• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2023 The Fuchsia Authors
2 //
3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6 // This file may not be copied, modified, or distributed except according to
7 // those terms.
8 
9 use core::{
10     fmt::{Debug, Formatter},
11     marker::PhantomData,
12     ptr::NonNull,
13 };
14 
15 use super::{inner::PtrInner, invariant::*};
16 use crate::{
17     util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance},
18     AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
19 };
20 
21 /// Module used to gate access to [`Ptr`]'s fields.
22 mod def {
23     use super::*;
24 
25     #[cfg(doc)]
26     use super::super::invariant;
27 
28     /// A raw pointer with more restrictions.
29     ///
30     /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
31     /// following ways (note that these requirements only hold of non-zero-sized
32     /// referents):
33     /// - It must derive from a valid allocation.
34     /// - It must reference a byte range which is contained inside the
35     ///   allocation from which it derives.
36     ///   - As a consequence, the byte range it references must have a size
37     ///     which does not overflow `isize`.
38     ///
39     /// Depending on how `Ptr` is parameterized, it may have additional
40     /// invariants:
41     /// - `ptr` conforms to the aliasing invariant of
42     ///   [`I::Aliasing`](invariant::Aliasing).
43     /// - `ptr` conforms to the alignment invariant of
44     ///   [`I::Alignment`](invariant::Alignment).
45     /// - `ptr` conforms to the validity invariant of
46     ///   [`I::Validity`](invariant::Validity).
47     ///
48     /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
49     ///
50     /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
51     pub struct Ptr<'a, T, I>
52     where
53         T: ?Sized,
54         I: Invariants,
55     {
56         /// # Invariants
57         ///
58         /// 0. `ptr` conforms to the aliasing invariant of
59         ///    [`I::Aliasing`](invariant::Aliasing).
60         /// 1. `ptr` conforms to the alignment invariant of
61         ///    [`I::Alignment`](invariant::Alignment).
62         /// 2. `ptr` conforms to the validity invariant of
63         ///    [`I::Validity`](invariant::Validity).
64         // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
65         ptr: PtrInner<'a, T>,
66         _invariants: PhantomData<I>,
67     }
68 
69     impl<'a, T, I> Ptr<'a, T, I>
70     where
71         T: 'a + ?Sized,
72         I: Invariants,
73     {
74         /// Constructs a `Ptr` from a [`NonNull`].
75         ///
76         /// # Safety
77         ///
78         /// The caller promises that:
79         ///
80         /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
81         ///    some valid Rust allocation, `A`.
82         /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
83         ///    provenance for `A`.
84         /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
85         ///    byte range which is entirely contained in `A`.
86         /// 3. `ptr` addresses a byte range whose length fits in an `isize`.
87         /// 4. `ptr` addresses a byte range which does not wrap around the
88         ///    address space.
89         /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
90         ///    live for at least `'a`.
91         /// 6. `ptr` conforms to the aliasing invariant of
92         ///    [`I::Aliasing`](invariant::Aliasing).
93         /// 7. `ptr` conforms to the alignment invariant of
94         ///    [`I::Alignment`](invariant::Alignment).
95         /// 8. `ptr` conforms to the validity invariant of
96         ///    [`I::Validity`](invariant::Validity).
new(ptr: NonNull<T>) -> Ptr<'a, T, I>97         pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
98             // SAFETY: The caller has promised (in 0 - 5) to satisfy all safety
99             // invariants of `PtrInner::new`.
100             let ptr = unsafe { PtrInner::new(ptr) };
101             // SAFETY: The caller has promised (in 6 - 8) to satisfy all safety
102             // invariants of `Ptr`.
103             Self { ptr, _invariants: PhantomData }
104         }
105 
106         /// Constructs a new `Ptr` from a [`PtrInner`].
107         ///
108         /// # Safety
109         ///
110         /// The caller promises that:
111         ///
112         /// 0. `ptr` conforms to the aliasing invariant of
113         ///    [`I::Aliasing`](invariant::Aliasing).
114         /// 1. `ptr` conforms to the alignment invariant of
115         ///    [`I::Alignment`](invariant::Alignment).
116         /// 2. `ptr` conforms to the validity invariant of
117         ///    [`I::Validity`](invariant::Validity).
from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I>118         pub(super) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
119             // SAFETY: The caller has promised to satisfy all safety invariants
120             // of `Ptr`.
121             Self { ptr, _invariants: PhantomData }
122         }
123 
124         /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
125         ///
126         /// Note that this method does not consume `self`. The caller should
127         /// watch out for `unsafe` code which uses the returned value in a way
128         /// that violates the safety invariants of `self`.
as_inner(&self) -> PtrInner<'a, T>129         pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
130             self.ptr
131         }
132     }
133 }
134 
135 #[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
136 pub use def::Ptr;
137 
138 /// External trait implementations on [`Ptr`].
139 mod _external {
140     use super::*;
141 
142     /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
143     /// (besides aliasing) are unaffected by the number of references that exist
144     /// to `Ptr`'s referent.
145     impl<'a, T, I> Copy for Ptr<'a, T, I>
146     where
147         T: 'a + ?Sized,
148         I: Invariants<Aliasing = Shared>,
149     {
150     }
151 
152     /// SAFETY: Shared pointers are safely `Clone`. `Ptr`'s other invariants
153     /// (besides aliasing) are unaffected by the number of references that exist
154     /// to `Ptr`'s referent.
155     impl<'a, T, I> Clone for Ptr<'a, T, I>
156     where
157         T: 'a + ?Sized,
158         I: Invariants<Aliasing = Shared>,
159     {
160         #[inline]
clone(&self) -> Self161         fn clone(&self) -> Self {
162             *self
163         }
164     }
165 
166     impl<'a, T, I> Debug for Ptr<'a, T, I>
167     where
168         T: 'a + ?Sized,
169         I: Invariants,
170     {
171         #[inline]
fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result172         fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
173             self.as_inner().as_non_null().fmt(f)
174         }
175     }
176 }
177 
178 /// Methods for converting to and from `Ptr` and Rust's safe reference types.
179 mod _conversions {
180     use super::*;
181 
182     /// `&'a T` → `Ptr<'a, T>`
183     impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
184     where
185         T: 'a + ?Sized,
186     {
187         /// Constructs a `Ptr` from a shared reference.
188         #[doc(hidden)]
189         #[inline]
from_ref(ptr: &'a T) -> Self190         pub fn from_ref(ptr: &'a T) -> Self {
191             let inner = PtrInner::from_ref(ptr);
192             // SAFETY:
193             // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
194             //    invariant of `Shared`.
195             // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
196             //    invariant of `Aligned`.
197             // 2. `ptr`, by invariant on `&'a T`, conforms to the validity
198             //    invariant of `Valid`.
199             unsafe { Self::from_inner(inner) }
200         }
201     }
202 
203     /// `&'a mut T` → `Ptr<'a, T>`
204     impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
205     where
206         T: 'a + ?Sized,
207     {
208         /// Constructs a `Ptr` from an exclusive reference.
