• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef Py_INTERNAL_PYMATH_H
2 #define Py_INTERNAL_PYMATH_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
6 
7 #ifndef Py_BUILD_CORE
8 #  error "this header requires Py_BUILD_CORE define"
9 #endif
10 
11 
12 /* _Py_ADJUST_ERANGE1(x)
13  * _Py_ADJUST_ERANGE2(x, y)
14  * Set errno to 0 before calling a libm function, and invoke one of these
15  * macros after, passing the function result(s) (_Py_ADJUST_ERANGE2 is useful
16  * for functions returning complex results).  This makes two kinds of
17  * adjustments to errno:  (A) If it looks like the platform libm set
18  * errno=ERANGE due to underflow, clear errno. (B) If it looks like the
19  * platform libm overflowed but didn't set errno, force errno to ERANGE.  In
20  * effect, we're trying to force a useful implementation of C89 errno
21  * behavior.
22  * Caution:
23  *    This isn't reliable.  C99 no longer requires libm to set errno under
24  *        any exceptional condition, but does require +- HUGE_VAL return
25  *        values on overflow.  A 754 box *probably* maps HUGE_VAL to a
26  *        double infinity, and we're cool if that's so, unless the input
27  *        was an infinity and an infinity is the expected result.  A C89
28  *        system sets errno to ERANGE, so we check for that too.  We're
29  *        out of luck if a C99 754 box doesn't map HUGE_VAL to +Inf, or
30  *        if the returned result is a NaN, or if a C89 box returns HUGE_VAL
31  *        in non-overflow cases.
32  */
_Py_ADJUST_ERANGE1(double x)33 static inline void _Py_ADJUST_ERANGE1(double x)
34 {
35     if (errno == 0) {
36         if (x == Py_HUGE_VAL || x == -Py_HUGE_VAL) {
37             errno = ERANGE;
38         }
39     }
40     else if (errno == ERANGE && x == 0.0) {
41         errno = 0;
42     }
43 }
44 
_Py_ADJUST_ERANGE2(double x,double y)45 static inline void _Py_ADJUST_ERANGE2(double x, double y)
46 {
47     if (x == Py_HUGE_VAL || x == -Py_HUGE_VAL ||
48         y == Py_HUGE_VAL || y == -Py_HUGE_VAL)
49     {
50         if (errno == 0) {
51             errno = ERANGE;
52         }
53     }
54     else if (errno == ERANGE) {
55         errno = 0;
56     }
57 }
58 
59 
60 //--- HAVE_PY_SET_53BIT_PRECISION macro ------------------------------------
61 //
62 // The functions _Py_dg_strtod() and _Py_dg_dtoa() in Python/dtoa.c (which are
63 // required to support the short float repr introduced in Python 3.1) require
64 // that the floating-point unit that's being used for arithmetic operations on
65 // C doubles is set to use 53-bit precision.  It also requires that the FPU
66 // rounding mode is round-half-to-even, but that's less often an issue.
67 //
68 // If your FPU isn't already set to 53-bit precision/round-half-to-even, and
69 // you want to make use of _Py_dg_strtod() and _Py_dg_dtoa(), then you should:
70 //
71 //     #define HAVE_PY_SET_53BIT_PRECISION 1
72 //
73 // and also give appropriate definitions for the following three macros:
74 //
75 // * _Py_SET_53BIT_PRECISION_HEADER: any variable declarations needed to
76 //   use the two macros below.
77 // * _Py_SET_53BIT_PRECISION_START: store original FPU settings, and
78 //   set FPU to 53-bit precision/round-half-to-even
79 // * _Py_SET_53BIT_PRECISION_END: restore original FPU settings
80 //
81 // The macros are designed to be used within a single C function: see
82 // Python/pystrtod.c for an example of their use.
83 
84 
85 // Get and set x87 control word for gcc/x86
86 #ifdef HAVE_GCC_ASM_FOR_X87
87 #define HAVE_PY_SET_53BIT_PRECISION 1
88 
89 // Functions defined in Python/pymath.c
90 extern unsigned short _Py_get_387controlword(void);
91 extern void _Py_set_387controlword(unsigned short);
92 
93 #define _Py_SET_53BIT_PRECISION_HEADER                                  \
94     unsigned short old_387controlword, new_387controlword
95 #define _Py_SET_53BIT_PRECISION_START                                   \
96     do {                                                                \
97         old_387controlword = _Py_get_387controlword();                  \
98         new_387controlword = (old_387controlword & ~0x0f00) | 0x0200;   \
99         if (new_387controlword != old_387controlword) {                 \
100             _Py_set_387controlword(new_387controlword);                 \
101         }                                                               \
102     } while (0)
103 #define _Py_SET_53BIT_PRECISION_END                                     \
104     do {                                                                \
105         if (new_387controlword != old_387controlword) {                 \
106             _Py_set_387controlword(old_387controlword);                 \
107         }                                                               \
108     } while (0)
109 #endif
110 
111 // Get and set x87 control word for VisualStudio/x86.
