1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/intel_compute_slm.h"
33 #include "common/intel_l3_config.h"
34 #include "common/intel_sample_positions.h"
35 #include "compiler/brw_disasm.h"
36 #include "anv_private.h"
37 #include "compiler/brw_nir.h"
38 #include "compiler/brw_nir_rt.h"
39 #include "compiler/intel_nir.h"
40 #include "anv_nir.h"
41 #include "nir/nir_xfb_info.h"
42 #include "spirv/nir_spirv.h"
43 #include "vk_nir_convert_ycbcr.h"
44 #include "vk_nir.h"
45 #include "vk_pipeline.h"
46 #include "vk_render_pass.h"
47 #include "vk_util.h"
48
49 struct lower_set_vtx_and_prim_count_state {
50 nir_variable *primitive_count;
51 };
52
53 static nir_variable *
anv_nir_prim_count_store(nir_builder * b,nir_def * val)54 anv_nir_prim_count_store(nir_builder *b, nir_def *val)
55 {
56 nir_variable *primitive_count =
57 nir_variable_create(b->shader,
58 nir_var_shader_out,
59 glsl_uint_type(),
60 "gl_PrimitiveCountNV");
61 primitive_count->data.location = VARYING_SLOT_PRIMITIVE_COUNT;
62 primitive_count->data.interpolation = INTERP_MODE_NONE;
63
64 nir_def *local_invocation_index = nir_load_local_invocation_index(b);
65
66 nir_def *cmp = nir_ieq_imm(b, local_invocation_index, 0);
67 nir_if *if_stmt = nir_push_if(b, cmp);
68 {
69 nir_deref_instr *prim_count_deref = nir_build_deref_var(b, primitive_count);
70 nir_store_deref(b, prim_count_deref, val, 1);
71 }
72 nir_pop_if(b, if_stmt);
73
74 return primitive_count;
75 }
76
77 static bool
anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder * b,nir_intrinsic_instr * intrin,void * data)78 anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder *b,
79 nir_intrinsic_instr *intrin,
80 void *data)
81 {
82 if (intrin->intrinsic != nir_intrinsic_set_vertex_and_primitive_count)
83 return false;
84
85 /* Detect some cases of invalid primitive count. They might lead to URB
86 * memory corruption, where workgroups overwrite each other output memory.
87 */
88 if (nir_src_is_const(intrin->src[1]) &&
89 nir_src_as_uint(intrin->src[1]) > b->shader->info.mesh.max_primitives_out) {
90 assert(!"number of primitives bigger than max specified");
91 }
92
93 struct lower_set_vtx_and_prim_count_state *state = data;
94 /* this intrinsic should show up only once */
95 assert(state->primitive_count == NULL);
96
97 b->cursor = nir_before_instr(&intrin->instr);
98
99 state->primitive_count = anv_nir_prim_count_store(b, intrin->src[1].ssa);
100
101 nir_instr_remove(&intrin->instr);
102
103 return true;
104 }
105
106 static bool
anv_nir_lower_set_vtx_and_prim_count(nir_shader * nir)107 anv_nir_lower_set_vtx_and_prim_count(nir_shader *nir)
108 {
109 struct lower_set_vtx_and_prim_count_state state = { NULL, };
110
111 nir_shader_intrinsics_pass(nir, anv_nir_lower_set_vtx_and_prim_count_instr,
112 nir_metadata_none,
113 &state);
114
115 /* If we didn't find set_vertex_and_primitive_count, then we have to
116 * insert store of value 0 to primitive_count.
117 */
118 if (state.primitive_count == NULL) {
119 nir_builder b;
120 nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir);
121 b = nir_builder_at(nir_before_impl(entrypoint));
122 nir_def *zero = nir_imm_int(&b, 0);
123 state.primitive_count = anv_nir_prim_count_store(&b, zero);
124 }
125
126 assert(state.primitive_count != NULL);
127 return true;
128 }
129
130 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
131 * we can't do that yet because we don't have the ability to copy nir.
132 */
133 static nir_shader *
anv_shader_stage_to_nir(struct anv_device * device,VkPipelineCreateFlags2KHR pipeline_flags,const VkPipelineShaderStageCreateInfo * stage_info,enum brw_robustness_flags robust_flags,void * mem_ctx)134 anv_shader_stage_to_nir(struct anv_device *device,
135 VkPipelineCreateFlags2KHR pipeline_flags,
136 const VkPipelineShaderStageCreateInfo *stage_info,
137 enum brw_robustness_flags robust_flags,
138 void *mem_ctx)
139 {
140 const struct anv_physical_device *pdevice = device->physical;
141 const struct brw_compiler *compiler = pdevice->compiler;
142 gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
143 const nir_shader_compiler_options *nir_options =
144 compiler->nir_options[stage];
145
146 const struct spirv_to_nir_options spirv_options = {
147 .ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
148 .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
149 .phys_ssbo_addr_format = nir_address_format_64bit_global,
150 .push_const_addr_format = nir_address_format_logical,
151
152 /* TODO: Consider changing this to an address format that has the NULL
153 * pointer equals to 0. That might be a better format to play nice
154 * with certain code / code generators.
155 */
156 .shared_addr_format = nir_address_format_32bit_offset,
157
158 .min_ubo_alignment = ANV_UBO_ALIGNMENT,
159 .min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
160 };
161
162 nir_shader *nir;
163 VkResult result =
164 vk_pipeline_shader_stage_to_nir(&device->vk, pipeline_flags, stage_info,
165 &spirv_options, nir_options,
166 mem_ctx, &nir);
167 if (result != VK_SUCCESS)
168 return NULL;
169
170 if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
171 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
172 gl_shader_stage_name(stage));
173 nir_print_shader(nir, stderr);
174 }
175
176 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
177 nir_shader_get_entrypoint(nir), true, false);
178
179 return nir;
180 }
181
182 static VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,enum anv_pipeline_type type,VkPipelineCreateFlags2KHR flags,const VkAllocationCallbacks * pAllocator)183 anv_pipeline_init(struct anv_pipeline *pipeline,
184 struct anv_device *device,
185 enum anv_pipeline_type type,
186 VkPipelineCreateFlags2KHR flags,
187 const VkAllocationCallbacks *pAllocator)
188 {
189 VkResult result;
190
191 memset(pipeline, 0, sizeof(*pipeline));
192
193 vk_object_base_init(&device->vk, &pipeline->base,
194 VK_OBJECT_TYPE_PIPELINE);
195 pipeline->device = device;
196
197 /* It's the job of the child class to provide actual backing storage for
198 * the batch by setting batch.start, batch.next, and batch.end.
199 */
200 pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
201 pipeline->batch.relocs = &pipeline->batch_relocs;
202 pipeline->batch.status = VK_SUCCESS;
203
204 const bool uses_relocs = device->physical->uses_relocs;
205 result = anv_reloc_list_init(&pipeline->batch_relocs,
206 pipeline->batch.alloc, uses_relocs);
207 if (result != VK_SUCCESS)
208 return result;
209
210 pipeline->mem_ctx = ralloc_context(NULL);
211
212 pipeline->type = type;
213 pipeline->flags = flags;
214
215 util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
216
217 anv_pipeline_sets_layout_init(&pipeline->layout, device,
218 false /* independent_sets */);
219
220 return VK_SUCCESS;
221 }
222
223 static void
anv_pipeline_init_layout(struct anv_pipeline * pipeline,struct anv_pipeline_layout * pipeline_layout)224 anv_pipeline_init_layout(struct anv_pipeline *pipeline,
225 struct anv_pipeline_layout *pipeline_layout)
226 {
227 if (pipeline_layout) {
228 struct anv_pipeline_sets_layout *layout = &pipeline_layout->sets_layout;
229 for (uint32_t s = 0; s < layout->num_sets; s++) {
230 if (layout->set[s].layout == NULL)
231 continue;
232
233 anv_pipeline_sets_layout_add(&pipeline->layout, s,
234 layout->set[s].layout);
235 }
236 }
237
238 anv_pipeline_sets_layout_hash(&pipeline->layout);
239 assert(!pipeline_layout ||
240 !memcmp(pipeline->layout.sha1,
241 pipeline_layout->sets_layout.sha1,
242 sizeof(pipeline_layout->sets_layout.sha1)));
243 }
244
245 static void
anv_pipeline_finish(struct anv_pipeline * pipeline,struct anv_device * device)246 anv_pipeline_finish(struct anv_pipeline *pipeline,
247 struct anv_device *device)
248 {
249 anv_pipeline_sets_layout_fini(&pipeline->layout);
250 anv_reloc_list_finish(&pipeline->batch_relocs);
251 ralloc_free(pipeline->mem_ctx);
252 vk_object_base_finish(&pipeline->base);
253 }
254
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)255 void anv_DestroyPipeline(
256 VkDevice _device,
257 VkPipeline _pipeline,
258 const VkAllocationCallbacks* pAllocator)
259 {
260 ANV_FROM_HANDLE(anv_device, device, _device);
261 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
262
263 if (!pipeline)
264 return;
265
266 ANV_RMV(resource_destroy, device, pipeline);
267
268 switch (pipeline->type) {
269 case ANV_PIPELINE_GRAPHICS:
270 case ANV_PIPELINE_GRAPHICS_LIB: {
271 struct anv_graphics_base_pipeline *gfx_pipeline =
272 anv_pipeline_to_graphics_base(pipeline);
273
274 for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
275 if (gfx_pipeline->shaders[s])
276 anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
277 }
278 break;
279 }
280
281 case ANV_PIPELINE_COMPUTE: {
282 struct anv_compute_pipeline *compute_pipeline =
283 anv_pipeline_to_compute(pipeline);
284
285 if (compute_pipeline->cs)
286 anv_shader_bin_unref(device, compute_pipeline->cs);
287
288 break;
289 }
290
291 case ANV_PIPELINE_RAY_TRACING: {
292 struct anv_ray_tracing_pipeline *rt_pipeline =
293 anv_pipeline_to_ray_tracing(pipeline);
294
295 util_dynarray_foreach(&rt_pipeline->shaders,
296 struct anv_shader_bin *, shader) {
297 anv_shader_bin_unref(device, *shader);
298 }
299 break;
300 }
301
302 default:
303 unreachable("invalid pipeline type");
304 }
305
306 anv_pipeline_finish(pipeline, device);
307 vk_free2(&device->vk.alloc, pAllocator, pipeline);
308 }
309
310 struct anv_pipeline_stage {
311 gl_shader_stage stage;
312
313 VkPipelineCreateFlags2KHR pipeline_flags;
314 struct vk_pipeline_robustness_state rstate;
315
316 /* VkComputePipelineCreateInfo, VkGraphicsPipelineCreateInfo or
317 * VkRayTracingPipelineCreateInfoKHR pNext field
318 */
319 const void *pipeline_pNext;
320 const VkPipelineShaderStageCreateInfo *info;
321
322 unsigned char shader_sha1[20];
323 uint32_t source_hash;
324
325 union brw_any_prog_key key;
326
327 struct {
328 gl_shader_stage stage;
329 unsigned char sha1[20];
330 } cache_key;
331
332 nir_shader *nir;
333
334 struct {
335 nir_shader *nir;
336 struct anv_shader_bin *bin;
337 } imported;
338
339 struct anv_push_descriptor_info push_desc_info;
340
341 enum gl_subgroup_size subgroup_size_type;
342
343 enum brw_robustness_flags robust_flags;
344
345 struct anv_pipeline_bind_map bind_map;
346
347 bool uses_bt_for_push_descs;
348
349 enum anv_dynamic_push_bits dynamic_push_values;
350
351 union brw_any_prog_data prog_data;
352
353 uint32_t num_stats;
354 struct brw_compile_stats stats[3];
355 char *disasm[3];
356
357 VkPipelineCreationFeedback feedback;
358 uint32_t feedback_idx;
359
360 const unsigned *code;
361
362 struct anv_shader_bin *bin;
363 };
364
365 static void
anv_stage_allocate_bind_map_tables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,void * mem_ctx)366 anv_stage_allocate_bind_map_tables(struct anv_pipeline *pipeline,
367 struct anv_pipeline_stage *stage,
368 void *mem_ctx)
369 {
370 struct anv_pipeline_binding *surface_bindings =
371 brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
372 rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
373 struct anv_pipeline_binding *sampler_bindings =
374 brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
375 rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
376 struct anv_pipeline_embedded_sampler_binding *embedded_sampler_bindings =
377 rzalloc_array(mem_ctx, struct anv_pipeline_embedded_sampler_binding,
378 anv_pipeline_sets_layout_embedded_sampler_count(
379 &pipeline->layout));
380
381 stage->bind_map = (struct anv_pipeline_bind_map) {
382 .surface_to_descriptor = surface_bindings,
383 .sampler_to_descriptor = sampler_bindings,
384 .embedded_sampler_to_binding = embedded_sampler_bindings,
385 };
386 }
387
388 static enum brw_robustness_flags
anv_get_robust_flags(const struct vk_pipeline_robustness_state * rstate)389 anv_get_robust_flags(const struct vk_pipeline_robustness_state *rstate)
390 {
391 return
392 ((rstate->storage_buffers !=
393 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
394 BRW_ROBUSTNESS_SSBO : 0) |
395 ((rstate->uniform_buffers !=
396 VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
397 BRW_ROBUSTNESS_UBO : 0);
398 }
399
400 static void
populate_base_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)401 populate_base_prog_key(struct anv_pipeline_stage *stage,
402 const struct anv_device *device)
403 {
404 stage->key.base.robust_flags = anv_get_robust_flags(&stage->rstate);
405 stage->key.base.limit_trig_input_range =
406 device->physical->instance->limit_trig_input_range;
407 }
408
409 static void
populate_vs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)410 populate_vs_prog_key(struct anv_pipeline_stage *stage,
411 const struct anv_device *device)
412 {
413 memset(&stage->key, 0, sizeof(stage->key));
414
415 populate_base_prog_key(stage, device);
416 }
417
418 static void
populate_tcs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,unsigned input_vertices)419 populate_tcs_prog_key(struct anv_pipeline_stage *stage,
420 const struct anv_device *device,
421 unsigned input_vertices)
422 {
423 memset(&stage->key, 0, sizeof(stage->key));
424
425 populate_base_prog_key(stage, device);
426
427 stage->key.tcs.input_vertices = input_vertices;
428 }
429
430 static void
populate_tes_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)431 populate_tes_prog_key(struct anv_pipeline_stage *stage,
432 const struct anv_device *device)
433 {
434 memset(&stage->key, 0, sizeof(stage->key));
435
436 populate_base_prog_key(stage, device);
437 }
438
439 static void
populate_gs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)440 populate_gs_prog_key(struct anv_pipeline_stage *stage,
441 const struct anv_device *device)
442 {
443 memset(&stage->key, 0, sizeof(stage->key));
444
445 populate_base_prog_key(stage, device);
446 }
447
448 static bool
pipeline_has_coarse_pixel(const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr)449 pipeline_has_coarse_pixel(const BITSET_WORD *dynamic,
450 const struct vk_multisample_state *ms,
451 const struct vk_fragment_shading_rate_state *fsr)
452 {
453 /* The Vulkan 1.2.199 spec says:
454 *
455 * "If any of the following conditions are met, Cxy' must be set to
456 * {1,1}:
457 *
458 * * If Sample Shading is enabled.
459 * * [...]"
460 *
461 * And "sample shading" is defined as follows:
462 *
463 * "Sample shading is enabled for a graphics pipeline:
464 *
465 * * If the interface of the fragment shader entry point of the
466 * graphics pipeline includes an input variable decorated with
467 * SampleId or SamplePosition. In this case minSampleShadingFactor
468 * takes the value 1.0.
469 *
470 * * Else if the sampleShadingEnable member of the
471 * VkPipelineMultisampleStateCreateInfo structure specified when
472 * creating the graphics pipeline is set to VK_TRUE. In this case
473 * minSampleShadingFactor takes the value of
474 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
475 *
476 * Otherwise, sample shading is considered disabled."
477 *
478 * The first bullet above is handled by the back-end compiler because those
479 * inputs both force per-sample dispatch. The second bullet is handled
480 * here. Note that this sample shading being enabled has nothing to do
481 * with minSampleShading.
482 */
483 if (ms != NULL && ms->sample_shading_enable)
484 return false;
485
486 /* Not dynamic & pipeline has a 1x1 fragment shading rate with no
487 * possibility for element of the pipeline to change the value or fragment
488 * shading rate not specified at all.
489 */
490 if (!BITSET_TEST(dynamic, MESA_VK_DYNAMIC_FSR) &&
491 (fsr == NULL ||
492 (fsr->fragment_size.width <= 1 &&
493 fsr->fragment_size.height <= 1 &&
494 fsr->combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
495 fsr->combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)))
496 return false;
497
498 return true;
499 }
500
501 static void
populate_task_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)502 populate_task_prog_key(struct anv_pipeline_stage *stage,
503 const struct anv_device *device)
504 {
505 memset(&stage->key, 0, sizeof(stage->key));
506
507 populate_base_prog_key(stage, device);
508 }
509
510 static void
populate_mesh_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,bool compact_mue)511 populate_mesh_prog_key(struct anv_pipeline_stage *stage,
512 const struct anv_device *device,
513 bool compact_mue)
514 {
515 memset(&stage->key, 0, sizeof(stage->key));
516
517 populate_base_prog_key(stage, device);
518
519 stage->key.mesh.compact_mue = compact_mue;
520 }
521
522 static uint32_t
rp_color_mask(const struct vk_render_pass_state * rp)523 rp_color_mask(const struct vk_render_pass_state *rp)
524 {
525 if (rp == NULL || !vk_render_pass_state_has_attachment_info(rp))
526 return ((1u << MAX_RTS) - 1);
527
528 uint32_t color_mask = 0;
529 for (uint32_t i = 0; i < rp->color_attachment_count; i++) {
530 if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
531 color_mask |= BITFIELD_BIT(i);
532 }
533
534 /* If there is depth/stencil attachment, even if the fragment shader
535 * doesn't write the depth/stencil output, we need a valid render target so
536 * that the compiler doesn't use the null-rt which would cull the
537 * depth/stencil output.
538 */
539 if (rp->depth_attachment_format != VK_FORMAT_UNDEFINED ||
540 rp->stencil_attachment_format != VK_FORMAT_UNDEFINED)
541 color_mask |= 1;
542
543 return color_mask;
544 }
545
546 static void
populate_wm_prog_key(struct anv_pipeline_stage * stage,const struct anv_graphics_base_pipeline * pipeline,const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr,const struct vk_render_pass_state * rp,const enum intel_sometimes is_mesh)547 populate_wm_prog_key(struct anv_pipeline_stage *stage,
548 const struct anv_graphics_base_pipeline *pipeline,
549 const BITSET_WORD *dynamic,
550 const struct vk_multisample_state *ms,
551 const struct vk_fragment_shading_rate_state *fsr,
552 const struct vk_render_pass_state *rp,
553 const enum intel_sometimes is_mesh)
554 {
555 const struct anv_device *device = pipeline->base.device;
556
557 memset(&stage->key, 0, sizeof(stage->key));
558
559 populate_base_prog_key(stage, device);
560
561 struct brw_wm_prog_key *key = &stage->key.wm;
562
563 /* We set this to 0 here and set to the actual value before we call
564 * brw_compile_fs.
565 */
566 key->input_slots_valid = 0;
567
568 /* XXX Vulkan doesn't appear to specify */
569 key->clamp_fragment_color = false;
570
571 key->ignore_sample_mask_out = false;
572
573 assert(rp == NULL || rp->color_attachment_count <= MAX_RTS);
574 /* Consider all inputs as valid until look at the NIR variables. */
575 key->color_outputs_valid = rp_color_mask(rp);
576 key->nr_color_regions = util_last_bit(key->color_outputs_valid);
577
578 /* To reduce possible shader recompilations we would need to know if
579 * there is a SampleMask output variable to compute if we should emit
580 * code to workaround the issue that hardware disables alpha to coverage
581 * when there is SampleMask output.
582 *
583 * If the pipeline we compile the fragment shader in includes the output
584 * interface, then we can be sure whether alpha_coverage is enabled or not.
585 * If we don't have that output interface, then we have to compile the
586 * shader with some conditionals.
587 */
588 if (ms != NULL) {
589 /* VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-00751:
590 *
591 * "If the pipeline is being created with fragment shader state,
592 * pMultisampleState must be a valid pointer to a valid
593 * VkPipelineMultisampleStateCreateInfo structure"
594 *
595 * It's also required for the fragment output interface.
596 */
597 key->multisample_fbo =
598 BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
599 INTEL_SOMETIMES :
600 ms->rasterization_samples > 1 ? INTEL_ALWAYS : INTEL_NEVER;
601 key->persample_interp =
602 BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
603 INTEL_SOMETIMES :
604 (ms->sample_shading_enable &&
605 (ms->min_sample_shading * ms->rasterization_samples) > 1) ?