209         #[inline]
from_mut(ptr: &'a mut T) -> Self210         pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
211             let inner = PtrInner::from_mut(ptr);
212             // SAFETY:
213             // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
214             //    invariant of `Exclusive`.
215             // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
216             //    invariant of `Aligned`.
217             // 2. `ptr`, by invariant on `&'a mut T`, conforms to the validity
218             //    invariant of `Valid`.
219             unsafe { Self::from_inner(inner) }
220         }
221     }
222 
223     /// `Ptr<'a, T>` → `&'a T`
224     impl<'a, T, I> Ptr<'a, T, I>
225     where
226         T: 'a + ?Sized,
227         I: Invariants<Alignment = Aligned, Validity = Valid>,
228         I::Aliasing: Reference,
229     {
230         /// Converts `self` to a shared reference.
231         // This consumes `self`, not `&self`, because `self` is, logically, a
232         // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
233         // this doesn't prevent the caller from still using the pointer after
234         // calling `as_ref`.
235         #[allow(clippy::wrong_self_convention)]
as_ref(self) -> &'a T236         pub(crate) fn as_ref(self) -> &'a T {
237             let raw = self.as_inner().as_non_null();
238             // SAFETY: This invocation of `NonNull::as_ref` satisfies its
239             // documented safety preconditions:
240             //
241             // 1. The pointer is properly aligned. This is ensured by-contract
242             //    on `Ptr`, because the `I::Alignment` is `Aligned`.
243             //
244             // 2. If the pointer's referent is not zero-sized, then the pointer
245             //    must be “dereferenceable” in the sense defined in the module
246             //    documentation; i.e.:
247             //
248             //    > The memory range of the given size starting at the pointer
249             //    > must all be within the bounds of a single allocated object.
250             //    > [2]
251             //
252             //   This is ensured by contract on all `PtrInner`s.
253             //
254             // 3. The pointer must point to an initialized instance of `T`. This
255             //    is ensured by-contract on `Ptr`, because the `I::Validity` is
256             //    `Valid`.
257             //
258             // 4. You must enforce Rust’s aliasing rules. This is ensured by
259             //    contract on `Ptr`, because `I::Aliasing: Reference`. Either it
260             //    is `Shared` or `Exclusive`. If it is `Shared`, other
261             //    references may not mutate the referent outside of
262             //    `UnsafeCell`s.
263             //
264             // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
265             // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
266             unsafe { raw.as_ref() }
267         }
268     }
269 
270     impl<'a, T, I> Ptr<'a, T, I>
271     where
272         T: 'a + ?Sized,
273         I: Invariants,
274         I::Aliasing: Reference,
275     {
276         /// Reborrows `self`, producing another `Ptr`.
277         ///
278         /// Since `self` is borrowed immutably, this prevents any mutable
279         /// methods from being called on `self` as long as the returned `Ptr`
280         /// exists.
281         #[doc(hidden)]
282         #[inline]
283         #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
reborrow<'b>(&'b mut self) -> Ptr<'b, T, I> where 'a: 'b,284         pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
285         where
286             'a: 'b,
287         {
288             // SAFETY: The following all hold by invariant on `self`, and thus
289             // hold of `ptr = self.as_inner()`:
290             // 0. SEE BELOW.
291             // 1. `ptr` conforms to the alignment invariant of
292             //   [`I::Alignment`](invariant::Alignment).
293             // 2. `ptr` conforms to the validity invariant of
294             //   [`I::Validity`](invariant::Validity).
295             //
296             // For aliasing (6 above), since `I::Aliasing: Reference`,
297             // there are two cases for `I::Aliasing`:
298             // - For `invariant::Shared`: `'a` outlives `'b`, and so the
299             //   returned `Ptr` does not permit accessing the referent any
300             //   longer than is possible via `self`. For shared aliasing, it is
301             //   sound for multiple `Ptr`s to exist simultaneously which
302             //   reference the same memory, so creating a new one is not
303             //   problematic.
304             // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
305             //   return a `Ptr` with lifetime `'b`, `self` is inaccessible to
306             //   the caller for the lifetime `'b` - in other words, `self` is
307             //   inaccessible to the caller as long as the returned `Ptr`
308             //   exists. Since `self` is an exclusive `Ptr`, no other live
309             //   references or `Ptr`s may exist which refer to the same memory
310             //   while `self` is live. Thus, as long as the returned `Ptr`
311             //   exists, no other references or `Ptr`s which refer to the same
312             //   memory may be live.
313             unsafe { Ptr::from_inner(self.as_inner()) }
314         }
315     }
316 
317     /// `Ptr<'a, T>` → `&'a mut T`
318     impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
319     where
320         T: 'a + ?Sized,
321     {
322         /// Converts `self` to a mutable reference.
323         #[allow(clippy::wrong_self_convention)]
as_mut(self) -> &'a mut T324         pub(crate) fn as_mut(self) -> &'a mut T {
325             let mut raw = self.as_inner().as_non_null();
326             // SAFETY: This invocation of `NonNull::as_mut` satisfies its
327             // documented safety preconditions:
328             //
329             // 1. The pointer is properly aligned. This is ensured by-contract
330             //    on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
331             //
332             // 2. If the pointer's referent is not zero-sized, then the pointer
333             //    must be “dereferenceable” in the sense defined in the module
334             //    documentation; i.e.:
335             //
336             //    > The memory range of the given size starting at the pointer
337             //    > must all be within the bounds of a single allocated object.
338             //    > [2]
339             //
340             //   This is ensured by contract on all `PtrInner`s.
341             //
342             // 3. The pointer must point to an initialized instance of `T`. This
343             //    is ensured by-contract on `Ptr`, because the validity
344             //    invariant is `Valid`.
345             //
346             // 4. You must enforce Rust’s aliasing rules. This is ensured by
347             //    contract on `Ptr`, because the `ALIASING_INVARIANT` is
348             //    `Exclusive`.
349             //
350             // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
351             // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
352             unsafe { raw.as_mut() }
353         }
354     }
355 
356     /// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>`
357     impl<'a, T, I> Ptr<'a, T, I>
358     where
359         T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized,
360         I: Invariants,
361     {
362         /// Converts `self` to a transparent wrapper type into a `Ptr` to the
363         /// wrapped inner type.
transparent_wrapper_into_inner( self, ) -> Ptr< 'a, T::Inner, ( I::Aliasing, <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied, <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied, ), >364         pub(crate) fn transparent_wrapper_into_inner(
365             self,
366         ) -> Ptr<
367             'a,
368             T::Inner,
369             (
370                 I::Aliasing,
371                 <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied,
372                 <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied,
373             ),
374         > {
375             // SAFETY:
376             // - By invariant on `TransparentWrapper::cast_into_inner`:
377             //   - This cast preserves address and referent size, and thus the
378             //     returned pointer addresses the same bytes as `p`
379             //   - This cast preserves provenance
380             // - By invariant on `TransparentWrapper<UnsafeCellVariance =
381             //   Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same
382             //   byte ranges. Since `p` and the returned pointer address the
383             //   same byte range, they refer to `UnsafeCell`s at the same byte
384             //   ranges.
