• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*----------------------------------------------------------------------------
2 Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
3 This is free software; you can redistribute it and/or modify it under the
4 terms of the MIT license. A copy of the license can be found in the file
5 "LICENSE" at the root of this distribution.
6 -----------------------------------------------------------------------------*/
7 
8 #include "mimalloc.h"
9 #include "mimalloc/internal.h"
10 #include "mimalloc/atomic.h"
11 #include "mimalloc/prim.h"  // mi_prim_get_default_heap
12 
13 #include <string.h>  // memset, memcpy
14 
15 #if defined(_MSC_VER) && (_MSC_VER < 1920)
16 #pragma warning(disable:4204)  // non-constant aggregate initializer
17 #endif
18 
19 /* -----------------------------------------------------------
20   Helpers
21 ----------------------------------------------------------- */
22 
23 // return `true` if ok, `false` to break
24 typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2);
25 
26 // Visit all pages in a heap; returns `false` if break was called.
mi_heap_visit_pages(mi_heap_t * heap,heap_page_visitor_fun * fn,void * arg1,void * arg2)27 static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2)
28 {
29   if (heap==NULL || heap->page_count==0) return true;
30 
31   // visit all pages
32   #if MI_DEBUG>1
33   size_t total = heap->page_count;
34   size_t count = 0;
35   #endif
36 
37   for (size_t i = 0; i <= MI_BIN_FULL; i++) {
38     mi_page_queue_t* pq = &heap->pages[i];
39     mi_page_t* page = pq->first;
40     while(page != NULL) {
41       mi_page_t* next = page->next; // save next in case the page gets removed from the queue
42       mi_assert_internal(mi_page_heap(page) == heap);
43       #if MI_DEBUG>1
44       count++;
45       #endif
46       if (!fn(heap, pq, page, arg1, arg2)) return false;
47       page = next; // and continue
48     }
49   }
50   mi_assert_internal(count == total);
51   return true;
52 }
53 
54 
55 #if MI_DEBUG>=2
mi_heap_page_is_valid(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * arg1,void * arg2)56 static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
57   MI_UNUSED(arg1);
58   MI_UNUSED(arg2);
59   MI_UNUSED(pq);
60   mi_assert_internal(mi_page_heap(page) == heap);
61   mi_segment_t* segment = _mi_page_segment(page);
62   mi_assert_internal(segment->thread_id == heap->thread_id);
63   mi_assert_expensive(_mi_page_is_valid(page));
64   return true;
65 }
66 #endif
67 #if MI_DEBUG>=3
mi_heap_is_valid(mi_heap_t * heap)68 static bool mi_heap_is_valid(mi_heap_t* heap) {
69   mi_assert_internal(heap!=NULL);
70   mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL);
71   return true;
72 }
73 #endif
74 
75 
76 
77 
78 /* -----------------------------------------------------------
79   "Collect" pages by migrating `local_free` and `thread_free`
80   lists and freeing empty pages. This is done when a thread
81   stops (and in that case abandons pages if there are still
82   blocks alive)
83 ----------------------------------------------------------- */
84 
85 typedef enum mi_collect_e {
86   MI_NORMAL,
87   MI_FORCE,
88   MI_ABANDON
89 } mi_collect_t;
90 
91 
mi_heap_page_collect(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * arg_collect,void * arg2)92 static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) {
93   MI_UNUSED(arg2);
94   MI_UNUSED(heap);
95   mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL));
96   mi_collect_t collect = *((mi_collect_t*)arg_collect);
97   _mi_page_free_collect(page, collect >= MI_FORCE);
98   if (mi_page_all_free(page)) {
99     // no more used blocks, free the page.
100     // note: this will free retired pages as well.