606 INTEL_ALWAYS : INTEL_NEVER;
607 key->alpha_to_coverage =
608 BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ?
609 INTEL_SOMETIMES :
610 (ms->alpha_to_coverage_enable ? INTEL_ALWAYS : INTEL_NEVER);
611
612 /* TODO: We should make this dynamic */
613 if (device->physical->instance->sample_mask_out_opengl_behaviour)
614 key->ignore_sample_mask_out = !key->multisample_fbo;
615 } else {
616 /* Consider all inputs as valid until we look at the NIR variables. */
617 key->color_outputs_valid = (1u << MAX_RTS) - 1;
618 key->nr_color_regions = MAX_RTS;
619
620 key->alpha_to_coverage = INTEL_SOMETIMES;
621 key->multisample_fbo = INTEL_SOMETIMES;
622 key->persample_interp = INTEL_SOMETIMES;
623 }
624
625 key->mesh_input = is_mesh;
626
627 /* Vulkan doesn't support fixed-function alpha test */
628 key->alpha_test_replicate_alpha = false;
629
630 key->coarse_pixel =
631 device->vk.enabled_extensions.KHR_fragment_shading_rate &&
632 pipeline_has_coarse_pixel(dynamic, ms, fsr);
633
634 key->null_push_constant_tbimr_workaround =
635 device->info->needs_null_push_constant_tbimr_workaround;
636 }
637
638 static void
populate_cs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)639 populate_cs_prog_key(struct anv_pipeline_stage *stage,
640 const struct anv_device *device)
641 {
642 memset(&stage->key, 0, sizeof(stage->key));
643
644 populate_base_prog_key(stage, device);
645 }
646
647 static void
populate_bs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,uint32_t ray_flags)648 populate_bs_prog_key(struct anv_pipeline_stage *stage,
649 const struct anv_device *device,
650 uint32_t ray_flags)
651 {
652 memset(&stage->key, 0, sizeof(stage->key));
653
654 populate_base_prog_key(stage, device);
655
656 stage->key.bs.pipeline_ray_flags = ray_flags;
657 stage->key.bs.pipeline_ray_flags = ray_flags;
658 }
659
660 static void
anv_stage_write_shader_hash(struct anv_pipeline_stage * stage,const struct anv_device * device)661 anv_stage_write_shader_hash(struct anv_pipeline_stage *stage,
662 const struct anv_device *device)
663 {
664 vk_pipeline_robustness_state_fill(&device->vk,
665 &stage->rstate,
666 stage->pipeline_pNext,
667 stage->info->pNext);
668
669 vk_pipeline_hash_shader_stage(stage->pipeline_flags, stage->info,
670 &stage->rstate, stage->shader_sha1);
671
672 stage->robust_flags = anv_get_robust_flags(&stage->rstate);
673
674 /* Use lowest dword of source shader sha1 for shader hash. */
675 stage->source_hash = ((uint32_t*)stage->shader_sha1)[0];
676 }
677
678 static bool
anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage * stage)679 anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage *stage)
680 {
681 if (stage->stage != MESA_SHADER_FRAGMENT)
682 return false;
683
684 return stage->key.wm.persample_interp == INTEL_SOMETIMES ||
685 stage->key.wm.multisample_fbo == INTEL_SOMETIMES ||
686 stage->key.wm.alpha_to_coverage == INTEL_SOMETIMES;
687 }
688
689 static void
anv_pipeline_hash_common(struct mesa_sha1 * ctx,const struct anv_pipeline * pipeline)690 anv_pipeline_hash_common(struct mesa_sha1 *ctx,
691 const struct anv_pipeline *pipeline)
692 {
693 struct anv_device *device = pipeline->device;
694
695 _mesa_sha1_update(ctx, pipeline->layout.sha1, sizeof(pipeline->layout.sha1));
696
697 const bool indirect_descriptors = device->physical->indirect_descriptors;
698 _mesa_sha1_update(ctx, &indirect_descriptors, sizeof(indirect_descriptors));
699
700 const bool rba = device->robust_buffer_access;
701 _mesa_sha1_update(ctx, &rba, sizeof(rba));
702
703 const int spilling_rate = device->physical->compiler->spilling_rate;
704 _mesa_sha1_update(ctx, &spilling_rate, sizeof(spilling_rate));
705 }
706
707 static void
anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,uint32_t view_mask,unsigned char * sha1_out)708 anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline *pipeline,
709 struct anv_pipeline_stage *stages,
710 uint32_t view_mask,
711 unsigned char *sha1_out)
712 {
713 const struct anv_device *device = pipeline->base.device;
714 struct mesa_sha1 ctx;
715 _mesa_sha1_init(&ctx);
716
717 anv_pipeline_hash_common(&ctx, &pipeline->base);
718
719 _mesa_sha1_update(&ctx, &view_mask, sizeof(view_mask));
720
721 for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
722 if (pipeline->base.active_stages & BITFIELD_BIT(s)) {
723 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
724 sizeof(stages[s].shader_sha1));
725 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
726 }
727 }
728
729 if (stages[MESA_SHADER_MESH].info || stages[MESA_SHADER_TASK].info) {
730 const uint8_t afs = device->physical->instance->assume_full_subgroups;
731 _mesa_sha1_update(&ctx, &afs, sizeof(afs));
732 }
733
734 _mesa_sha1_final(&ctx, sha1_out);
735 }
736
737 static void
anv_pipeline_hash_compute(struct anv_compute_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)738 anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
739 struct anv_pipeline_stage *stage,
740 unsigned char *sha1_out)
741 {
742 const struct anv_device *device = pipeline->base.device;
743 struct mesa_sha1 ctx;
744 _mesa_sha1_init(&ctx);
745
746 anv_pipeline_hash_common(&ctx, &pipeline->base);
747
748 const uint8_t afs = device->physical->instance->assume_full_subgroups;
749 _mesa_sha1_update(&ctx, &afs, sizeof(afs));
750
751 const bool afswb = device->physical->instance->assume_full_subgroups_with_barrier;
752 _mesa_sha1_update(&ctx, &afswb, sizeof(afswb));
753
754 _mesa_sha1_update(&ctx, stage->shader_sha1,
755 sizeof(stage->shader_sha1));
756 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
757
758 _mesa_sha1_final(&ctx, sha1_out);
759 }
760
761 static void
anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)762 anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline *pipeline,
763 struct anv_pipeline_stage *stage,
764 unsigned char *sha1_out)
765 {
766 struct mesa_sha1 ctx;
767 _mesa_sha1_init(&ctx);
768
769 anv_pipeline_hash_common(&ctx, &pipeline->base);
770
771 _mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1));
772 _mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key.bs));
773
774 _mesa_sha1_final(&ctx, sha1_out);
775 }
776
777 static void
anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * intersection,struct anv_pipeline_stage * any_hit,unsigned char * sha1_out)778 anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline *pipeline,
779 struct anv_pipeline_stage *intersection,
780 struct anv_pipeline_stage *any_hit,
781 unsigned char *sha1_out)
782 {
783 struct mesa_sha1 ctx;
784 _mesa_sha1_init(&ctx);
785
786 _mesa_sha1_update(&ctx, pipeline->base.layout.sha1,
787 sizeof(pipeline->base.layout.sha1));
788
789 const bool rba = pipeline->base.device->robust_buffer_access;
790 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
791
792 _mesa_sha1_update(&ctx, intersection->shader_sha1, sizeof(intersection->shader_sha1));
793 _mesa_sha1_update(&ctx, &intersection->key, sizeof(intersection->key.bs));
794 _mesa_sha1_update(&ctx, any_hit->shader_sha1, sizeof(any_hit->shader_sha1));
795 _mesa_sha1_update(&ctx, &any_hit->key, sizeof(any_hit->key.bs));
796
797 _mesa_sha1_final(&ctx, sha1_out);
798 }
799
800 static VkResult
anv_pipeline_stage_get_nir(struct anv_pipeline * pipeline,struct vk_pipeline_cache * cache,void * mem_ctx,struct anv_pipeline_stage * stage)801 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
802 struct vk_pipeline_cache *cache,
803 void *mem_ctx,
804 struct anv_pipeline_stage *stage)
805 {
806 const struct brw_compiler *compiler =
807 pipeline->device->physical->compiler;
808 const nir_shader_compiler_options *nir_options =
809 compiler->nir_options[stage->stage];
810
811 stage->nir = anv_device_search_for_nir(pipeline->device, cache,
812 nir_options,
813 stage->shader_sha1,
814 mem_ctx);
815 if (stage->nir) {
816 assert(stage->nir->info.stage == stage->stage);
817 return VK_SUCCESS;
818 }
819
820 /* VkPipelineShaderStageCreateInfo:
821 *
822 * "If a pipeline is not found, pipeline compilation is not possible and
823 * the implementation must fail as specified by
824 * VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT."
825 */
826 if (vk_pipeline_shader_stage_has_identifier(stage->info))
827 return VK_PIPELINE_COMPILE_REQUIRED;
828
829 stage->nir = anv_shader_stage_to_nir(pipeline->device,
830 stage->pipeline_flags, stage->info,
831 stage->key.base.robust_flags, mem_ctx);
832 if (stage->nir) {
833 anv_device_upload_nir(pipeline->device, cache,
834 stage->nir, stage->shader_sha1);
835 return VK_SUCCESS;
836 }
837
838 return vk_errorf(&pipeline->device->vk, VK_ERROR_UNKNOWN,
839 "Unable to load NIR");
840 }
841
842 static const struct vk_ycbcr_conversion_state *
lookup_ycbcr_conversion(const void * _sets_layout,uint32_t set,uint32_t binding,uint32_t array_index)843 lookup_ycbcr_conversion(const void *_sets_layout, uint32_t set,
844 uint32_t binding, uint32_t array_index)
845 {
846 const struct anv_pipeline_sets_layout *sets_layout = _sets_layout;
847
848 assert(set < MAX_SETS);
849 assert(binding < sets_layout->set[set].layout->binding_count);
850 const struct anv_descriptor_set_binding_layout *bind_layout =
851 &sets_layout->set[set].layout->binding[binding];
852
853 if (bind_layout->immutable_samplers == NULL)
854 return NULL;
855
856 array_index = MIN2(array_index, bind_layout->array_size - 1);
857
858 const struct anv_sampler *sampler =
859 bind_layout->immutable_samplers[array_index];
860
861 return sampler && sampler->vk.ycbcr_conversion ?
862 &sampler->vk.ycbcr_conversion->state : NULL;
863 }
864
865 static void
shared_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)866 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
867 {
868 assert(glsl_type_is_vector_or_scalar(type));
869
870 uint32_t comp_size = glsl_type_is_boolean(type)
871 ? 4 : glsl_get_bit_size(type) / 8;
872 unsigned length = glsl_get_vector_elements(type);
873 *size = comp_size * length,
874 *align = comp_size * (length == 3 ? 4 : length);
875 }
876
877 static enum anv_dynamic_push_bits
anv_nir_compute_dynamic_push_bits(nir_shader * shader)878 anv_nir_compute_dynamic_push_bits(nir_shader *shader)
879 {
880 enum anv_dynamic_push_bits ret = 0;
881
882 nir_foreach_function_impl(impl, shader) {
883 nir_foreach_block(block, impl) {
884 nir_foreach_instr(instr, block) {
885 if (instr->type != nir_instr_type_intrinsic)
886 continue;
887
888 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
889 if (intrin->intrinsic != nir_intrinsic_load_push_constant)
890 continue;
891
892 switch (nir_intrinsic_base(intrin)) {
893 case anv_drv_const_offset(gfx.tcs_input_vertices):
894 ret |= ANV_DYNAMIC_PUSH_INPUT_VERTICES;
895 break;
896
897 default:
898 break;
899 }
900 }
901 }
902 }
903
904 return ret;
905 }
906
907 static void
anv_fixup_subgroup_size(struct anv_device * device,struct shader_info * info)908 anv_fixup_subgroup_size(struct anv_device *device, struct shader_info *info)
909 {
910 switch (info->stage) {
911 case MESA_SHADER_COMPUTE:
912 case MESA_SHADER_TASK:
913 case MESA_SHADER_MESH:
914 break;
915 default:
916 return;
917 }
918
919 unsigned local_size = info->workgroup_size[0] *
920 info->workgroup_size[1] *
921 info->workgroup_size[2];
922
923 /* Games don't always request full subgroups when they should,
924 * which can cause bugs, as they may expect bigger size of the
925 * subgroup than we choose for the execution.
926 */
927 if (device->physical->instance->assume_full_subgroups &&
928 info->uses_wide_subgroup_intrinsics &&
929 info->subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
930 local_size &&
931 local_size % BRW_SUBGROUP_SIZE == 0)
932 info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
933
934 if (device->physical->instance->assume_full_subgroups_with_barrier &&
935 info->stage == MESA_SHADER_COMPUTE &&
936 device->info->verx10 <= 125 &&
937 info->uses_control_barrier &&
938 info->subgroup_size == SUBGROUP_SIZE_VARYING &&
939 local_size &&
940 local_size % BRW_SUBGROUP_SIZE == 0)
941 info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
942
943 /* If the client requests that we dispatch full subgroups but doesn't
944 * allow us to pick a subgroup size, we have to smash it to the API
945 * value of 32. Performance will likely be terrible in this case but
946 * there's nothing we can do about that. The client should have chosen
947 * a size.
948 */
949 if (info->subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
950 info->subgroup_size =
951 device->physical->instance->assume_full_subgroups != 0 ?
952 device->physical->instance->assume_full_subgroups : BRW_SUBGROUP_SIZE;
953
954 /* Cooperative matrix extension requires that all invocations in a subgroup
955 * be active. As a result, when the application does not request a specific
956 * subgroup size, we must use SIMD32.
957 */
958 if (info->stage == MESA_SHADER_COMPUTE && info->cs.has_cooperative_matrix &&
959 info->subgroup_size < SUBGROUP_SIZE_REQUIRE_8) {
960 info->subgroup_size = BRW_SUBGROUP_SIZE;
961 }
962 }
963
964 /* #define DEBUG_PRINTF_EXAMPLE 0 */
965
966 #if DEBUG_PRINTF_EXAMPLE
967 static bool
print_ubo_load(nir_builder * b,nir_intrinsic_instr * intrin,UNUSED void * cb_data)968 print_ubo_load(nir_builder *b,
969 nir_intrinsic_instr *intrin,
970 UNUSED void *cb_data)
971 {
972 if (intrin->intrinsic != nir_intrinsic_load_uniform)
973 return false;
974
975 b->cursor = nir_after_instr(&intrin->instr);
976 nir_printf_fmt(b, true, 64,
977 "uniform<= pos=%02.2fx%02.2f offset=0x%08x val=0x%08x\n",
978 nir_channel(b, nir_load_frag_coord(b), 0),
979 nir_channel(b, nir_load_frag_coord(b), 1),
980 intrin->src[0].ssa,
981 &intrin->def);
982 return true;
983 }
984 #endif
985
986 static void
anv_pipeline_lower_nir(struct anv_pipeline * pipeline,void * mem_ctx,struct anv_pipeline_stage * stage,struct anv_pipeline_sets_layout * layout,uint32_t view_mask,bool use_primitive_replication)987 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
988 void *mem_ctx,
989 struct anv_pipeline_stage *stage,
990 struct anv_pipeline_sets_layout *layout,
991 uint32_t view_mask,
992 bool use_primitive_replication)
993 {
994 const struct anv_physical_device *pdevice = pipeline->device->physical;
995 const struct brw_compiler *compiler = pdevice->compiler;
996
997 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
998 nir_shader *nir = stage->nir;
999
1000 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
1001 NIR_PASS(_, nir, nir_lower_wpos_center);
1002 NIR_PASS(_, nir, nir_lower_input_attachments,
1003 &(nir_input_attachment_options) {
1004 .use_fragcoord_sysval = true,
1005 .use_layer_id_sysval = true,
1006 });
1007 }
1008
1009 if (nir->info.stage == MESA_SHADER_MESH ||
1010 nir->info.stage == MESA_SHADER_TASK) {
1011 nir_lower_compute_system_values_options options = {
1012 .lower_workgroup_id_to_index = true,
1013 /* nir_lower_idiv generates expensive code */
1014 .shortcut_1d_workgroup_id = compiler->devinfo->verx10 >= 125,
1015 };
1016
1017 NIR_PASS(_, nir, nir_lower_compute_system_values, &options);
1018 }
1019
1020 NIR_PASS(_, nir, nir_vk_lower_ycbcr_tex, lookup_ycbcr_conversion, layout);
1021
1022 if (pipeline->type == ANV_PIPELINE_GRAPHICS ||
1023 pipeline->type == ANV_PIPELINE_GRAPHICS_LIB) {
1024 NIR_PASS(_, nir, anv_nir_lower_multiview, view_mask,
1025 use_primitive_replication);
1026 }
1027
1028 if (nir->info.stage == MESA_SHADER_COMPUTE && nir->info.cs.has_cooperative_matrix) {
1029 anv_fixup_subgroup_size(pipeline->device, &nir->info);
1030 NIR_PASS(_, nir, brw_nir_lower_cmat, nir->info.subgroup_size);
1031 NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_function_temp, 16);
1032 }
1033
1034 /* The patch control points are delivered through a push constant when
1035 * dynamic.
1036 */
1037 if (nir->info.stage == MESA_SHADER_TESS_CTRL &&
1038 stage->key.tcs.input_vertices == 0)
1039 NIR_PASS(_, nir, anv_nir_lower_load_patch_vertices_in);
1040
1041 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
1042
1043 NIR_PASS(_, nir, brw_nir_lower_storage_image,
1044 &(struct brw_nir_lower_storage_image_opts) {
1045 /* Anv only supports Gfx9+ which has better defined typed read
1046 * behavior. It allows us to only have to care about lowering
1047 * loads.
1048 */
1049 .devinfo = compiler->devinfo,
1050 .lower_loads = true,
1051 });
1052
1053 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
1054 nir_address_format_64bit_global);
1055 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
1056 nir_address_format_32bit_offset);
1057
1058 NIR_PASS(_, nir, brw_nir_lower_ray_queries, &pdevice->info);
1059
1060 stage->push_desc_info.used_descriptors =
1061 anv_nir_compute_used_push_descriptors(nir, layout);
1062
1063 struct anv_pipeline_push_map push_map = {};
1064
1065 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
1066 NIR_PASS_V(nir, anv_nir_apply_pipeline_layout,
1067 pdevice, stage->key.base.robust_flags,
1068 layout->independent_sets,
1069 layout, &stage->bind_map, &push_map, mem_ctx);
1070
1071 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
1072 anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
1073 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
1074 anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
1075
1076 /* First run copy-prop to get rid of all of the vec() that address
1077 * calculations often create and then constant-fold so that, when we
1078 * get to anv_nir_lower_ubo_loads, we can detect constant offsets.
1079 */
1080 bool progress;
1081 do {
1082 progress = false;
1083 NIR_PASS(progress, nir, nir_opt_algebraic);
1084 NIR_PASS(progress, nir, nir_copy_prop);
1085 NIR_PASS(progress, nir, nir_opt_constant_folding);
1086 NIR_PASS(progress, nir, nir_opt_dce);
1087 } while (progress);
1088
1089 /* Needed for anv_nir_lower_ubo_loads. */
1090 nir_divergence_analysis(nir);
1091
1092 NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
1093
1094 enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
1095 nir_lower_non_uniform_texture_access |
1096 nir_lower_non_uniform_image_access |
1097 nir_lower_non_uniform_get_ssbo_size;
1098
1099 /* In practice, most shaders do not have non-uniform-qualified
1100 * accesses (see
1101 * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
1102 * thus a cheaper and likely to fail check is run first.
1103 */
1104 if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
1105 NIR_PASS(_, nir, nir_opt_non_uniform_access);
1106
1107 /* We don't support non-uniform UBOs and non-uniform SSBO access is
1108 * handled naturally by falling back to A64 messages.
1109 */
1110 NIR_PASS(_, nir, nir_lower_non_uniform_access,
1111 &(nir_lower_non_uniform_access_options) {
1112 .types = lower_non_uniform_access_types,
1113 .callback = NULL,
1114 });
1115
1116 NIR_PASS(_, nir, intel_nir_lower_non_uniform_resource_intel);
1117 NIR_PASS(_, nir, intel_nir_cleanup_resource_intel);
1118 NIR_PASS(_, nir, nir_opt_dce);
1119 }
1120
1121 NIR_PASS_V(nir, anv_nir_update_resource_intel_block);
1122
1123 stage->dynamic_push_values = anv_nir_compute_dynamic_push_bits(nir);
1124
1125 NIR_PASS_V(nir, anv_nir_compute_push_layout,
1126 pdevice, stage->key.base.robust_flags,
1127 anv_graphics_pipeline_stage_fragment_dynamic(stage),
1128 prog_data, &stage->bind_map, &push_map,
1129 pipeline->layout.type, mem_ctx);
1130
1131 NIR_PASS_V(nir, anv_nir_lower_resource_intel, pdevice,
1132 pipeline->layout.type);
1133
1134 if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
1135 if (!nir->info.shared_memory_explicit_layout) {
1136 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
1137 nir_var_mem_shared, shared_type_info);
1138 }
1139
1140 NIR_PASS(_, nir, nir_lower_explicit_io,
1141 nir_var_mem_shared, nir_address_format_32bit_offset);
1142
1143 if (nir->info.zero_initialize_shared_memory &&
1144 nir->info.shared_size > 0) {
1145 /* The effective Shared Local Memory size is at least 1024 bytes and
1146 * is always rounded to a power of two, so it is OK to align the size
1147 * used by the shader to chunk_size -- which does simplify the logic.