385             // - By invariant on `TransparentWrapper`, since `self` satisfies
386             //   the validity invariant `I::Validity`, the returned pointer (of
387             //   type `T::Inner`) satisfies the given "applied" validity
388             //   invariant.
389             let ptr = unsafe { self.transmute_unchecked(|p| T::cast_into_inner(p)) };
390             // SAFETY: By invariant on `TransparentWrapper`, since `self`
391             // satisfies the alignment invariant `I::Alignment`, the returned
392             // pointer (of type `T::Inner`) satisfies the given "applied"
393             // alignment invariant.
394             unsafe { ptr.assume_alignment() }
395         }
396     }
397 
398     /// `Ptr<'a, T>` → `Ptr<'a, U>`
399     impl<'a, T: ?Sized, I> Ptr<'a, T, I>
400     where
401         I: Invariants,
402     {
403         /// Casts to a different (unsized) target type without checking interior
404         /// mutability.
405         ///
406         /// Callers should prefer [`cast_unsized`] where possible.
407         ///
408         /// [`cast_unsized`]: Ptr::cast_unsized
409         ///
410         /// # Safety
411         ///
412         /// The caller promises that `u = cast(p)` is a pointer cast with the
413         /// following properties:
414         /// - `u` addresses a subset of the bytes addressed by `p`
415         /// - `u` has the same provenance as `p`
416         /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
417         ///   at ranges identical to those at which `UnsafeCell`s exist in `*p`
418         /// - It is sound to transmute a pointer of type `T` with aliasing
419         ///   `I::Aliasing` and validity `I::Validity` to a pointer of type `U`
420         ///   with aliasing `I::Aliasing` and validity `V`. This is a subtle
421         ///   soundness requirement that is a function of `T`, `U`,
422         ///   `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
423         ///   presence, absence, or specific location of `UnsafeCell`s in `T`
424         ///   and/or `U`.
425         #[doc(hidden)]
426         #[inline]
transmute_unchecked<U: ?Sized, V, F>( self, cast: F, ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)> where V: Validity, F: FnOnce(*mut T) -> *mut U,427         pub unsafe fn transmute_unchecked<U: ?Sized, V, F>(
428             self,
429             cast: F,
430         ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
431         where
432             V: Validity,
433             F: FnOnce(*mut T) -> *mut U,
434         {
435             let ptr = cast(self.as_inner().as_non_null().as_ptr());
436 
437             // SAFETY: Caller promises that `cast` returns a pointer whose
438             // address is in the range of `self.as_inner().as_non_null()`'s referent. By
439             // invariant, none of these addresses are null.
440             let ptr = unsafe { NonNull::new_unchecked(ptr) };
441 
442             // SAFETY:
443             //
444             // Lemma 1: `ptr` has the same provenance as `self`. The caller
445             // promises that `cast` preserves provenance, and we call it with
446             // `self.as_inner().as_non_null()`.
447             //
448             // 0. By invariant,  if `self`'s referent is not zero sized, then
449             //    `self` is derived from some valid Rust allocation, `A`. By
450             //    Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr`
451             //    is derived from `A`.
452             // 1. By invariant, if `self`'s referent is not zero sized, then
453             //    `self` has valid provenance for `A`. By Lemma 1, so does
454             //    `ptr`.
455             // 2. By invariant on `self` and caller precondition, if `ptr`'s
456             //    referent is not zero sized, then `ptr` addresses a byte range
457             //    which is entirely contained in `A`.
458             // 3. By invariant on `self` and caller precondition, `ptr`
459             //    addresses a byte range whose length fits in an `isize`.
460             // 4. By invariant on `self` and caller precondition, `ptr`
461             //    addresses a byte range which does not wrap around the address
462             //    space.
463             // 5. By invariant on `self`, if `self`'s referent is not zero
464             //    sized, then `A` is guaranteed to live for at least `'a`.
465             // 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
466             //    - `Exclusive`: `self` is the only `Ptr` or reference which is
467             //      permitted to read or modify the referent for the lifetime
468             //      `'a`. Since we consume `self` by value, the returned pointer
469             //      remains the only `Ptr` or reference which is permitted to
470             //      read or modify the referent for the lifetime `'a`.
471             //    - `Shared`: Since `self` has aliasing `Shared`, we know that
472             //      no other code may mutate the referent during the lifetime
473             //      `'a`, except via `UnsafeCell`s. The caller promises that
474             //      `UnsafeCell`s cover the same byte ranges in `*self` and
475             //      `*ptr`. For each byte in the referent, there are two cases:
476             //      - If the byte is not covered by an `UnsafeCell` in `*ptr`,
477             //        then it is not covered in `*self`. By invariant on `self`,
478             //        it will not be mutated during `'a`, as required by the
479             //        constructed pointer. Similarly, the returned pointer will
480             //        not permit any mutations to these locations, as required
481             //        by the invariant on `self`.
482             //      - If the byte is covered by an `UnsafeCell` in `*ptr`, then
483             //        the returned pointer's invariants do not assume that the
484             //        byte will not be mutated during `'a`. While the returned
485             //        pointer will permit mutation of this byte during `'a`, by
486             //        invariant on `self`, no other code assumes that this will
487             //        not happen.
488             //    - `Inaccessible`: There are no restrictions we need to uphold.
489             // 7. `ptr` trivially satisfies the alignment invariant `Unaligned`.
490             // 8. The caller promises that `ptr` conforms to the validity
491             //    invariant `V` with respect to its referent type, `U`.
492             unsafe { Ptr::new(ptr) }
493         }
494     }
495 
496     /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
497     impl<'a, T, I> Ptr<'a, T, I>
498     where
499         I: Invariants,
500     {
501         /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
502         /// `Unalign<T>`.
into_unalign( self, ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)>503         pub(crate) fn into_unalign(
504             self,
505         ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
506             // SAFETY:
507             // - This cast preserves provenance.
508             // - This cast preserves address. `Unalign<T>` promises to have the
509             //   same size as `T`, and so the cast returns a pointer addressing
510             //   the same byte range as `p`.
511             // - By the same argument, the returned pointer refers to
512             //   `UnsafeCell`s at the same locations as `p`.
513             // - `Unalign<T>` promises to have the same bit validity as `T`
514             let ptr = unsafe {
515                 #[allow(clippy::as_conversions)]
516                 self.transmute_unchecked(|p: *mut T| p as *mut crate::Unalign<T>)
517             };
518             ptr.bikeshed_recall_aligned()
519         }
520     }
521 }
522 
523 /// State transitions between invariants.
524 mod _transitions {
525     use super::*;
526 
527     impl<'a, T, I> Ptr<'a, T, I>
528     where
529         T: 'a + ?Sized,
530         I: Invariants,
531     {
532         /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
533         /// `Exclusive` aliasing, or generates a compile-time assertion failure.