101     bool freed = _PyMem_mi_page_maybe_free(page, pq, collect >= MI_FORCE);
102     if (!freed && collect == MI_ABANDON) {
103       _mi_page_abandon(page, pq);
104     }
105   }
106   else if (collect == MI_ABANDON) {
107     // still used blocks but the thread is done; abandon the page
108     _mi_page_abandon(page, pq);
109   }
110   return true; // don't break
111 }
112 
mi_heap_page_never_delayed_free(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * arg1,void * arg2)113 static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
114   MI_UNUSED(arg1);
115   MI_UNUSED(arg2);
116   MI_UNUSED(heap);
117   MI_UNUSED(pq);
118   _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
119   return true; // don't break
120 }
121 
mi_heap_collect_ex(mi_heap_t * heap,mi_collect_t collect)122 static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
123 {
124   if (heap==NULL || !mi_heap_is_initialized(heap)) return;
125 
126   const bool force = collect >= MI_FORCE;
127   _mi_deferred_free(heap, force);
128 
129   // gh-112532: we may be called from a thread that is not the owner of the heap
130   bool is_main_thread = _mi_is_main_thread() && heap->thread_id == _mi_thread_id();
131 
132   // note: never reclaim on collect but leave it to threads that need storage to reclaim
133   const bool force_main =
134     #ifdef NDEBUG
135       collect == MI_FORCE
136     #else
137       collect >= MI_FORCE
138     #endif
139       && is_main_thread && mi_heap_is_backing(heap) && !heap->no_reclaim;
140 
141   if (force_main) {
142     // the main thread is abandoned (end-of-program), try to reclaim all abandoned segments.
143     // if all memory is freed by now, all segments should be freed.
144     _mi_abandoned_reclaim_all(heap, &heap->tld->segments);
145   }
146 
147   // if abandoning, mark all pages to no longer add to delayed_free
148   if (collect == MI_ABANDON) {
149     mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL);
150   }
151 
152   // free all current thread delayed blocks.
153   // (if abandoning, after this there are no more thread-delayed references into the pages.)
154   _mi_heap_delayed_free_all(heap);
155 
156   // collect retired pages
157   _mi_heap_collect_retired(heap, force);
158 
159   // free pages that were delayed with QSBR
160   _PyMem_mi_heap_collect_qsbr(heap);
161 
162   // collect all pages owned by this thread
163   mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL);
164   mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL );
165 
166   // collect abandoned segments (in particular, purge expired parts of segments in the abandoned segment list)
167   // note: forced purge can be quite expensive if many threads are created/destroyed so we do not force on abandonment
168   _mi_abandoned_collect(heap, collect == MI_FORCE /* force? */, &heap->tld->segments);
169 
170   // collect segment local caches
171   if (force) {
172     _mi_segment_thread_collect(&heap->tld->segments);
173   }
174 
175   // collect regions on program-exit (or shared library unload)
176   if (force && is_main_thread && mi_heap_is_backing(heap)) {
177     _mi_thread_data_collect();  // collect thread data cache
178     _mi_arena_collect(true /* force purge */, &heap->tld->stats);
179   }
180 }
181 
_mi_heap_collect_abandon(mi_heap_t * heap)182 void _mi_heap_collect_abandon(mi_heap_t* heap) {
183   mi_heap_collect_ex(heap, MI_ABANDON);
184 }
185 