1148 */
1149 const unsigned chunk_size = 16;
1150 const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
1151 assert(shared_size <=
1152 intel_compute_slm_calculate_size(compiler->devinfo->ver, nir->info.shared_size));
1153
1154 NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
1155 shared_size, chunk_size);
1156 }
1157 }
1158
1159 if (gl_shader_stage_is_compute(nir->info.stage) ||
1160 gl_shader_stage_is_mesh(nir->info.stage)) {
1161 NIR_PASS(_, nir, brw_nir_lower_cs_intrinsics, compiler->devinfo,
1162 &stage->prog_data.cs);
1163 }
1164
1165 stage->push_desc_info.used_set_buffer =
1166 anv_nir_loads_push_desc_buffer(nir, layout, &stage->bind_map);
1167 stage->push_desc_info.fully_promoted_ubo_descriptors =
1168 anv_nir_push_desc_ubo_fully_promoted(nir, layout, &stage->bind_map);
1169
1170 #if DEBUG_PRINTF_EXAMPLE
1171 if (stage->stage == MESA_SHADER_FRAGMENT) {
1172 nir_shader_intrinsics_pass(nir, print_ubo_load,
1173 nir_metadata_none,
1174 NULL);
1175 }
1176 #endif
1177
1178 stage->nir = nir;
1179 }
1180
1181 static void
anv_pipeline_link_vs(const struct brw_compiler * compiler,struct anv_pipeline_stage * vs_stage,struct anv_pipeline_stage * next_stage)1182 anv_pipeline_link_vs(const struct brw_compiler *compiler,
1183 struct anv_pipeline_stage *vs_stage,
1184 struct anv_pipeline_stage *next_stage)
1185 {
1186 if (next_stage)
1187 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
1188 }
1189
1190 static void
anv_pipeline_compile_vs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * vs_stage,uint32_t view_mask,char ** error_str)1191 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
1192 void *mem_ctx,
1193 struct anv_graphics_base_pipeline *pipeline,
1194 struct anv_pipeline_stage *vs_stage,
1195 uint32_t view_mask,
1196 char **error_str)
1197 {
1198 /* When using Primitive Replication for multiview, each view gets its own
1199 * position slot.
1200 */
1201 uint32_t pos_slots =
1202 (vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
1203 MAX2(1, util_bitcount(view_mask)) : 1;
1204
1205 /* Only position is allowed to be per-view */
1206 assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
1207
1208 brw_compute_vue_map(compiler->devinfo,
1209 &vs_stage->prog_data.vs.base.vue_map,
1210 vs_stage->nir->info.outputs_written,
1211 vs_stage->nir->info.separate_shader,
1212 pos_slots);
1213
1214 vs_stage->num_stats = 1;
1215
1216 struct brw_compile_vs_params params = {
1217 .base = {
1218 .nir = vs_stage->nir,
1219 .stats = vs_stage->stats,
1220 .log_data = pipeline->base.device,
1221 .mem_ctx = mem_ctx,
1222 .source_hash = vs_stage->source_hash,
1223 },
1224 .key = &vs_stage->key.vs,
1225 .prog_data = &vs_stage->prog_data.vs,
1226 };
1227
1228 vs_stage->code = brw_compile_vs(compiler, ¶ms);
1229 *error_str = params.base.error_str;
1230 }
1231
1232 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)1233 merge_tess_info(struct shader_info *tes_info,
1234 const struct shader_info *tcs_info)
1235 {
1236 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
1237 *
1238 * "PointMode. Controls generation of points rather than triangles
1239 * or lines. This functionality defaults to disabled, and is
1240 * enabled if either shader stage includes the execution mode.
1241 *
1242 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
1243 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
1244 * and OutputVertices, it says:
1245 *
1246 * "One mode must be set in at least one of the tessellation
1247 * shader stages."
1248 *
1249 * So, the fields can be set in either the TCS or TES, but they must
1250 * agree if set in both. Our backend looks at TES, so bitwise-or in
1251 * the values from the TCS.
1252 */
1253 assert(tcs_info->tess.tcs_vertices_out == 0 ||
1254 tes_info->tess.tcs_vertices_out == 0 ||
1255 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
1256 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
1257
1258 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1259 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1260 tcs_info->tess.spacing == tes_info->tess.spacing);
1261 tes_info->tess.spacing |= tcs_info->tess.spacing;
1262
1263 assert(tcs_info->tess._primitive_mode == 0 ||
1264 tes_info->tess._primitive_mode == 0 ||
1265 tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
1266 tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
1267 tes_info->tess.ccw |= tcs_info->tess.ccw;
1268 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
1269 }
1270
1271 static void
anv_pipeline_link_tcs(const struct brw_compiler * compiler,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * tes_stage)1272 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
1273 struct anv_pipeline_stage *tcs_stage,
1274 struct anv_pipeline_stage *tes_stage)
1275 {
1276 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
1277
1278 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
1279
1280 nir_lower_patch_vertices(tes_stage->nir,
1281 tcs_stage->nir->info.tess.tcs_vertices_out,
1282 NULL);
1283
1284 /* Copy TCS info into the TES info */
1285 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
1286
1287 /* Whacking the key after cache lookup is a bit sketchy, but all of
1288 * this comes from the SPIR-V, which is part of the hash used for the
1289 * pipeline cache. So it should be safe.
1290 */
1291 tcs_stage->key.tcs._tes_primitive_mode =
1292 tes_stage->nir->info.tess._primitive_mode;
1293 }
1294
1295 static void
anv_pipeline_compile_tcs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1296 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
1297 void *mem_ctx,
1298 struct anv_device *device,
1299 struct anv_pipeline_stage *tcs_stage,
1300 struct anv_pipeline_stage *prev_stage,
1301 char **error_str)
1302 {
1303 tcs_stage->key.tcs.outputs_written =
1304 tcs_stage->nir->info.outputs_written;
1305 tcs_stage->key.tcs.patch_outputs_written =
1306 tcs_stage->nir->info.patch_outputs_written;
1307
1308 tcs_stage->num_stats = 1;
1309
1310 struct brw_compile_tcs_params params = {
1311 .base = {
1312 .nir = tcs_stage->nir,
1313 .stats = tcs_stage->stats,
1314 .log_data = device,
1315 .mem_ctx = mem_ctx,
1316 .source_hash = tcs_stage->source_hash,
1317 },
1318 .key = &tcs_stage->key.tcs,
1319 .prog_data = &tcs_stage->prog_data.tcs,
1320 };
1321
1322 tcs_stage->code = brw_compile_tcs(compiler, ¶ms);
1323 *error_str = params.base.error_str;
1324 }
1325
1326 static void
anv_pipeline_link_tes(const struct brw_compiler * compiler,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * next_stage)1327 anv_pipeline_link_tes(const struct brw_compiler *compiler,
1328 struct anv_pipeline_stage *tes_stage,
1329 struct anv_pipeline_stage *next_stage)
1330 {
1331 if (next_stage)
1332 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
1333 }
1334
1335 static void
anv_pipeline_compile_tes(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * tcs_stage,char ** error_str)1336 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
1337 void *mem_ctx,
1338 struct anv_device *device,
1339 struct anv_pipeline_stage *tes_stage,
1340 struct anv_pipeline_stage *tcs_stage,
1341 char **error_str)
1342 {
1343 tes_stage->key.tes.inputs_read =
1344 tcs_stage->nir->info.outputs_written;
1345 tes_stage->key.tes.patch_inputs_read =
1346 tcs_stage->nir->info.patch_outputs_written;
1347
1348 tes_stage->num_stats = 1;
1349
1350 struct brw_compile_tes_params params = {
1351 .base = {
1352 .nir = tes_stage->nir,
1353 .stats = tes_stage->stats,
1354 .log_data = device,
1355 .mem_ctx = mem_ctx,
1356 .source_hash = tes_stage->source_hash,
1357 },
1358 .key = &tes_stage->key.tes,
1359 .prog_data = &tes_stage->prog_data.tes,
1360 .input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
1361 };
1362
1363 tes_stage->code = brw_compile_tes(compiler, ¶ms);
1364 *error_str = params.base.error_str;
1365 }
1366
1367 static void
anv_pipeline_link_gs(const struct brw_compiler * compiler,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * next_stage)1368 anv_pipeline_link_gs(const struct brw_compiler *compiler,
1369 struct anv_pipeline_stage *gs_stage,
1370 struct anv_pipeline_stage *next_stage)
1371 {
1372 if (next_stage)
1373 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
1374 }
1375
1376 static void
anv_pipeline_compile_gs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1377 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
1378 void *mem_ctx,
1379 struct anv_device *device,
1380 struct anv_pipeline_stage *gs_stage,
1381 struct anv_pipeline_stage *prev_stage,
1382 char **error_str)
1383 {
1384 brw_compute_vue_map(compiler->devinfo,
1385 &gs_stage->prog_data.gs.base.vue_map,
1386 gs_stage->nir->info.outputs_written,
1387 gs_stage->nir->info.separate_shader, 1);
1388
1389 gs_stage->num_stats = 1;
1390
1391 struct brw_compile_gs_params params = {
1392 .base = {
1393 .nir = gs_stage->nir,
1394 .stats = gs_stage->stats,
1395 .log_data = device,
1396 .mem_ctx = mem_ctx,
1397 .source_hash = gs_stage->source_hash,
1398 },
1399 .key = &gs_stage->key.gs,
1400 .prog_data = &gs_stage->prog_data.gs,
1401 };
1402
1403 gs_stage->code = brw_compile_gs(compiler, ¶ms);
1404 *error_str = params.base.error_str;
1405 }
1406
1407 static void
anv_pipeline_link_task(const struct brw_compiler * compiler,struct anv_pipeline_stage * task_stage,struct anv_pipeline_stage * next_stage)1408 anv_pipeline_link_task(const struct brw_compiler *compiler,
1409 struct anv_pipeline_stage *task_stage,
1410 struct anv_pipeline_stage *next_stage)
1411 {
1412 assert(next_stage);
1413 assert(next_stage->stage == MESA_SHADER_MESH);
1414 brw_nir_link_shaders(compiler, task_stage->nir, next_stage->nir);
1415 }
1416
1417 static void
anv_pipeline_compile_task(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * task_stage,char ** error_str)1418 anv_pipeline_compile_task(const struct brw_compiler *compiler,
1419 void *mem_ctx,
1420 struct anv_device *device,
1421 struct anv_pipeline_stage *task_stage,
1422 char **error_str)
1423 {
1424 task_stage->num_stats = 1;
1425
1426 struct brw_compile_task_params params = {
1427 .base = {
1428 .nir = task_stage->nir,
1429 .stats = task_stage->stats,
1430 .log_data = device,
1431 .mem_ctx = mem_ctx,
1432 .source_hash = task_stage->source_hash,
1433 },
1434 .key = &task_stage->key.task,
1435 .prog_data = &task_stage->prog_data.task,
1436 };
1437
1438 task_stage->code = brw_compile_task(compiler, ¶ms);
1439 *error_str = params.base.error_str;
1440 }
1441
1442 static void
anv_pipeline_link_mesh(const struct brw_compiler * compiler,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * next_stage)1443 anv_pipeline_link_mesh(const struct brw_compiler *compiler,
1444 struct anv_pipeline_stage *mesh_stage,
1445 struct anv_pipeline_stage *next_stage)
1446 {
1447 if (next_stage) {
1448 brw_nir_link_shaders(compiler, mesh_stage->nir, next_stage->nir);
1449 }
1450 }
1451
1452 static void
anv_pipeline_compile_mesh(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1453 anv_pipeline_compile_mesh(const struct brw_compiler *compiler,
1454 void *mem_ctx,
1455 struct anv_device *device,
1456 struct anv_pipeline_stage *mesh_stage,
1457 struct anv_pipeline_stage *prev_stage,
1458 char **error_str)
1459 {
1460 mesh_stage->num_stats = 1;
1461
1462 struct brw_compile_mesh_params params = {
1463 .base = {
1464 .nir = mesh_stage->nir,
1465 .stats = mesh_stage->stats,
1466 .log_data = device,
1467 .mem_ctx = mem_ctx,
1468 .source_hash = mesh_stage->source_hash,
1469 },
1470 .key = &mesh_stage->key.mesh,
1471 .prog_data = &mesh_stage->prog_data.mesh,
1472 };
1473
1474 if (prev_stage) {
1475 assert(prev_stage->stage == MESA_SHADER_TASK);
1476 params.tue_map = &prev_stage->prog_data.task.map;
1477 }
1478
1479 mesh_stage->code = brw_compile_mesh(compiler, ¶ms);
1480 *error_str = params.base.error_str;
1481 }
1482
1483 static void
anv_pipeline_link_fs(const struct brw_compiler * compiler,struct anv_pipeline_stage * stage,const struct vk_render_pass_state * rp)1484 anv_pipeline_link_fs(const struct brw_compiler *compiler,
1485 struct anv_pipeline_stage *stage,
1486 const struct vk_render_pass_state *rp)
1487 {
1488 /* Initially the valid outputs value is set to all possible render targets
1489 * valid (see populate_wm_prog_key()), before we look at the shader
1490 * variables. Here we look at the output variables of the shader an compute
1491 * a correct number of render target outputs.
1492 */
1493 stage->key.wm.color_outputs_valid = 0;
1494 nir_foreach_shader_out_variable_safe(var, stage->nir) {
1495 if (var->data.location < FRAG_RESULT_DATA0)
1496 continue;
1497
1498 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
1499 const unsigned array_len =
1500 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
1501 assert(rt + array_len <= MAX_RTS);
1502
1503 stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
1504 }
1505 stage->key.wm.color_outputs_valid &= rp_color_mask(rp);
1506 stage->key.wm.nr_color_regions =
1507 util_last_bit(stage->key.wm.color_outputs_valid);
1508
1509 unsigned num_rt_bindings;
1510 struct anv_pipeline_binding rt_bindings[MAX_RTS];
1511 if (stage->key.wm.nr_color_regions > 0) {
1512 assert(stage->key.wm.nr_color_regions <= MAX_RTS);
1513 for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
1514 if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
1515 rt_bindings[rt] = (struct anv_pipeline_binding) {
1516 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1517 .index = rt,
1518 .binding = UINT32_MAX,
1519
1520 };
1521 } else {
1522 /* Setup a null render target */
1523 rt_bindings[rt] = (struct anv_pipeline_binding) {
1524 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1525 .index = ANV_COLOR_OUTPUT_UNUSED,
1526 .binding = UINT32_MAX,
1527 };
1528 }
1529 }
1530 num_rt_bindings = stage->key.wm.nr_color_regions;
1531 } else if (brw_nir_fs_needs_null_rt(
1532 compiler->devinfo, stage->nir,
1533 stage->key.wm.multisample_fbo != INTEL_NEVER,
1534 stage->key.wm.alpha_to_coverage != INTEL_NEVER)) {
1535 /* Setup a null render target */
1536 rt_bindings[0] = (struct anv_pipeline_binding) {
1537 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1538 .index = ANV_COLOR_OUTPUT_DISABLED,
1539 .binding = UINT32_MAX,
1540 };
1541 num_rt_bindings = 1;
1542 } else {
1543 num_rt_bindings = 0;
1544 }
1545
1546 assert(num_rt_bindings <= MAX_RTS);
1547 assert(stage->bind_map.surface_count == 0);
1548 typed_memcpy(stage->bind_map.surface_to_descriptor,
1549 rt_bindings, num_rt_bindings);
1550 stage->bind_map.surface_count += num_rt_bindings;
1551 }
1552
1553 static void
anv_pipeline_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * fs_stage,struct anv_pipeline_stage * prev_stage,struct anv_graphics_base_pipeline * pipeline,uint32_t view_mask,bool use_primitive_replication,char ** error_str)1554 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1555 void *mem_ctx,
1556 struct anv_device *device,
1557 struct anv_pipeline_stage *fs_stage,
1558 struct anv_pipeline_stage *prev_stage,
1559 struct anv_graphics_base_pipeline *pipeline,
1560 uint32_t view_mask,
1561 bool use_primitive_replication,
1562 char **error_str)
1563 {
1564 /* When using Primitive Replication for multiview, each view gets its own
1565 * position slot.
1566 */
1567 uint32_t pos_slots = use_primitive_replication ?
1568 MAX2(1, util_bitcount(view_mask)) : 1;
1569
1570 /* If we have a previous stage we can use that to deduce valid slots.
1571 * Otherwise, rely on inputs of the input shader.
1572 */
1573 if (prev_stage) {
1574 fs_stage->key.wm.input_slots_valid =
1575 prev_stage->prog_data.vue.vue_map.slots_valid;
1576 } else {
1577 struct intel_vue_map prev_vue_map;
1578 brw_compute_vue_map(compiler->devinfo,
1579 &prev_vue_map,
1580 fs_stage->nir->info.inputs_read,
1581 fs_stage->nir->info.separate_shader,
1582 pos_slots);
1583
1584 fs_stage->key.wm.input_slots_valid = prev_vue_map.slots_valid;
1585 }
1586
1587 struct brw_compile_fs_params params = {
1588 .base = {
1589 .nir = fs_stage->nir,
1590 .stats = fs_stage->stats,
1591 .log_data = device,
1592 .mem_ctx = mem_ctx,
1593 .source_hash = fs_stage->source_hash,
1594 },
1595 .key = &fs_stage->key.wm,
1596 .prog_data = &fs_stage->prog_data.wm,
1597
1598 .allow_spilling = true,
1599 .max_polygons = UCHAR_MAX,
1600 };
1601
1602 if (prev_stage && prev_stage->stage == MESA_SHADER_MESH) {
1603 params.mue_map = &prev_stage->prog_data.mesh.map;
1604 /* TODO(mesh): Slots valid, do we even use/rely on it? */
1605 }
1606
1607 fs_stage->code = brw_compile_fs(compiler, ¶ms);
1608 *error_str = params.base.error_str;
1609
1610 fs_stage->num_stats = (uint32_t)!!fs_stage->prog_data.wm.dispatch_multi +
1611 (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
1612 (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
1613 (uint32_t)fs_stage->prog_data.wm.dispatch_32;
1614 assert(fs_stage->num_stats <= ARRAY_SIZE(fs_stage->stats));
1615 }
1616
1617 static void
anv_pipeline_add_executable(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct brw_compile_stats * stats,uint32_t code_offset)1618 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1619 struct anv_pipeline_stage *stage,
1620 struct brw_compile_stats *stats,
1621 uint32_t code_offset)
1622 {
1623 char *nir = NULL;
1624 if (stage->nir &&
1625 (pipeline->flags &
1626 VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1627 nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
1628 }
1629
1630 char *disasm = NULL;
1631 if (stage->code &&
1632 (pipeline->flags &
1633 VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1634 char *stream_data = NULL;
1635 size_t stream_size = 0;
1636 FILE *stream = open_memstream(&stream_data, &stream_size);
1637
1638 uint32_t push_size = 0;
1639 for (unsigned i = 0; i < 4; i++)
1640 push_size += stage->bind_map.push_ranges[i].length;
1641 if (push_size > 0) {
1642 fprintf(stream, "Push constant ranges:\n");
1643 for (unsigned i = 0; i < 4; i++) {
1644 if (stage->bind_map.push_ranges[i].length == 0)
1645 continue;
1646
1647 fprintf(stream, " RANGE%d (%dB): ", i,
1648 stage->bind_map.push_ranges[i].length * 32);
1649
1650 switch (stage->bind_map.push_ranges[i].set) {
1651 case ANV_DESCRIPTOR_SET_NULL:
1652 fprintf(stream, "NULL");
1653 break;
1654
1655 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
1656 fprintf(stream, "Vulkan push constants and API params");
1657 break;
1658
1659 case ANV_DESCRIPTOR_SET_DESCRIPTORS_BUFFER:
1660 fprintf(stream, "Descriptor buffer (desc buffer) for set %d (start=%dB)",
1661 stage->bind_map.push_ranges[i].index,
1662 stage->bind_map.push_ranges[i].start * 32);
1663 break;
1664
1665 case ANV_DESCRIPTOR_SET_DESCRIPTORS:
1666 fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
1667 stage->bind_map.push_ranges[i].index,
1668 stage->bind_map.push_ranges[i].start * 32);
1669 break;
1670
1671 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
1672 unreachable("Color attachments can't be pushed");
1673
1674 default:
1675 fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
1676 stage->bind_map.push_ranges[i].set,
1677 stage->bind_map.push_ranges[i].index,
1678 stage->bind_map.push_ranges[i].start * 32);
1679 break;
1680 }
1681 fprintf(stream, "\n");
1682 }
1683 fprintf(stream, "\n");
1684 }
1685
1686 /* Creating this is far cheaper than it looks. It's perfectly fine to
1687 * do it for every binary.