534         ///
535         /// This allows code which is generic over aliasing to down-cast to a
536         /// concrete aliasing.
537         ///
538         /// [`Exclusive`]: crate::pointer::invariant::Exclusive
539         #[inline]
into_exclusive_or_pme( self, ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)>540         pub(crate) fn into_exclusive_or_pme(
541             self,
542         ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
543             // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
544             // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
545             // behavior because doing it that way causes rustdoc to fail while
546             // attempting to document hidden items (since it evaluates the
547             // constant - and thus panics).
548             trait AliasingExt: Aliasing {
549                 const IS_EXCL: bool;
550             }
551 
552             impl<A: Aliasing> AliasingExt for A {
553                 const IS_EXCL: bool = {
554                     const_assert!(Self::IS_EXCLUSIVE);
555                     true
556                 };
557             }
558 
559             assert!(I::Aliasing::IS_EXCL);
560 
561             // SAFETY: We've confirmed that `self` already has the aliasing
562             // `Exclusive`. If it didn't, either the preceding assert would fail
563             // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
564             // sure that it's guaranteed to fail const eval, but the `assert!`
565             // provides a backstop in case that doesn't work.
566             unsafe { self.assume_exclusive() }
567         }
568 
569         /// Assumes that `self` satisfies the invariants `H`.
570         ///
571         /// # Safety
572         ///
573         /// The caller promises that `self` satisfies the invariants `H`.
assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H>574         unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
575             // SAFETY: The caller has promised to satisfy all parameterized
576             // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
577             // by-contract by the source `Ptr`.
578             unsafe { Ptr::from_inner(self.as_inner()) }
579         }
580 
581         /// Helps the type system unify two distinct invariant types which are
582         /// actually the same.
unify_invariants< H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>, >( self, ) -> Ptr<'a, T, H>583         pub(crate) fn unify_invariants<
584             H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
585         >(
586             self,
587         ) -> Ptr<'a, T, H> {
588             // SAFETY: The associated type bounds on `H` ensure that the
589             // invariants are unchanged.
590             unsafe { self.assume_invariants::<H>() }
591         }
592 
593         /// Assumes that `self` satisfies the aliasing requirement of `A`.
594         ///
595         /// # Safety
596         ///
597         /// The caller promises that `self` satisfies the aliasing requirement
598         /// of `A`.
599         #[inline]
assume_aliasing<A: Aliasing>( self, ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)>600         pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
601             self,
602         ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
603             // SAFETY: The caller promises that `self` satisfies the aliasing
604             // requirements of `A`.
605             unsafe { self.assume_invariants() }
606         }
607 
608         /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
609         ///
610         /// # Safety
611         ///
612         /// The caller promises that `self` satisfies the aliasing requirement
613         /// of `Exclusive`.
614         ///
615         /// [`Exclusive`]: crate::pointer::invariant::Exclusive
616         #[inline]
assume_exclusive( self, ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)>617         pub(crate) unsafe fn assume_exclusive(
618             self,
619         ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
620             // SAFETY: The caller promises that `self` satisfies the aliasing
621             // requirements of `Exclusive`.
622             unsafe { self.assume_aliasing::<Exclusive>() }
623         }
624 
625         /// Assumes that `self`'s referent is validly-aligned for `T` if
626         /// required by `A`.
627         ///
628         /// # Safety
629         ///
630         /// The caller promises that `self`'s referent conforms to the alignment
631         /// invariant of `T` if required by `A`.
632         #[inline]
assume_alignment<A: Alignment>( self, ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)>633         pub(crate) unsafe fn assume_alignment<A: Alignment>(
634             self,
635         ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
636             // SAFETY: The caller promises that `self`'s referent is
637             // well-aligned for `T` if required by `A` .
638             unsafe { self.assume_invariants() }
639         }
640 
641         /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
642         /// on success.
bikeshed_try_into_aligned( self, ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>> where T: Sized,643         pub(crate) fn bikeshed_try_into_aligned(
644             self,
645         ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
646         where
647             T: Sized,
648         {
649             if let Err(err) =
650                 crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
651             {
652                 return Err(err.with_src(self));
653             }
654 
655             // SAFETY: We just checked the alignment.
656             Ok(unsafe { self.assume_alignment::<Aligned>() })
657         }
658 
659         /// Recalls that `self`'s referent is validly-aligned for `T`.
660         #[inline]
661         // TODO(#859): Reconsider the name of this method before making it
662         // public.
bikeshed_recall_aligned( self, ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)> where T: crate::Unaligned,663         pub(crate) fn bikeshed_recall_aligned(
664             self,
665         ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
666         where
667             T: crate::Unaligned,
668         {
669             // SAFETY: The bound `T: Unaligned` ensures that `T` has no
670             // non-trivial alignment requirement.
671             unsafe { self.assume_alignment::<Aligned>() }
672         }
673 
674         /// Assumes that `self`'s referent conforms to the validity requirement
675         /// of `V`.
676         ///
677         /// # Safety
678         ///
679         /// The caller promises that `self`'s referent conforms to the validity
680         /// requirement of `V`.
681         #[doc(hidden)]
682         #[must_use]
683         #[inline]
assume_validity<V: Validity>( self, ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>684         pub unsafe fn assume_validity<V: Validity>(
685             self,
686         ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
687             // SAFETY: The caller promises that `self`'s referent conforms to
688             // the validity requirement of `V`.
689             unsafe { self.assume_invariants() }
690         }
691 
692         /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
693         ///
694         /// # Safety
695         ///
696         /// The caller promises to uphold the safety preconditions of
697         /// `self.assume_validity<invariant::Initialized>()`.
698         #[doc(hidden)]
699         #[must_use]
700         #[inline]
assume_initialized( self, ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>701         pub unsafe fn assume_initialized(
702             self,
703         ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
704             // SAFETY: The caller has promised to uphold the safety
705             // preconditions.
706             unsafe { self.assume_validity::<Initialized>() }
707         }
708 
709         /// A shorthand for `self.assume_validity<Valid>()`.
710         ///
711         /// # Safety
712         ///
713         /// The caller promises to uphold the safety preconditions of
714         /// `self.assume_validity<Valid>()`.
715         #[doc(hidden)]
716         #[must_use]
717         #[inline]
assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>718         pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
719             // SAFETY: The caller has promised to uphold the safety
720             // preconditions.
721             unsafe { self.assume_validity::<Valid>() }
722         }
723 
724         /// Recalls that `self`'s referent is initialized.