mi_heap_collect(mi_heap_t * heap,bool force)186 void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept {
187   mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL));
188 }
189 
mi_collect(bool force)190 void mi_collect(bool force) mi_attr_noexcept {
191   mi_heap_collect(mi_prim_get_default_heap(), force);
192 }
193 
194 
195 /* -----------------------------------------------------------
196   Heap new
197 ----------------------------------------------------------- */
198 
mi_heap_get_default(void)199 mi_heap_t* mi_heap_get_default(void) {
200   mi_thread_init();
201   return mi_prim_get_default_heap();
202 }
203 
mi_heap_is_default(const mi_heap_t * heap)204 static bool mi_heap_is_default(const mi_heap_t* heap) {
205   return (heap == mi_prim_get_default_heap());
206 }
207 
208 
mi_heap_get_backing(void)209 mi_heap_t* mi_heap_get_backing(void) {
210   mi_heap_t* heap = mi_heap_get_default();
211   mi_assert_internal(heap!=NULL);
212   mi_heap_t* bheap = heap->tld->heap_backing;
213   mi_assert_internal(bheap!=NULL);
214   mi_assert_internal(bheap->thread_id == _mi_thread_id());
215   return bheap;
216 }
217 
_mi_heap_init_ex(mi_heap_t * heap,mi_tld_t * tld,mi_arena_id_t arena_id,bool no_reclaim,uint8_t tag)218 void _mi_heap_init_ex(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool no_reclaim, uint8_t tag)
219 {
220   _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t));
221   heap->tld = tld;
222   heap->thread_id = _mi_thread_id();
223   heap->arena_id = arena_id;
224   if (heap == tld->heap_backing) {
225     _mi_random_init(&heap->random);
226   }
227   else {
228     _mi_random_split(&tld->heap_backing->random, &heap->random);
229   }
230   heap->cookie = _mi_heap_random_next(heap) | 1;
231   heap->keys[0] = _mi_heap_random_next(heap);
232   heap->keys[1] = _mi_heap_random_next(heap);
233   heap->no_reclaim = no_reclaim;
234   heap->tag = tag;
235   // push on the thread local heaps list
236   heap->next = heap->tld->heaps;
237   heap->tld->heaps = heap;
238 }
239 
mi_heap_new_in_arena(mi_arena_id_t arena_id)240 mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) {
241   mi_heap_t* bheap = mi_heap_get_backing();
242   mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t);  // todo: OS allocate in secure mode?
243   if (heap == NULL) return NULL;
244   // don't reclaim abandoned pages or otherwise destroy is unsafe
245   _mi_heap_init_ex(heap, bheap->tld, arena_id, true, 0);
246   return heap;
247 }
248 
mi_heap_new(void)249 mi_decl_nodiscard mi_heap_t* mi_heap_new(void) {
250   return mi_heap_new_in_arena(_mi_arena_id_none());
251 }
252 
_mi_heap_memid_is_suitable(mi_heap_t * heap,mi_memid_t memid)253 bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) {
254   return _mi_arena_memid_is_suitable(memid, heap->arena_id);
255 }
256 
_mi_heap_random_next(mi_heap_t * heap)257 uintptr_t _mi_heap_random_next(mi_heap_t* heap) {
258   return _mi_random_next(&heap->random);
259 }
260 
261 // zero out the page queues
mi_heap_reset_pages(mi_heap_t * heap)262 static void mi_heap_reset_pages(mi_heap_t* heap) {
263   mi_assert_internal(heap != NULL);
264   mi_assert_internal(mi_heap_is_initialized(heap));
265   // TODO: copy full empty heap instead?
266   memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct));
267   _mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages));
268   heap->thread_delayed_free = NULL;
269   heap->page_count = 0;
270 }
271 
272 // called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources.
