• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/common_data.h"
13 #include "av1/common/quant_common.h"
14 #include "av1/common/reconintra.h"
15 
16 #include "av1/encoder/encoder.h"
17 #include "av1/encoder/encodeframe_utils.h"
18 #include "av1/encoder/encoder_utils.h"
19 #include "av1/encoder/rdopt.h"
20 
av1_set_ssim_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)21 void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
22                          const BLOCK_SIZE bsize, const int mi_row,
23                          const int mi_col, int *const rdmult) {
24   const AV1_COMMON *const cm = &cpi->common;
25 
26   const BLOCK_SIZE bsize_base = BLOCK_16X16;
27   const int num_mi_w = mi_size_wide[bsize_base];
28   const int num_mi_h = mi_size_high[bsize_base];
29   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
30   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
31   const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
32   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
33   int row, col;
34   double num_of_mi = 0.0;
35   double geom_mean_of_scale = 1.0;
36 
37   // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least
38   // BLOCK_8X8.
39   //
40   // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would
41   // iterate 256 times. Considering the maximum value of
42   // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()),
43   // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX
44   // (maximum value a double data type can hold). If bsize_base is modified to
45   // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up
46   // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow.
47   assert(bsize_base >= BLOCK_8X8);
48   assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM ||
49          cpi->oxcf.tune_cfg.tuning == AOM_TUNE_IQ);
50 
51   for (row = mi_row / num_mi_w;
52        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
53     for (col = mi_col / num_mi_h;
54          col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
55       const int index = row * num_cols + col;
56       assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0);
57       geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index];
58       num_of_mi += 1.0;
59     }
60   }
61   geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi));
62 
63   *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
64   *rdmult = AOMMAX(*rdmult, 0);
65   av1_set_error_per_bit(errorperbit, *rdmult);
66 }
67 
68 #if CONFIG_SALIENCY_MAP
av1_set_saliency_map_vmaf_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)69 void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
70                                       int *errorperbit, const BLOCK_SIZE bsize,
71                                       const int mi_row, const int mi_col,
72                                       int *const rdmult) {
73   const AV1_COMMON *const cm = &cpi->common;
74   const int num_mi_w = mi_size_wide[bsize];
75   const int num_mi_h = mi_size_high[bsize];
76   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
77 
78   *rdmult =
79       (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
80                                              (mi_col / num_mi_w)]);
81 
82   *rdmult = AOMMAX(*rdmult, 0);
83   av1_set_error_per_bit(errorperbit, *rdmult);
84 }
85 #endif
86 
87 // TODO(angiebird): Move this function to tpl_model.c
88 #if !CONFIG_REALTIME_ONLY
av1_get_cb_rdmult(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col)89 int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
90                       const BLOCK_SIZE bsize, const int mi_row,
91                       const int mi_col) {
92   const AV1_COMMON *const cm = &cpi->common;
93   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
94                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
95   const int tpl_idx = cpi->gf_frame_index;
96   int deltaq_rdmult = set_rdmult(cpi, x, -1);
97   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
98   if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
99   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
100   if (x->rb == 0) return deltaq_rdmult;
101 
102   TplParams *const tpl_data = &cpi->ppi->tpl_data;
103   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
104   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
105 
106   const int mi_wide = mi_size_wide[bsize];
107   const int mi_high = mi_size_high[bsize];
108 
109   int tpl_stride = tpl_frame->stride;
110   double intra_cost_base = 0;
111   double mc_dep_cost_base = 0;
112   double cbcmp_base = 0;
113   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
114 
115   for (int row = mi_row; row < mi_row + mi_high; row += step) {
116     for (int col = mi_col; col < mi_col + mi_wide; col += step) {
117       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
118         continue;
119 
120       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
121           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
122 
123       double cbcmp = (double)this_stats->srcrf_dist;
124       int64_t mc_dep_delta =
125           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
126                  this_stats->mc_dep_dist);
127       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
128       intra_cost_base += log(dist_scaled) * cbcmp;
129       mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
130       cbcmp_base += cbcmp;
131     }
132   }
133 
134   if (cbcmp_base == 0) return deltaq_rdmult;
135 
136   double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
137   deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));
138 
139   return AOMMAX(deltaq_rdmult, 1);
140 }
141 #endif  // !CONFIG_REALTIME_ONLY
142 
update_filter_type_count(FRAME_COUNTS * counts,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)143 static inline void update_filter_type_count(FRAME_COUNTS *counts,
144                                             const MACROBLOCKD *xd,
145                                             const MB_MODE_INFO *mbmi) {
146   int dir;
147   for (dir = 0; dir < 2; ++dir) {
148     const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
149     InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
150 
151     // Only allow the 3 valid SWITCHABLE_FILTERS.
