->params.customMem;
572 ZSTD_pthread_mutex_destroy(&serialState->mutex);
573 ZSTD_pthread_cond_destroy(&serialState->cond);
574 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
575 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
576 ZSTD_customFree(serialState->ldmState.hashTable, cMem);
577 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
578 }
579
580 static void
ZSTDMT_serialState_genSequences(SerialState * serialState,RawSeqStore_t * seqStore,Range src,unsigned jobID)581 ZSTDMT_serialState_genSequences(SerialState* serialState,
582 RawSeqStore_t* seqStore,
583 Range src, unsigned jobID)
584 {
585 /* Wait for our turn */
586 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
587 while (serialState->nextJobID < jobID) {
588 DEBUGLOG(5, "wait for serialState->cond");
589 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
590 }
591 /* A future job may error and skip our job */
592 if (serialState->nextJobID == jobID) {
593 /* It is now our turn, do any processing necessary */
594 if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
595 size_t error;
596 DEBUGLOG(6, "ZSTDMT_serialState_genSequences: LDM update");
597 assert(seqStore->seq != NULL && seqStore->pos == 0 &&
598 seqStore->size == 0 && seqStore->capacity > 0);
599 assert(src.size <= serialState->params.jobSize);
600 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
601 error = ZSTD_ldm_generateSequences(
602 &serialState->ldmState, seqStore,
603 &serialState->params.ldmParams, src.start, src.size);
604 /* We provide a large enough buffer to never fail. */
605 assert(!ZSTD_isError(error)); (void)error;
606 /* Update ldmWindow to match the ldmState.window and signal the main
607 * thread if it is waiting for a buffer.
608 */
609 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
610 serialState->ldmWindow = serialState->ldmState.window;
611 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
612 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
613 }
614 if (serialState->params.fParams.checksumFlag && src.size > 0)
615 XXH64_update(&serialState->xxhState, src.start, src.size);
616 }
617 /* Now it is the next jobs turn */
618 serialState->nextJobID++;
619 ZSTD_pthread_cond_broadcast(&serialState->cond);
620 ZSTD_pthread_mutex_unlock(&serialState->mutex);
621 }
622
623 static void
ZSTDMT_serialState_applySequences(const SerialState * serialState,ZSTD_CCtx * jobCCtx,const RawSeqStore_t * seqStore)624 ZSTDMT_serialState_applySequences(const SerialState* serialState, /* just for an assert() check */
625 ZSTD_CCtx* jobCCtx,
626 const RawSeqStore_t* seqStore)
627 {
628 if (seqStore->size > 0) {
629 DEBUGLOG(5, "ZSTDMT_serialState_applySequences: uploading %u external sequences", (unsigned)seqStore->size);
630 assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); (void)serialState;
631 assert(jobCCtx);
632 ZSTD_referenceExternalSequences(jobCCtx, seqStore->seq, seqStore->size);
633 }
634 }
635
ZSTDMT_serialState_ensureFinished(SerialState * serialState,unsigned jobID,size_t cSize)636 static void ZSTDMT_serialState_ensureFinished(SerialState* serialState,
637 unsigned jobID, size_t cSize)
638 {
639 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
640 if (serialState->nextJobID <= jobID) {
641 assert(ZSTD_isError(cSize)); (void)cSize;
642 DEBUGLOG(5, "Skipping past job %u because of error", jobID);
643 serialState->nextJobID = jobID + 1;
644 ZSTD_pthread_cond_broadcast(&serialState->cond);
645
646 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
647 ZSTD_window_clear(&serialState->ldmWindow);
648 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
649 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
650 }
651 ZSTD_pthread_mutex_unlock(&serialState->mutex);
652
653 }
654
655
656 /* ------------------------------------------ */
657 /* ===== Worker thread ===== */
658 /* ------------------------------------------ */
659
660 static const Range kNullRange = { NULL, 0 };
661
662 typedef struct {
663 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
664 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
665 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
666 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
667 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
668 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
669 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
670 SerialState* serial; /* Thread-safe - used by mtctx and (all) workers */
671 Buffer dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
672 Range prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
673 Range src; /* set by mtctx, then read by worker & mtctx => no barrier */
674 unsigned jobID; /* set by mtctx, then read by worker => no barrier */
675 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
676 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
677 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
678 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
679 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
680 size_t dstFlushed; /* used only by mtctx */
681 unsigned frameChecksumNeeded; /* used only by mtctx */
682 } ZSTDMT_jobDescription;
683
684 #define JOB_ERROR(e) \
685 do { \
686 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
687 job->cSize = e; \
688 ZSTD_pthread_mutex_unlock(&job->job_mutex); \
689 goto _endJob; \
690 } while (0)
691
692 /* ZSTDMT_compressionJob() is a POOL_function type */
ZSTDMT_compressionJob(void * jobDescription)693 static void ZSTDMT_compressionJob(void* jobDescription)
694 {
695 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
696 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
697 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
698 RawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
699 Buffer dstBuff = job->dstBuff;
700 size_t lastCBlockSize = 0;
701
702 DEBUGLOG(5, "ZSTDMT_compressionJob: job %u", job->jobID);
703 /* resources */
704 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
705 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
706 dstBuff = ZSTDMT_getBuffer(job->bufPool);
707 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
708 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
709 }
710 if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
711 JOB_ERROR(ERROR(memory_allocation));
712
713 /* Don't compute the checksum for chunks, since we compute it externally,
714 * but write it in the header.