mi_heap_free(mi_heap_t * heap)273 static void mi_heap_free(mi_heap_t* heap) {
274   mi_assert(heap != NULL);
275   mi_assert_internal(mi_heap_is_initialized(heap));
276   if (heap==NULL || !mi_heap_is_initialized(heap)) return;
277   if (mi_heap_is_backing(heap)) return; // dont free the backing heap
278 
279   // reset default
280   if (mi_heap_is_default(heap)) {
281     _mi_heap_set_default_direct(heap->tld->heap_backing);
282   }
283 
284   // remove ourselves from the thread local heaps list
285   // linear search but we expect the number of heaps to be relatively small
286   mi_heap_t* prev = NULL;
287   mi_heap_t* curr = heap->tld->heaps;
288   while (curr != heap && curr != NULL) {
289     prev = curr;
290     curr = curr->next;
291   }
292   mi_assert_internal(curr == heap);
293   if (curr == heap) {
294     if (prev != NULL) { prev->next = heap->next; }
295                  else { heap->tld->heaps = heap->next; }
296   }
297   mi_assert_internal(heap->tld->heaps != NULL);
298 
299   // and free the used memory
300   mi_free(heap);
301 }
302 
303 
304 /* -----------------------------------------------------------
305   Heap destroy
306 ----------------------------------------------------------- */
307 
_mi_heap_page_destroy(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * arg1,void * arg2)308 static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
309   MI_UNUSED(arg1);
310   MI_UNUSED(arg2);
311   MI_UNUSED(heap);
312   MI_UNUSED(pq);
313 
314   // ensure no more thread_delayed_free will be added
315   _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
316 
317   // stats
318   const size_t bsize = mi_page_block_size(page);
319   if (bsize > MI_MEDIUM_OBJ_SIZE_MAX) {
320     if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
321       mi_heap_stat_decrease(heap, large, bsize);
322     }
323     else {
324       mi_heap_stat_decrease(heap, huge, bsize);
325     }
326   }
327 #if (MI_STAT)
328   _mi_page_free_collect(page, false);  // update used count
329   const size_t inuse = page->used;
330   if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
331     mi_heap_stat_decrease(heap, normal, bsize * inuse);
332 #if (MI_STAT>1)
333     mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse);
334 #endif
335   }
336   mi_heap_stat_decrease(heap, malloc, bsize * inuse);  // todo: off for aligned blocks...
337 #endif
338 
339   /// pretend it is all free now
340   mi_assert_internal(mi_page_thread_free(page) == NULL);
341   page->used = 0;
342 
343   // and free the page
344   // mi_page_free(page,false);
345   page->next = NULL;
346   page->prev = NULL;
347   _mi_segment_page_free(page,false /* no force? */, &heap->tld->segments);
348 
349   return true; // keep going
350 }
351 
_mi_heap_destroy_pages(mi_heap_t * heap)352 void _mi_heap_destroy_pages(mi_heap_t* heap) {
353   mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL);
354   mi_heap_reset_pages(heap);
355 }
356 
357 #if MI_TRACK_HEAP_DESTROY
mi_heap_track_block_free(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * arg)358 static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) {
359   MI_UNUSED(heap); MI_UNUSED(area);  MI_UNUSED(arg); MI_UNUSED(block_size);
360   mi_track_free_size(block,mi_usable_size(block));
361   return true;
362 }
363 #endif
364 
mi_heap_destroy(mi_heap_t * heap)365 void mi_heap_destroy(mi_heap_t* heap) {
366   mi_assert(heap != NULL);
367   mi_assert(mi_heap_is_initialized(heap));
368   mi_assert(heap->no_reclaim);
369   mi_assert_expensive(mi_heap_is_valid(heap));
370   if (heap==NULL || !mi_heap_is_initialized(heap)) return;
371   if (!heap->no_reclaim) {
372     // don't free in case it may contain reclaimed pages
373     mi_heap_delete(heap);
374   }
375   else {
376     // track all blocks as freed
377     #if MI_TRACK_HEAP_DESTROY
378     mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL);
379     #endif
380     // free all pages
381     _mi_heap_destroy_pages(heap);
382     mi_heap_free(heap);
383   }
384 }
385 
386 // forcefully destroy all heaps in the current thread
_mi_heap_unsafe_destroy_all(void)387 void _mi_heap_unsafe_destroy_all(void) {
388   mi_heap_t* bheap = mi_heap_get_backing();
389   mi_heap_t* curr = bheap->tld->heaps;
390   while (curr != NULL) {
391     mi_heap_t* next = curr->next;
392     if (curr->no_reclaim) {
393       mi_heap_destroy(curr);
394     }
395     else {
396       _mi_heap_destroy_pages(curr);
397     }
398     curr = next;
399   }
400 }
401 
402 /* -----------------------------------------------------------
403   Safe Heap delete
404 ----------------------------------------------------------- */
405 
406 // Transfer the pages from one heap to the other
mi_heap_absorb(mi_heap_t * heap,mi_heap_t * from)407 static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) {
408   mi_assert_internal(heap!=NULL);
409   if (from==NULL || from->page_count == 0) return;
410 
411   // reduce the size of the delayed frees
412   _mi_heap_delayed_free_partial(from);
413 
414   // transfer all pages by appending the queues; this will set a new heap field
415   // so threads may do delayed frees in either heap for a while.