1688 */
1689 brw_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
1690 stage->code, code_offset, stream);
1691
1692 fclose(stream);
1693
1694 /* Copy it to a ralloc'd thing */
1695 disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1696 memcpy(disasm, stream_data, stream_size);
1697 disasm[stream_size] = 0;
1698
1699 free(stream_data);
1700 }
1701
1702 const struct anv_pipeline_executable exe = {
1703 .stage = stage->stage,
1704 .stats = *stats,
1705 .nir = nir,
1706 .disasm = disasm,
1707 };
1708 util_dynarray_append(&pipeline->executables,
1709 struct anv_pipeline_executable, exe);
1710 }
1711
1712 static void
anv_pipeline_add_executables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)1713 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1714 struct anv_pipeline_stage *stage)
1715 {
1716 if (stage->stage == MESA_SHADER_FRAGMENT) {
1717 /* We pull the prog data and stats out of the anv_shader_bin because
1718 * the anv_pipeline_stage may not be fully populated if we successfully
1719 * looked up the shader in a cache.
1720 */
1721 const struct brw_wm_prog_data *wm_prog_data =
1722 (const struct brw_wm_prog_data *)stage->bin->prog_data;
1723 struct brw_compile_stats *stats = stage->bin->stats;
1724
1725 if (wm_prog_data->dispatch_8 ||
1726 wm_prog_data->dispatch_multi) {
1727 anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1728 }
1729
1730 if (wm_prog_data->dispatch_16) {
1731 anv_pipeline_add_executable(pipeline, stage, stats++,
1732 wm_prog_data->prog_offset_16);
1733 }
1734
1735 if (wm_prog_data->dispatch_32) {
1736 anv_pipeline_add_executable(pipeline, stage, stats++,
1737 wm_prog_data->prog_offset_32);
1738 }
1739 } else {
1740 anv_pipeline_add_executable(pipeline, stage, stage->bin->stats, 0);
1741 }
1742 }
1743
1744 static void
anv_pipeline_account_shader(struct anv_pipeline * pipeline,struct anv_shader_bin * shader)1745 anv_pipeline_account_shader(struct anv_pipeline *pipeline,
1746 struct anv_shader_bin *shader)
1747 {
1748 pipeline->scratch_size = MAX2(pipeline->scratch_size,
1749 shader->prog_data->total_scratch);
1750
1751 pipeline->ray_queries = MAX2(pipeline->ray_queries,
1752 shader->prog_data->ray_queries);
1753
1754 if (shader->push_desc_info.used_set_buffer) {
1755 pipeline->use_push_descriptor_buffer |=
1756 mesa_to_vk_shader_stage(shader->stage);
1757 }
1758 if (shader->push_desc_info.used_descriptors &
1759 ~shader->push_desc_info.fully_promoted_ubo_descriptors)
1760 pipeline->use_push_descriptor |= mesa_to_vk_shader_stage(shader->stage);
1761 }
1762
1763 /* This function return true if a shader should not be looked at because of
1764 * fast linking. Instead we should use the shader binaries provided by
1765 * libraries.
1766 */
1767 static bool
anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool link_optimize,gl_shader_stage stage)1768 anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline *pipeline,
1769 struct anv_pipeline_stage *stages,
1770 bool link_optimize,
1771 gl_shader_stage stage)
1772 {
1773 /* Always skip non active stages */
1774 if (!anv_pipeline_base_has_stage(pipeline, stage))
1775 return true;
1776
1777 /* When link optimizing, consider all stages */
1778 if (link_optimize)
1779 return false;
1780
1781 /* Otherwise check if the stage was specified through
1782 * VkGraphicsPipelineCreateInfo
1783 */
1784 assert(stages[stage].info != NULL || stages[stage].imported.bin != NULL);
1785 return stages[stage].info == NULL;
1786 }
1787
1788 static void
anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,struct anv_pipeline_stage * stages)1789 anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline *pipeline,
1790 const struct vk_graphics_pipeline_state *state,
1791 struct anv_pipeline_stage *stages)
1792 {
1793 for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
1794 if (!anv_pipeline_base_has_stage(pipeline, s))
1795 continue;
1796
1797 int64_t stage_start = os_time_get_nano();
1798
1799 const struct anv_device *device = pipeline->base.device;
1800 switch (stages[s].stage) {
1801 case MESA_SHADER_VERTEX:
1802 populate_vs_prog_key(&stages[s], device);
1803 break;
1804 case MESA_SHADER_TESS_CTRL:
1805 populate_tcs_prog_key(&stages[s],
1806 device,
1807 BITSET_TEST(state->dynamic,
1808 MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) ?
1809 0 : state->ts->patch_control_points);
1810 break;
1811 case MESA_SHADER_TESS_EVAL:
1812 populate_tes_prog_key(&stages[s], device);
1813 break;
1814 case MESA_SHADER_GEOMETRY:
1815 populate_gs_prog_key(&stages[s], device);
1816 break;
1817 case MESA_SHADER_FRAGMENT: {
1818 /* Assume rasterization enabled in any of the following case :
1819 *
1820 * - We're a pipeline library without pre-rasterization information
1821 *
1822 * - Rasterization is not disabled in the non dynamic state
1823 *
1824 * - Rasterization disable is dynamic
1825 */
1826 const bool raster_enabled =
1827 state->rs == NULL ||
1828 !state->rs->rasterizer_discard_enable ||
1829 BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE);
1830 enum intel_sometimes is_mesh = INTEL_NEVER;
1831 if (device->vk.enabled_extensions.EXT_mesh_shader) {
1832 if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_VERTEX))
1833 is_mesh = INTEL_NEVER;
1834 else if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_MESH))
1835 is_mesh = INTEL_ALWAYS;
1836 else {
1837 assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1838 is_mesh = INTEL_SOMETIMES;
1839 }
1840 }
1841 populate_wm_prog_key(&stages[s],
1842 pipeline,
1843 state->dynamic,
1844 raster_enabled ? state->ms : NULL,
1845 state->fsr, state->rp, is_mesh);
1846 break;
1847 }
1848
1849 case MESA_SHADER_TASK:
1850 populate_task_prog_key(&stages[s], device);
1851 break;
1852
1853 case MESA_SHADER_MESH: {
1854 const bool compact_mue =
1855 !(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB &&
1856 !anv_pipeline_base_has_stage(pipeline, MESA_SHADER_FRAGMENT));
1857 populate_mesh_prog_key(&stages[s], device, compact_mue);
1858 break;
1859 }
1860
1861 default:
1862 unreachable("Invalid graphics shader stage");
1863 }
1864
1865 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1866 stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
1867 }
1868 }
1869
1870 static void
anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool will_compile)1871 anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline *pipeline,
1872 struct anv_pipeline_stage *stages,
1873 bool will_compile)
1874 {
1875 /* There isn't much point in retaining NIR shaders on final pipelines. */
1876 assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1877
1878 struct anv_graphics_lib_pipeline *lib = (struct anv_graphics_lib_pipeline *) pipeline;
1879
1880 for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1881 if (!anv_pipeline_base_has_stage(pipeline, s))
1882 continue;
1883
1884 memcpy(lib->retained_shaders[s].shader_sha1, stages[s].shader_sha1,
1885 sizeof(stages[s].shader_sha1));
1886
1887 lib->retained_shaders[s].subgroup_size_type = stages[s].subgroup_size_type;
1888
1889 nir_shader *nir = stages[s].nir != NULL ? stages[s].nir : stages[s].imported.nir;
1890 assert(nir != NULL);
1891
1892 if (!will_compile) {
1893 lib->retained_shaders[s].nir = nir;
1894 } else {
1895 lib->retained_shaders[s].nir =
1896 nir_shader_clone(pipeline->base.mem_ctx, nir);
1897 }
1898 }
1899 }
1900
1901 static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,bool link_optimize,VkPipelineCreationFeedback * pipeline_feedback)1902 anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline *pipeline,
1903 struct vk_pipeline_cache *cache,
1904 struct anv_pipeline_stage *stages,
1905 bool link_optimize,
1906 VkPipelineCreationFeedback *pipeline_feedback)
1907 {
1908 struct anv_device *device = pipeline->base.device;
1909 unsigned cache_hits = 0, found = 0, imported = 0;
1910
1911 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1912 if (!anv_pipeline_base_has_stage(pipeline, s))
1913 continue;
1914
1915 int64_t stage_start = os_time_get_nano();
1916
1917 bool cache_hit;
1918 stages[s].bin =
1919 anv_device_search_for_kernel(device, cache, &stages[s].cache_key,
1920 sizeof(stages[s].cache_key), &cache_hit);
1921 if (stages[s].bin) {
1922 found++;
1923 pipeline->shaders[s] = stages[s].bin;
1924 }
1925
1926 if (cache_hit) {
1927 cache_hits++;
1928 stages[s].feedback.flags |=
1929 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1930 }
1931 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1932 }
1933
1934 /* When not link optimizing, lookup the missing shader in the imported
1935 * libraries.
1936 */
1937 if (!link_optimize) {
1938 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1939 if (!anv_pipeline_base_has_stage(pipeline, s))
1940 continue;
1941
1942 if (pipeline->shaders[s] != NULL)
1943 continue;
1944
1945 if (stages[s].imported.bin == NULL)
1946 continue;
1947
1948 stages[s].bin = stages[s].imported.bin;
1949 pipeline->shaders[s] = anv_shader_bin_ref(stages[s].imported.bin);
1950 pipeline->source_hashes[s] = stages[s].source_hash;
1951 imported++;
1952 }
1953 }
1954
1955 if ((found + imported) == __builtin_popcount(pipeline->base.active_stages)) {
1956 if (cache_hits == found && found != 0) {
1957 pipeline_feedback->flags |=
1958 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1959 }
1960 /* We found all our shaders in the cache. We're done. */
1961 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1962 if (pipeline->shaders[s] == NULL)
1963 continue;
1964
1965 /* Only add the executables when we're not importing or doing link
1966 * optimizations. The imported executables are added earlier. Link
1967 * optimization can produce different binaries.
1968 */
1969 if (stages[s].imported.bin == NULL || link_optimize)
1970 anv_pipeline_add_executables(&pipeline->base, &stages[s]);
1971 pipeline->source_hashes[s] = stages[s].source_hash;
1972 }
1973 return true;
1974 } else if (found > 0) {
1975 /* We found some but not all of our shaders. This shouldn't happen most
1976 * of the time but it can if we have a partially populated pipeline
1977 * cache.
1978 */
1979 assert(found < __builtin_popcount(pipeline->base.active_stages));
1980
1981 /* With GPL, this might well happen if the app does an optimized
1982 * link.
1983 */
1984 if (!pipeline->base.device->vk.enabled_extensions.EXT_graphics_pipeline_library) {
1985 vk_perf(VK_LOG_OBJS(cache ? &cache->base :
1986 &pipeline->base.device->vk.base),
1987 "Found a partial pipeline in the cache. This is "
1988 "most likely caused by an incomplete pipeline cache "
1989 "import or export");
1990 }
1991
1992 /* We're going to have to recompile anyway, so just throw away our
1993 * references to the shaders in the cache. We'll get them out of the
1994 * cache again as part of the compilation process.
1995 */
1996 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1997 stages[s].feedback.flags = 0;
1998 if (pipeline->shaders[s]) {
1999 anv_shader_bin_unref(device, pipeline->shaders[s]);
2000 pipeline->shaders[s] = NULL;
2001 }
2002 }
2003 }
2004
2005 return false;
2006 }
2007
2008 static const gl_shader_stage graphics_shader_order[] = {
2009 MESA_SHADER_VERTEX,
2010 MESA_SHADER_TESS_CTRL,
2011 MESA_SHADER_TESS_EVAL,
2012 MESA_SHADER_GEOMETRY,
2013
2014 MESA_SHADER_TASK,
2015 MESA_SHADER_MESH,
2016
2017 MESA_SHADER_FRAGMENT,
2018 };
2019
2020 /* This function loads NIR only for stages specified in
2021 * VkGraphicsPipelineCreateInfo::pStages[]
2022 */
2023 static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,void * mem_ctx,bool need_clone)2024 anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline *pipeline,
2025 struct vk_pipeline_cache *cache,
2026 struct anv_pipeline_stage *stages,
2027 void *mem_ctx,
2028 bool need_clone)
2029 {
2030 for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2031 if (!anv_pipeline_base_has_stage(pipeline, s))
2032 continue;
2033
2034 int64_t stage_start = os_time_get_nano();
2035
2036 assert(stages[s].stage == s);
2037
2038 /* Only use the create NIR from the pStages[] element if we don't have
2039 * an imported library for the same stage.
2040 */
2041 if (stages[s].imported.bin == NULL) {
2042 VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
2043 mem_ctx, &stages[s]);
2044 if (result != VK_SUCCESS)
2045 return result;
2046 } else {
2047 stages[s].nir = need_clone ?
2048 nir_shader_clone(mem_ctx, stages[s].imported.nir) :
2049 stages[s].imported.nir;
2050 }
2051
2052 stages[s].feedback.duration += os_time_get_nano() - stage_start;
2053 }
2054
2055 return VK_SUCCESS;
2056 }
2057
2058 static void
anv_pipeline_nir_preprocess(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)2059 anv_pipeline_nir_preprocess(struct anv_pipeline *pipeline,
2060 struct anv_pipeline_stage *stage)
2061 {
2062 struct anv_device *device = pipeline->device;
2063 const struct brw_compiler *compiler = device->physical->compiler;
2064
2065 const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
2066 .point_coord = true,
2067 };
2068 NIR_PASS(_, stage->nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
2069
2070 const nir_opt_access_options opt_access_options = {
2071 .is_vulkan = true,
2072 };
2073 NIR_PASS(_, stage->nir, nir_opt_access, &opt_access_options);
2074
2075 /* Vulkan uses the separate-shader linking model */
2076 stage->nir->info.separate_shader = true;
2077
2078 struct brw_nir_compiler_opts opts = {
2079 .softfp64 = device->fp64_nir,
2080 /* Assume robustness with EXT_pipeline_robustness because this can be
2081 * turned on/off per pipeline and we have no visibility on this here.
2082 */
2083 .robust_image_access = device->vk.enabled_features.robustImageAccess ||
2084 device->vk.enabled_features.robustImageAccess2 ||
2085 device->vk.enabled_extensions.EXT_pipeline_robustness,
2086 .input_vertices = stage->nir->info.stage == MESA_SHADER_TESS_CTRL ?
2087 stage->key.tcs.input_vertices : 0,
2088 };
2089 brw_preprocess_nir(compiler, stage->nir, &opts);
2090
2091 if (stage->nir->info.stage == MESA_SHADER_MESH) {
2092 NIR_PASS(_, stage->nir, anv_nir_lower_set_vtx_and_prim_count);
2093 NIR_PASS(_, stage->nir, nir_opt_dce);
2094 NIR_PASS(_, stage->nir, nir_remove_dead_variables, nir_var_shader_out, NULL);
2095 }
2096
2097 NIR_PASS(_, stage->nir, nir_opt_barrier_modes);
2098
2099 nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
2100 }
2101
2102 static void
anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline * pipeline,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,struct anv_pipeline_stage * stages)2103 anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline *pipeline,
2104 VkPipelineCreationFeedback *pipeline_feedback,
2105 const VkGraphicsPipelineCreateInfo *info,
2106 struct anv_pipeline_stage *stages)
2107 {
2108 const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2109 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2110 if (create_feedback) {
2111 *create_feedback->pPipelineCreationFeedback = *pipeline_feedback;
2112
2113 /* VkPipelineCreationFeedbackCreateInfo:
2114 *
2115 * "An implementation must set or clear the
2116 * VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in
2117 * VkPipelineCreationFeedback::flags for pPipelineCreationFeedback
2118 * and every element of pPipelineStageCreationFeedbacks."
2119 *
2120 */
2121 for (uint32_t i = 0; i < create_feedback->pipelineStageCreationFeedbackCount; i++) {
2122 create_feedback->pPipelineStageCreationFeedbacks[i].flags &=
2123 ~VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
2124 }
2125 /* This part is not really specified in the Vulkan spec at the moment.
2126 * We're kind of guessing what the CTS wants. We might need to update
2127 * when https://gitlab.khronos.org/vulkan/vulkan/-/issues/3115 is
2128 * clarified.
2129 */
2130 for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2131 if (!anv_pipeline_base_has_stage(pipeline, s))
2132 continue;
2133
2134 if (stages[s].feedback_idx < create_feedback->pipelineStageCreationFeedbackCount) {
2135 create_feedback->pPipelineStageCreationFeedbacks[
2136 stages[s].feedback_idx] = stages[s].feedback;
2137 }
2138 }
2139 }
2140 }
2141
2142 static uint32_t
anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage * stages)2143 anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage *stages)
2144 {
2145 uint32_t count = 0;
2146 for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2147 if (stages[s].imported.bin != NULL)
2148 count++;
2149 }
2150 return count;
2151 }
2152
2153 static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,const struct vk_graphics_pipeline_state * state)2154 anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline *pipeline,
2155 struct anv_pipeline_stage *stages,
2156 struct vk_pipeline_cache *cache,
2157 VkPipelineCreationFeedback *pipeline_feedback,
2158 const VkGraphicsPipelineCreateInfo *info,
2159 const struct vk_graphics_pipeline_state *state)
2160 {
2161 int64_t pipeline_start = os_time_get_nano();
2162
2163 struct anv_device *device = pipeline->base.device;
2164 const struct intel_device_info *devinfo = device->info;
2165 const struct brw_compiler *compiler = device->physical->compiler;
2166
2167 /* Setup the shaders given in this VkGraphicsPipelineCreateInfo::pStages[].
2168 * Other shaders imported from libraries should have been added by
2169 * anv_graphics_pipeline_import_lib().
2170 */
2171 uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
2172 for (uint32_t i = 0; i < info->stageCount; i++) {
2173 gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
2174
2175 /* If a pipeline library is loaded in this stage, we should ignore the
2176 * pStages[] entry of the same stage.
2177 */
2178 if (stages[stage].imported.bin != NULL)
2179 continue;
2180
2181 stages[stage].stage = stage;
2182 stages[stage].pipeline_flags = pipeline->base.flags;
2183 stages[stage].pipeline_pNext = info->pNext;
2184 stages[stage].info = &info->pStages[i];
2185 stages[stage].feedback_idx = shader_count++;
2186
2187 anv_stage_write_shader_hash(&stages[stage], device);
2188 }
2189
2190 /* Prepare shader keys for all shaders in pipeline->base.active_stages
2191 * (this includes libraries) before generating the hash for cache look up.
2192 *
2193 * We're doing this because the spec states that :
2194 *
2195 * "When an implementation is looking up a pipeline in a pipeline cache,
2196 * if that pipeline is being created using linked libraries,
2197 * implementations should always return an equivalent pipeline created
2198 * with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT if available,
2199 * whether or not that bit was specified."
2200 *
2201 * So even if the application does not request link optimization, we have
2202 * to do our cache lookup with the entire set of shader sha1s so that we
2203 * can find what would be the best optimized pipeline in the case as if we
2204 * had compiled all the shaders together and known the full graphics state.
2205 */
2206 anv_graphics_pipeline_init_keys(pipeline, state, stages);
2207
2208 uint32_t view_mask = state->rp ? state->rp->view_mask : 0;
2209
2210 unsigned char sha1[20];
2211 anv_pipeline_hash_graphics(pipeline, stages, view_mask, sha1);
2212
2213 for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2214 if (!anv_pipeline_base_has_stage(pipeline, s))
2215 continue;
2216
2217 stages[s].cache_key.stage = s;
2218 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
2219 }
2220
2221 const bool retain_shaders =
2222 pipeline->base.flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
2223 const bool link_optimize =
2224 pipeline->base.flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT;
2225
2226 VkResult result = VK_SUCCESS;
2227 const bool skip_cache_lookup =
2228 (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2229
2230 if (!skip_cache_lookup) {
2231 bool found_all_shaders =
2232 anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
2233 link_optimize,
2234 pipeline_feedback);
2235
2236 if (found_all_shaders) {
2237 /* If we need to retain shaders, we need to also load from the NIR
2238 * cache.
2239 */
2240 if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders) {
2241 result = anv_graphics_pipeline_load_nir(pipeline, cache,
2242 stages,
2243 pipeline->base.mem_ctx,
2244 false /* need_clone */);
2245 if (result != VK_SUCCESS) {
2246 vk_perf(VK_LOG_OBJS(cache ? &cache->base :
2247 &pipeline->base.device->vk.base),
2248 "Found all ISA shaders in the cache but not all NIR shaders.");
2249 } else {
2250 anv_graphics_lib_retain_shaders(pipeline, stages, false /* will_compile */);
2251 }
2252 }
2253
2254 if (result == VK_SUCCESS)
2255 goto done;
2256
2257 for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2258 if (!anv_pipeline_base_has_stage(pipeline, s))
2259 continue;
2260
2261 if (stages[s].nir) {
2262 ralloc_free(stages[s].nir);
2263 stages[s].nir = NULL;
2264 }
2265
2266 assert(pipeline->shaders[s] != NULL);
2267 anv_shader_bin_unref(device, pipeline->shaders[s]);
2268 pipeline->shaders[s] = NULL;
2269 }
2270 }
2271 }
2272
2273 if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
2274 return VK_PIPELINE_COMPILE_REQUIRED;
2275
2276 void *tmp_ctx = ralloc_context(NULL);
2277
2278 result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
2279 tmp_ctx, link_optimize /* need_clone */);
2280 if (result != VK_SUCCESS)
2281 goto fail;
2282
2283 /* Retain shaders now if asked, this only applies to libraries */
2284 if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders)
2285 anv_graphics_lib_retain_shaders(pipeline, stages, true /* will_compile */);
2286
2287 /* The following steps will be executed for shaders we need to compile :
2288 *
2289 * - specified through VkGraphicsPipelineCreateInfo::pStages[]
2290 *
2291 * - or compiled from libraries with retained shaders (libraries
2292 * compiled with CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT) if the
2293 * pipeline has the CREATE_LINK_TIME_OPTIMIZATION_BIT flag.