715 */
716 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
717 /* Don't run LDM for the chunks, since we handle it externally */
718 jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
719 /* Correct nbWorkers to 0. */
720 jobParams.nbWorkers = 0;
721
722
723 /* init */
724
725 /* Perform serial step as early as possible */
726 ZSTDMT_serialState_genSequences(job->serial, &rawSeqStore, job->src, job->jobID);
727
728 if (job->cdict) {
729 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
730 assert(job->firstJob); /* only allowed for first job */
731 if (ZSTD_isError(initError)) JOB_ERROR(initError);
732 } else {
733 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
734 { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
735 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
736 }
737 if (!job->firstJob) {
738 size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
739 if (ZSTD_isError(err)) JOB_ERROR(err);
740 }
741 DEBUGLOG(6, "ZSTDMT_compressionJob: job %u: loading prefix of size %zu", job->jobID, job->prefix.size);
742 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
743 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent,
744 ZSTD_dtlm_fast,
745 NULL, /*cdict*/
746 &jobParams, pledgedSrcSize);
747 if (ZSTD_isError(initError)) JOB_ERROR(initError);
748 } }
749
750 /* External Sequences can only be applied after CCtx initialization */
751 ZSTDMT_serialState_applySequences(job->serial, cctx, &rawSeqStore);
752
753 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
754 size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
755 if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
756 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
757 ZSTD_invalidateRepCodes(cctx);
758 }
759
760 /* compress the entire job by smaller chunks, for better granularity */
761 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
762 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
763 const BYTE* ip = (const BYTE*) job->src.start;
764 BYTE* const ostart = (BYTE*)dstBuff.start;
765 BYTE* op = ostart;
766 BYTE* oend = op + dstBuff.capacity;
767 int chunkNb;
768 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
769 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
770 assert(job->cSize == 0);
771 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
772 size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
773 if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
774 ip += chunkSize;
775 op += cSize; assert(op < oend);
776 /* stats */
777 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
778 job->cSize += cSize;
779 job->consumed = chunkSize * chunkNb;
780 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
781 (U32)cSize, (U32)job->cSize);
782 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
783 ZSTD_pthread_mutex_unlock(&job->job_mutex);
784 }
785 /* last block */
786 assert(chunkSize > 0);
787 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
788 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
789 size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
790 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
791 size_t const cSize = (job->lastJob) ?
792 ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
793 ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
794 if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
795 lastCBlockSize = cSize;
796 } }
797 if (!job->firstJob) {
798 /* Double check that we don't have an ext-dict, because then our
799 * repcode invalidation doesn't work.
800 */
801 assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
802 }
803 ZSTD_CCtx_trace(cctx, 0);
804
805 _endJob:
806 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
807 if (job->prefix.size > 0)
808 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
809 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
810 /* release resources */
811 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
812 ZSTDMT_releaseCCtx(job->cctxPool, cctx);
813 /* report */
814 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
815 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
816 job->cSize += lastCBlockSize;
817 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
818 ZSTD_pthread_cond_signal(&job->job_cond);
819 ZSTD_pthread_mutex_unlock(&job->job_mutex);
820 }
821
822
823 /* ------------------------------------------ */
824 /* ===== Multi-threaded compression ===== */
825 /* ------------------------------------------ */
826
827 typedef struct {
828 Range prefix; /* read-only non-owned prefix buffer */
829 Buffer buffer;
830 size_t filled;
831 } InBuff_t;
832
833 typedef struct {
834 BYTE* buffer; /* The round input buffer. All jobs get references
835 * to pieces of the buffer. ZSTDMT_tryGetInputRange()
836 * handles handing out job input buffers, and makes
837 * sure it doesn't overlap with any pieces still in use.
838 */
839 size_t capacity; /* The capacity of buffer. */
840 size_t pos; /* The position of the current inBuff in the round
841 * buffer. Updated past the end if the inBuff once
842 * the inBuff is sent to the worker thread.
843 * pos <= capacity.
844 */
845 } RoundBuff_t;
846
847 static const RoundBuff_t kNullRoundBuff = {NULL, 0, 0};
848
849 #define RSYNC_LENGTH 32
850 /* Don't create chunks smaller than the zstd block size.
851 * This stops us from regressing compression ratio too much,
852 * and ensures our output fits in ZSTD_compressBound().
853 *
854 * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
855 * ZSTD_COMPRESSBOUND() will need to be updated.
856 */
857 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
858 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
859
860 typedef struct {
861 U64 hash;
862 U64 hitMask;
863 U64 primePower;
864 } RSyncState_t;
865
866 struct ZSTDMT_CCtx_s {
867 POOL_ctx* factory;
868 ZSTDMT_jobDescription* jobs;
869 ZSTDMT_bufferPool* bufPool;
870 ZSTDMT_CCtxPool* cctxPool;
871 ZSTDMT_seqPool* seqPool;
872 ZSTD_CCtx_params params;
873 size_t targetSectionSize;
874 size_t targetPrefixSize;
875 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
876 InBuff_t inBuff;
877 RoundBuff_t roundBuff;
878 SerialState serial;
879 RSyncState_t rsync;
880 unsigned jobIDMask;
881 unsigned doneJobID;
882 unsigned nextJobID;
883 unsigned frameEnded;
884 unsigned allJobsCompleted;
885 unsigned long long frameContentSize;
886 unsigned long long consumed;
887 unsigned long long produced;
888 ZSTD_customMem cMem;
889 ZSTD_CDict* cdictLocal;
890 const ZSTD_CDict* cdict;
891 unsigned providedFactory: 1;
892 };
893
ZSTDMT_freeJobsTable(ZSTDMT_jobDescription * jobTable,U32 nbJobs,ZSTD_customMem cMem)894 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
895 {
896 U32 jobNb;
897 if (jobTable == NULL) return;
898 for (jobNb=0; jobNb<nbJobs; jobNb++) {
899 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
900 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
901 }
902 ZSTD_customFree(jobTable, cMem);
903 }
904
905 /* ZSTDMT_allocJobsTable()
906 * allocate and init a job table.