152     assert(filter < SWITCHABLE_FILTERS);
153     ++counts->switchable_interp[ctx][filter];
154   }
155 }
156 
157 // This function will copy the best reference mode information from
158 // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
copy_mbmi_ext_frame_to_mbmi_ext(MB_MODE_INFO_EXT * mbmi_ext,const MB_MODE_INFO_EXT_FRAME * const mbmi_ext_best,uint8_t ref_frame_type)159 static inline void copy_mbmi_ext_frame_to_mbmi_ext(
160     MB_MODE_INFO_EXT *mbmi_ext,
161     const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
162   memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
163          sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
164   memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
165          sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
166   mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
167   mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
168   memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
169          sizeof(mbmi_ext->global_mvs));
170 }
171 
av1_update_state(const AV1_COMP * const cpi,ThreadData * td,const PICK_MODE_CONTEXT * const ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,RUN_TYPE dry_run)172 void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
173                       const PICK_MODE_CONTEXT *const ctx, int mi_row,
174                       int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
175   int i, x_idx, y;
176   const AV1_COMMON *const cm = &cpi->common;
177   const CommonModeInfoParams *const mi_params = &cm->mi_params;
178   const int num_planes = av1_num_planes(cm);
179   MACROBLOCK *const x = &td->mb;
180   MACROBLOCKD *const xd = &x->e_mbd;
181   struct macroblock_plane *const p = x->plane;
182   struct macroblockd_plane *const pd = xd->plane;
183   const MB_MODE_INFO *const mi = &ctx->mic;
184   MB_MODE_INFO *const mi_addr = xd->mi[0];
185   const struct segmentation *const seg = &cm->seg;
186   assert(bsize < BLOCK_SIZES_ALL);
187   const int bw = mi_size_wide[mi->bsize];
188   const int bh = mi_size_high[mi->bsize];
189   const int mis = mi_params->mi_stride;
190   const int mi_width = mi_size_wide[bsize];
191   const int mi_height = mi_size_high[bsize];
192   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
193 
194   assert(mi->bsize == bsize);
195 
196   *mi_addr = *mi;
197   copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
198                                   av1_ref_frame_type(ctx->mic.ref_frame));
199 
200   memcpy(txfm_info->blk_skip, ctx->blk_skip,
201          sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
202 
203   txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
204 
205   xd->tx_type_map = ctx->tx_type_map;
206   xd->tx_type_map_stride = mi_size_wide[bsize];
207   // If not dry_run, copy the transform type data into the frame level buffer.
208   // Encoder will fetch tx types when writing bitstream.
209   if (!dry_run) {
210     const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
211     uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
212     const int mi_stride = mi_params->mi_stride;
213     for (int blk_row = 0; blk_row < bh; ++blk_row) {
214       av1_copy_array(tx_type_map + blk_row * mi_stride,
215                      xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
216     }
217     xd->tx_type_map = tx_type_map;
218     xd->tx_type_map_stride = mi_stride;
219   }
220 
221   // If segmentation in use
222   if (seg->enabled) {
223     // For in frame complexity AQ copy the segment id from the segment map.
224     if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
225       const uint8_t *const map =
226           seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
227       mi_addr->segment_id =
228           map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
229     }
230     // Else for cyclic refresh mode update the segment map, set the segment id
231     // and then update the quantizer.
232     if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
233         mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE &&
234         !cpi->rc.rtc_external_ratectrl) {
235       av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
236                                         ctx->rd_stats.rate, ctx->rd_stats.dist,
237                                         txfm_info->skip_txfm, dry_run);
238     }
239     if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
240       mi_addr->uv_mode = UV_DC_PRED;
241 
242     if (!dry_run && !mi_addr->skip_txfm) {
243       int cdf_num;
244       const uint8_t spatial_pred = av1_get_spatial_seg_pred(
245           cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
246       const uint8_t coded_id = av1_neg_interleave(
247           mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1);
248       int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id];
249       td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost;
250 
251       const int pred_segment_id =
252           cm->last_frame_seg_map
253               ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
254                                mi_col)
255               : 0;
256       const int use_tmp_pred = pred_segment_id == mi_addr->segment_id;
257       const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd);
258       td->rd_counts.seg_tmp_pred_cost[1] +=
259           x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred];
260       if (!use_tmp_pred) {
261         td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost;
262       }
263     }
264   }
265 
266   // Count zero motion vector.