2294 */
2295
2296 /* Preprocess all NIR shaders. */
2297 for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2298 if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2299 link_optimize, s))
2300 continue;
2301
2302 anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[s], tmp_ctx);
2303
2304 anv_pipeline_nir_preprocess(&pipeline->base, &stages[s]);
2305 }
2306
2307 if (stages[MESA_SHADER_MESH].info && stages[MESA_SHADER_FRAGMENT].info) {
2308 anv_apply_per_prim_attr_wa(stages[MESA_SHADER_MESH].nir,
2309 stages[MESA_SHADER_FRAGMENT].nir,
2310 device,
2311 info);
2312 }
2313
2314 /* Walk backwards to link */
2315 struct anv_pipeline_stage *next_stage = NULL;
2316 for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
2317 gl_shader_stage s = graphics_shader_order[i];
2318 if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2319 link_optimize, s))
2320 continue;
2321
2322 struct anv_pipeline_stage *stage = &stages[s];
2323
2324 switch (s) {
2325 case MESA_SHADER_VERTEX:
2326 anv_pipeline_link_vs(compiler, stage, next_stage);
2327 break;
2328 case MESA_SHADER_TESS_CTRL:
2329 anv_pipeline_link_tcs(compiler, stage, next_stage);
2330 break;
2331 case MESA_SHADER_TESS_EVAL:
2332 anv_pipeline_link_tes(compiler, stage, next_stage);
2333 break;
2334 case MESA_SHADER_GEOMETRY:
2335 anv_pipeline_link_gs(compiler, stage, next_stage);
2336 break;
2337 case MESA_SHADER_TASK:
2338 anv_pipeline_link_task(compiler, stage, next_stage);
2339 break;
2340 case MESA_SHADER_MESH:
2341 anv_pipeline_link_mesh(compiler, stage, next_stage);
2342 break;
2343 case MESA_SHADER_FRAGMENT:
2344 anv_pipeline_link_fs(compiler, stage, state->rp);
2345 break;
2346 default:
2347 unreachable("Invalid graphics shader stage");
2348 }
2349
2350 next_stage = stage;
2351 }
2352
2353 bool use_primitive_replication = false;
2354 if (devinfo->ver >= 12 && view_mask != 0) {
2355 /* For some pipelines HW Primitive Replication can be used instead of
2356 * instancing to implement Multiview. This depend on how viewIndex is
2357 * used in all the active shaders, so this check can't be done per
2358 * individual shaders.
2359 */
2360 nir_shader *shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
2361 for (unsigned s = 0; s < ARRAY_SIZE(shaders); s++)
2362 shaders[s] = stages[s].nir;
2363
2364 use_primitive_replication =
2365 anv_check_for_primitive_replication(device,
2366 pipeline->base.active_stages,
2367 shaders, view_mask);
2368 }
2369
2370 struct anv_pipeline_stage *prev_stage = NULL;
2371 for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2372 gl_shader_stage s = graphics_shader_order[i];
2373 if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2374 link_optimize, s))
2375 continue;
2376
2377 struct anv_pipeline_stage *stage = &stages[s];
2378
2379 int64_t stage_start = os_time_get_nano();
2380
2381 anv_pipeline_lower_nir(&pipeline->base, tmp_ctx, stage,
2382 &pipeline->base.layout, view_mask,
2383 use_primitive_replication);
2384
2385 struct shader_info *cur_info = &stage->nir->info;
2386
2387 if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
2388 struct shader_info *prev_info = &prev_stage->nir->info;
2389
2390 prev_info->outputs_written |= cur_info->inputs_read &
2391 ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2392 cur_info->inputs_read |= prev_info->outputs_written &
2393 ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2394 prev_info->patch_outputs_written |= cur_info->patch_inputs_read;
2395 cur_info->patch_inputs_read |= prev_info->patch_outputs_written;
2396 }
2397
2398 anv_fixup_subgroup_size(device, cur_info);
2399
2400 stage->feedback.duration += os_time_get_nano() - stage_start;
2401
2402 prev_stage = stage;
2403 }
2404
2405 /* In the case the platform can write the primitive variable shading rate
2406 * and KHR_fragment_shading_rate is enabled :
2407 * - there can be a fragment shader but we don't have it yet
2408 * - the fragment shader needs fragment shading rate
2409 *
2410 * figure out the last geometry stage that should write the primitive
2411 * shading rate, and ensure it is marked as used there. The backend will
2412 * write a default value if the shader doesn't actually write it.
2413 *
2414 * We iterate backwards in the stage and stop on the first shader that can
2415 * set the value.
2416 *
2417 * Don't apply this to MESH stages, as this is a per primitive thing.
2418 */
2419 if (devinfo->has_coarse_pixel_primitive_and_cb &&
2420 device->vk.enabled_extensions.KHR_fragment_shading_rate &&
2421 pipeline_has_coarse_pixel(state->dynamic, state->ms, state->fsr) &&
2422 (!stages[MESA_SHADER_FRAGMENT].info ||
2423 stages[MESA_SHADER_FRAGMENT].key.wm.coarse_pixel) &&
2424 stages[MESA_SHADER_MESH].nir == NULL) {
2425 struct anv_pipeline_stage *last_psr = NULL;
2426
2427 for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2428 gl_shader_stage s =
2429 graphics_shader_order[ARRAY_SIZE(graphics_shader_order) - i - 1];
2430
2431 if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2432 link_optimize, s) ||
2433 !gl_shader_stage_can_set_fragment_shading_rate(s))
2434 continue;
2435
2436 last_psr = &stages[s];
2437 break;
2438 }
2439
2440 /* Only set primitive shading rate if there is a pre-rasterization
2441 * shader in this pipeline/pipeline-library.
2442 */
2443 if (last_psr)
2444 last_psr->nir->info.outputs_written |= VARYING_BIT_PRIMITIVE_SHADING_RATE;
2445 }
2446
2447 prev_stage = NULL;
2448 for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2449 gl_shader_stage s = graphics_shader_order[i];
2450 struct anv_pipeline_stage *stage = &stages[s];
2451
2452 if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages, link_optimize, s))
2453 continue;
2454
2455 int64_t stage_start = os_time_get_nano();
2456
2457 void *stage_ctx = ralloc_context(NULL);
2458 char *error_str = NULL;
2459
2460 switch (s) {
2461 case MESA_SHADER_VERTEX:
2462 anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
2463 stage, view_mask, &error_str);
2464 break;
2465 case MESA_SHADER_TESS_CTRL:
2466 anv_pipeline_compile_tcs(compiler, stage_ctx, device,
2467 stage, prev_stage, &error_str);
2468 break;
2469 case MESA_SHADER_TESS_EVAL:
2470 anv_pipeline_compile_tes(compiler, stage_ctx, device,
2471 stage, prev_stage, &error_str);
2472 break;
2473 case MESA_SHADER_GEOMETRY:
2474 anv_pipeline_compile_gs(compiler, stage_ctx, device,
2475 stage, prev_stage, &error_str);
2476 break;
2477 case MESA_SHADER_TASK:
2478 anv_pipeline_compile_task(compiler, stage_ctx, device,
2479 stage, &error_str);
2480 break;
2481 case MESA_SHADER_MESH:
2482 anv_pipeline_compile_mesh(compiler, stage_ctx, device,
2483 stage, prev_stage, &error_str);
2484 break;
2485 case MESA_SHADER_FRAGMENT:
2486 anv_pipeline_compile_fs(compiler, stage_ctx, device,
2487 stage, prev_stage, pipeline,
2488 view_mask, use_primitive_replication,
2489 &error_str);
2490 break;
2491 default:
2492 unreachable("Invalid graphics shader stage");
2493 }
2494 if (stage->code == NULL) {
2495 if (error_str)
2496 result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", error_str);
2497 else
2498 result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2499 ralloc_free(stage_ctx);
2500 goto fail;
2501 }
2502
2503 anv_nir_validate_push_layout(device->physical, &stage->prog_data.base,
2504 &stage->bind_map);
2505
2506 struct anv_shader_upload_params upload_params = {
2507 .stage = s,
2508 .key_data = &stage->cache_key,
2509 .key_size = sizeof(stage->cache_key),
2510 .kernel_data = stage->code,
2511 .kernel_size = stage->prog_data.base.program_size,
2512 .prog_data = &stage->prog_data.base,
2513 .prog_data_size = brw_prog_data_size(s),
2514 .stats = stage->stats,
2515 .num_stats = stage->num_stats,
2516 .xfb_info = stage->nir->xfb_info,
2517 .bind_map = &stage->bind_map,
2518 .push_desc_info = &stage->push_desc_info,
2519 .dynamic_push_values = stage->dynamic_push_values,
2520 };
2521
2522 stage->bin =
2523 anv_device_upload_kernel(device, cache, &upload_params);
2524 if (!stage->bin) {
2525 ralloc_free(stage_ctx);
2526 result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2527 goto fail;
2528 }
2529
2530 anv_pipeline_add_executables(&pipeline->base, stage);
2531 pipeline->source_hashes[s] = stage->source_hash;
2532 pipeline->shaders[s] = stage->bin;
2533
2534 ralloc_free(stage_ctx);
2535
2536 stage->feedback.duration += os_time_get_nano() - stage_start;
2537
2538 prev_stage = stage;
2539 }
2540
2541 /* Finally add the imported shaders that were not compiled as part of this
2542 * step.
2543 */
2544 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2545 if (!anv_pipeline_base_has_stage(pipeline, s))
2546 continue;
2547
2548 if (pipeline->shaders[s] != NULL)
2549 continue;
2550
2551 /* We should have recompiled everything with link optimization. */
2552 assert(!link_optimize);
2553
2554 struct anv_pipeline_stage *stage = &stages[s];
2555
2556 pipeline->source_hashes[s] = stage->source_hash;
2557 pipeline->shaders[s] = anv_shader_bin_ref(stage->imported.bin);
2558 }
2559
2560 ralloc_free(tmp_ctx);
2561
2562 done:
2563
2564 /* Write the feedback index into the pipeline */
2565 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2566 if (!anv_pipeline_base_has_stage(pipeline, s))
2567 continue;
2568
2569 struct anv_pipeline_stage *stage = &stages[s];
2570 pipeline->feedback_index[s] = stage->feedback_idx;
2571 pipeline->robust_flags[s] = stage->robust_flags;
2572
2573 anv_pipeline_account_shader(&pipeline->base, pipeline->shaders[s]);
2574 }
2575
2576 pipeline_feedback->duration = os_time_get_nano() - pipeline_start;
2577
2578 if (pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2579 pipeline->fragment_dynamic =
2580 anv_graphics_pipeline_stage_fragment_dynamic(
2581 &stages[MESA_SHADER_FRAGMENT]);
2582 }
2583
2584 return VK_SUCCESS;
2585
2586 fail:
2587 ralloc_free(tmp_ctx);
2588
2589 for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2590 if (pipeline->shaders[s])
2591 anv_shader_bin_unref(device, pipeline->shaders[s]);
2592 }
2593
2594 return result;
2595 }
2596
2597 static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * info)2598 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
2599 struct vk_pipeline_cache *cache,
2600 const VkComputePipelineCreateInfo *info)
2601 {
2602 ASSERTED const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
2603 assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
2604
2605 VkPipelineCreationFeedback pipeline_feedback = {
2606 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2607 };
2608 int64_t pipeline_start = os_time_get_nano();
2609
2610 struct anv_device *device = pipeline->base.device;
2611 const struct brw_compiler *compiler = device->physical->compiler;
2612
2613 struct anv_pipeline_stage stage = {
2614 .stage = MESA_SHADER_COMPUTE,
2615 .info = &info->stage,
2616 .pipeline_flags = pipeline->base.flags,
2617 .pipeline_pNext = info->pNext,
2618 .cache_key = {
2619 .stage = MESA_SHADER_COMPUTE,
2620 },
2621 .feedback = {
2622 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2623 },
2624 };
2625 anv_stage_write_shader_hash(&stage, device);
2626
2627 populate_cs_prog_key(&stage, device);
2628
2629 const bool skip_cache_lookup =
2630 (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2631
2632 anv_pipeline_hash_compute(pipeline, &stage, stage.cache_key.sha1);
2633
2634 bool cache_hit = false;
2635 if (!skip_cache_lookup) {
2636 stage.bin = anv_device_search_for_kernel(device, cache,
2637 &stage.cache_key,
2638 sizeof(stage.cache_key),
2639 &cache_hit);
2640 }
2641
2642 if (stage.bin == NULL &&
2643 (pipeline->base.flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
2644 return VK_PIPELINE_COMPILE_REQUIRED;
2645
2646 void *mem_ctx = ralloc_context(NULL);
2647 if (stage.bin == NULL) {
2648 int64_t stage_start = os_time_get_nano();
2649
2650 anv_stage_allocate_bind_map_tables(&pipeline->base, &stage, mem_ctx);
2651
2652 VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
2653 mem_ctx, &stage);
2654 if (result != VK_SUCCESS) {
2655 ralloc_free(mem_ctx);
2656 return result;
2657 }
2658
2659 anv_pipeline_nir_preprocess(&pipeline->base, &stage);
2660
2661 anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage,
2662 &pipeline->base.layout, 0 /* view_mask */,
2663 false /* use_primitive_replication */);
2664
2665 anv_fixup_subgroup_size(device, &stage.nir->info);
2666
2667 stage.num_stats = 1;
2668
2669 struct brw_compile_cs_params params = {
2670 .base = {
2671 .nir = stage.nir,
2672 .stats = stage.stats,
2673 .log_data = device,
2674 .mem_ctx = mem_ctx,
2675 .source_hash = stage.source_hash,
2676 },
2677 .key = &stage.key.cs,
2678 .prog_data = &stage.prog_data.cs,
2679 };
2680
2681 stage.code = brw_compile_cs(compiler, ¶ms);
2682 if (stage.code == NULL) {
2683 VkResult result;
2684
2685 if (params.base.error_str)
2686 result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
2687 else
2688 result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2689
2690 ralloc_free(mem_ctx);
2691 return result;
2692 }
2693
2694 anv_nir_validate_push_layout(device->physical, &stage.prog_data.base,
2695 &stage.bind_map);
2696
2697 struct anv_shader_upload_params upload_params = {
2698 .stage = MESA_SHADER_COMPUTE,
2699 .key_data = &stage.cache_key,
2700 .key_size = sizeof(stage.cache_key),
2701 .kernel_data = stage.code,
2702 .kernel_size = stage.prog_data.base.program_size,
2703 .prog_data = &stage.prog_data.base,
2704 .prog_data_size = sizeof(stage.prog_data.cs),
2705 .stats = stage.stats,
2706 .num_stats = stage.num_stats,
2707 .bind_map = &stage.bind_map,
2708 .push_desc_info = &stage.push_desc_info,
2709 .dynamic_push_values = stage.dynamic_push_values,
2710 };
2711
2712 stage.bin = anv_device_upload_kernel(device, cache, &upload_params);
2713 if (!stage.bin) {
2714 ralloc_free(mem_ctx);
2715 return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2716 }
2717
2718 stage.feedback.duration = os_time_get_nano() - stage_start;
2719 }
2720
2721 anv_pipeline_account_shader(&pipeline->base, stage.bin);
2722 anv_pipeline_add_executables(&pipeline->base, &stage);
2723 pipeline->source_hash = stage.source_hash;
2724
2725 ralloc_free(mem_ctx);
2726
2727 if (cache_hit) {
2728 stage.feedback.flags |=
2729 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2730 pipeline_feedback.flags |=
2731 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2732 }
2733 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
2734
2735 const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2736 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2737 if (create_feedback) {
2738 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
2739
2740 if (create_feedback->pipelineStageCreationFeedbackCount) {
2741 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
2742 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
2743 }
2744 }
2745
2746 pipeline->cs = stage.bin;
2747
2748 return VK_SUCCESS;
2749 }
2750
2751 static VkResult
anv_compute_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)2752 anv_compute_pipeline_create(struct anv_device *device,
2753 struct vk_pipeline_cache *cache,
2754 const VkComputePipelineCreateInfo *pCreateInfo,
2755 const VkAllocationCallbacks *pAllocator,
2756 VkPipeline *pPipeline)
2757 {
2758 struct anv_compute_pipeline *pipeline;
2759 VkResult result;
2760
2761 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2762
2763 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
2764 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2765 if (pipeline == NULL)
2766 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2767
2768 result = anv_pipeline_init(&pipeline->base, device,
2769 ANV_PIPELINE_COMPUTE,
2770 vk_compute_pipeline_create_flags(pCreateInfo),
2771 pAllocator);
2772 if (result != VK_SUCCESS) {
2773 vk_free2(&device->vk.alloc, pAllocator, pipeline);
2774 return result;
2775 }
2776
2777
2778 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
2779 anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
2780
2781 pipeline->base.active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
2782
2783 anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
2784 pipeline->batch_data, sizeof(pipeline->batch_data));
2785
2786 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
2787 if (result != VK_SUCCESS) {
2788 anv_pipeline_finish(&pipeline->base, device);
2789 vk_free2(&device->vk.alloc, pAllocator, pipeline);
2790 return result;
2791 }
2792
2793 anv_genX(device->info, compute_pipeline_emit)(pipeline);
2794
2795 ANV_RMV(compute_pipeline_create, device, pipeline, false);
2796
2797 *pPipeline = anv_pipeline_to_handle(&pipeline->base);
2798
2799 return pipeline->base.batch.status;
2800 }
2801
anv_CreateComputePipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)2802 VkResult anv_CreateComputePipelines(
2803 VkDevice _device,
2804 VkPipelineCache pipelineCache,
2805 uint32_t count,
2806 const VkComputePipelineCreateInfo* pCreateInfos,
2807 const VkAllocationCallbacks* pAllocator,
2808 VkPipeline* pPipelines)
2809 {
2810 ANV_FROM_HANDLE(anv_device, device, _device);
2811 ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
2812
2813 VkResult result = VK_SUCCESS;
2814
2815 unsigned i;
2816 for (i = 0; i < count; i++) {
2817 const VkPipelineCreateFlags2KHR flags =
2818 vk_compute_pipeline_create_flags(&pCreateInfos[i]);
2819 VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
2820 &pCreateInfos[i],
2821 pAllocator, &pPipelines[i]);
2822
2823 if (res != VK_SUCCESS) {
2824 result = res;
2825 if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
2826 break;
2827 pPipelines[i] = VK_NULL_HANDLE;
2828 }
2829 }
2830
2831 for (; i < count; i++)
2832 pPipelines[i] = VK_NULL_HANDLE;
2833
2834 return result;
2835 }
2836
2837 /**
2838 * Calculate the desired L3 partitioning based on the current state of the
2839 * pipeline. For now this simply returns the conservative defaults calculated
2840 * by get_default_l3_weights(), but we could probably do better by gathering
2841 * more statistics from the pipeline state (e.g. guess of expected URB usage
2842 * and bound surfaces), or by using feed-back from performance counters.
2843 */
2844 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)2845 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
2846 {
2847 const struct intel_device_info *devinfo = pipeline->device->info;
2848
2849 const struct intel_l3_weights w =
2850 intel_get_default_l3_weights(devinfo, true, needs_slm);
2851
2852 pipeline->l3_config = intel_get_l3_config(devinfo, w);
2853 }
2854
2855 static uint32_t
get_vs_input_elements(const struct brw_vs_prog_data * vs_prog_data)2856 get_vs_input_elements(const struct brw_vs_prog_data *vs_prog_data)
2857 {
2858 /* Pull inputs_read out of the VS prog data */
2859 const uint64_t inputs_read = vs_prog_data->inputs_read;
2860 const uint64_t double_inputs_read =
2861 vs_prog_data->double_inputs_read & inputs_read;
2862 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
2863 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
2864 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
2865
2866 return __builtin_popcount(elements) -
2867 __builtin_popcount(elements_double) / 2;
2868 }
2869
2870 static void
anv_graphics_pipeline_emit(struct anv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)2871 anv_graphics_pipeline_emit(struct anv_graphics_pipeline *pipeline,
2872 const struct vk_graphics_pipeline_state *state)
2873 {
2874 pipeline->view_mask = state->rp->view_mask;
2875
2876 anv_pipeline_setup_l3_config(&pipeline->base.base, false);
2877
2878 if (anv_pipeline_is_primitive(pipeline)) {
2879 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2880
2881 /* The total number of vertex elements we need to program. We might need
2882 * a couple more to implement some of the draw parameters.