907 * update *nbJobsPtr to next power of 2 value, as size of table */
ZSTDMT_createJobsTable(U32 * nbJobsPtr,ZSTD_customMem cMem)908 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
909 {
910 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
911 U32 const nbJobs = 1 << nbJobsLog2;
912 U32 jobNb;
913 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
914 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
915 int initError = 0;
916 if (jobTable==NULL) return NULL;
917 *nbJobsPtr = nbJobs;
918 for (jobNb=0; jobNb<nbJobs; jobNb++) {
919 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
920 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
921 }
922 if (initError != 0) {
923 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
924 return NULL;
925 }
926 return jobTable;
927 }
928
ZSTDMT_expandJobsTable(ZSTDMT_CCtx * mtctx,U32 nbWorkers)929 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
930 U32 nbJobs = nbWorkers + 2;
931 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
932 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
933 mtctx->jobIDMask = 0;
934 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
935 if (mtctx->jobs==NULL) return ERROR(memory_allocation);
936 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
937 mtctx->jobIDMask = nbJobs - 1;
938 }
939 return 0;
940 }
941
942
943 /* ZSTDMT_CCtxParam_setNbWorkers():
944 * Internal use only */
ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params * params,unsigned nbWorkers)945 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
946 {
947 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
948 }
949
ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers,ZSTD_customMem cMem,ZSTD_threadPool * pool)950 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
951 {
952 ZSTDMT_CCtx* mtctx;
953 U32 nbJobs = nbWorkers + 2;
954 int initError;
955 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
956
957 if (nbWorkers < 1) return NULL;
958 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
959 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
960 /* invalid custom allocator */
961 return NULL;
962
963 mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
964 if (!mtctx) return NULL;
965 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
966 mtctx->cMem = cMem;
967 mtctx->allJobsCompleted = 1;
968 if (pool != NULL) {
969 mtctx->factory = pool;
970 mtctx->providedFactory = 1;
971 }
972 else {
973 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
974 mtctx->providedFactory = 0;
975 }
976 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
977 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
978 mtctx->jobIDMask = nbJobs - 1;
979 mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
980 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
981 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
982 initError = ZSTDMT_serialState_init(&mtctx->serial);
983 mtctx->roundBuff = kNullRoundBuff;
984 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
985 ZSTDMT_freeCCtx(mtctx);
986 return NULL;
987 }
988 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
989 return mtctx;
990 }
991
ZSTDMT_createCCtx_advanced(unsigned nbWorkers,ZSTD_customMem cMem,ZSTD_threadPool * pool)992 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
993 {
994 #ifdef ZSTD_MULTITHREAD
995 return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
996 #else
997 (void)nbWorkers;
998 (void)cMem;
999 (void)pool;
1000 return NULL;
1001 #endif
1002 }
1003
1004
1005 /* ZSTDMT_releaseAllJobResources() :
1006 * note : ensure all workers are killed first ! */
ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx * mtctx)1007 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
1008 {
1009 unsigned jobID;
1010 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
1011 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
1012 /* Copy the mutex/cond out */
1013 ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
1014 ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
1015
1016 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
1017 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
1018
1019 /* Clear the job description, but keep the mutex/cond */
1020 ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
1021 mtctx->jobs[jobID].job_mutex = mutex;
1022 mtctx->jobs[jobID].job_cond = cond;
1023 }
1024 mtctx->inBuff.buffer = g_nullBuffer;
1025 mtctx->inBuff.filled = 0;
1026 mtctx->allJobsCompleted = 1;
1027 }
1028
ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx * mtctx)1029 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
1030 {
1031 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1032 while (mtctx->doneJobID < mtctx->nextJobID) {
1033 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1034 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1035 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1036 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
1037 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1038 }
1039 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1040 mtctx->doneJobID++;
1041 }
1042 }
1043
ZSTDMT_freeCCtx(ZSTDMT_CCtx * mtctx)1044 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1045 {
1046 if (mtctx==NULL) return 0; /* compatible with free on NULL */
1047 if (!mtctx->providedFactory)
1048 POOL_free(mtctx->factory); /* stop and free worker threads */
1049 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
1050 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1051 ZSTDMT_freeBufferPool(mtctx->bufPool);
1052 ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1053 ZSTDMT_freeSeqPool(mtctx->seqPool);
1054 ZSTDMT_serialState_free(&mtctx->serial);
1055 ZSTD_freeCDict(mtctx->cdictLocal);
1056 if (mtctx->roundBuff.buffer)
1057 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1058 ZSTD_customFree(mtctx, mtctx->cMem);
1059 return 0;
1060 }
1061
ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx * mtctx)1062 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1063 {
1064 if (mtctx == NULL) return 0; /* supports sizeof NULL */
1065 return sizeof(*mtctx)
1066 + POOL_sizeof(mtctx->factory)
1067 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1068 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1069 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1070 + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1071 + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1072 + mtctx->roundBuff.capacity;
1073 }
1074
1075
1076 /* ZSTDMT_resize() :
1077 * @return : error code if fails, 0 on success */
ZSTDMT_resize(ZSTDMT_CCtx * mtctx,unsigned nbWorkers)1078 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1079 {
1080 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1081 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1082 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1083 if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1084 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1085 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1086 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1087 if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1088 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1089 return 0;
1090 }
1091
1092
1093 /*! ZSTDMT_updateCParams_whileCompressing() :
1094 * Updates a selected set of compression parameters, remaining compatible with currently active frame.