725         #[doc(hidden)]
726         #[must_use]
727         #[inline]
728         // TODO(#859): Reconsider the name of this method before making it
729         // public.
bikeshed_recall_initialized_from_bytes( self, ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> where T: crate::IntoBytes + crate::FromBytes, I: Invariants<Validity = Valid>,730         pub fn bikeshed_recall_initialized_from_bytes(
731             self,
732         ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
733         where
734             T: crate::IntoBytes + crate::FromBytes,
735             I: Invariants<Validity = Valid>,
736         {
737             // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
738             // is entirely initialized. `I: Invariants<Validity = Valid>`
739             // ensures that `self`'s referent is a bit-valid `T`. Producing an
740             // `Initialized` `Ptr` may permit the caller to write arbitrary
741             // initialized bytes to the referent (depending on aliasing mode and
742             // presence of `UnsafeCell`s). `T: FromBytes` ensures that any byte
743             // sequence written will remain a bit-valid `T`.
744             unsafe { self.assume_initialized() }
745         }
746 
747         /// Recalls that `self`'s referent is initialized.
748         #[doc(hidden)]
749         #[must_use]
750         #[inline]
751         // TODO(#859): Reconsider the name of this method before making it
752         // public.
bikeshed_recall_initialized_immutable( self, ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)> where T: crate::IntoBytes + crate::Immutable, I: Invariants<Aliasing = Shared, Validity = Valid>,753         pub fn bikeshed_recall_initialized_immutable(
754             self,
755         ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
756         where
757             T: crate::IntoBytes + crate::Immutable,
758             I: Invariants<Aliasing = Shared, Validity = Valid>,
759         {
760             // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
761             // is entirely initialized. `I: Invariants<Validity = Valid>`
762             // ensures that `self`'s referent is a bit-valid `T`. Since `T:
763             // Immutable` and the aliasing is `Shared`, the resulting `Ptr`
764             // cannot be used to modify the referent, and so it's acceptable
765             // that going from `Valid` to `Initialized` may increase the set of
766             // values allowed in the referent.
767             unsafe { self.assume_initialized() }
768         }
769 
770         /// Recalls that `self`'s referent is bit-valid for `T`.
771         #[doc(hidden)]
772         #[must_use]
773         #[inline]
774         // TODO(#859): Reconsider the name of this method before making it
775         // public.
bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> where T: crate::FromBytes, I: Invariants<Validity = Initialized>,776         pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>
777         where
778             T: crate::FromBytes,
779             I: Invariants<Validity = Initialized>,
780         {
781             // SAFETY: The bound `T: FromBytes` ensures that any initialized
782             // sequence of bytes is bit-valid for `T`. `I: Invariants<Validity =
783             // invariant::Initialized>` ensures that all of the referent bytes
784             // are initialized.
785             unsafe { self.assume_valid() }
786         }
787 
788         /// Checks that `self`'s referent is validly initialized for `T`,
789         /// returning a `Ptr` with `Valid` on success.
790         ///
791         /// # Panics
792         ///
793         /// This method will panic if
794         /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
795         ///
796         /// # Safety
797         ///
798         /// On error, unsafe code may rely on this method's returned
799         /// `ValidityError` containing `self`.
800         #[inline]
try_into_valid<R>( mut self, ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>> where T: TryFromBytes + Read<I::Aliasing, R>, I::Aliasing: Reference, I: Invariants<Validity = Initialized>,801         pub(crate) fn try_into_valid<R>(
802             mut self,
803         ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
804         where
805             T: TryFromBytes + Read<I::Aliasing, R>,
806             I::Aliasing: Reference,
807             I: Invariants<Validity = Initialized>,
808         {
809             // This call may panic. If that happens, it doesn't cause any soundness
810             // issues, as we have not generated any invalid state which we need to
811             // fix before returning.
812             if T::is_bit_valid(self.reborrow().forget_aligned()) {
813                 // SAFETY: If `T::is_bit_valid`, code may assume that `self`
814                 // contains a bit-valid instance of `Self`.
815                 Ok(unsafe { self.assume_valid() })
816             } else {
817                 Err(ValidityError::new(self))
818             }
819         }
820 
821         /// Forgets that `self`'s referent is validly-aligned for `T`.
822         #[doc(hidden)]
823         #[must_use]
824         #[inline]
forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)>825         pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
826             // SAFETY: `Unaligned` is less restrictive than `Aligned`.
827             unsafe { self.assume_invariants() }
828         }
829     }
830 }
831 
832 /// Casts of the referent type.
833 mod _casts {
834     use super::*;
835 
836     impl<'a, T, I> Ptr<'a, T, I>
837     where
838         T: 'a + ?Sized,
839         I: Invariants,
840     {
841         /// Casts to a different (unsized) target type without checking interior
842         /// mutability.
843         ///
844         /// Callers should prefer [`cast_unsized`] where possible.
845         ///
846         /// [`cast_unsized`]: Ptr::cast_unsized
847         ///
848         /// # Safety
849         ///
850         /// The caller promises that `u = cast(p)` is a pointer cast with the
851         /// following properties:
852         /// - `u` addresses a subset of the bytes addressed by `p`
853         /// - `u` has the same provenance as `p`
854         /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
855         ///   at ranges identical to those at which `UnsafeCell`s exist in `*p`
856         #[doc(hidden)]
857         #[inline]
cast_unsized_unchecked<U, F: FnOnce(*mut T) -> *mut U>( self, cast: F, ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)> where U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,858         pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(*mut T) -> *mut U>(
859             self,
860             cast: F,
861         ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
862         where
863             U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
864         {
865             // SAFETY:
866             // - The caller promises that `u = cast(p)` is a pointer which
867             //   satisfies:
868             //   - `u` addresses a subset of the bytes addressed by `p`
869             //   - `u` has the same provenance as `p`
870             //   - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must
871             //     exist at ranges identical to those at which `UnsafeCell`s
872             //     exist in `*p`
873             // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
874             //   `I::Validity` is either `Uninit` or `Initialized`. In both
875             //   cases, the bit validity `I::Validity` has the same semantics
876             //   regardless of referent type. In other words, the set of allowed
877             //   referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
878             //   (_, _, I::Validity)>` are identical.
879             unsafe { self.transmute_unchecked(cast) }
880         }
881 
882         /// Casts to a different (unsized) target type.
883         ///
884         /// # Safety
885         ///
886         /// The caller promises that `u = cast(p)` is a pointer cast with the
887         /// following properties:
888         /// - `u` addresses a subset of the bytes addressed by `p`
889         /// - `u` has the same provenance as `p`
890         #[doc(hidden)]
891         #[inline]
cast_unsized<U, F, R, S>( self, cast: F, ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)> where T: Read<I::Aliasing, R>, U: 'a + ?Sized + Read<I::Aliasing, S> + CastableFrom<T, I::Validity, I::Validity>, F: FnOnce(*mut T) -> *mut U,892         pub unsafe fn cast_unsized<U, F, R, S>(
893             self,
894             cast: F,
895         ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
896         where
897             T: Read<I::Aliasing, R>,
898             U: 'a + ?Sized + Read<I::Aliasing, S> + CastableFrom<T, I::Validity, I::Validity>,
899             F: FnOnce(*mut T) -> *mut U,
900         {
901             // SAFETY: Because `T` and `U` both implement `Read<I::Aliasing, _>`,
902             // either:
903             // - `I::Aliasing` is `Exclusive`
904             // - `T` and `U` are both `Immutable`, in which case they trivially
905             //   contain `UnsafeCell`s at identical locations
906             //
907             // The caller promises all other safety preconditions.