416   // note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state
417   // so after this only the new heap will get delayed frees
418   for (size_t i = 0; i <= MI_BIN_FULL; i++) {
419     mi_page_queue_t* pq = &heap->pages[i];
420     mi_page_queue_t* append = &from->pages[i];
421     size_t pcount = _mi_page_queue_append(heap, pq, append);
422     heap->page_count += pcount;
423     from->page_count -= pcount;
424   }
425   mi_assert_internal(from->page_count == 0);
426 
427   // and do outstanding delayed frees in the `from` heap
428   // note: be careful here as the `heap` field in all those pages no longer point to `from`,
429   // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a
430   // the regular `_mi_free_delayed_block` which is safe.
431   _mi_heap_delayed_free_all(from);
432   #if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353
433   mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL);
434   #endif
435 
436   // and reset the `from` heap
437   mi_heap_reset_pages(from);
438 }
439 
440 // Safe delete a heap without freeing any still allocated blocks in that heap.
mi_heap_delete(mi_heap_t * heap)441 void mi_heap_delete(mi_heap_t* heap)
442 {
443   mi_assert(heap != NULL);
444   mi_assert(mi_heap_is_initialized(heap));
445   mi_assert_expensive(mi_heap_is_valid(heap));
446   if (heap==NULL || !mi_heap_is_initialized(heap)) return;
447 
448   if (!mi_heap_is_backing(heap)) {
449     // tranfer still used pages to the backing heap
450     mi_heap_absorb(heap->tld->heap_backing, heap);
451   }
452   else {
453     // the backing heap abandons its pages
454     _mi_heap_collect_abandon(heap);
455   }
456   mi_assert_internal(heap->page_count==0);
457   mi_heap_free(heap);
458 }
459 
mi_heap_set_default(mi_heap_t * heap)460 mi_heap_t* mi_heap_set_default(mi_heap_t* heap) {
461   mi_assert(heap != NULL);
462   mi_assert(mi_heap_is_initialized(heap));
463   if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL;
464   mi_assert_expensive(mi_heap_is_valid(heap));
465   mi_heap_t* old = mi_prim_get_default_heap();
466   _mi_heap_set_default_direct(heap);
467   return old;
468 }
469 
470 
471 
472 
473 /* -----------------------------------------------------------
474   Analysis
475 ----------------------------------------------------------- */
476 
477 // static since it is not thread safe to access heaps from other threads.
mi_heap_of_block(const void * p)478 static mi_heap_t* mi_heap_of_block(const void* p) {
479   if (p == NULL) return NULL;
480   mi_segment_t* segment = _mi_ptr_segment(p);
481   bool valid = (_mi_ptr_cookie(segment) == segment->cookie);
482   mi_assert_internal(valid);
483   if mi_unlikely(!valid) return NULL;
484   return mi_page_heap(_mi_segment_page_of(segment,p));
485 }
486 
mi_heap_contains_block(mi_heap_t * heap,const void * p)487 bool mi_heap_contains_block(mi_heap_t* heap, const void* p) {
488   mi_assert(heap != NULL);
489   if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
490   return (heap == mi_heap_of_block(p));
491 }
492 
493 
mi_heap_page_check_owned(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * p,void * vfound)494 static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) {
495   MI_UNUSED(heap);
496   MI_UNUSED(pq);