1095 * New parameters will be applied to next compression job. */
ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx * mtctx,const ZSTD_CCtx_params * cctxParams)1096 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1097 {
1098 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
1099 int const compressionLevel = cctxParams->compressionLevel;
1100 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1101 compressionLevel);
1102 mtctx->params.compressionLevel = compressionLevel;
1103 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1104 cParams.windowLog = saved_wlog;
1105 mtctx->params.cParams = cParams;
1106 }
1107 }
1108
1109 /* ZSTDMT_getFrameProgression():
1110 * tells how much data has been consumed (input) and produced (output) for current frame.
1111 * able to count progression inside worker threads.
1112 * Note : mutex will be acquired during statistics collection inside workers. */
ZSTDMT_getFrameProgression(ZSTDMT_CCtx * mtctx)1113 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1114 {
1115 ZSTD_frameProgression fps;
1116 DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1117 fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1118 fps.consumed = mtctx->consumed;
1119 fps.produced = fps.flushed = mtctx->produced;
1120 fps.currentJobID = mtctx->nextJobID;
1121 fps.nbActiveWorkers = 0;
1122 { unsigned jobNb;
1123 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1124 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1125 mtctx->doneJobID, lastJobNb, mtctx->jobReady);
1126 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1127 unsigned const wJobID = jobNb & mtctx->jobIDMask;
1128 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1129 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1130 { size_t const cResult = jobPtr->cSize;
1131 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1132 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1133 assert(flushed <= produced);
1134 fps.ingested += jobPtr->src.size;
1135 fps.consumed += jobPtr->consumed;
1136 fps.produced += produced;
1137 fps.flushed += flushed;
1138 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1139 }
1140 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1141 }
1142 }
1143 return fps;
1144 }
1145
1146
ZSTDMT_toFlushNow(ZSTDMT_CCtx * mtctx)1147 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1148 {
1149 size_t toFlush;
1150 unsigned const jobID = mtctx->doneJobID;
1151 assert(jobID <= mtctx->nextJobID);
1152 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
1153
1154 /* look into oldest non-fully-flushed job */
1155 { unsigned const wJobID = jobID & mtctx->jobIDMask;
1156 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1157 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1158 { size_t const cResult = jobPtr->cSize;
1159 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1160 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1161 assert(flushed <= produced);
1162 assert(jobPtr->consumed <= jobPtr->src.size);
1163 toFlush = produced - flushed;
1164 /* if toFlush==0, nothing is available to flush.
1165 * However, jobID is expected to still be active:
1166 * if jobID was already completed and fully flushed,
1167 * ZSTDMT_flushProduced() should have already moved onto next job.
1168 * Therefore, some input has not yet been consumed. */
1169 if (toFlush==0) {
1170 assert(jobPtr->consumed < jobPtr->src.size);
1171 }
1172 }
1173 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1174 }
1175
1176 return toFlush;
1177 }
1178
1179
1180 /* ------------------------------------------ */
1181 /* ===== Multi-threaded compression ===== */
1182 /* ------------------------------------------ */
1183
ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params * params)1184 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1185 {
1186 unsigned jobLog;
1187 if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1188 /* In Long Range Mode, the windowLog is typically oversized.
1189 * In which case, it's preferable to determine the jobSize
1190 * based on cycleLog instead. */
1191 jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1192 } else {
1193 jobLog = MAX(20, params->cParams.windowLog + 2);
1194 }
1195 return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1196 }
1197
ZSTDMT_overlapLog_default(ZSTD_strategy strat)1198 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1199 {
1200 switch(strat)
1201 {
1202 case ZSTD_btultra2:
1203 return 9;
1204 case ZSTD_btultra:
1205 case ZSTD_btopt:
1206 return 8;
1207 case ZSTD_btlazy2:
1208 case ZSTD_lazy2:
1209 return 7;
1210 case ZSTD_lazy:
1211 case ZSTD_greedy:
1212 case ZSTD_dfast:
1213 case ZSTD_fast:
1214 default:;
1215 }
1216 return 6;
1217 }
1218
ZSTDMT_overlapLog(int ovlog,ZSTD_strategy strat)1219 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1220 {
1221 assert(0 <= ovlog && ovlog <= 9);
1222 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1223 return ovlog;
1224 }
1225
ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params * params)1226 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1227 {
1228 int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1229 int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1230 assert(0 <= overlapRLog && overlapRLog <= 8);
1231 if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1232 /* In Long Range Mode, the windowLog is typically oversized.
1233 * In which case, it's preferable to determine the jobSize
1234 * based on chainLog instead.