908             unsafe { self.cast_unsized_unchecked(cast) }
909         }
910     }
911 
912     impl<'a, T, I> Ptr<'a, T, I>
913     where
914         T: 'a + KnownLayout + ?Sized,
915         I: Invariants<Validity = Initialized>,
916     {
917         /// Casts this pointer-to-initialized into a pointer-to-bytes.
918         #[allow(clippy::wrong_self_convention)]
as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)> where T: Read<I::Aliasing, R>, I::Aliasing: Reference,919         pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
920         where
921             T: Read<I::Aliasing, R>,
922             I::Aliasing: Reference,
923         {
924             let bytes = match T::size_of_val_raw(self.as_inner().as_non_null()) {
925                 Some(bytes) => bytes,
926                 // SAFETY: `KnownLayout::size_of_val_raw` promises to always
927                 // return `Some` so long as the resulting size fits in a
928                 // `usize`. By invariant on `Ptr`, `self` refers to a range of
929                 // bytes whose size fits in an `isize`, which implies that it
930                 // also fits in a `usize`.
931                 None => unsafe { core::hint::unreachable_unchecked() },
932             };
933 
934             // SAFETY:
935             // - `slice_from_raw_parts_mut` and `.cast` both preserve the
936             //   pointer's address, and `bytes` is the length of `p`, so the
937             //   returned pointer addresses the same bytes as `p`
938             // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
939             let ptr: Ptr<'a, [u8], _> = unsafe {
940                 self.cast_unsized(|p: *mut T| {
941                     #[allow(clippy::as_conversions)]
942                     core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes)
943                 })
944             };
945 
946             let ptr = ptr.bikeshed_recall_aligned();
947 
948             // SAFETY: `ptr`'s referent begins as `Initialized`, denoting that
949             // all bytes of the referent are initialized bytes. The referent
950             // type is then casted to `[u8]`, whose only validity invariant is
951             // that its bytes are initialized. This validity invariant is
952             // satisfied by the `Initialized` invariant on the starting `ptr`.
953             unsafe { ptr.assume_validity::<Valid>() }
954         }
955     }
956 
957     impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
958     where
959         T: 'a,
960         I: Invariants,
961     {
962         /// Casts this pointer-to-array into a slice.
963         #[allow(clippy::wrong_self_convention)]
as_slice(self) -> Ptr<'a, [T], I>964         pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
965             let slice = self.as_inner().as_slice();
966             // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
967             // `slice` refers to the same byte range as `self.as_inner()`.
968             //
969             // 6. Thus, `slice` conforms to the aliasing invariant of
970             //    `I::Aliasing` because `self` does.
971             // 7. By the above lemma, `slice` conforms to the alignment
972             //    invariant of `I::Alignment` because `self` does.
973             // 8. By the above lemma, `slice` conforms to the validity invariant
974             //    of `I::Validity` because `self` does.
975             unsafe { Ptr::from_inner(slice) }
976         }
977     }
978 
979     /// For caller convenience, these methods are generic over alignment
980     /// invariant. In practice, the referent is always well-aligned, because the
981     /// alignment of `[u8]` is 1.
982     impl<'a, I> Ptr<'a, [u8], I>
983     where
984         I: Invariants<Validity = Valid>,
985     {
986         /// Attempts to cast `self` to a `U` using the given cast type.
987         ///
988         /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
989         /// then the cast will only succeed if it would produce an object with
990         /// the given metadata.
991         ///
992         /// Returns `None` if the resulting `U` would be invalidly-aligned, if
993         /// no `U` can fit in `self`, or if the provided pointer metadata
994         /// describes an invalid instance of `U`. On success, returns a pointer
995         /// to the largest-possible `U` which fits in `self`.
996         ///
997         /// # Safety
998         ///
999         /// The caller may assume that this implementation is correct, and may
1000         /// rely on that assumption for the soundness of their code. In
1001         /// particular, the caller may assume that, if `try_cast_into` returns
1002         /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1003         /// non-overlapping byte ranges within `self`, and that `ptr` and
1004         /// `remainder` entirely cover `self`. Finally:
1005         /// - If this is a prefix cast, `ptr` has the same address as `self`.
1006         /// - If this is a suffix cast, `remainder` has the same address as
1007         ///   `self`.
1008         #[inline(always)]
try_cast_into<U, R>( self, cast_type: CastType, meta: Option<U::PointerMetadata>, ) -> Result< (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>), CastError<Self, U>, > where I::Aliasing: Reference, U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,1009         pub(crate) fn try_cast_into<U, R>(
1010             self,
1011             cast_type: CastType,
1012             meta: Option<U::PointerMetadata>,
1013         ) -> Result<
1014             (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1015             CastError<Self, U>,
1016         >
1017         where
1018             I::Aliasing: Reference,
1019             U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1020         {
1021             let (inner, remainder) =
1022                 self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1023                     err.map_src(|inner|
1024                     // SAFETY: `PtrInner::try_cast_into` promises to return its
1025                     // original argument on error, which was originally produced
1026                     // by `self.as_inner()`, which is guaranteed to satisfy
1027                     // `Ptr`'s invariants.
1028                     unsafe { Ptr::from_inner(inner) })
1029                 })?;
1030 
1031             // SAFETY:
1032             // 0. Since `U: Read<I::Aliasing, _>`, either:
1033             //    - `I::Aliasing` is `Exclusive`, in which case both `src` and
1034             //      `ptr` conform to `Exclusive`
1035             //    - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1036             //      know that `[u8]: Immutable`). In this case, neither `U` nor
1037             //      `[u8]` permit mutation, and so `Shared` aliasing is
1038             //      satisfied.
1039             // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1040             //    it is derived from `try_cast_into`, which promises that the
1041             //    object described by `target` is validly aligned for `U`.
1042             // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1043             //    `[u8]`. All bit-valid `[u8]`s have all of their bytes
1044             //    initialized, so `ptr` conforms to the validity invariant of
1045             //    `Initialized`.
1046             let res = unsafe { Ptr::from_inner(inner) };
1047 
1048             // SAFETY:
1049             // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1050             //    have `UnsafeCell`s at the same locations. Type casting does
1051             //    not affect aliasing.
1052             // 1. `[u8]` has no alignment requirement.
1053             // 2. `self` has validity `Valid` and has type `[u8]`. Since
1054             //    `remainder` references a subset of `self`'s referent, it is
1055             //    also bit-valid.
1056             let remainder = unsafe { Ptr::from_inner(remainder) };
1057 
1058             Ok((res, remainder))
1059         }
1060 
1061         /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1062         /// `self` cannot be treated as a `U`.
1063         ///
1064         /// In particular, this method fails if `self` is not validly-aligned
1065         /// for `U` or if `self`'s size is not a valid size for `U`.
