1# mypy: ignore-errors 2 3import torch 4import torch.utils._pytree as pytree 5from torch.testing._utils import wrapper_set_seed 6from functorch.compile import compiled_function, min_cut_rematerialization_partition, nop 7from .make_fx import randomize 8import re 9 10 11class assert_raises_regex: 12 def __init__(self, exception_cls, regex): 13 self.exception_cls = exception_cls 14 self.regex = regex 15 16 def __enter__(self): 17 pass 18 19 def __exit__(self, exc_type, exc_val, traceback): 20 if exc_type == self.exception_cls: 21 msg = str(exc_val) 22 if not re.search(self.regex, msg): 23 raise AssertionError( 24 f"Expected exception to match regex. regex: {self.regex}, exception: {msg}") 25 return True # Squashes the exception 26 if exc_type is not None: 27 raise AssertionError( 28 f"Expected {self.exception_cls} to be raised, instead got exception {exc_type}") 29 raise AssertionError("Expected exception to be raised but none was") 30 31 32def aot_autograd_check( 33 func, 34 args, 35 kwargs, 36 dynamic, 37 assert_raises_regex_fn=assert_raises_regex, 38 assert_equals_fn=torch.testing._comparison.assert_close, 39 check_gradients=True, 40 try_check_data_specialization=False): 41 """Compares func(*args, **kwargs) in eager-mode to under AOTAutograd. 42 43 Compares outputs and (if check_gradients=True) gradients produced by 44 AOTAutograd against eager-mode PyTorch. 45 46 We assume that func(*args, **kwargs) succeeds in eager-mode PyTorch. 47 48 """ 49 flat_args, args_spec = pytree.tree_flatten((args, kwargs)) 50 args_is_tensor = [isinstance(arg, torch.Tensor) for arg in flat_args] 51 args = [arg for arg in flat_args if isinstance(arg, torch.Tensor)] 52 53 # We construct a new function that only accepts Tensors as inputs 54 def func_no_tensors(args): 55 reconstructed_flat_args = [] 56 args = iter(args) 57 for v in flat_args: 58 if isinstance(v, torch.Tensor): 59 reconstructed_flat_args.append(next(args)) 60 else: 61 reconstructed_flat_args.append(v) 62 63 c_args, c_kwargs = pytree.tree_unflatten(reconstructed_flat_args, args_spec) 64 return func(*c_args, **c_kwargs) 65 66 compiled_f = compiled_function( 67 func_no_tensors, nop, nop, dynamic=dynamic, partition_fn=min_cut_rematerialization_partition) 68 69 out = wrapper_set_seed(func_no_tensors, args) 70 if check_gradients == "auto": 71 any_tensor_requires_grad = pytree.tree_any_only(torch.Tensor, lambda x: x.requires_grad, args) 72 any_output_requires_grad = pytree.tree_any_only(torch.Tensor, lambda x: x.requires_grad, out) 73 check_gradients = any_tensor_requires_grad and any_output_requires_grad 74 if not check_gradients: 75 compiled_out = wrapper_set_seed(compiled_f, args) 76 assert_equals_fn(compiled_out, out, msg=outputs_msg) 77 return 78 _test_aot_autograd_forwards_backwards_helper( 79 func_no_tensors, compiled_f, args, assert_raises_regex_fn, assert_equals_fn, 80 try_check_data_specialization) 81 82outputs_msg = ( 83 "Outputs of the operator are different in eager-mode PyTorch vs " 84 "AOTAutograd. This means the operator will have incorrect output " 85 "underneath torch.compile. This could be because the operator's " 86 "implementation not traceable or that there is a bug in AOTAutograd." 87) 88 89 90def _test_aot_autograd_forwards_backwards_helper( 91 f, compiled_f, args, assert_raises_regex_fn, assert_equals_fn, 92 try_check_data_specialization): 93 # Verify grads are equal between compiled and non-compiled versions of f. 94 95 def call_forwards_backwards(f, args): 96 flat_args = pytree.arg_tree_leaves(*args) 97 diff_args = [arg for arg in flat_args if isinstance(arg, torch.Tensor) and 98 arg.requires_grad] 99 out = wrapper_set_seed(f, args) 100 flat_out = pytree.tree_leaves(out) 101 102 sm = 0 103 for i in flat_out: 104 if isinstance(i, torch.Tensor): 105 # We need to call .abs() because it is possible that the output of the 106 # operator is a complex Tensor and autograd will yell at autograd.grad 107 # on a complex Tensor unless we manually provide the grad_output flag. 108 sm += i.sum().abs() 109 assert isinstance(sm, torch.Tensor) 110 return out, torch.autograd.grad(sm, diff_args, allow_unused=True) 111 112 def check(args, ignore_failure=False): 113 try: 114 orig_out, orig_grad = call_forwards_backwards(f, args) 115 except Exception: 116 if ignore_failure: 117 return 118 raise 119 120 # See https://github.com/pytorch/pytorch/pull/98960#issuecomment-1505962215 121 tensor_args = [x for x in pytree.tree_flatten(args)[0] if isinstance(x, torch.Tensor)] 122 any_non_leaves = any(x.grad_fn is not None for x in tensor_args) 123 if all(x is None for x in orig_grad) and any_non_leaves: 124 with assert_raises_regex_fn(RuntimeError, 'does not require grad and does not have a grad_fn'): 125 call_forwards_backwards(compiled_f, args) 126 return 127 128 msg = ( 129 "Gradients of the operator are different in eager-mode PyTorch vs " 130 "AOTAutograd. This means the operator will have incorrect gradients " 131 "underneath torch.compile. This could be because the operator's " 132 "backward is incorrectly registered or not traceable or that there " 133 "is a bug in AOTAutograd." 134 ) 135 136 compiled_out, compiled_grad = call_forwards_backwards(compiled_f, args) 137 assert_equals_fn(compiled_out, orig_out, msg=outputs_msg) 138 assert_equals_fn(compiled_grad, orig_grad, msg=msg) 139 140 check(args, ignore_failure=False) 141 142 # Randomize the data and run the traced graph with it, to catch bugs 143 # where we may have baked in Tensor data into the trace. 144 # This is not guaranteed to succeed, because `f` might have preconditions 145 # on the values of the inputs, so we just ignore if this test fails. 146 if try_check_data_specialization: 147 args = randomize(args) 148 check(args, ignore_failure=True) 149