267   if (!dry_run && !frame_is_intra_only(cm)) {
268     const MV mv = mi->mv[0].as_mv;
269     if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
270         abs(mv.row) < 8 && abs(mv.col) < 8) {
271       const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
272       // Accumulate low_content_frame.
273       for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
274     }
275   }
276 
277   for (i = 0; i < num_planes; ++i) {
278     p[i].coeff = ctx->coeff[i];
279     p[i].qcoeff = ctx->qcoeff[i];
280     p[i].dqcoeff = ctx->dqcoeff[i];
281     p[i].eobs = ctx->eobs[i];
282     p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
283   }
284   for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
285   // Restore the coding context of the MB to that that was in place
286   // when the mode was picked for it
287 
288   const int cols =
289       AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width);
290   const int rows = AOMMIN(
291       (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height);
292   for (y = 0; y < rows; y++) {
293     for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr;
294   }
295 
296   if (cpi->oxcf.q_cfg.aq_mode)
297     av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0);
298 
299   if (dry_run) return;
300 
301 #if CONFIG_INTERNAL_STATS
302   {
303     unsigned int *const mode_chosen_counts =
304         (unsigned int *)cpi->mode_chosen_counts;  // Cast const away.
305     if (frame_is_intra_only(cm)) {
306       static const int kf_mode_index[] = {
307         THR_DC /*DC_PRED*/,
308         THR_V_PRED /*V_PRED*/,
309         THR_H_PRED /*H_PRED*/,
310         THR_D45_PRED /*D45_PRED*/,
311         THR_D135_PRED /*D135_PRED*/,
312         THR_D113_PRED /*D113_PRED*/,
313         THR_D157_PRED /*D157_PRED*/,
314         THR_D203_PRED /*D203_PRED*/,
315         THR_D67_PRED /*D67_PRED*/,
316         THR_SMOOTH,   /*SMOOTH_PRED*/
317         THR_SMOOTH_V, /*SMOOTH_V_PRED*/
318         THR_SMOOTH_H, /*SMOOTH_H_PRED*/
319         THR_PAETH /*PAETH_PRED*/,
320       };
321       ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
322     } else {
323       // Note how often each mode chosen as best
324       ++mode_chosen_counts[ctx->best_mode_index];
325     }
326   }
327 #endif
328   if (!frame_is_intra_only(cm)) {
329     if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) {
330       // When the frame interp filter is SWITCHABLE, several cases that always
331       // use the default type (EIGHTTAP_REGULAR) are described in
332       // av1_is_interp_needed(). Here, we should keep the counts for all
333       // applicable blocks, so the frame filter resetting decision in
334       // fix_interp_filter() is made correctly.
335       update_filter_type_count(td->counts, xd, mi_addr);
336     }
337   }
338 
339   const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
340   const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
341   if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
342     av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
343 }
344 
av1_update_inter_mode_stats(FRAME_CONTEXT * fc,FRAME_COUNTS * counts,PREDICTION_MODE mode,int16_t mode_context)345 void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
346                                  PREDICTION_MODE mode, int16_t mode_context) {
347   (void)counts;
348 
349   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
350   if (mode == NEWMV) {
351 #if CONFIG_ENTROPY_STATS
352     ++counts->newmv_mode[mode_ctx][0];
353 #endif
354     update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
355     return;
356   }
357 
358 #if CONFIG_ENTROPY_STATS
359   ++counts->newmv_mode[mode_ctx][1];
360 #endif
361   update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
362 
363   mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
364   if (mode == GLOBALMV) {
365 #if CONFIG_ENTROPY_STATS
366     ++counts->zeromv_mode[mode_ctx][0];
367 #endif
368     update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
369     return;
370   }
371 
372 #if CONFIG_ENTROPY_STATS
373   ++counts->zeromv_mode[mode_ctx][1];
374 #endif
375   update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
376 
377   mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
378 #if CONFIG_ENTROPY_STATS
379   ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
380 #endif
381   update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
382 }
383 
update_palette_cdf(MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,FRAME_COUNTS * counts)384 static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
385                                FRAME_COUNTS *counts) {
386   FRAME_CONTEXT *fc = xd->tile_ctx;
387   const BLOCK_SIZE bsize = mbmi->bsize;
388   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
389   const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
390 
391   (void)counts;
392 
393   if (mbmi->mode == DC_PRED) {
394     const int n = pmi->palette_size[0];