2883 */
2884 pipeline->svgs_count =
2885 (vs_prog_data->uses_vertexid ||
2886 vs_prog_data->uses_instanceid ||
2887 vs_prog_data->uses_firstvertex ||
2888 vs_prog_data->uses_baseinstance) + vs_prog_data->uses_drawid;
2889
2890 pipeline->vs_input_elements = get_vs_input_elements(vs_prog_data);
2891
2892 pipeline->vertex_input_elems =
2893 (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI) ?
2894 0 : pipeline->vs_input_elements) + pipeline->svgs_count;
2895
2896 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2897 * different views when primitive replication cannot be used. If the
2898 * client asks for instancing, we need to multiply by the client's
2899 * instance count at draw time and instance divisor in the vertex
2900 * bindings by the number of views ensure that we repeat the client's
2901 * per-instance data once for each view.
2902 */
2903 const bool uses_primitive_replication =
2904 anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots > 1;
2905 pipeline->instance_multiplier = 1;
2906 if (pipeline->view_mask && !uses_primitive_replication)
2907 pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
2908 } else {
2909 assert(anv_pipeline_is_mesh(pipeline));
2910 /* TODO(mesh): Mesh vs. Multiview with Instancing. */
2911 }
2912
2913
2914 pipeline->dynamic_patch_control_points =
2915 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) &&
2916 BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) &&
2917 (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->dynamic_push_values &
2918 ANV_DYNAMIC_PUSH_INPUT_VERTICES);
2919
2920 if (pipeline->base.shaders[MESA_SHADER_FRAGMENT] && state->ms) {
2921 pipeline->sample_shading_enable = state->ms->sample_shading_enable;
2922 pipeline->min_sample_shading = state->ms->min_sample_shading;
2923 }
2924
2925 /* Mark all color output as unused by default */
2926 memset(pipeline->color_output_mapping,
2927 ANV_COLOR_OUTPUT_UNUSED,
2928 sizeof(pipeline->color_output_mapping));
2929
2930 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2931 /* Count the number of color attachments in the binding table */
2932 const struct anv_pipeline_bind_map *bind_map =
2933 &pipeline->base.shaders[MESA_SHADER_FRAGMENT]->bind_map;
2934
2935 if (state->cal != NULL) {
2936 /* Build a map of fragment color output to attachment */
2937 uint8_t rt_to_att[MAX_RTS];
2938 memset(rt_to_att, ANV_COLOR_OUTPUT_DISABLED, MAX_RTS);
2939 for (uint32_t i = 0; i < MAX_RTS; i++) {
2940 if (state->cal->color_map[i] != MESA_VK_ATTACHMENT_UNUSED)
2941 rt_to_att[state->cal->color_map[i]] = i;
2942 }
2943
2944 /* For each fragment shader output if not unused apply the remapping
2945 * to pipeline->color_output_mapping
2946 */
2947 unsigned i;
2948 for (i = 0; i < MIN2(bind_map->surface_count, MAX_RTS); i++) {
2949 if (bind_map->surface_to_descriptor[i].set !=
2950 ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
2951 break;
2952
2953 uint32_t index = bind_map->surface_to_descriptor[i].index;
2954 if (index >= MAX_RTS) {
2955 assert(index <= 0xff);
2956 pipeline->color_output_mapping[i] = index;
2957 } else {
2958 pipeline->color_output_mapping[i] = rt_to_att[i];
2959 }
2960 }
2961 pipeline->num_color_outputs = i;
2962 }
2963 }
2964
2965 const struct anv_device *device = pipeline->base.base.device;
2966 const struct intel_device_info *devinfo = device->info;
2967 anv_genX(devinfo, graphics_pipeline_emit)(pipeline, state);
2968 }
2969
2970 static void
anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_sets_layout * layout)2971 anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline *pipeline,
2972 struct anv_pipeline_sets_layout *layout)
2973 {
2974 pipeline->base.layout.independent_sets |= layout->independent_sets;
2975
2976 for (uint32_t s = 0; s < layout->num_sets; s++) {
2977 if (layout->set[s].layout == NULL)
2978 continue;
2979
2980 anv_pipeline_sets_layout_add(&pipeline->base.layout, s,
2981 layout->set[s].layout);
2982 }
2983 }
2984
2985 static void
anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline * pipeline,bool link_optimize,bool retain_shaders,struct anv_pipeline_stage * stages,struct anv_graphics_lib_pipeline * lib)2986 anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline *pipeline,
2987 bool link_optimize,
2988 bool retain_shaders,
2989 struct anv_pipeline_stage *stages,
2990 struct anv_graphics_lib_pipeline *lib)
2991 {
2992 struct anv_pipeline_sets_layout *lib_layout =
2993 &lib->base.base.layout;
2994 anv_graphics_pipeline_import_layout(pipeline, lib_layout);
2995
2996 /* We can't have shaders specified twice through libraries. */
2997 assert((pipeline->base.active_stages & lib->base.base.active_stages) == 0);
2998
2999 /* VK_EXT_graphics_pipeline_library:
3000 *
3001 * "To perform link time optimizations,
3002 * VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT must
3003 * be specified on all pipeline libraries that are being linked
3004 * together. Implementations should retain any additional information
3005 * needed to perform optimizations at the final link step when this bit
3006 * is present."
3007 */
3008 assert(!link_optimize || lib->retain_shaders);
3009
3010 pipeline->base.active_stages |= lib->base.base.active_stages;
3011
3012 /* Propagate the fragment dynamic flag, unless we're doing link
3013 * optimization, in that case we'll have all the state information and this
3014 * will never be dynamic.
3015 */
3016 if (!link_optimize) {
3017 if (lib->base.fragment_dynamic) {
3018 assert(lib->base.base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT);
3019 pipeline->fragment_dynamic = true;
3020 }
3021 }
3022
3023 uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
3024 for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.shaders); s++) {
3025 if (lib->base.shaders[s] == NULL)
3026 continue;
3027
3028 stages[s].stage = s;
3029 stages[s].pipeline_flags = pipeline->base.flags;
3030 stages[s].feedback_idx = shader_count + lib->base.feedback_index[s];
3031 stages[s].robust_flags = lib->base.robust_flags[s];
3032
3033 /* Always import the shader sha1, this will be used for cache lookup. */
3034 memcpy(stages[s].shader_sha1, lib->retained_shaders[s].shader_sha1,
3035 sizeof(stages[s].shader_sha1));
3036 stages[s].source_hash = lib->base.source_hashes[s];
3037
3038 stages[s].subgroup_size_type = lib->retained_shaders[s].subgroup_size_type;
3039 stages[s].imported.nir = lib->retained_shaders[s].nir;
3040 stages[s].imported.bin = lib->base.shaders[s];
3041 }
3042
3043 /* When not link optimizing, import the executables (shader descriptions
3044 * for VK_KHR_pipeline_executable_properties). With link optimization there
3045 * is a chance it'll produce different binaries, so we'll add the optimized
3046 * version later.
3047 */
3048 if (!link_optimize) {
3049 util_dynarray_foreach(&lib->base.base.executables,
3050 struct anv_pipeline_executable, exe) {
3051 util_dynarray_append(&pipeline->base.executables,
3052 struct anv_pipeline_executable, *exe);
3053 }
3054 }
3055 }
3056
3057 static void
anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline * lib,bool retained_shaders)3058 anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline *lib,
3059 bool retained_shaders)
3060 {
3061 for (uint32_t s = 0; s < ARRAY_SIZE(lib->retained_shaders); s++) {
3062 if (anv_pipeline_base_has_stage(&lib->base, s)) {
3063 assert(!retained_shaders || lib->retained_shaders[s].nir != NULL);
3064 assert(lib->base.shaders[s] != NULL);
3065 }
3066 }
3067 }
3068
3069 static VkResult
anv_graphics_lib_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3070 anv_graphics_lib_pipeline_create(struct anv_device *device,
3071 struct vk_pipeline_cache *cache,
3072 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3073 const VkAllocationCallbacks *pAllocator,
3074 VkPipeline *pPipeline)
3075 {
3076 struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3077 VkPipelineCreationFeedback pipeline_feedback = {
3078 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3079 };
3080 int64_t pipeline_start = os_time_get_nano();
3081
3082 struct anv_graphics_lib_pipeline *pipeline;
3083 VkResult result;
3084
3085 const VkPipelineCreateFlags2KHR flags =
3086 vk_graphics_pipeline_create_flags(pCreateInfo);
3087 assert(flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
3088
3089 const VkPipelineLibraryCreateInfoKHR *libs_info =
3090 vk_find_struct_const(pCreateInfo->pNext,
3091 PIPELINE_LIBRARY_CREATE_INFO_KHR);
3092
3093 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3094 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3095 if (pipeline == NULL)
3096 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3097
3098 result = anv_pipeline_init(&pipeline->base.base, device,
3099 ANV_PIPELINE_GRAPHICS_LIB, flags,
3100 pAllocator);
3101 if (result != VK_SUCCESS) {
3102 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3103 if (result == VK_PIPELINE_COMPILE_REQUIRED)
3104 *pPipeline = VK_NULL_HANDLE;
3105 return result;
3106 }
3107
3108 /* Capture the retain state before we compile/load any shader. */
3109 pipeline->retain_shaders =
3110 (flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
3111
3112 /* If we have libraries, import them first. */
3113 if (libs_info) {
3114 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3115 ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3116 struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3117 anv_pipeline_to_graphics_lib(pipeline_lib);
3118
3119 vk_graphics_pipeline_state_merge(&pipeline->state, &gfx_pipeline_lib->state);
3120 anv_graphics_pipeline_import_lib(&pipeline->base,
3121 false /* link_optimize */,
3122 pipeline->retain_shaders,
3123 stages, gfx_pipeline_lib);
3124 }
3125 }
3126
3127 result = vk_graphics_pipeline_state_fill(&device->vk,
3128 &pipeline->state, pCreateInfo,
3129 NULL /* driver_rp */,
3130 0 /* driver_rp_flags */,
3131 &pipeline->all_state, NULL, 0, NULL);
3132 if (result != VK_SUCCESS) {
3133 anv_pipeline_finish(&pipeline->base.base, device);
3134 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3135 return result;
3136 }
3137
3138 pipeline->base.base.active_stages = pipeline->state.shader_stages;
3139
3140 /* After we've imported all the libraries' layouts, import the pipeline
3141 * layout and hash the whole lot.
3142 */
3143 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3144 if (pipeline_layout != NULL) {
3145 anv_graphics_pipeline_import_layout(&pipeline->base,
3146 &pipeline_layout->sets_layout);
3147 }
3148
3149 anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3150
3151 /* Compile shaders. We can skip this if there are no active stage in that
3152 * pipeline.
3153 */
3154 if (pipeline->base.base.active_stages != 0) {
3155 result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3156 cache, &pipeline_feedback,
3157 pCreateInfo, &pipeline->state);
3158 if (result != VK_SUCCESS) {
3159 anv_pipeline_finish(&pipeline->base.base, device);
3160 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3161 return result;
3162 }
3163 }
3164
3165 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3166
3167 anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3168 pCreateInfo, stages);
3169
3170 anv_graphics_lib_validate_shaders(
3171 pipeline,
3172 flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
3173
3174 *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3175
3176 return VK_SUCCESS;
3177 }
3178
3179 static VkResult
anv_graphics_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3180 anv_graphics_pipeline_create(struct anv_device *device,
3181 struct vk_pipeline_cache *cache,
3182 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3183 const VkAllocationCallbacks *pAllocator,
3184 VkPipeline *pPipeline)
3185 {
3186 struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3187 VkPipelineCreationFeedback pipeline_feedback = {
3188 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3189 };
3190 int64_t pipeline_start = os_time_get_nano();
3191
3192 struct anv_graphics_pipeline *pipeline;
3193 VkResult result;
3194
3195 const VkPipelineCreateFlags2KHR flags =
3196 vk_graphics_pipeline_create_flags(pCreateInfo);
3197 assert((flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) == 0);
3198
3199 const VkPipelineLibraryCreateInfoKHR *libs_info =
3200 vk_find_struct_const(pCreateInfo->pNext,
3201 PIPELINE_LIBRARY_CREATE_INFO_KHR);
3202
3203 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3204 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3205 if (pipeline == NULL)
3206 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3207
3208 /* Initialize some information required by shaders */
3209 result = anv_pipeline_init(&pipeline->base.base, device,
3210 ANV_PIPELINE_GRAPHICS, flags,
3211 pAllocator);
3212 if (result != VK_SUCCESS) {
3213 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3214 return result;
3215 }
3216
3217 const bool link_optimize =
3218 (flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
3219
3220 struct vk_graphics_pipeline_all_state all;
3221 struct vk_graphics_pipeline_state state = { };
3222
3223 /* If we have libraries, import them first. */
3224 if (libs_info) {
3225 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3226 ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3227 struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3228 anv_pipeline_to_graphics_lib(pipeline_lib);
3229
3230 /* If we have link time optimization, all libraries must be created
3231 * with
3232 * VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
3233 */
3234 assert(!link_optimize || gfx_pipeline_lib->retain_shaders);
3235
3236 vk_graphics_pipeline_state_merge(&state, &gfx_pipeline_lib->state);
3237 anv_graphics_pipeline_import_lib(&pipeline->base,
3238 link_optimize,
3239 false,
3240 stages,
3241 gfx_pipeline_lib);
3242 }
3243 }
3244
3245 result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
3246 NULL /* driver_rp */,
3247 0 /* driver_rp_flags */,
3248 &all, NULL, 0, NULL);
3249 if (result != VK_SUCCESS) {
3250 anv_pipeline_finish(&pipeline->base.base, device);
3251 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3252 return result;
3253 }
3254
3255 pipeline->dynamic_state.vi = &pipeline->vertex_input;
3256 pipeline->dynamic_state.ms.sample_locations = &pipeline->base.sample_locations;
3257 vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, &state);
3258
3259 pipeline->base.base.active_stages = state.shader_stages;
3260
3261 /* Sanity check on the shaders */
3262 assert(pipeline->base.base.active_stages & VK_SHADER_STAGE_VERTEX_BIT ||
3263 pipeline->base.base.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT);
3264
3265 if (anv_pipeline_is_mesh(pipeline)) {
3266 assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3267 }
3268
3269 /* After we've imported all the libraries' layouts, import the pipeline
3270 * layout and hash the whole lot.
3271 */
3272 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3273 if (pipeline_layout != NULL) {
3274 anv_graphics_pipeline_import_layout(&pipeline->base,
3275 &pipeline_layout->sets_layout);
3276 }
3277
3278 anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3279
3280 /* Compile shaders, all required information should be have been copied in
3281 * the previous step. We can skip this if there are no active stage in that
3282 * pipeline.
3283 */
3284 result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3285 cache, &pipeline_feedback,
3286 pCreateInfo, &state);
3287 if (result != VK_SUCCESS) {
3288 anv_pipeline_finish(&pipeline->base.base, device);
3289 vk_free2(&device->vk.alloc, pAllocator, pipeline);
3290 return result;
3291 }
3292
3293 /* Prepare a batch for the commands and emit all the non dynamic ones.
3294 */
3295 anv_batch_set_storage(&pipeline->base.base.batch, ANV_NULL_ADDRESS,
3296 pipeline->batch_data, sizeof(pipeline->batch_data));
3297
3298 if (pipeline->base.base.active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
3299 pipeline->base.base.active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3300
3301 if (anv_pipeline_is_mesh(pipeline))
3302 assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3303
3304 anv_graphics_pipeline_emit(pipeline, &state);
3305
3306 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3307
3308 anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3309 pCreateInfo, stages);
3310
3311 ANV_RMV(graphics_pipeline_create, device, pipeline, false);
3312
3313 *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3314
3315 return pipeline->base.base.batch.status;
3316 }
3317
anv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)3318 VkResult anv_CreateGraphicsPipelines(
3319 VkDevice _device,
3320 VkPipelineCache pipelineCache,
3321 uint32_t count,
3322 const VkGraphicsPipelineCreateInfo* pCreateInfos,
3323 const VkAllocationCallbacks* pAllocator,
3324 VkPipeline* pPipelines)
3325 {
3326 ANV_FROM_HANDLE(anv_device, device, _device);
3327 ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
3328
3329 VkResult result = VK_SUCCESS;
3330
3331 unsigned i;
3332 for (i = 0; i < count; i++) {
3333 assert(pCreateInfos[i].sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
3334
3335 const VkPipelineCreateFlags2KHR flags =
3336 vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
3337 VkResult res;
3338 if (flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
3339 res = anv_graphics_lib_pipeline_create(device, pipeline_cache,
3340 &pCreateInfos[i],
3341 pAllocator,
3342 &pPipelines[i]);
3343 } else {
3344 res = anv_graphics_pipeline_create(device,
3345 pipeline_cache,
3346 &pCreateInfos[i],
3347 pAllocator, &pPipelines[i]);
3348 }
3349
3350 if (res != VK_SUCCESS) {
3351 result = res;
3352 if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
3353 break;
3354 pPipelines[i] = VK_NULL_HANDLE;
3355 }
3356 }
3357
3358 for (; i < count; i++)
3359 pPipelines[i] = VK_NULL_HANDLE;
3360
3361 return result;
3362 }
3363
3364 static bool
should_remat_cb(nir_instr * instr,void * data)3365 should_remat_cb(nir_instr *instr, void *data)
3366 {
3367 if (instr->type != nir_instr_type_intrinsic)
3368 return false;
3369
3370 return nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel;
3371 }
3372
3373 static VkResult
compile_upload_rt_shader(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,nir_shader * nir,struct anv_pipeline_stage * stage,void * mem_ctx)3374 compile_upload_rt_shader(struct anv_ray_tracing_pipeline *pipeline,
3375 struct vk_pipeline_cache *cache,
3376 nir_shader *nir,
3377 struct anv_pipeline_stage *stage,
3378 void *mem_ctx)
3379 {
3380 const struct brw_compiler *compiler =
3381 pipeline->base.device->physical->compiler;
3382 const struct intel_device_info *devinfo = compiler->devinfo;
3383
3384 nir_shader **resume_shaders = NULL;
3385 uint32_t num_resume_shaders = 0;
3386 if (nir->info.stage != MESA_SHADER_COMPUTE) {
3387 const nir_lower_shader_calls_options opts = {
3388 .address_format = nir_address_format_64bit_global,
3389 .stack_alignment = BRW_BTD_STACK_ALIGN,
3390 .localized_loads = true,
3391 .vectorizer_callback = brw_nir_should_vectorize_mem,
3392 .vectorizer_data = NULL,
3393 .should_remat_callback = should_remat_cb,
3394 };
3395
3396 NIR_PASS(_, nir, nir_lower_shader_calls, &opts,
3397 &resume_shaders, &num_resume_shaders, mem_ctx);
3398 NIR_PASS(_, nir, brw_nir_lower_shader_calls, &stage->key.bs);
3399 NIR_PASS_V(nir, brw_nir_lower_rt_intrinsics, devinfo);
3400 }
3401
3402 for (unsigned i = 0; i < num_resume_shaders; i++) {
3403 NIR_PASS(_,resume_shaders[i], brw_nir_lower_shader_calls, &stage->key.bs);
3404 NIR_PASS_V(resume_shaders[i], brw_nir_lower_rt_intrinsics, devinfo);
3405 }
3406
3407 struct brw_compile_bs_params params = {
3408 .base = {
3409 .nir = nir,
3410 .stats = stage->stats,
3411 .log_data = pipeline->base.device,
3412 .mem_ctx = mem_ctx,
3413 .source_hash = stage->source_hash,
3414 },
3415 .key = &stage->key.bs,
3416 .prog_data = &stage->prog_data.bs,
3417 .num_resume_shaders = num_resume_shaders,
3418 .resume_shaders = resume_shaders,
3419 };
3420
3421 stage->code = brw_compile_bs(compiler, ¶ms);
3422 if (stage->code == NULL) {
3423 VkResult result;
3424
3425 if (params.base.error_str)
3426 result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
3427 else
3428 result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3429
3430 return result;
3431 }
3432
3433 struct anv_shader_upload_params upload_params = {
3434 .stage = stage->stage,
3435 .key_data = &stage->cache_key,
3436 .key_size = sizeof(stage->cache_key),
3437 .kernel_data = stage->code,
3438 .kernel_size = stage->prog_data.base.program_size,
3439 .prog_data = &stage->prog_data.base,
3440 .prog_data_size = brw_prog_data_size(stage->stage),
3441 .stats = stage->stats,
3442 .num_stats = 1,
3443 .bind_map = &stage->bind_map,
3444 .push_desc_info = &stage->push_desc_info,
3445 .dynamic_push_values = stage->dynamic_push_values,
3446 };
3447
3448 stage->bin =
3449 anv_device_upload_kernel(pipeline->base.device, cache, &upload_params);
3450 if (stage->bin == NULL)
3451 return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3452
3453 anv_pipeline_add_executables(&pipeline->base, stage);
3454
3455 return VK_SUCCESS;
3456 }
3457
3458 static bool
is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR * info)3459 is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR *info)
3460 {
3461 if (info->pDynamicState == NULL)
3462 return false;
3463
3464 for (unsigned i = 0; i < info->pDynamicState->dynamicStateCount; i++) {
3465 if (info->pDynamicState->pDynamicStates[i] ==
3466 VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR)
3467 return true;
3468 }
3469
3470 return false;
3471 }
3472
3473 static void
anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,uint32_t * stack_max)3474 anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline *pipeline,
3475 const VkRayTracingPipelineCreateInfoKHR *info,
3476 uint32_t *stack_max)
3477 {
3478 if (is_rt_stack_size_dynamic(info)) {
3479 pipeline->stack_size = 0; /* 0 means dynamic */
3480 } else {
3481 /* From the Vulkan spec:
3482 *
3483 * "If the stack size is not set explicitly, the stack size for a
3484 * pipeline is:
3485 *
3486 * rayGenStackMax +
3487 * min(1, maxPipelineRayRecursionDepth) ×
3488 * max(closestHitStackMax, missStackMax,
3489 * intersectionStackMax + anyHitStackMax) +
3490 * max(0, maxPipelineRayRecursionDepth-1) ×
3491 * max(closestHitStackMax, missStackMax) +
3492 * 2 × callableStackMax"
3493 */
3494 pipeline->stack_size =
3495 stack_max[MESA_SHADER_RAYGEN] +
3496 MIN2(1, info->maxPipelineRayRecursionDepth) *
3497 MAX4(stack_max[MESA_SHADER_CLOSEST_HIT],
3498 stack_max[MESA_SHADER_MISS],
3499 stack_max[MESA_SHADER_INTERSECTION],
3500 stack_max[MESA_SHADER_ANY_HIT]) +
3501 MAX2(0, (int)info->maxPipelineRayRecursionDepth - 1) *
3502 MAX2(stack_max[MESA_SHADER_CLOSEST_HIT],
3503 stack_max[MESA_SHADER_MISS]) +
3504 2 * stack_max[MESA_SHADER_CALLABLE];
3505
3506 /* This is an extremely unlikely case but we need to set it to some
3507 * non-zero value so that we don't accidentally think it's dynamic.