1235 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1236 ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1237 - overlapRLog;
1238 }
1239 assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1240 DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1241 DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1242 return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1243 }
1244
1245 /* ====================================== */
1246 /* ======= Streaming API ======= */
1247 /* ====================================== */
1248
ZSTDMT_initCStream_internal(ZSTDMT_CCtx * mtctx,const void * dict,size_t dictSize,ZSTD_dictContentType_e dictContentType,const ZSTD_CDict * cdict,ZSTD_CCtx_params params,unsigned long long pledgedSrcSize)1249 size_t ZSTDMT_initCStream_internal(
1250 ZSTDMT_CCtx* mtctx,
1251 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1252 const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1253 unsigned long long pledgedSrcSize)
1254 {
1255 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1256 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1257
1258 /* params supposed partially fully validated at this point */
1259 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1260 assert(!((dict) && (cdict))); /* either dict or cdict, not both */
1261
1262 /* init */
1263 if (params.nbWorkers != mtctx->params.nbWorkers)
1264 FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, (unsigned)params.nbWorkers) , "");
1265
1266 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1267 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1268
1269 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
1270 ZSTDMT_waitForAllJobsCompleted(mtctx);
1271 ZSTDMT_releaseAllJobResources(mtctx);
1272 mtctx->allJobsCompleted = 1;
1273 }
1274
1275 mtctx->params = params;
1276 mtctx->frameContentSize = pledgedSrcSize;
1277 ZSTD_freeCDict(mtctx->cdictLocal);
1278 if (dict) {
1279 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1280 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1281 params.cParams, mtctx->cMem);
1282 mtctx->cdict = mtctx->cdictLocal;
1283 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1284 } else {
1285 mtctx->cdictLocal = NULL;
1286 mtctx->cdict = cdict;
1287 }
1288
1289 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms);
1290 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1291 mtctx->targetSectionSize = params.jobSize;
1292 if (mtctx->targetSectionSize == 0) {
1293 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms);
1294 }
1295 assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1296
1297 if (params.rsyncable) {
1298 /* Aim for the targetsectionSize as the average job size. */
1299 U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1300 U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1301 /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1302 * expected job size is at least 4x larger. */
1303 assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1304 DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1305 mtctx->rsync.hash = 0;
1306 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1307 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1308 }
1309 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
1310 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1311 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1312 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1313 {
1314 /* If ldm is enabled we need windowSize space. */
1315 size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1316 /* Two buffers of slack, plus extra space for the overlap
1317 * This is the minimum slack that LDM works with. One extra because
1318 * flush might waste up to targetSectionSize-1 bytes. Another extra
1319 * for the overlap (if > 0), then one to fill which doesn't overlap
1320 * with the LDM window.
1321 */
1322 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1323 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1324 /* Compute the total size, and always have enough slack */
1325 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1326 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1327 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1328 if (mtctx->roundBuff.capacity < capacity) {
1329 if (mtctx->roundBuff.buffer)
1330 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1331 mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1332 if (mtctx->roundBuff.buffer == NULL) {
1333 mtctx->roundBuff.capacity = 0;
1334 return ERROR(memory_allocation);
1335 }
1336 mtctx->roundBuff.capacity = capacity;
1337 }
1338 }
1339 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1340 mtctx->roundBuff.pos = 0;
1341 mtctx->inBuff.buffer = g_nullBuffer;
1342 mtctx->inBuff.filled = 0;
1343 mtctx->inBuff.prefix = kNullRange;
1344 mtctx->doneJobID = 0;
1345 mtctx->nextJobID = 0;
1346 mtctx->frameEnded = 0;
1347 mtctx->allJobsCompleted = 0;
1348 mtctx->consumed = 0;
1349 mtctx->produced = 0;
1350
1351 /* update dictionary */
1352 ZSTD_freeCDict(mtctx->cdictLocal);
1353 mtctx->cdictLocal = NULL;
1354 mtctx->cdict = NULL;
1355 if (dict) {
1356 if (dictContentType == ZSTD_dct_rawContent) {
1357 mtctx->inBuff.prefix.start = (const BYTE*)dict;
1358 mtctx->inBuff.prefix.size = dictSize;
1359 } else {
1360 /* note : a loadPrefix becomes an internal CDict */
1361 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1362 ZSTD_dlm_byRef, dictContentType,
1363 params.cParams, mtctx->cMem);
1364 mtctx->cdict = mtctx->cdictLocal;
1365 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1366 }
1367 } else {
1368 mtctx->cdict = cdict;
1369 }
1370
1371 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1372 dict, dictSize, dictContentType))
1373 return ERROR(memory_allocation);
1374
1375
1376 return 0;
1377 }
1378
1379
1380 /* ZSTDMT_writeLastEmptyBlock()
1381 * Write a single empty block with an end-of-frame to finish a frame.
1382 * Job must be created from streaming variant.
1383 * This function is always successful if expected conditions are fulfilled.