395     const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
396 
397 #if CONFIG_ENTROPY_STATS
398     ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
399 #endif
400     update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
401                n > 0, 2);
402     if (n > 0) {
403 #if CONFIG_ENTROPY_STATS
404       ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
405 #endif
406       update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
407                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
408     }
409   }
410 
411   if (mbmi->uv_mode == UV_DC_PRED) {
412     const int n = pmi->palette_size[1];
413     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
414 
415 #if CONFIG_ENTROPY_STATS
416     ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
417 #endif
418     update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
419 
420     if (n > 0) {
421 #if CONFIG_ENTROPY_STATS
422       ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
423 #endif
424       update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
425                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
426     }
427   }
428 }
429 
av1_sum_intra_stats(const AV1_COMMON * const cm,FRAME_COUNTS * counts,MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,const int intraonly)430 void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
431                          MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
432                          const MB_MODE_INFO *above_mi,
433                          const MB_MODE_INFO *left_mi, const int intraonly) {
434   FRAME_CONTEXT *fc = xd->tile_ctx;
435   const PREDICTION_MODE y_mode = mbmi->mode;
436   (void)counts;
437   const BLOCK_SIZE bsize = mbmi->bsize;
438 
439   if (intraonly) {
440 #if CONFIG_ENTROPY_STATS
441     const PREDICTION_MODE above = av1_above_block_mode(above_mi);
442     const PREDICTION_MODE left = av1_left_block_mode(left_mi);
443     const int above_ctx = intra_mode_context[above];
444     const int left_ctx = intra_mode_context[left];
445     ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
446 #endif  // CONFIG_ENTROPY_STATS
447     update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
448   } else {
449 #if CONFIG_ENTROPY_STATS
450     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
451 #endif  // CONFIG_ENTROPY_STATS
452     update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
453   }
454 
455   if (av1_filter_intra_allowed(cm, mbmi)) {
456     const int use_filter_intra_mode =
457         mbmi->filter_intra_mode_info.use_filter_intra;
458 #if CONFIG_ENTROPY_STATS
459     ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
460     if (use_filter_intra_mode) {
461       ++counts
462             ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
463     }
464 #endif  // CONFIG_ENTROPY_STATS
465     update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
466     if (use_filter_intra_mode) {
467       update_cdf(fc->filter_intra_mode_cdf,
468                  mbmi->filter_intra_mode_info.filter_intra_mode,
469                  FILTER_INTRA_MODES);
470     }
471   }
472   if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
473 #if CONFIG_ENTROPY_STATS
474     ++counts->angle_delta[mbmi->mode - V_PRED]
475                          [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
476 #endif
477     update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
478                mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
479                2 * MAX_ANGLE_DELTA + 1);
480   }
481 
482   if (!xd->is_chroma_ref) return;
483 
484   const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
485   const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
486 #if CONFIG_ENTROPY_STATS
487   ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
488 #endif  // CONFIG_ENTROPY_STATS
489   update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
490              UV_INTRA_MODES - !cfl_allowed);
491   if (uv_mode == UV_CFL_PRED) {
492     const int8_t joint_sign = mbmi->cfl_alpha_signs;
493     const uint8_t idx = mbmi->cfl_alpha_idx;
494 
495 #if CONFIG_ENTROPY_STATS
496     ++counts->cfl_sign[joint_sign];
497 #endif
498     update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
499     if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
500       aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
501 
502 #if CONFIG_ENTROPY_STATS
503       ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
504 #endif
505       update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
506     }
507     if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
508       aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
509 
510 #if CONFIG_ENTROPY_STATS
511       ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
512 #endif
513       update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
514     }
515   }