3508 * Our minimum stack size is 2KB anyway so we could set to any small
3509 * value we like.
3510 */
3511 if (pipeline->stack_size == 0)
3512 pipeline->stack_size = 1;
3513 }
3514 }
3515
3516 static enum brw_rt_ray_flags
anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)3517 anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)
3518 {
3519 uint32_t ray_flags = 0;
3520
3521 const bool rt_skip_triangles =
3522 flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR;
3523 const bool rt_skip_aabbs =
3524 flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR;
3525 assert(!(rt_skip_triangles && rt_skip_aabbs));
3526
3527 if (rt_skip_triangles)
3528 ray_flags |= BRW_RT_RAY_FLAG_SKIP_TRIANGLES;
3529 else if (rt_skip_aabbs)
3530 ray_flags |= BRW_RT_RAY_FLAG_SKIP_AABBS;
3531
3532 return ray_flags;
3533 }
3534
3535 static struct anv_pipeline_stage *
anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,void * tmp_pipeline_ctx)3536 anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline *pipeline,
3537 const VkRayTracingPipelineCreateInfoKHR *info,
3538 void *tmp_pipeline_ctx)
3539 {
3540 struct anv_device *device = pipeline->base.device;
3541 /* Create enough stage entries for all shader modules plus potential
3542 * combinaisons in the groups.
3543 */
3544 struct anv_pipeline_stage *stages =
3545 rzalloc_array(tmp_pipeline_ctx, struct anv_pipeline_stage, info->stageCount);
3546
3547 enum brw_rt_ray_flags ray_flags =
3548 anv_pipeline_get_pipeline_ray_flags(pipeline->base.flags);
3549
3550 for (uint32_t i = 0; i < info->stageCount; i++) {
3551 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
3552 if (vk_pipeline_shader_stage_is_null(sinfo))
3553 continue;
3554
3555 int64_t stage_start = os_time_get_nano();
3556
3557 stages[i] = (struct anv_pipeline_stage) {
3558 .stage = vk_to_mesa_shader_stage(sinfo->stage),
3559 .pipeline_flags = pipeline->base.flags,
3560 .pipeline_pNext = info->pNext,
3561 .info = sinfo,
3562 .cache_key = {
3563 .stage = vk_to_mesa_shader_stage(sinfo->stage),
3564 },
3565 .feedback = {
3566 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3567 },
3568 };
3569
3570 anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[i],
3571 tmp_pipeline_ctx);
3572
3573 pipeline->base.active_stages |= sinfo->stage;
3574
3575 anv_stage_write_shader_hash(&stages[i], device);
3576
3577 populate_bs_prog_key(&stages[i],
3578 pipeline->base.device,
3579 ray_flags);
3580
3581 if (stages[i].stage != MESA_SHADER_INTERSECTION) {
3582 anv_pipeline_hash_ray_tracing_shader(pipeline, &stages[i],
3583 stages[i].cache_key.sha1);
3584 }
3585
3586 stages[i].feedback.duration += os_time_get_nano() - stage_start;
3587 }
3588
3589 for (uint32_t i = 0; i < info->groupCount; i++) {
3590 const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3591
3592 if (ginfo->type != VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR)
3593 continue;
3594
3595 int64_t stage_start = os_time_get_nano();
3596
3597 uint32_t intersection_idx = ginfo->intersectionShader;
3598 assert(intersection_idx < info->stageCount);
3599
3600 uint32_t any_hit_idx = ginfo->anyHitShader;
3601 if (any_hit_idx != VK_SHADER_UNUSED_KHR) {
3602 assert(any_hit_idx < info->stageCount);
3603 anv_pipeline_hash_ray_tracing_combined_shader(pipeline,
3604 &stages[intersection_idx],
3605 &stages[any_hit_idx],
3606 stages[intersection_idx].cache_key.sha1);
3607 } else {
3608 anv_pipeline_hash_ray_tracing_shader(pipeline,
3609 &stages[intersection_idx],
3610 stages[intersection_idx].cache_key.sha1);
3611 }
3612
3613 stages[intersection_idx].feedback.duration += os_time_get_nano() - stage_start;
3614 }
3615
3616 return stages;
3617 }
3618
3619 static bool
anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info,struct anv_pipeline_stage * stages,VkPipelineCreationFeedback * pipeline_feedback)3620 anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline *pipeline,
3621 struct vk_pipeline_cache *cache,
3622 const VkRayTracingPipelineCreateInfoKHR *info,
3623 struct anv_pipeline_stage *stages,
3624 VkPipelineCreationFeedback *pipeline_feedback)
3625 {
3626 uint32_t shaders = 0, found = 0, cache_hits = 0;
3627 for (uint32_t i = 0; i < info->stageCount; i++) {
3628 if (stages[i].info == NULL)
3629 continue;
3630
3631 shaders++;
3632
3633 int64_t stage_start = os_time_get_nano();
3634
3635 bool cache_hit;
3636 stages[i].bin = anv_device_search_for_kernel(pipeline->base.device, cache,
3637 &stages[i].cache_key,
3638 sizeof(stages[i].cache_key),
3639 &cache_hit);
3640 if (cache_hit) {
3641 cache_hits++;
3642 stages[i].feedback.flags |=
3643 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3644 }
3645
3646 if (stages[i].bin != NULL) {
3647 found++;
3648 anv_pipeline_add_executables(&pipeline->base, &stages[i]);
3649 }
3650
3651 stages[i].feedback.duration += os_time_get_nano() - stage_start;
3652 }
3653
3654 if (cache_hits == shaders) {
3655 pipeline_feedback->flags |=
3656 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3657 }
3658
3659 return found == shaders;
3660 }
3661
3662 static VkResult
anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline * pipeline,void * tmp_pipeline_ctx,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info)3663 anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline *pipeline,
3664 void *tmp_pipeline_ctx,
3665 struct anv_pipeline_stage *stages,
3666 struct vk_pipeline_cache *cache,
3667 const VkRayTracingPipelineCreateInfoKHR *info)
3668 {
3669 const struct intel_device_info *devinfo = pipeline->base.device->info;
3670 VkResult result;
3671
3672 VkPipelineCreationFeedback pipeline_feedback = {
3673 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3674 };
3675 int64_t pipeline_start = os_time_get_nano();
3676
3677 const bool skip_cache_lookup =
3678 (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
3679
3680 if (!skip_cache_lookup &&
3681 anv_ray_tracing_pipeline_load_cached_shaders(pipeline, cache, info, stages,
3682 &pipeline_feedback)) {
3683 goto done;
3684 }
3685
3686 if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
3687 return VK_PIPELINE_COMPILE_REQUIRED;
3688
3689 for (uint32_t i = 0; i < info->stageCount; i++) {
3690 if (stages[i].info == NULL)
3691 continue;
3692
3693 /* Intersection and any-hit need to fetch the nir always,
3694 * so that they can be handled correctly below in the group section.
3695 * For the other stages, if we found them in the cache, skip this part.
3696 */
3697 if (!(stages[i].stage == MESA_SHADER_INTERSECTION ||
3698 stages[i].stage == MESA_SHADER_ANY_HIT) &&
3699 stages[i].bin != NULL)
3700 continue;
3701
3702 int64_t stage_start = os_time_get_nano();
3703
3704 VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
3705 tmp_pipeline_ctx,
3706 &stages[i]);
3707 if (result != VK_SUCCESS)
3708 return result;
3709
3710 anv_pipeline_nir_preprocess(&pipeline->base, &stages[i]);
3711
3712 anv_pipeline_lower_nir(&pipeline->base, tmp_pipeline_ctx, &stages[i],
3713 &pipeline->base.layout, 0 /* view_mask */,
3714 false /* use_primitive_replication */);
3715
3716 stages[i].feedback.duration += os_time_get_nano() - stage_start;
3717 }
3718
3719 for (uint32_t i = 0; i < info->stageCount; i++) {
3720 if (stages[i].info == NULL)
3721 continue;
3722
3723 /* Shader found in cache already. */
3724 if (stages[i].bin != NULL)
3725 continue;
3726
3727 /* We handle intersection shaders as part of the group */
3728 if (stages[i].stage == MESA_SHADER_INTERSECTION)
3729 continue;
3730
3731 int64_t stage_start = os_time_get_nano();
3732
3733 void *tmp_stage_ctx = ralloc_context(tmp_pipeline_ctx);
3734
3735 nir_shader *nir = nir_shader_clone(tmp_stage_ctx, stages[i].nir);
3736 switch (stages[i].stage) {
3737 case MESA_SHADER_RAYGEN:
3738 brw_nir_lower_raygen(nir);
3739 break;
3740
3741 case MESA_SHADER_ANY_HIT:
3742 brw_nir_lower_any_hit(nir, devinfo);
3743 break;
3744
3745 case MESA_SHADER_CLOSEST_HIT:
3746 brw_nir_lower_closest_hit(nir);
3747 break;
3748
3749 case MESA_SHADER_MISS:
3750 brw_nir_lower_miss(nir);
3751 break;
3752
3753 case MESA_SHADER_INTERSECTION:
3754 unreachable("These are handled later");
3755
3756 case MESA_SHADER_CALLABLE:
3757 brw_nir_lower_callable(nir);
3758 break;
3759
3760 default:
3761 unreachable("Invalid ray-tracing shader stage");
3762 }
3763
3764 result = compile_upload_rt_shader(pipeline, cache, nir, &stages[i],
3765 tmp_stage_ctx);
3766 if (result != VK_SUCCESS) {
3767 ralloc_free(tmp_stage_ctx);
3768 return result;
3769 }
3770
3771 ralloc_free(tmp_stage_ctx);
3772
3773 stages[i].feedback.duration += os_time_get_nano() - stage_start;
3774 }
3775
3776 done:
3777 for (uint32_t i = 0; i < info->groupCount; i++) {
3778 const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3779 struct anv_rt_shader_group *group = &pipeline->groups[i];
3780 group->type = ginfo->type;
3781 switch (ginfo->type) {
3782 case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
3783 assert(ginfo->generalShader < info->stageCount);
3784 group->general = stages[ginfo->generalShader].bin;
3785 break;
3786
3787 case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
3788 if (ginfo->anyHitShader < info->stageCount)
3789 group->any_hit = stages[ginfo->anyHitShader].bin;
3790
3791 if (ginfo->closestHitShader < info->stageCount)
3792 group->closest_hit = stages[ginfo->closestHitShader].bin;
3793 break;
3794
3795 case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
3796 if (ginfo->closestHitShader < info->stageCount)
3797 group->closest_hit = stages[ginfo->closestHitShader].bin;
3798
3799 uint32_t intersection_idx = info->pGroups[i].intersectionShader;
3800 assert(intersection_idx < info->stageCount);
3801
3802 /* Only compile this stage if not already found in the cache. */
3803 if (stages[intersection_idx].bin == NULL) {
3804 /* The any-hit and intersection shader have to be combined */
3805 uint32_t any_hit_idx = info->pGroups[i].anyHitShader;
3806 const nir_shader *any_hit = NULL;
3807 if (any_hit_idx < info->stageCount)
3808 any_hit = stages[any_hit_idx].nir;
3809
3810 void *tmp_group_ctx = ralloc_context(tmp_pipeline_ctx);
3811 nir_shader *intersection =
3812 nir_shader_clone(tmp_group_ctx, stages[intersection_idx].nir);
3813
3814 brw_nir_lower_combined_intersection_any_hit(intersection, any_hit,
3815 devinfo);
3816
3817 result = compile_upload_rt_shader(pipeline, cache,
3818 intersection,
3819 &stages[intersection_idx],
3820 tmp_group_ctx);
3821 ralloc_free(tmp_group_ctx);
3822 if (result != VK_SUCCESS)
3823 return result;
3824 }
3825
3826 group->intersection = stages[intersection_idx].bin;
3827 break;
3828 }
3829
3830 default:
3831 unreachable("Invalid ray tracing shader group type");
3832 }
3833 }
3834
3835 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3836
3837 const VkPipelineCreationFeedbackCreateInfo *create_feedback =
3838 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
3839 if (create_feedback) {
3840 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
3841
3842 uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
3843 assert(stage_count == 0 || info->stageCount == stage_count);
3844 for (uint32_t i = 0; i < stage_count; i++) {
3845 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
3846 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
3847 }
3848 }
3849
3850 return VK_SUCCESS;
3851 }
3852
3853 VkResult
anv_device_init_rt_shaders(struct anv_device * device)3854 anv_device_init_rt_shaders(struct anv_device *device)
3855 {
3856 device->bvh_build_method = ANV_BVH_BUILD_METHOD_NEW_SAH;
3857
3858 if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3859 return VK_SUCCESS;
3860
3861 bool cache_hit;
3862
3863 struct anv_push_descriptor_info empty_push_desc_info = {};
3864 struct anv_pipeline_bind_map empty_bind_map = {};
3865 struct brw_rt_trampoline {
3866 char name[16];
3867 struct brw_cs_prog_key key;
3868 } trampoline_key = {
3869 .name = "rt-trampoline",
3870 };
3871 device->rt_trampoline =
3872 anv_device_search_for_kernel(device, device->internal_cache,
3873 &trampoline_key, sizeof(trampoline_key),
3874 &cache_hit);
3875 if (device->rt_trampoline == NULL) {
3876
3877 void *tmp_ctx = ralloc_context(NULL);
3878 nir_shader *trampoline_nir =
3879 brw_nir_create_raygen_trampoline(device->physical->compiler, tmp_ctx);
3880
3881 struct brw_cs_prog_data trampoline_prog_data = {
3882 .uses_btd_stack_ids = true,
3883 };
3884 struct brw_compile_cs_params params = {
3885 .base = {
3886 .nir = trampoline_nir,
3887 .log_data = device,
3888 .mem_ctx = tmp_ctx,
3889 },
3890 .key = &trampoline_key.key,
3891 .prog_data = &trampoline_prog_data,
3892 };
3893 const unsigned *tramp_data =
3894 brw_compile_cs(device->physical->compiler, ¶ms);
3895
3896 struct anv_shader_upload_params upload_params = {
3897 .stage = MESA_SHADER_COMPUTE,
3898 .key_data = &trampoline_key,
3899 .key_size = sizeof(trampoline_key),
3900 .kernel_data = tramp_data,
3901 .kernel_size = trampoline_prog_data.base.program_size,
3902 .prog_data = &trampoline_prog_data.base,
3903 .prog_data_size = sizeof(trampoline_prog_data),
3904 .bind_map = &empty_bind_map,
3905 .push_desc_info = &empty_push_desc_info,
3906 };
3907
3908 device->rt_trampoline =
3909 anv_device_upload_kernel(device, device->internal_cache,
3910 &upload_params);
3911
3912 ralloc_free(tmp_ctx);
3913
3914 if (device->rt_trampoline == NULL)
3915 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3916 }
3917
3918 /* The cache already has a reference and it's not going anywhere so there
3919 * is no need to hold a second reference.
3920 */
3921 anv_shader_bin_unref(device, device->rt_trampoline);
3922
3923 struct brw_rt_trivial_return {
3924 char name[16];
3925 struct brw_bs_prog_key key;
3926 } return_key = {
3927 .name = "rt-trivial-ret",
3928 };
3929 device->rt_trivial_return =
3930 anv_device_search_for_kernel(device, device->internal_cache,
3931 &return_key, sizeof(return_key),
3932 &cache_hit);
3933 if (device->rt_trivial_return == NULL) {
3934 void *tmp_ctx = ralloc_context(NULL);
3935 nir_shader *trivial_return_nir =
3936 brw_nir_create_trivial_return_shader(device->physical->compiler, tmp_ctx);
3937
3938 NIR_PASS_V(trivial_return_nir, brw_nir_lower_rt_intrinsics, device->info);
3939
3940 struct brw_bs_prog_data return_prog_data = { 0, };
3941 struct brw_compile_bs_params params = {
3942 .base = {
3943 .nir = trivial_return_nir,
3944 .log_data = device,
3945 .mem_ctx = tmp_ctx,
3946 },
3947 .key = &return_key.key,
3948 .prog_data = &return_prog_data,
3949 };
3950 const unsigned *return_data =
3951 brw_compile_bs(device->physical->compiler, ¶ms);
3952
3953 struct anv_shader_upload_params upload_params = {
3954 .stage = MESA_SHADER_CALLABLE,
3955 .key_data = &return_key,
3956 .key_size = sizeof(return_key),
3957 .kernel_data = return_data,
3958 .kernel_size = return_prog_data.base.program_size,
3959 .prog_data = &return_prog_data.base,
3960 .prog_data_size = sizeof(return_prog_data),
3961 .bind_map = &empty_bind_map,
3962 .push_desc_info = &empty_push_desc_info,
3963 };
3964
3965 device->rt_trivial_return =
3966 anv_device_upload_kernel(device, device->internal_cache,
3967 &upload_params);
3968
3969 ralloc_free(tmp_ctx);
3970
3971 if (device->rt_trivial_return == NULL)
3972 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3973 }
3974
3975 /* The cache already has a reference and it's not going anywhere so there
3976 * is no need to hold a second reference.