1384 */
ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription * job)1385 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1386 {
1387 assert(job->lastJob == 1);
1388 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
1389 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
1390 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1391 job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1392 if (job->dstBuff.start == NULL) {
1393 job->cSize = ERROR(memory_allocation);
1394 return;
1395 }
1396 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
1397 job->src = kNullRange;
1398 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1399 assert(!ZSTD_isError(job->cSize));
1400 assert(job->consumed == 0);
1401 }
1402
ZSTDMT_createCompressionJob(ZSTDMT_CCtx * mtctx,size_t srcSize,ZSTD_EndDirective endOp)1403 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1404 {
1405 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1406 int const endFrame = (endOp == ZSTD_e_end);
1407
1408 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1409 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1410 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1411 return 0;
1412 }
1413
1414 if (!mtctx->jobReady) {
1415 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1416 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1417 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1418 mtctx->jobs[jobID].src.start = src;
1419 mtctx->jobs[jobID].src.size = srcSize;
1420 assert(mtctx->inBuff.filled >= srcSize);
1421 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1422 mtctx->jobs[jobID].consumed = 0;
1423 mtctx->jobs[jobID].cSize = 0;
1424 mtctx->jobs[jobID].params = mtctx->params;
1425 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1426 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1427 mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1428 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1429 mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1430 mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1431 mtctx->jobs[jobID].serial = &mtctx->serial;
1432 mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1433 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1434 mtctx->jobs[jobID].lastJob = endFrame;
1435 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1436 mtctx->jobs[jobID].dstFlushed = 0;
1437
1438 /* Update the round buffer pos and clear the input buffer to be reset */
1439 mtctx->roundBuff.pos += srcSize;
1440 mtctx->inBuff.buffer = g_nullBuffer;
1441 mtctx->inBuff.filled = 0;
1442 /* Set the prefix for next job */
1443 if (!endFrame) {
1444 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1445 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1446 mtctx->inBuff.prefix.size = newPrefixSize;
1447 } else { /* endFrame==1 => no need for another input buffer */
1448 mtctx->inBuff.prefix = kNullRange;
1449 mtctx->frameEnded = endFrame;
1450 if (mtctx->nextJobID == 0) {
1451 /* single job exception : checksum is already calculated directly within worker thread */
1452 mtctx->params.fParams.checksumFlag = 0;
1453 } }
1454
1455 if ( (srcSize == 0)
1456 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1457 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1458 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
1459 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1460 mtctx->nextJobID++;
1461 return 0;
1462 }
1463 }
1464
1465 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
1466 mtctx->nextJobID,
1467 (U32)mtctx->jobs[jobID].src.size,
1468 mtctx->jobs[jobID].lastJob,
1469 mtctx->nextJobID,
1470 jobID);
1471 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1472 mtctx->nextJobID++;
1473 mtctx->jobReady = 0;
1474 } else {
1475 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1476 mtctx->jobReady = 1;
1477 }
1478 return 0;
1479 }
1480
1481
1482 /*! ZSTDMT_flushProduced() :
1483 * flush whatever data has been produced but not yet flushed in current job.
1484 * move to next job if current one is fully flushed.
1485 * `output` : `pos` will be updated with amount of data flushed .
1486 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1487 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
ZSTDMT_flushProduced(ZSTDMT_CCtx * mtctx,ZSTD_outBuffer * output,unsigned blockToFlush,ZSTD_EndDirective end)1488 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1489 {
1490 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1491 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1492 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1493 assert(output->size >= output->pos);
1494
1495 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1496 if ( blockToFlush
1497 && (mtctx->doneJobID < mtctx->nextJobID) ) {
1498 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1499 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
1500 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1501 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1502 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1503 break;
1504 }
1505 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1506 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1507 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
1508 } }
1509
1510 /* try to flush something */
1511 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
1512 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
1513 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1514 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1515 if (ZSTD_isError(cSize)) {
1516 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1517 mtctx->doneJobID, ZSTD_getErrorName(cSize));
1518 ZSTDMT_waitForAllJobsCompleted(mtctx);
1519 ZSTDMT_releaseAllJobResources(mtctx);
1520 return cSize;
1521 }
1522 /* add frame checksum if necessary (can only happen once) */
1523 assert(srcConsumed <= srcSize);
1524 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
1525 && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1526 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1527 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1528 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1529 cSize += 4;
1530 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
1531 mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1532 }
1533
1534 if (cSize > 0) { /* compression is ongoing or completed */
1535 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1536 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1537 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1538 assert(mtctx->doneJobID < mtctx->nextJobID);
1539 assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1540 assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1541 if (toFlush > 0) {
1542 ZSTD_memcpy((char*)output->dst + output->pos,
1543 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1544 toFlush);
1545 }
1546 output->pos += toFlush;
1547 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
1548
1549 if ( (srcConsumed == srcSize) /* job is completed */
1550 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
1551 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1552 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1553 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1554 DEBUGLOG(5, "dstBuffer released");
1555 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1556 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
1557 mtctx->consumed += srcSize;
1558 mtctx->produced += cSize;
1559 mtctx->doneJobID++;
1560 } }
1561
1562 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1563 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1564 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
1565 }
1566 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
1567 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
1568 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
1569 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
1570 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1571 return 0; /* internal buffers fully flushed */
1572 }
1573
1574 /**
1575 * Returns the range of data used by the earliest job that is not yet complete.
1576 * If the data of the first job is broken up into two segments, we cover both
1577 * sections.
1578 */
ZSTDMT_getInputDataInUse(ZSTDMT_CCtx * mtctx)1579 static Range ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1580 {
1581 unsigned const firstJobID = mtctx->doneJobID;
1582 unsigned const lastJobID = mtctx->nextJobID;
1583 unsigned jobID;
1584
1585 /* no need to check during first round */
1586 size_t roundBuffCapacity = mtctx->roundBuff.capacity;
1587 size_t nbJobs1stRoundMin = roundBuffCapacity / mtctx->targetSectionSize;
1588 if (lastJobID < nbJobs1stRoundMin) return kNullRange;
1589
1590 for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1591 unsigned const wJobID = jobID & mtctx->jobIDMask;
1592 size_t consumed;
1593
1594 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1595 consumed = mtctx->jobs[wJobID].consumed;
1596 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1597
1598 if (consumed < mtctx->jobs[wJobID].src.size) {
1599 Range range = mtctx->jobs[wJobID].prefix;
1600 if (range.size == 0) {
1601 /* Empty prefix */
1602 range = mtctx->jobs[wJobID].src;
1603 }
1604 /* Job source in multiple segments not supported yet */
1605 assert(range.start <= mtctx->jobs[wJobID].src.start);
1606 return range;
1607 }
1608 }
1609 return kNullRange;
1610 }
1611
1612 /**
1613 * Returns non-zero iff buffer and range overlap.