516   const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
517   if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) {
518 #if CONFIG_ENTROPY_STATS
519     ++counts->angle_delta[intra_mode - V_PRED]
520                          [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
521 #endif
522     update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED],
523                mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
524                2 * MAX_ANGLE_DELTA + 1);
525   }
526   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
527     update_palette_cdf(xd, mbmi, counts);
528   }
529 }
530 
av1_restore_context(MACROBLOCK * x,const RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)531 void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
532                          int mi_row, int mi_col, BLOCK_SIZE bsize,
533                          const int num_planes) {
534   MACROBLOCKD *xd = &x->e_mbd;
535   int p;
536   const int num_4x4_blocks_wide = mi_size_wide[bsize];
537   const int num_4x4_blocks_high = mi_size_high[bsize];
538   int mi_width = mi_size_wide[bsize];
539   int mi_height = mi_size_high[bsize];
540   for (p = 0; p < num_planes; p++) {
541     int tx_col = mi_col;
542     int tx_row = mi_row & MAX_MIB_MASK;
543     memcpy(
544         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
545         ctx->a + num_4x4_blocks_wide * p,
546         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
547             xd->plane[p].subsampling_x);
548     memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
549            ctx->l + num_4x4_blocks_high * p,
550            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
551                xd->plane[p].subsampling_y);
552   }
553   memcpy(xd->above_partition_context + mi_col, ctx->sa,
554          sizeof(*xd->above_partition_context) * mi_width);
555   memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
556          sizeof(xd->left_partition_context[0]) * mi_height);
557   xd->above_txfm_context = ctx->p_ta;
558   xd->left_txfm_context = ctx->p_tl;
559   memcpy(xd->above_txfm_context, ctx->ta,
560          sizeof(*xd->above_txfm_context) * mi_width);
561   memcpy(xd->left_txfm_context, ctx->tl,
562          sizeof(*xd->left_txfm_context) * mi_height);
563 }
564 
av1_save_context(const MACROBLOCK * x,RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)565 void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
566                       int mi_row, int mi_col, BLOCK_SIZE bsize,
567                       const int num_planes) {
568   const MACROBLOCKD *xd = &x->e_mbd;
569   int p;
570   int mi_width = mi_size_wide[bsize];
571   int mi_height = mi_size_high[bsize];
572 
573   // buffer the above/left context information of the block in search.
574   for (p = 0; p < num_planes; ++p) {
575     int tx_col = mi_col;
576     int tx_row = mi_row & MAX_MIB_MASK;
577     memcpy(
578         ctx->a + mi_width * p,
579         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
580         (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
581     memcpy(ctx->l + mi_height * p,
582            xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
583            (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
584   }
585   memcpy(ctx->sa, xd->above_partition_context + mi_col,
586          sizeof(*xd->above_partition_context) * mi_width);
587   memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
588          sizeof(xd->left_partition_context[0]) * mi_height);
589   memcpy(ctx->ta, xd->above_txfm_context,
590          sizeof(*xd->above_txfm_context) * mi_width);
591   memcpy(ctx->tl, xd->left_txfm_context,
592          sizeof(*xd->left_txfm_context) * mi_height);
593   ctx->p_ta = xd->above_txfm_context;
594   ctx->p_tl = xd->left_txfm_context;
595 }
596 
set_partial_sb_partition(const AV1_COMMON * const cm,MB_MODE_INFO * mi,int bh_in,int bw_in,int mi_rows_remaining,int mi_cols_remaining,BLOCK_SIZE bsize,MB_MODE_INFO ** mib)597 static void set_partial_sb_partition(const AV1_COMMON *const cm,
598                                      MB_MODE_INFO *mi, int bh_in, int bw_in,
599                                      int mi_rows_remaining,
600                                      int mi_cols_remaining, BLOCK_SIZE bsize,
601                                      MB_MODE_INFO **mib) {
602   int bh = bh_in;
603   int r, c;
604   for (r = 0; r < cm->seq_params->mib_size; r += bh) {
605     int bw = bw_in;
606     for (c = 0; c < cm->seq_params->mib_size; c += bw) {
607       const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
608       const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
609       mib[grid_index] = mi + mi_index;
610       mib[grid_index]->bsize = find_partition_size(
611           bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
612     }
613   }
614 }
615 
616 // This function attempts to set all mode info entries in a given superblock
617 // to the same block partition size.