3977 */
3978 anv_shader_bin_unref(device, device->rt_trivial_return);
3979
3980 return VK_SUCCESS;
3981 }
3982
3983 void
anv_device_finish_rt_shaders(struct anv_device * device)3984 anv_device_finish_rt_shaders(struct anv_device *device)
3985 {
3986 if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3987 return;
3988 }
3989
3990 static void
anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline * pipeline,struct anv_device * device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * alloc)3991 anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline *pipeline,
3992 struct anv_device *device,
3993 struct vk_pipeline_cache *cache,
3994 const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
3995 const VkAllocationCallbacks *alloc)
3996 {
3997 util_dynarray_init(&pipeline->shaders, pipeline->base.mem_ctx);
3998
3999 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
4000 anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
4001
4002 anv_pipeline_setup_l3_config(&pipeline->base, /* needs_slm */ false);
4003 }
4004
4005 static void
assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,uint32_t stage_idx,VkShaderStageFlags valid_stages)4006 assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
4007 uint32_t stage_idx,
4008 VkShaderStageFlags valid_stages)
4009 {
4010 if (stage_idx == VK_SHADER_UNUSED_KHR)
4011 return;
4012
4013 assert(stage_idx <= pCreateInfo->stageCount);
4014 assert(util_bitcount(pCreateInfo->pStages[stage_idx].stage) == 1);
4015 assert(pCreateInfo->pStages[stage_idx].stage & valid_stages);
4016 }
4017
4018 static VkResult
anv_ray_tracing_pipeline_create(VkDevice _device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)4019 anv_ray_tracing_pipeline_create(
4020 VkDevice _device,
4021 struct vk_pipeline_cache * cache,
4022 const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
4023 const VkAllocationCallbacks* pAllocator,
4024 VkPipeline* pPipeline)
4025 {
4026 ANV_FROM_HANDLE(anv_device, device, _device);
4027 VkResult result;
4028
4029 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR);
4030
4031 uint32_t group_count = pCreateInfo->groupCount;
4032 if (pCreateInfo->pLibraryInfo) {
4033 for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4034 ANV_FROM_HANDLE(anv_pipeline, library,
4035 pCreateInfo->pLibraryInfo->pLibraries[l]);
4036 struct anv_ray_tracing_pipeline *rt_library =
4037 anv_pipeline_to_ray_tracing(library);
4038 group_count += rt_library->group_count;
4039 }
4040 }
4041
4042 VK_MULTIALLOC(ma);
4043 VK_MULTIALLOC_DECL(&ma, struct anv_ray_tracing_pipeline, pipeline, 1);
4044 VK_MULTIALLOC_DECL(&ma, struct anv_rt_shader_group, groups, group_count);
4045 if (!vk_multialloc_zalloc2(&ma, &device->vk.alloc, pAllocator,
4046 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
4047 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4048
4049 result = anv_pipeline_init(&pipeline->base, device,
4050 ANV_PIPELINE_RAY_TRACING,
4051 vk_rt_pipeline_create_flags(pCreateInfo),
4052 pAllocator);
4053 if (result != VK_SUCCESS) {
4054 vk_free2(&device->vk.alloc, pAllocator, pipeline);
4055 return result;
4056 }
4057
4058 pipeline->group_count = group_count;
4059 pipeline->groups = groups;
4060
4061 ASSERTED const VkShaderStageFlags ray_tracing_stages =
4062 VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4063 VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
4064 VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
4065 VK_SHADER_STAGE_MISS_BIT_KHR |
4066 VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
4067 VK_SHADER_STAGE_CALLABLE_BIT_KHR;
4068
4069 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
4070 assert((pCreateInfo->pStages[i].stage & ~ray_tracing_stages) == 0);
4071
4072 for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
4073 const VkRayTracingShaderGroupCreateInfoKHR *ginfo =
4074 &pCreateInfo->pGroups[i];
4075 assert_rt_stage_index_valid(pCreateInfo, ginfo->generalShader,
4076 VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4077 VK_SHADER_STAGE_MISS_BIT_KHR |
4078 VK_SHADER_STAGE_CALLABLE_BIT_KHR);
4079 assert_rt_stage_index_valid(pCreateInfo, ginfo->closestHitShader,
4080 VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
4081 assert_rt_stage_index_valid(pCreateInfo, ginfo->anyHitShader,
4082 VK_SHADER_STAGE_ANY_HIT_BIT_KHR);
4083 assert_rt_stage_index_valid(pCreateInfo, ginfo->intersectionShader,
4084 VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
4085 switch (ginfo->type) {
4086 case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
4087 assert(ginfo->generalShader < pCreateInfo->stageCount);
4088 assert(ginfo->anyHitShader == VK_SHADER_UNUSED_KHR);
4089 assert(ginfo->closestHitShader == VK_SHADER_UNUSED_KHR);
4090 assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4091 break;
4092
4093 case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
4094 assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4095 assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4096 break;
4097
4098 case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR:
4099 assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4100 break;
4101
4102 default:
4103 unreachable("Invalid ray-tracing shader group type");
4104 }
4105 }
4106
4107 anv_ray_tracing_pipeline_init(pipeline, device, cache,
4108 pCreateInfo, pAllocator);
4109
4110 void *tmp_ctx = ralloc_context(NULL);
4111
4112 struct anv_pipeline_stage *stages =
4113 anv_pipeline_init_ray_tracing_stages(pipeline, pCreateInfo, tmp_ctx);
4114
4115 result = anv_pipeline_compile_ray_tracing(pipeline, tmp_ctx, stages,
4116 cache, pCreateInfo);
4117 if (result != VK_SUCCESS) {
4118 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
4119 if (stages[i].bin != NULL)
4120 anv_shader_bin_unref(device, stages[i].bin);
4121 }
4122 ralloc_free(tmp_ctx);
4123 anv_pipeline_finish(&pipeline->base, device);
4124 vk_free2(&device->vk.alloc, pAllocator, pipeline);
4125 return result;
4126 }
4127
4128 /* Compute the size of the scratch BO (for register spilling) by taking the
4129 * max of all the shaders in the pipeline. Also add the shaders to the list
4130 * of executables.
4131 */
4132 uint32_t stack_max[MESA_VULKAN_SHADER_STAGES] = {};
4133 for (uint32_t s = 0; s < pCreateInfo->stageCount; s++) {
4134 util_dynarray_append(&pipeline->shaders,
4135 struct anv_shader_bin *,
4136 stages[s].bin);
4137
4138 uint32_t stack_size =
4139 brw_bs_prog_data_const(stages[s].bin->prog_data)->max_stack_size;
4140 stack_max[stages[s].stage] = MAX2(stack_max[stages[s].stage], stack_size);
4141
4142 anv_pipeline_account_shader(&pipeline->base, stages[s].bin);
4143 }
4144
4145 anv_pipeline_compute_ray_tracing_stacks(pipeline, pCreateInfo, stack_max);
4146
4147 if (pCreateInfo->pLibraryInfo) {
4148 uint32_t g = pCreateInfo->groupCount;
4149 for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4150 ANV_FROM_HANDLE(anv_pipeline, library,
4151 pCreateInfo->pLibraryInfo->pLibraries[l]);
4152 struct anv_ray_tracing_pipeline *rt_library =
4153 anv_pipeline_to_ray_tracing(library);
4154 for (uint32_t lg = 0; lg < rt_library->group_count; lg++) {
4155 pipeline->groups[g] = rt_library->groups[lg];
4156 pipeline->groups[g].imported = true;
4157 g++;
4158 }
4159
4160 /* Account for shaders in the library. */
4161 util_dynarray_foreach(&rt_library->shaders,
4162 struct anv_shader_bin *, shader) {
4163 util_dynarray_append(&pipeline->shaders,
4164 struct anv_shader_bin *,
4165 anv_shader_bin_ref(*shader));
4166 anv_pipeline_account_shader(&pipeline->base, *shader);
4167 }
4168
4169 /* Add the library shaders to this pipeline's executables. */
4170 util_dynarray_foreach(&rt_library->base.executables,
4171 struct anv_pipeline_executable, exe) {
4172 util_dynarray_append(&pipeline->base.executables,
4173 struct anv_pipeline_executable, *exe);
4174 }
4175
4176 pipeline->base.active_stages |= rt_library->base.active_stages;
4177 }
4178 }
4179
4180 anv_genX(device->info, ray_tracing_pipeline_emit)(pipeline);
4181
4182 ralloc_free(tmp_ctx);
4183
4184 ANV_RMV(rt_pipeline_create, device, pipeline, false);
4185
4186 *pPipeline = anv_pipeline_to_handle(&pipeline->base);
4187
4188 return pipeline->base.batch.status;
4189 }
4190
4191 VkResult
anv_CreateRayTracingPipelinesKHR(VkDevice _device,VkDeferredOperationKHR deferredOperation,VkPipelineCache pipelineCache,uint32_t createInfoCount,const VkRayTracingPipelineCreateInfoKHR * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)4192 anv_CreateRayTracingPipelinesKHR(
4193 VkDevice _device,
4194 VkDeferredOperationKHR deferredOperation,
4195 VkPipelineCache pipelineCache,
4196 uint32_t createInfoCount,
4197 const VkRayTracingPipelineCreateInfoKHR* pCreateInfos,
4198 const VkAllocationCallbacks* pAllocator,
4199 VkPipeline* pPipelines)
4200 {
4201 ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
4202
4203 VkResult result = VK_SUCCESS;
4204
4205 unsigned i;
4206 for (i = 0; i < createInfoCount; i++) {
4207 const VkPipelineCreateFlags2KHR flags =
4208 vk_rt_pipeline_create_flags(&pCreateInfos[i]);
4209 VkResult res = anv_ray_tracing_pipeline_create(_device, pipeline_cache,
4210 &pCreateInfos[i],
4211 pAllocator, &pPipelines[i]);
4212
4213 if (res != VK_SUCCESS) {
4214 result = res;
4215 if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
4216 break;
4217 pPipelines[i] = VK_NULL_HANDLE;
4218 }
4219 }
4220
4221 for (; i < createInfoCount; i++)
4222 pPipelines[i] = VK_NULL_HANDLE;
4223
4224 return result;
4225 }
4226
4227 #define WRITE_STR(field, ...) ({ \
4228 memset(field, 0, sizeof(field)); \
4229 UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
4230 assert(i > 0 && i < sizeof(field)); \
4231 })
4232
anv_GetPipelineExecutablePropertiesKHR(VkDevice device,const VkPipelineInfoKHR * pPipelineInfo,uint32_t * pExecutableCount,VkPipelineExecutablePropertiesKHR * pProperties)4233 VkResult anv_GetPipelineExecutablePropertiesKHR(
4234 VkDevice device,
4235 const VkPipelineInfoKHR* pPipelineInfo,
4236 uint32_t* pExecutableCount,
4237 VkPipelineExecutablePropertiesKHR* pProperties)
4238 {
4239 ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
4240 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
4241 pProperties, pExecutableCount);
4242
4243 util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
4244 vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
4245 gl_shader_stage stage = exe->stage;
4246 props->stages = mesa_to_vk_shader_stage(stage);
4247
4248 unsigned simd_width = exe->stats.dispatch_width;
4249 if (stage == MESA_SHADER_FRAGMENT) {
4250 if (exe->stats.max_polygons > 1)
4251 WRITE_STR(props->name, "SIMD%dx%d %s",
4252 exe->stats.max_polygons,
4253 simd_width / exe->stats.max_polygons,
4254 _mesa_shader_stage_to_string(stage));
4255 else
4256 WRITE_STR(props->name, "%s%d %s",
4257 simd_width ? "SIMD" : "vec",
4258 simd_width ? simd_width : 4,
4259 _mesa_shader_stage_to_string(stage));
4260 } else {
4261 WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
4262 }
4263 WRITE_STR(props->description, "%s%d %s shader",
4264 simd_width ? "SIMD" : "vec",
4265 simd_width ? simd_width : 4,
4266 _mesa_shader_stage_to_string(stage));
4267
4268 /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
4269 * wants a subgroup size of 1.
4270 */
4271 props->subgroupSize = MAX2(simd_width, 1);
4272 }
4273 }
4274
4275 return vk_outarray_status(&out);
4276 }
4277
4278 static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline * pipeline,uint32_t index)4279 anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
4280 {
4281 assert(index < util_dynarray_num_elements(&pipeline->executables,
4282 struct anv_pipeline_executable));
4283 return util_dynarray_element(
4284 &pipeline->executables, struct anv_pipeline_executable, index);
4285 }
4286
anv_GetPipelineExecutableStatisticsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pStatisticCount,VkPipelineExecutableStatisticKHR * pStatistics)4287 VkResult anv_GetPipelineExecutableStatisticsKHR(
4288 VkDevice device,
4289 const VkPipelineExecutableInfoKHR* pExecutableInfo,
4290 uint32_t* pStatisticCount,
4291 VkPipelineExecutableStatisticKHR* pStatistics)
4292 {
4293 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4294 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
4295 pStatistics, pStatisticCount);
4296
4297 const struct anv_pipeline_executable *exe =
4298 anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4299
4300 const struct brw_stage_prog_data *prog_data;
4301 switch (pipeline->type) {
4302 case ANV_PIPELINE_GRAPHICS:
4303 case ANV_PIPELINE_GRAPHICS_LIB: {
4304 prog_data = anv_pipeline_to_graphics_base(pipeline)->shaders[exe->stage]->prog_data;
4305 break;
4306 }
4307 case ANV_PIPELINE_COMPUTE: {
4308 prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
4309 break;
4310 }
4311 case ANV_PIPELINE_RAY_TRACING: {
4312 struct anv_shader_bin **shader =
4313 util_dynarray_element(&anv_pipeline_to_ray_tracing(pipeline)->shaders,
4314 struct anv_shader_bin *,
4315 pExecutableInfo->executableIndex);
4316 prog_data = (*shader)->prog_data;
4317 break;
4318 }
4319 default:
4320 unreachable("invalid pipeline type");
4321 }
4322
4323 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4324 WRITE_STR(stat->name, "Instruction Count");
4325 WRITE_STR(stat->description,
4326 "Number of GEN instructions in the final generated "
4327 "shader executable.");
4328 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4329 stat->value.u64 = exe->stats.instructions;
4330 }
4331
4332 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4333 WRITE_STR(stat->name, "SEND Count");
4334 WRITE_STR(stat->description,
4335 "Number of instructions in the final generated shader "
4336 "executable which access external units such as the "
4337 "constant cache or the sampler.");
4338 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4339 stat->value.u64 = exe->stats.sends;
4340 }
4341
4342 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4343 WRITE_STR(stat->name, "Loop Count");
4344 WRITE_STR(stat->description,
4345 "Number of loops (not unrolled) in the final generated "
4346 "shader executable.");
4347 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4348 stat->value.u64 = exe->stats.loops;
4349 }
4350
4351 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4352 WRITE_STR(stat->name, "Cycle Count");
4353 WRITE_STR(stat->description,
4354 "Estimate of the number of EU cycles required to execute "
4355 "the final generated executable. This is an estimate only "
4356 "and may vary greatly from actual run-time performance.");
4357 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4358 stat->value.u64 = exe->stats.cycles;
4359 }
4360
4361 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4362 WRITE_STR(stat->name, "Spill Count");
4363 WRITE_STR(stat->description,
4364 "Number of scratch spill operations. This gives a rough "
4365 "estimate of the cost incurred due to spilling temporary "
4366 "values to memory. If this is non-zero, you may want to "
4367 "adjust your shader to reduce register pressure.");
4368 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4369 stat->value.u64 = exe->stats.spills;
4370 }
4371
4372 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4373 WRITE_STR(stat->name, "Fill Count");
4374 WRITE_STR(stat->description,
4375 "Number of scratch fill operations. This gives a rough "
4376 "estimate of the cost incurred due to spilling temporary "
4377 "values to memory. If this is non-zero, you may want to "
4378 "adjust your shader to reduce register pressure.");
4379 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4380 stat->value.u64 = exe->stats.fills;
4381 }
4382
4383 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4384 WRITE_STR(stat->name, "Scratch Memory Size");
4385 WRITE_STR(stat->description,
4386 "Number of bytes of scratch memory required by the "
4387 "generated shader executable. If this is non-zero, you "
4388 "may want to adjust your shader to reduce register "
4389 "pressure.");
4390 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4391 stat->value.u64 = prog_data->total_scratch;
4392 }
4393
4394 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4395 WRITE_STR(stat->name, "Max dispatch width");
4396 WRITE_STR(stat->description,
4397 "Largest SIMD dispatch width.");
4398 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4399 /* Report the max dispatch width only on the smallest SIMD variant */
4400 if (exe->stage != MESA_SHADER_FRAGMENT || exe->stats.dispatch_width == 8)
4401 stat->value.u64 = exe->stats.max_dispatch_width;
4402 else
4403 stat->value.u64 = 0;
4404 }
4405
4406 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4407 WRITE_STR(stat->name, "Max live registers");
4408 WRITE_STR(stat->description,
4409 "Maximum number of registers used across the entire shader.");
4410 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4411 stat->value.u64 = exe->stats.max_live_registers;
4412 }
4413
4414 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4415 WRITE_STR(stat->name, "Workgroup Memory Size");
4416 WRITE_STR(stat->description,
4417 "Number of bytes of workgroup shared memory used by this "
4418 "shader including any padding.");
4419 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4420 if (gl_shader_stage_uses_workgroup(exe->stage))
4421 stat->value.u64 = prog_data->total_shared;
4422 else
4423 stat->value.u64 = 0;
4424 }
4425
4426 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4427 uint32_t hash = pipeline->type == ANV_PIPELINE_COMPUTE ?
4428 anv_pipeline_to_compute(pipeline)->source_hash :
4429 (pipeline->type == ANV_PIPELINE_GRAPHICS_LIB ||
4430 pipeline->type == ANV_PIPELINE_GRAPHICS) ?
4431 anv_pipeline_to_graphics_base(pipeline)->source_hashes[exe->stage] :
4432 0 /* No source hash for ray tracing */;
4433 WRITE_STR(stat->name, "Source hash");
4434 WRITE_STR(stat->description,
4435 "hash = 0x%08x. Hash generated from shader source.", hash);
4436 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4437 stat->value.u64 = hash;
4438 }
4439
4440 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4441 WRITE_STR(stat->name, "Non SSA regs after NIR");
4442 WRITE_STR(stat->description, "Non SSA regs after NIR translation to BRW.");
4443 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4444 stat->value.u64 = exe->stats.non_ssa_registers_after_nir;
4445 }
4446
4447 return vk_outarray_status(&out);
4448 }
4449
4450 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)4451 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
4452 const char *data)
4453 {
4454 ir->isText = VK_TRUE;
4455
4456 size_t data_len = strlen(data) + 1;
4457
4458 if (ir->pData == NULL) {
4459 ir->dataSize = data_len;
4460 return true;
4461 }
4462
4463 strncpy(ir->pData, data, ir->dataSize);
4464 if (ir->dataSize < data_len)
4465 return false;
4466
4467 ir->dataSize = data_len;
4468 return true;
4469 }
4470
anv_GetPipelineExecutableInternalRepresentationsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pInternalRepresentationCount,VkPipelineExecutableInternalRepresentationKHR * pInternalRepresentations)4471 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
4472 VkDevice device,
4473 const VkPipelineExecutableInfoKHR* pExecutableInfo,
4474 uint32_t* pInternalRepresentationCount,
4475 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
4476 {
4477 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4478 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
4479 pInternalRepresentations, pInternalRepresentationCount);
4480 bool incomplete_text = false;
4481
4482 const struct anv_pipeline_executable *exe =
4483 anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4484
4485 if (exe->nir) {
4486 vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4487 WRITE_STR(ir->name, "Final NIR");
4488 WRITE_STR(ir->description,
4489 "Final NIR before going into the back-end compiler");
4490
4491 if (!write_ir_text(ir, exe->nir))
4492 incomplete_text = true;
4493 }
4494 }
4495
4496 if (exe->disasm) {
4497 vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4498 WRITE_STR(ir->name, "GEN Assembly");
4499 WRITE_STR(ir->description,
4500 "Final GEN assembly for the generated shader binary");
4501
4502 if (!write_ir_text(ir, exe->disasm))
4503 incomplete_text = true;
4504 }
4505 }
4506
4507 return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
4508 }
4509
4510 VkResult
anv_GetRayTracingShaderGroupHandlesKHR(VkDevice _device,VkPipeline _pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4511 anv_GetRayTracingShaderGroupHandlesKHR(
4512 VkDevice _device,
4513 VkPipeline _pipeline,
4514 uint32_t firstGroup,
4515 uint32_t groupCount,
4516 size_t dataSize,
4517 void* pData)
4518 {
4519 ANV_FROM_HANDLE(anv_device, device, _device);
4520 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4521
4522 if (pipeline->type != ANV_PIPELINE_RAY_TRACING)
4523 return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4524
4525 struct anv_ray_tracing_pipeline *rt_pipeline =
4526 anv_pipeline_to_ray_tracing(pipeline);
4527
4528 assert(firstGroup + groupCount <= rt_pipeline->group_count);
4529 for (uint32_t i = 0; i < groupCount; i++) {
4530 struct anv_rt_shader_group *group = &rt_pipeline->groups[firstGroup + i];
4531 memcpy(pData, group->handle, sizeof(group->handle));
4532 pData += sizeof(group->handle);
4533 }
4534
4535 return VK_SUCCESS;
4536 }
4537
4538 VkResult
anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(VkDevice _device,VkPipeline pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4539 anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(
4540 VkDevice _device,
4541 VkPipeline pipeline,
4542 uint32_t firstGroup,
4543 uint32_t groupCount,
4544 size_t dataSize,
4545 void* pData)
4546 {
4547 ANV_FROM_HANDLE(anv_device, device, _device);
4548 unreachable("Unimplemented");
4549 return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4550 }
4551
4552 VkDeviceSize
anv_GetRayTracingShaderGroupStackSizeKHR(VkDevice device,VkPipeline _pipeline,uint32_t group,VkShaderGroupShaderKHR groupShader)4553 anv_GetRayTracingShaderGroupStackSizeKHR(
4554 VkDevice device,
4555 VkPipeline _pipeline,
4556 uint32_t group,
4557 VkShaderGroupShaderKHR groupShader)
4558 {
4559 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4560 assert(pipeline->type == ANV_PIPELINE_RAY_TRACING);
4561
4562 struct anv_ray_tracing_pipeline *rt_pipeline =
4563 anv_pipeline_to_ray_tracing(pipeline);
4564
4565 assert(group < rt_pipeline->group_count);
4566
4567 struct anv_shader_bin *bin;
4568 switch (groupShader) {
4569 case VK_SHADER_GROUP_SHADER_GENERAL_KHR:
4570 bin = rt_pipeline->groups[group].general;
4571 break;
4572
4573 case VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR:
4574 bin = rt_pipeline->groups[group].closest_hit;
4575 break;
4576
4577 case VK_SHADER_GROUP_SHADER_ANY_HIT_KHR:
4578 bin = rt_pipeline->groups[group].any_hit;
4579 break;
4580
4581 case VK_SHADER_GROUP_SHADER_INTERSECTION_KHR:
4582 bin = rt_pipeline->groups[group].intersection;
4583 break;
4584
4585 default:
4586 unreachable("Invalid VkShaderGroupShader enum");
4587 }
4588
4589 if (bin == NULL)
4590 return 0;
4591
4592 return brw_bs_prog_data_const(bin->prog_data)->max_stack_size;
4593 }
4594