497   bool* found = (bool*)vfound;
498   mi_segment_t* segment = _mi_page_segment(page);
499   void* start = _mi_page_start(segment, page, NULL);
500   void* end   = (uint8_t*)start + (page->capacity * mi_page_block_size(page));
501   *found = (p >= start && p < end);
502   return (!*found); // continue if not found
503 }
504 
mi_heap_check_owned(mi_heap_t * heap,const void * p)505 bool mi_heap_check_owned(mi_heap_t* heap, const void* p) {
506   mi_assert(heap != NULL);
507   if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
508   if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false;  // only aligned pointers
509   bool found = false;
510   mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found);
511   return found;
512 }
513 
mi_check_owned(const void * p)514 bool mi_check_owned(const void* p) {
515   return mi_heap_check_owned(mi_prim_get_default_heap(), p);
516 }
517 
518 /* -----------------------------------------------------------
519   Visit all heap blocks and areas
520   Todo: enable visiting abandoned pages, and
521         enable visiting all blocks of all heaps across threads
522 ----------------------------------------------------------- */
523 
524 // Separate struct to keep `mi_page_t` out of the public interface
525 typedef struct mi_heap_area_ex_s {
526   mi_heap_area_t area;
527   mi_page_t*     page;
528 } mi_heap_area_ex_t;
529 
mi_fast_divisor(size_t divisor,size_t * magic,size_t * shift)530 static void mi_fast_divisor(size_t divisor, size_t* magic, size_t* shift) {
531   mi_assert_internal(divisor > 0 && divisor <= UINT32_MAX);
532   *shift = MI_INTPTR_BITS - mi_clz(divisor - 1);
533   *magic = (size_t)(((1ULL << 32) * ((1ULL << *shift) - divisor)) / divisor + 1);
534 }
535 
mi_fast_divide(size_t n,size_t magic,size_t shift)536 static size_t mi_fast_divide(size_t n, size_t magic, size_t shift) {
537   mi_assert_internal(n <= UINT32_MAX);
538   return ((((uint64_t) n * magic) >> 32) + n) >> shift;
539 }
540 
_mi_heap_area_visit_blocks(const mi_heap_area_t * area,mi_page_t * page,mi_block_visit_fun * visitor,void * arg)541 bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t *page, mi_block_visit_fun* visitor, void* arg) {
542   mi_assert(area != NULL);
543   if (area==NULL) return true;
544   mi_assert(page != NULL);
545   if (page == NULL) return true;
546 
547   mi_assert_internal(page->local_free == NULL);
548   if (page->used == 0) return true;
549 
550   const size_t bsize = mi_page_block_size(page);
551   const size_t ubsize = mi_page_usable_block_size(page); // without padding
552   size_t   psize;
553   uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);
554   mi_heap_t* heap = mi_page_heap(page);
555 
556   if (page->capacity == 1) {
557     // optimize page with one block
558     mi_assert_internal(page->used == 1 && page->free == NULL);
559     return visitor(heap, area, pstart, ubsize, arg);
560   }
561 
562   if (page->used == page->capacity) {
563     // optimize full pages
564     uint8_t* block = pstart;
565     for (size_t i = 0; i < page->capacity; i++) {
566         if (!visitor(heap, area, block, ubsize, arg)) return false;
567         block += bsize;
568     }
569     return true;
570   }
571 
572   // create a bitmap of free blocks.