618 // However, at the bottom and right borders of the image the requested size
619 // may not be allowed in which case this code attempts to choose the largest
620 // allowable partition.
av1_set_fixed_partitioning(AV1_COMP * cpi,const TileInfo * const tile,MB_MODE_INFO ** mib,int mi_row,int mi_col,BLOCK_SIZE bsize)621 void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
622                                 MB_MODE_INFO **mib, int mi_row, int mi_col,
623                                 BLOCK_SIZE bsize) {
624   AV1_COMMON *const cm = &cpi->common;
625   const CommonModeInfoParams *const mi_params = &cm->mi_params;
626   const int mi_rows_remaining = tile->mi_row_end - mi_row;
627   const int mi_cols_remaining = tile->mi_col_end - mi_col;
628   MB_MODE_INFO *const mi_upper_left =
629       mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
630   int bh = mi_size_high[bsize];
631   int bw = mi_size_wide[bsize];
632 
633   assert(bsize >= mi_params->mi_alloc_bsize &&
634          "Attempted to use bsize < mi_params->mi_alloc_bsize");
635   assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
636 
637   // Apply the requested partition size to the SB if it is all "in image"
638   if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
639       (mi_rows_remaining >= cm->seq_params->mib_size)) {
640     for (int block_row = 0; block_row < cm->seq_params->mib_size;
641          block_row += bh) {
642       for (int block_col = 0; block_col < cm->seq_params->mib_size;
643            block_col += bw) {
644         const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
645         const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
646         mib[grid_index] = mi_upper_left + mi_index;
647         mib[grid_index]->bsize = bsize;
648       }
649     }
650   } else {
651     // Else this is a partial SB.
652     set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
653                              mi_cols_remaining, bsize, mib);
654   }
655 }
656 
av1_is_leaf_split_partition(AV1_COMMON * cm,int mi_row,int mi_col,BLOCK_SIZE bsize)657 int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
658                                 BLOCK_SIZE bsize) {
659   const int bs = mi_size_wide[bsize];
660   const int hbs = bs / 2;
661   assert(bsize >= BLOCK_8X8);
662   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
663 
664   for (int i = 0; i < 4; i++) {
665     int x_idx = (i & 1) * hbs;
666     int y_idx = (i >> 1) * hbs;
667     if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
668         (mi_col + x_idx >= cm->mi_params.mi_cols))
669       return 0;
670     if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
671             PARTITION_NONE &&
672         subsize != BLOCK_8X8)
673       return 0;
674   }
675   return 1;
676 }
677 
678 #if !CONFIG_REALTIME_ONLY
av1_get_rdmult_delta(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)679 int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
680                          int mi_col, int orig_rdmult) {
681   AV1_COMMON *const cm = &cpi->common;
682   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
683   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
684                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
685   const int tpl_idx = cpi->gf_frame_index;
686   TplParams *const tpl_data = &cpi->ppi->tpl_data;
687   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
688   int64_t intra_cost = 0;
689   int64_t mc_dep_cost = 0;
690   const int mi_wide = mi_size_wide[bsize];
691   const int mi_high = mi_size_high[bsize];
692 
693   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
694   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
695   int tpl_stride = tpl_frame->stride;
696 
697   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
698     return orig_rdmult;
699   }
700   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
701     return orig_rdmult;
702   }
703 
704 #ifndef NDEBUG
705   int mi_count = 0;
706 #endif
707   const int mi_col_sr =
708       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
709   const int mi_col_end_sr =
710       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
711   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
712   const int step = 1 << block_mis_log2;
713   const int row_step = step;
714   const int col_step_sr =
715       coded_to_superres_mi(step, cm->superres_scale_denominator);
716   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
717     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
718       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
719       TplDepStats *this_stats =
720           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
721       int64_t mc_dep_delta =
722           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
723                  this_stats->mc_dep_dist);
724       intra_cost += this_stats->recrf_dist << RDDIV_BITS;
725       mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
726 #ifndef NDEBUG
727       mi_count++;
728 #endif
729     }
730   }
731   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
732 
733   double beta = 1.0;
734   if (mc_dep_cost > 0 && intra_cost > 0) {
735     const double r0 = cpi->rd.r0;
736     const double rk = (double)intra_cost / mc_dep_cost;
737     beta = (r0 / rk);
738   }
739 
740   int rdmult = av1_get_adaptive_rdmult(cpi, beta);
741 
742   rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
743   rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
744 
745   rdmult = AOMMAX(1, rdmult);
746 
747   return rdmult;
748 }
749 
750 // Checks to see if a super block is on a horizontal image edge.
751 // In most cases this is the "real" edge unless there are formatting
752 // bars embedded in the stream.
av1_active_h_edge(const AV1_COMP * cpi,int mi_row,int mi_step)753 int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
754   int top_edge = 0;
755   int bottom_edge = cpi->common.mi_params.mi_rows;
756   int is_active_h_edge = 0;
757 
758   // For two pass account for any formatting bars detected.