1066         ///
1067         /// # Safety
1068         ///
1069         /// On success, the caller may assume that the returned pointer
1070         /// references the same byte range as `self`.
1071         #[allow(unused)]
1072         #[inline(always)]
try_cast_into_no_leftover<U, R>( self, meta: Option<U::PointerMetadata>, ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>> where I::Aliasing: Reference, U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,1073         pub(crate) fn try_cast_into_no_leftover<U, R>(
1074             self,
1075             meta: Option<U::PointerMetadata>,
1076         ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1077         where
1078             I::Aliasing: Reference,
1079             U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1080         {
1081             // TODO(#67): Remove this allow. See NonNulSlicelExt for more
1082             // details.
1083             #[allow(unstable_name_collisions)]
1084             match self.try_cast_into(CastType::Prefix, meta) {
1085                 Ok((slf, remainder)) => {
1086                     if remainder.len() == 0 {
1087                         Ok(slf)
1088                     } else {
1089                         // Undo the cast so we can return the original bytes.
1090                         let slf = slf.as_bytes();
1091                         // Restore the initial alignment invariant of `self`.
1092                         //
1093                         // SAFETY: The referent type of `slf` is now equal to
1094                         // that of `self`, but the alignment invariants
1095                         // nominally differ. Since `slf` and `self` refer to the
1096                         // same memory and no actions have been taken that would
1097                         // violate the original invariants on `self`, it is
1098                         // sound to apply the alignment invariant of `self` onto
1099                         // `slf`.
1100                         let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
1101                         let slf = slf.unify_invariants();
1102                         Err(CastError::Size(SizeError::<_, U>::new(slf)))
1103                     }
1104                 }
1105                 Err(err) => Err(err),
1106             }
1107         }
1108     }
1109 
1110     impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
1111     where
1112         T: 'a + ?Sized,
1113         I: Invariants<Aliasing = Exclusive>,
1114     {
1115         /// Converts this `Ptr` into a pointer to the underlying data.
1116         ///
1117         /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1118         /// guarantees that we possess the only reference.
1119         ///
1120         /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1121         ///
1122         /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1123         #[must_use]
1124         #[inline(always)]
get_mut(self) -> Ptr<'a, T, I>1125         pub fn get_mut(self) -> Ptr<'a, T, I> {
1126             // SAFETY:
1127             // - The closure uses an `as` cast, which preserves address
1128             //   range and provenance.
1129             // - Aliasing is `Exclusive`, and so we are not required to promise
1130             //   anything about the locations of `UnsafeCell`s.
1131             // - `UnsafeCell<T>` has the same bit validity as `T` [1], and so if
1132             //   `self` has a particular validity invariant, then the same holds
1133             //   of the returned `Ptr`. Technically the term "representation"
1134             //   doesn't guarantee this, but the subsequent sentence in the
1135             //   documentation makes it clear that this is the intention.
1136             //
1137             // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1138             //
1139             //   `UnsafeCell<T>` has the same in-memory representation as its
1140             //   inner type `T`. A consequence of this guarantee is that it is
1141             //   possible to convert between `T` and `UnsafeCell<T>`.
1142             #[allow(clippy::as_conversions)]
1143             let ptr = unsafe { self.transmute_unchecked(|p| p as *mut T) };
1144 
1145             // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1146             // and so if `self` is guaranteed to be aligned, then so is the
1147             // returned `Ptr`.
1148             //
1149             // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1150             //
1151             //   `UnsafeCell<T>` has the same in-memory representation as
1152             //   its inner type `T`. A consequence of this guarantee is that
1153             //   it is possible to convert between `T` and `UnsafeCell<T>`.
1154             let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1155             ptr.unify_invariants()
1156         }
1157     }
1158 }
1159 
1160 /// Projections through the referent.
1161 mod _project {
1162     use super::*;
1163 
1164     impl<'a, T, I> Ptr<'a, [T], I>
1165     where
1166         T: 'a,
1167         I: Invariants,
1168     {
1169         /// The number of slice elements in the object referenced by `self`.
1170         ///
1171         /// # Safety
1172         ///
1173         /// Unsafe code my rely on `len` satisfying the above contract.
len(&self) -> usize1174         pub(crate) fn len(&self) -> usize {
1175             self.as_inner().len()
1176         }
1177     }
1178 
1179     impl<'a, T, I> Ptr<'a, [T], I>
1180     where
1181         T: 'a,
1182         I: Invariants,
1183         I::Aliasing: Reference,
1184     {
1185         /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>>1186         pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1187             // SAFETY:
1188             // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1189             //    because projection does not impact the aliasing invariant.
1190             // 1. `elem`, conditionally, conforms to the validity invariant of
1191             //    `I::Alignment`. If `elem` is projected from data well-aligned
1192             //    for `[T]`, `elem` will be valid for `T`.
1193             // 2. `elem`, conditionally, conforms to the validity invariant of
1194             //    `I::Validity`. If `elem` is projected from data valid for
1195             //    `[T]`, `elem` will be valid for `T`.
1196             self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1197         }
1198     }
1199 }
1200 
1201 #[cfg(test)]
1202 mod tests {
1203     use core::mem::{self, MaybeUninit};
1204 
1205     use super::*;
1206     #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1207     use crate::util::AsAddress;
1208     use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1209 
1210     mod test_ptr_try_cast_into_soundness {
1211         use super::*;
1212 
1213         // This test is designed so that if `Ptr::try_cast_into_xxx` are
1214         // buggy, it will manifest as unsoundness that Miri can detect.
1215 
1216         // - If `size_of::<T>() == 0`, `N == 4`
1217         // - Else, `N == 4 * size_of::<T>()`
1218         //
1219         // Each test will be run for each metadata in `metas`.
test<T, I, const N: usize>(metas: I) where T: ?Sized + KnownLayout + Immutable + FromBytes, I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,1220         fn test<T, I, const N: usize>(metas: I)
1221         where
1222             T: ?Sized + KnownLayout + Immutable + FromBytes,
1223             I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1224         {
1225             let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1226             let initialized = [MaybeUninit::new(0u8); N];
1227             for start in 0..=bytes.len() {
1228                 for end in start..=bytes.len() {
1229                     // Set all bytes to uninitialized other than those in
1230                     // the range we're going to pass to `try_cast_from`.
1231                     // This allows Miri to detect out-of-bounds reads
1232                     // because they read uninitialized memory. Without this,
1233                     // some out-of-bounds reads would still be in-bounds of
1234                     // `bytes`, and so might spuriously be accepted.
1235                     bytes = [MaybeUninit::<u8>::uninit(); N];
1236                     let bytes = &mut bytes[start..end];
1237                     // Initialize only the byte range we're going to pass to
1238                     // `try_cast_from`.