573   #define MI_MAX_BLOCKS   (MI_SMALL_PAGE_SIZE / sizeof(void*))
574   uintptr_t free_map[MI_MAX_BLOCKS / MI_INTPTR_BITS];
575   size_t bmapsize = (page->capacity + MI_INTPTR_BITS - 1) / MI_INTPTR_BITS;
576   memset(free_map, 0, bmapsize * sizeof(uintptr_t));
577 
578   if (page->capacity % MI_INTPTR_BITS != 0) {
579     size_t shift = (page->capacity % MI_INTPTR_BITS);
580     uintptr_t mask = (UINTPTR_MAX << shift);
581     free_map[bmapsize-1] = mask;
582   }
583 
584   // fast repeated division by the block size
585   size_t magic, shift;
586   mi_fast_divisor(bsize, &magic, &shift);
587 
588   #if MI_DEBUG>1
589   size_t free_count = 0;
590   #endif
591   for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
592     #if MI_DEBUG>1
593     free_count++;
594     #endif
595     mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize));
596     size_t offset = (uint8_t*)block - pstart;
597     mi_assert_internal(offset % bsize == 0);
598     size_t blockidx = mi_fast_divide(offset, magic, shift);
599     mi_assert_internal(blockidx == offset / bsize);
600     mi_assert_internal(blockidx < MI_MAX_BLOCKS);
601     size_t bitidx = (blockidx / MI_INTPTR_BITS);
602     size_t bit = blockidx - (bitidx * MI_INTPTR_BITS);
603     free_map[bitidx] |= ((uintptr_t)1 << bit);
604   }
605   mi_assert_internal(page->capacity == (free_count + page->used));
606 
607   // walk through all blocks skipping the free ones
608   #if MI_DEBUG>1
609   size_t used_count = 0;
610   #endif
611   uint8_t* block = pstart;
612   for (size_t i = 0; i < bmapsize; i++) {
613     if (free_map[i] == 0) {
614       // every block is in use
615       for (size_t j = 0; j < MI_INTPTR_BITS; j++) {
616         #if MI_DEBUG>1
617         used_count++;
618         #endif
619         if (!visitor(heap, area, block, ubsize, arg)) return false;
620         block += bsize;
621       }
622     }
623     else {
624       uintptr_t m = ~free_map[i];
625       while (m) {
626         #if MI_DEBUG>1
627         used_count++;
628         #endif
629         size_t bitidx = mi_ctz(m);
630         if (!visitor(heap, area, block + (bitidx * bsize), ubsize, arg)) return false;
631         m &= m - 1;
632       }
633       block += bsize * MI_INTPTR_BITS;
634     }
635   }
636   mi_assert_internal(page->used == used_count);
637   return true;
638 }
639 
640 typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg);
641 
_mi_heap_area_init(mi_heap_area_t * area,mi_page_t * page)642 void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page) {
643   _mi_page_free_collect(page,true);
644   const size_t bsize = mi_page_block_size(page);
645   const size_t ubsize = mi_page_usable_block_size(page);
646   area->reserved = page->reserved * bsize;
647   area->committed = page->capacity * bsize;
648   area->blocks = _mi_page_start(_mi_page_segment(page), page, NULL);
649   area->used = page->used;   // number of blocks in use (#553)
650   area->block_size = ubsize;
651   area->full_block_size = bsize;
652 }
653 
mi_heap_visit_areas_page(mi_heap_t * heap,mi_page_queue_t * pq,mi_page_t * page,void * vfun,void * arg)654 static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) {
655   MI_UNUSED(heap);
656   MI_UNUSED(pq);
657   mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun;
658   mi_heap_area_ex_t xarea;
659   xarea.page = page;
660   _mi_heap_area_init(&xarea.area, page);
661   return fun(heap, &xarea, arg);
662 }
663 
664 // Visit all heap pages as areas
mi_heap_visit_areas(const mi_heap_t * heap,mi_heap_area_visit_fun * visitor,void * arg)665 static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) {
666   if (visitor == NULL) return false;
667   return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{
668 }
669 
670 // Just to pass arguments
671 typedef struct mi_visit_blocks_args_s {
672   bool  visit_blocks;
673   mi_block_visit_fun* visitor;
674   void* arg;
675 } mi_visit_blocks_args_t;
676 
mi_heap_area_visitor(const mi_heap_t * heap,const mi_heap_area_ex_t * xarea,void * arg)677 static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) {
678   mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg;
679   if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false;
680   if (args->visit_blocks) {
681     return _mi_heap_area_visit_blocks(&xarea->area, xarea->page, args->visitor, args->arg);
682   }
683   else {
684     return true;
685   }
686 }
687 
688 // Visit all blocks in a heap
mi_heap_visit_blocks(const mi_heap_t * heap,bool visit_blocks,mi_block_visit_fun * visitor,void * arg)689 bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) {
690   mi_visit_blocks_args_t args = { visit_blocks, visitor, arg };
691   _mi_heap_delayed_free_partial((mi_heap_t *)heap);
692   return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args);
693 }
694