1614 */
ZSTDMT_isOverlapped(Buffer buffer,Range range)1615 static int ZSTDMT_isOverlapped(Buffer buffer, Range range)
1616 {
1617 BYTE const* const bufferStart = (BYTE const*)buffer.start;
1618 BYTE const* const rangeStart = (BYTE const*)range.start;
1619
1620 if (rangeStart == NULL || bufferStart == NULL)
1621 return 0;
1622
1623 {
1624 BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1625 BYTE const* const rangeEnd = rangeStart + range.size;
1626
1627 /* Empty ranges cannot overlap */
1628 if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1629 return 0;
1630
1631 return bufferStart < rangeEnd && rangeStart < bufferEnd;
1632 }
1633 }
1634
ZSTDMT_doesOverlapWindow(Buffer buffer,ZSTD_window_t window)1635 static int ZSTDMT_doesOverlapWindow(Buffer buffer, ZSTD_window_t window)
1636 {
1637 Range extDict;
1638 Range prefix;
1639
1640 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1641 extDict.start = window.dictBase + window.lowLimit;
1642 extDict.size = window.dictLimit - window.lowLimit;
1643
1644 prefix.start = window.base + window.dictLimit;
1645 prefix.size = window.nextSrc - (window.base + window.dictLimit);
1646 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1647 (size_t)extDict.start,
1648 (size_t)extDict.start + extDict.size);
1649 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
1650 (size_t)prefix.start,
1651 (size_t)prefix.start + prefix.size);
1652
1653 return ZSTDMT_isOverlapped(buffer, extDict)
1654 || ZSTDMT_isOverlapped(buffer, prefix);
1655 }
1656
ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx * mtctx,Buffer buffer)1657 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, Buffer buffer)
1658 {
1659 if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1660 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1661 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1662 DEBUGLOG(5, "source [0x%zx, 0x%zx)",
1663 (size_t)buffer.start,
1664 (size_t)buffer.start + buffer.capacity);
1665 ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1666 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1667 DEBUGLOG(5, "Waiting for LDM to finish...");
1668 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1669 }
1670 DEBUGLOG(6, "Done waiting for LDM to finish");
1671 ZSTD_pthread_mutex_unlock(mutex);
1672 }
1673 }
1674
1675 /**
1676 * Attempts to set the inBuff to the next section to fill.
1677 * If any part of the new section is still in use we give up.
1678 * Returns non-zero if the buffer is filled.
1679 */
ZSTDMT_tryGetInputRange(ZSTDMT_CCtx * mtctx)1680 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1681 {
1682 Range const inUse = ZSTDMT_getInputDataInUse(mtctx);
1683 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1684 size_t const spaceNeeded = mtctx->targetSectionSize;
1685 Buffer buffer;
1686
1687 DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1688 assert(mtctx->inBuff.buffer.start == NULL);
1689 assert(mtctx->roundBuff.capacity >= spaceNeeded);
1690
1691 if (spaceLeft < spaceNeeded) {
1692 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1693 * Simply copy the prefix to the beginning in that case.
1694 */
1695 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1696 size_t const prefixSize = mtctx->inBuff.prefix.size;
1697
1698 buffer.start = start;
1699 buffer.capacity = prefixSize;
1700 if (ZSTDMT_isOverlapped(buffer, inUse)) {
1701 DEBUGLOG(5, "Waiting for buffer...");
1702 return 0;
1703 }
1704 ZSTDMT_waitForLdmComplete(mtctx, buffer);
1705 ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1706 mtctx->inBuff.prefix.start = start;
1707 mtctx->roundBuff.pos = prefixSize;
1708 }
1709 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1710 buffer.capacity = spaceNeeded;
1711
1712 if (ZSTDMT_isOverlapped(buffer, inUse)) {
1713 DEBUGLOG(5, "Waiting for buffer...");
1714 return 0;
1715 }
1716 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1717
1718 ZSTDMT_waitForLdmComplete(mtctx, buffer);
1719
1720 DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1721 (size_t)mtctx->inBuff.prefix.start,
1722 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1723 DEBUGLOG(5, "Using source range [%zx, %zx)",
1724 (size_t)buffer.start,
1725 (size_t)buffer.start + buffer.capacity);
1726
1727
1728 mtctx->inBuff.buffer = buffer;
1729 mtctx->inBuff.filled = 0;
1730 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1731 return 1;
1732 }
1733
1734 typedef struct {
1735 size_t toLoad; /* The number of bytes to load from the input. */
1736 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
1737 } SyncPoint;
1738
1739 /**
1740 * Searches through the input for a synchronization point. If one is found, we
1741 * will instruct the caller to flush, and return the number of bytes to load.
1742 * Otherwise, we will load as many bytes as possible and instruct the caller
1743 * to continue as normal.
1744 */
1745 static SyncPoint
findSynchronizationPoint(ZSTDMT_CCtx const * mtctx,ZSTD_inBuffer const input)1746 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1747 {
1748 BYTE const* const istart = (BYTE const*)input.src + input.pos;
1749 U64 const primePower = mtctx->rsync.primePower;
1750 U64 const hitMask = mtctx->rsync.hitMask;
1751
1752 SyncPoint syncPoint;
1753 U64 hash;
1754 BYTE const* prev;
1755 size_t pos;
1756
1757 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1758 syncPoint.flush = 0;
1759 if (!mtctx->params.rsyncable)
1760 /* Rsync is disabled. */
1761 return syncPoint;
1762 if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1763 /* We don't emit synchronization points if it would produce too small blocks.