1239                     bytes.copy_from_slice(&initialized[start..end]);
1240 
1241                     let bytes = {
1242                         let bytes: *const [MaybeUninit<u8>] = bytes;
1243                         #[allow(clippy::as_conversions)]
1244                         let bytes = bytes as *const [u8];
1245                         // SAFETY: We just initialized these bytes to valid
1246                         // `u8`s.
1247                         unsafe { &*bytes }
1248                     };
1249 
1250                     // SAFETY: The bytes in `slf` must be initialized.
1251                     unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
1252                         slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1253                     ) -> usize {
1254                         let t = slf.bikeshed_recall_valid().as_ref();
1255 
1256                         let bytes = {
1257                             let len = mem::size_of_val(t);
1258                             let t: *const T = t;
1259                             // SAFETY:
1260                             // - We know `t`'s bytes are all initialized
1261                             //   because we just read it from `slf`, which
1262                             //   points to an initialized range of bytes. If
1263                             //   there's a bug and this doesn't hold, then
1264                             //   that's exactly what we're hoping Miri will
1265                             //   catch!
1266                             // - Since `T: FromBytes`, `T` doesn't contain
1267                             //   any `UnsafeCell`s, so it's okay for `t: T`
1268                             //   and a `&[u8]` to the same memory to be
1269                             //   alive concurrently.
1270                             unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1271                         };
1272 
1273                         // This assertion ensures that `t`'s bytes are read
1274                         // and compared to another value, which in turn
1275                         // ensures that Miri gets a chance to notice if any
1276                         // of `t`'s bytes are uninitialized, which they
1277                         // shouldn't be (see the comment above).
1278                         assert_eq!(bytes, vec![0u8; bytes.len()]);
1279 
1280                         mem::size_of_val(t)
1281                     }
1282 
1283                     for meta in metas.clone().into_iter() {
1284                         for cast_type in [CastType::Prefix, CastType::Suffix] {
1285                             if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1286                                 .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1287                             {
1288                                 // SAFETY: All bytes in `bytes` have been
1289                                 // initialized.
1290                                 let len = unsafe { validate_and_get_len(slf) };
1291                                 assert_eq!(remaining.len(), bytes.len() - len);
1292                                 #[allow(unstable_name_collisions)]
1293                                 let bytes_addr = bytes.as_ptr().addr();
1294                                 #[allow(unstable_name_collisions)]
1295                                 let remaining_addr =
1296                                     remaining.as_inner().as_non_null().as_ptr().addr();
1297                                 match cast_type {
1298                                     CastType::Prefix => {
1299                                         assert_eq!(remaining_addr, bytes_addr + len)
1300                                     }
1301                                     CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1302                                 }
1303 
1304                                 if let Some(want) = meta {
1305                                     let got = KnownLayout::pointer_to_metadata(
1306                                         slf.as_inner().as_non_null().as_ptr(),
1307                                     );
1308                                     assert_eq!(got, want);
1309                                 }
1310                             }
1311                         }
1312 
1313                         if let Ok(slf) = Ptr::from_ref(bytes)
1314                             .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1315                         {
1316                             // SAFETY: All bytes in `bytes` have been
1317                             // initialized.
1318                             let len = unsafe { validate_and_get_len(slf) };
1319                             assert_eq!(len, bytes.len());
1320 
1321                             if let Some(want) = meta {
1322                                 let got = KnownLayout::pointer_to_metadata(
1323                                     slf.as_inner().as_non_null().as_ptr(),
1324                                 );
1325                                 assert_eq!(got, want);
1326                             }
1327                         }
1328                     }
1329                 }
1330             }
1331         }
1332 
1333         #[derive(FromBytes, KnownLayout, Immutable)]
1334         #[repr(C)]
1335         struct SliceDst<T> {
1336             a: u8,
1337             trailing: [T],
1338         }
1339 
1340         // Each test case becomes its own `#[test]` function. We do this because
1341         // this test in particular takes far, far longer to execute under Miri
1342         // than all of our other tests combined. Previously, we had these
1343         // execute sequentially in a single test function. We run Miri tests in
1344         // parallel in CI, but this test being sequential meant that most of
1345         // that parallelism was wasted, as all other tests would finish in a
1346         // fraction of the total execution time, leaving this test to execute on
1347         // a single thread for the remainder of the test. By putting each test
1348         // case in its own function, we permit better use of available
1349         // parallelism.
1350         macro_rules! test {
1351             ($test_name:ident: $ty:ty) => {
1352                 #[test]
1353                 #[allow(non_snake_case)]
1354                 fn $test_name() {
1355                     const S: usize = core::mem::size_of::<$ty>();
1356                     const N: usize = if S == 0 { 4 } else { S * 4 };
1357                     test::<$ty, _, N>([None]);
1358 
1359                     // If `$ty` is a ZST, then we can't pass `None` as the
1360                     // pointer metadata, or else computing the correct trailing
1361                     // slice length will panic.
1362                     if S == 0 {
1363                         test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1364                         test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1365                     } else {
1366                         test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1367                         test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1368                     }
1369                 }
1370             };
1371             ($ty:ident) => {
1372                 test!($ty: $ty);
1373             };
1374             ($($ty:ident),*) => { $(test!($ty);)* }
1375         }
1376 
1377         test!(empty_tuple: ());
1378         test!(u8, u16, u32, u64, u128, usize, AU64);
1379         test!(i8, i16, i32, i64, i128, isize);
1380         test!(f32, f64);
1381     }
1382 
1383     #[test]
test_try_cast_into_explicit_count()1384     fn test_try_cast_into_explicit_count() {
1385         macro_rules! test {
1386             ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1387                 let bytes = [0u8; $bytes];
1388                 let ptr = Ptr::from_ref(&bytes[..]);
1389                 let res =
1390                     ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1391                 if let Some(expect) = $expect {
1392                     let (ptr, _) = res.unwrap();
1393                     assert_eq!(
1394                         KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()),
1395                         expect
1396                     );
1397                 } else {
1398                     let _ = res.unwrap_err();
1399                 }
1400             }};
1401         }
1402 
1403         #[derive(KnownLayout, Immutable)]
1404         #[repr(C)]
1405         struct ZstDst {
1406             u: [u8; 8],
1407             slc: [()],
1408         }
1409 
1410         test!(ZstDst, 8, 0, Some(0));
1411         test!(ZstDst, 7, 0, None);
1412 
1413         test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1414         test!(ZstDst, 7, usize::MAX, None);
1415 
1416         #[derive(KnownLayout, Immutable)]
1417         #[repr(C)]
1418         struct Dst {
1419             u: [u8; 8],
1420             slc: [u8],
1421         }
1422 
1423         test!(Dst, 8, 0, Some(0));
1424         test!(Dst, 7, 0, None);
1425 
1426         test!(Dst, 9, 1, Some(1));
1427         test!(Dst, 8, 1, None);
1428 
1429         // If we didn't properly check for overflow, this would cause the
1430         // metadata to overflow to 0, and thus the cast would spuriously
1431         // succeed.
1432         test!(Dst, 8, usize::MAX - 8 + 1, None);
1433     }
1434 }
1435