• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // See docs in ../ops/array_ops.cc.
17 
18 #define EIGEN_USE_THREADS
19 
20 #include <math.h>
21 
22 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
23 #include "tensorflow/core/framework/op.h"
24 #include "tensorflow/core/framework/op_kernel.h"
25 #include "tensorflow/core/framework/type_traits.h"
26 #include "tensorflow/core/framework/types.h"
27 #include "tensorflow/core/kernels/meta_support.h"
28 #include "tensorflow/core/kernels/quantization_utils.h"
29 #include "tensorflow/core/lib/core/errors.h"
30 
31 namespace tensorflow {
32 
33 typedef Eigen::ThreadPoolDevice CPUDevice;
34 
35 template <class T1, class T2>
36 class QuantizeDownAndShrinkRangeOp : public OpKernel {
37  public:
QuantizeDownAndShrinkRangeOp(OpKernelConstruction * ctx)38   explicit QuantizeDownAndShrinkRangeOp(OpKernelConstruction* ctx)
39       : OpKernel(ctx) {}
40 
Compute(OpKernelContext * ctx)41   void Compute(OpKernelContext* ctx) override {
42     const Tensor& input = ctx->input(0);
43     const Tensor& input_min = ctx->input(1);
44     const Tensor& input_max = ctx->input(2);
45 
46     OP_REQUIRES(
47         ctx, TensorShapeUtils::IsScalar(input_min.shape()),
48         errors::InvalidArgument("`input_min` must be rank 0 but is rank ",
49                                 input_min.dims()));
50     OP_REQUIRES(
51         ctx, TensorShapeUtils::IsScalar(input_max.shape()),
52         errors::InvalidArgument("`input_max` must be rank 0 but is rank ",
53                                 input_max.dims()));
54 
55     const float input_min_float = input_min.scalar<float>()();
56     const float input_max_float = input_max.scalar<float>()();
57     Tensor* output = nullptr;
58     OP_REQUIRES_OK(ctx, ctx->allocate_output(0, input.shape(), &output));
59     Tensor* output_min = nullptr;
60     OP_REQUIRES_OK(ctx, ctx->allocate_output(1, TensorShape({}), &output_min));
61     Tensor* output_max = nullptr;
62     OP_REQUIRES_OK(ctx, ctx->allocate_output(2, TensorShape({}), &output_max));
63 
64     // See QuantizationRangeOp as well, which has a copy of this logic.
65     auto input_array = input.flat<T1>();
66     const int32_t input_lowest_quantized =
67         static_cast<int32>(Eigen::NumTraits<T1>::lowest());
68     const int32_t input_highest_quantized =
69         static_cast<int32>(Eigen::NumTraits<T1>::highest());
70     T1 actual_min_quantized = input_highest_quantized;
71     T1 actual_max_quantized = input_lowest_quantized;
72     for (int i = 0; i < input_array.size(); ++i) {
73       const T1 value = input_array(i);
74       actual_min_quantized = std::min(actual_min_quantized, value);
75       actual_max_quantized = std::max(actual_max_quantized, value);
76     }
77     // We want to make sure that the minimum is no larger than zero, so that the
78     // convolution operation can run efficiently.
79     const float actual_min_float =
80         std::min(0.0f, QuantizedToFloat(actual_min_quantized, input_min_float,
81                                         input_max_float));
82     const float actual_max_float = QuantizedToFloat(
83         actual_max_quantized, input_min_float, input_max_float);
84 
85 #if 0
86     // This is the reference, non-eigen implementation:
87     auto output_array = output->flat<T2>();
88     RequantizeManyInNewRange<T1, T2>(input_array.data(), input_array.size(),
89                                      input_min_float, input_max_float,
90                                      actual_min_float, actual_max_float,
91                                      output_array.data());
92 #endif
93 
94     if (input_array.size() > 0) {
95       if (meta::IsSupportedAndEnabled() && std::is_same<T1, qint32>() &&
96           std::is_same<T2, quint8>()) {
97         auto input_i32_array = input.flat<qint32>();
98         meta::Requantize(ctx, input_i32_array.data(), input_i32_array.size(),
99                          input_min_float, input_max_float, actual_min_float,
100                          actual_max_float, output->flat<quint8>().data());
101       } else {
102         RequantizeManyInNewRangeUsingEigen<T1, T2>(
103             ctx->eigen_device<CPUDevice>(), input, input_min_float,
104             input_max_float, actual_min_float, actual_max_float, output);
105       }
106     }
107 
108     output_min->flat<float>().setConstant(actual_min_float);
109     output_max->flat<float>().setConstant(actual_max_float);
110   }
111 };
112 
113 REGISTER_KERNEL_BUILDER(Name("QuantizeDownAndShrinkRange")
114                             .Device(DEVICE_CPU)
115                             .TypeConstraint<qint32>("Tinput")
116                             .TypeConstraint<quint8>("out_type"),
117                         QuantizeDownAndShrinkRangeOp<qint32, quint8>);
118 
119 }  // namespace tensorflow
120