112 // x87 is not supported in 64-bit or ARM.
113 #if defined(_MSC_VER) && !defined(_WIN64) && !defined(_M_ARM)
114 #define HAVE_PY_SET_53BIT_PRECISION 1
115 
116 #include <float.h>                // __control87_2()
117 
118 #define _Py_SET_53BIT_PRECISION_HEADER \
119     unsigned int old_387controlword, new_387controlword, out_387controlword
120     // We use the __control87_2 function to set only the x87 control word.
121     // The SSE control word is unaffected.
122 #define _Py_SET_53BIT_PRECISION_START                                   \
123     do {                                                                \
124         __control87_2(0, 0, &old_387controlword, NULL);                 \
125         new_387controlword =                                            \
126           (old_387controlword & ~(_MCW_PC | _MCW_RC)) | (_PC_53 | _RC_NEAR); \
127         if (new_387controlword != old_387controlword) {                 \
128             __control87_2(new_387controlword, _MCW_PC | _MCW_RC,        \
129                           &out_387controlword, NULL);                   \
130         }                                                               \
131     } while (0)
132 #define _Py_SET_53BIT_PRECISION_END                                     \
133     do {                                                                \
134         if (new_387controlword != old_387controlword) {                 \
135             __control87_2(old_387controlword, _MCW_PC | _MCW_RC,        \
136                           &out_387controlword, NULL);                   \
137         }                                                               \
138     } while (0)
139 #endif
140 
141 
142 // MC68881
143 #ifdef HAVE_GCC_ASM_FOR_MC68881
144 #define HAVE_PY_SET_53BIT_PRECISION 1
145 #define _Py_SET_53BIT_PRECISION_HEADER \
146     unsigned int old_fpcr, new_fpcr
147 #define _Py_SET_53BIT_PRECISION_START                                   \
148     do {                                                                \
149         __asm__ ("fmove.l %%fpcr,%0" : "=g" (old_fpcr));                \
150         /* Set double precision / round to nearest.  */                 \
151         new_fpcr = (old_fpcr & ~0xf0) | 0x80;                           \
152         if (new_fpcr != old_fpcr) {                                     \
153               __asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (new_fpcr));\
154         }                                                               \
155     } while (0)
156 #define _Py_SET_53BIT_PRECISION_END                                     \
157     do {                                                                \
158         if (new_fpcr != old_fpcr) {                                     \
159             __asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (old_fpcr));  \
160         }                                                               \
161     } while (0)
162 #endif
163 
164 // Default definitions are empty
165 #ifndef _Py_SET_53BIT_PRECISION_HEADER
166 #  define _Py_SET_53BIT_PRECISION_HEADER
167 #  define _Py_SET_53BIT_PRECISION_START
168 #  define _Py_SET_53BIT_PRECISION_END
169 #endif
170 
171 
172 //--- _PY_SHORT_FLOAT_REPR macro -------------------------------------------
173 
174 // If we can't guarantee 53-bit precision, don't use the code
175 // in Python/dtoa.c, but fall back to standard code.  This
176 // means that repr of a float will be long (17 significant digits).
177 //
178 // Realistically, there are two things that could go wrong:
179 //
180 // (1) doubles aren't IEEE 754 doubles, or
181 // (2) we're on x86 with the rounding precision set to 64-bits
182 //     (extended precision), and we don't know how to change
183 //     the rounding precision.
184 #if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
185     !defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
186     !defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
187 #  define _PY_SHORT_FLOAT_REPR 0
188 #endif
189 
190 // Double rounding is symptomatic of use of extended precision on x86.
191 // If we're seeing double rounding, and we don't have any mechanism available
192 // for changing the FPU rounding precision, then don't use Python/dtoa.c.
193 #if defined(X87_DOUBLE_ROUNDING) && !defined(HAVE_PY_SET_53BIT_PRECISION)
194 #  define _PY_SHORT_FLOAT_REPR 0
195 #endif
196 
197 #ifndef _PY_SHORT_FLOAT_REPR
198 #  define _PY_SHORT_FLOAT_REPR 1
199 #endif
200 
201 
202 #ifdef __cplusplus
203 }
204 #endif
205 #endif /* !Py_INTERNAL_PYMATH_H */
206