1764 * We don't have enough input to find a synchronization point, so don't look.
1765 */
1766 return syncPoint;
1767 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1768 /* Not enough to compute the hash.
1769 * We will miss any synchronization points in this RSYNC_LENGTH byte
1770 * window. However, since it depends only in the internal buffers, if the
1771 * state is already synchronized, we will remain synchronized.
1772 * Additionally, the probability that we miss a synchronization point is
1773 * low: RSYNC_LENGTH / targetSectionSize.
1774 */
1775 return syncPoint;
1776 /* Initialize the loop variables. */
1777 if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1778 /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1779 * because they can't possibly be a sync point. So we can start
1780 * part way through the input buffer.
1781 */
1782 pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1783 if (pos >= RSYNC_LENGTH) {
1784 prev = istart + pos - RSYNC_LENGTH;
1785 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1786 } else {
1787 assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1788 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1789 hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1790 hash = ZSTD_rollingHash_append(hash, istart, pos);
1791 }
1792 } else {
1793 /* We have enough bytes buffered to initialize the hash,
1794 * and have processed enough bytes to find a sync point.
1795 * Start scanning at the beginning of the input.
1796 */
1797 assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1798 assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1799 pos = 0;
1800 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1801 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1802 if ((hash & hitMask) == hitMask) {
1803 /* We're already at a sync point so don't load any more until
1804 * we're able to flush this sync point.
1805 * This likely happened because the job table was full so we
1806 * couldn't add our job.
1807 */
1808 syncPoint.toLoad = 0;
1809 syncPoint.flush = 1;
1810 return syncPoint;
1811 }
1812 }
1813 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1814 * through the input. If we hit a synchronization point, then cut the
1815 * job off, and tell the compressor to flush the job. Otherwise, load
1816 * all the bytes and continue as normal.
1817 * If we go too long without a synchronization point (targetSectionSize)
1818 * then a block will be emitted anyways, but this is okay, since if we
1819 * are already synchronized we will remain synchronized.
1820 */
1821 assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1822 for (; pos < syncPoint.toLoad; ++pos) {
1823 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1824 /* This assert is very expensive, and Debian compiles with asserts enabled.
1825 * So disable it for now. We can get similar coverage by checking it at the
1826 * beginning & end of the loop.
1827 * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1828 */
1829 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1830 assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1831 if ((hash & hitMask) == hitMask) {
1832 syncPoint.toLoad = pos + 1;
1833 syncPoint.flush = 1;
1834 ++pos; /* for assert */
1835 break;
1836 }
1837 }
1838 assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1839 return syncPoint;
1840 }
1841
ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx * mtctx)1842 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1843 {
1844 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1845 if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1846 return hintInSize;
1847 }
1848
1849 /** ZSTDMT_compressStream_generic() :
1850 * internal use only - exposed to be invoked from zstd_compress.c
1851 * assumption : output and input are valid (pos <= size)
1852 * @return : minimum amount of data remaining to flush, 0 if none */
ZSTDMT_compressStream_generic(ZSTDMT_CCtx * mtctx,ZSTD_outBuffer * output,ZSTD_inBuffer * input,ZSTD_EndDirective endOp)1853 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1854 ZSTD_outBuffer* output,
1855 ZSTD_inBuffer* input,
1856 ZSTD_EndDirective endOp)
1857 {
1858 unsigned forwardInputProgress = 0;
1859 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1860 (U32)endOp, (U32)(input->size - input->pos));
1861 assert(output->pos <= output->size);
1862 assert(input->pos <= input->size);
1863
1864 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1865 /* current frame being ended. Only flush/end are allowed */
1866 return ERROR(stage_wrong);
1867 }
1868
1869 /* fill input buffer */
1870 if ( (!mtctx->jobReady)
1871 && (input->size > input->pos) ) { /* support NULL input */
1872 if (mtctx->inBuff.buffer.start == NULL) {
1873 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1874 if (!ZSTDMT_tryGetInputRange(mtctx)) {
1875 /* It is only possible for this operation to fail if there are
1876 * still compression jobs ongoing.
1877 */
1878 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1879 assert(mtctx->doneJobID != mtctx->nextJobID);
1880 } else
1881 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1882 }
1883 if (mtctx->inBuff.buffer.start != NULL) {
1884 SyncPoint const syncPoint = findSynchronizationPoint(mtctx, *input);
1885 if (syncPoint.flush && endOp == ZSTD_e_continue) {
1886 endOp = ZSTD_e_flush;
1887 }
1888 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1889 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1890 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1891 ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1892 input->pos += syncPoint.toLoad;
1893 mtctx->inBuff.filled += syncPoint.toLoad;
1894 forwardInputProgress = syncPoint.toLoad>0;
1895 }
1896 }
1897 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1898 /* Can't end yet because the input is not fully consumed.
1899 * We are in one of these cases:
1900 * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1901 * - We filled the input buffer: flush this job but don't end the frame.
1902 * - We hit a synchronization point: flush this job but don't end the frame.
1903 */
1904 assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1905 endOp = ZSTD_e_flush;
1906 }
1907
1908 if ( (mtctx->jobReady)
1909 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
1910 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
1911 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
1912 size_t const jobSize = mtctx->inBuff.filled;
1913 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1914 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1915 }
1916
1917 /* check for potential compressed data ready to be flushed */
1918 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1919 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
1920 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1921 return remainingToFlush;
1922 }
1923 }
1924