759   if (is_stat_consumption_stage_twopass(cpi)) {
760     const AV1_COMMON *const cm = &cpi->common;
761     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
762         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
763     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
764 
765     // The inactive region is specified in MBs not mi units.
766     // The image edge is in the following MB row.
767     top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
768 
769     bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
770     bottom_edge = AOMMAX(top_edge, bottom_edge);
771   }
772 
773   if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
774       ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
775     is_active_h_edge = 1;
776   }
777   return is_active_h_edge;
778 }
779 
780 // Checks to see if a super block is on a vertical image edge.
781 // In most cases this is the "real" edge unless there are formatting
782 // bars embedded in the stream.
av1_active_v_edge(const AV1_COMP * cpi,int mi_col,int mi_step)783 int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
784   int left_edge = 0;
785   int right_edge = cpi->common.mi_params.mi_cols;
786   int is_active_v_edge = 0;
787 
788   // For two pass account for any formatting bars detected.
789   if (is_stat_consumption_stage_twopass(cpi)) {
790     const AV1_COMMON *const cm = &cpi->common;
791     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
792         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
793     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
794 
795     // The inactive region is specified in MBs not mi units.
796     // The image edge is in the following MB row.
797     left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
798 
799     right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
800     right_edge = AOMMAX(left_edge, right_edge);
801   }
802 
803   if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
804       ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
805     is_active_v_edge = 1;
806   }
807   return is_active_v_edge;
808 }
809 
av1_get_tpl_stats_sb(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,SuperBlockEnc * sb_enc)810 void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
811                           int mi_col, SuperBlockEnc *sb_enc) {
812   sb_enc->tpl_data_count = 0;
813 
814   if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
815   if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
816   const FRAME_UPDATE_TYPE update_type =
817       get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
818   if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
819     return;
820   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
821                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
822 
823   AV1_COMMON *const cm = &cpi->common;
824   const int gf_group_index = cpi->gf_frame_index;
825   TplParams *const tpl_data = &cpi->ppi->tpl_data;
826   if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
827   const int mi_wide = mi_size_wide[bsize];
828   const int mi_high = mi_size_high[bsize];
829 
830   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
831   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
832   int tpl_stride = tpl_frame->stride;
833 
834   int mi_count = 0;
835   int count = 0;
836   const int mi_col_sr =
837       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
838   const int mi_col_end_sr =
839       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
840   // mi_cols_sr is mi_cols at superres case.
841   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
842 
843   // TPL store unit size is not the same as the motion estimation unit size.
844   // Here always use motion estimation size to avoid getting repetitive inter/
845   // intra cost.
846   const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
847   assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
848   const int row_step = mi_size_high[tpl_bsize];
849   const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
850                                                cm->superres_scale_denominator);
851 
852   // Stride is only based on SB size, and we fill in values for every 16x16
853   // block in a SB.
854   sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
855 
856   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
857     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
858       assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
859       // Handle partial SB, so that no invalid values are used later.
860       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
861         sb_enc->tpl_inter_cost[count] = INT64_MAX;
862         sb_enc->tpl_intra_cost[count] = INT64_MAX;
863         for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
864           sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
865         }
866         count++;
867         continue;
868       }
869 
870       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
871           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
872       sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
873                                       << TPL_DEP_COST_SCALE_LOG2;
874       sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
875                                       << TPL_DEP_COST_SCALE_LOG2;
876       memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
877       mi_count++;
878       count++;
879     }
880   }
881 
882   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
883   sb_enc->tpl_data_count = mi_count;
884 }
885 
886 // analysis_type 0: Use mc_dep_cost and intra_cost
887 // analysis_type 1: Use count of best inter predictor chosen
888 // analysis_type 2: Use cost reduction from intra to inter for best inter
889 //                  predictor chosen
av1_get_q_for_deltaq_objective(AV1_COMP * const cpi,ThreadData * td,int64_t * delta_dist,BLOCK_SIZE bsize,int mi_row,int mi_col)890 int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
891                                    int64_t *delta_dist, BLOCK_SIZE bsize,
892                                    int mi_row, int mi_col) {
893   AV1_COMMON *const cm = &cpi->common;
894   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
895                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
896   const int tpl_idx = cpi->gf_frame_index;
897   TplParams *const tpl_data = &cpi->ppi->tpl_data;
898   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
899   double intra_cost = 0;
900   double mc_dep_reg = 0;
901   double mc_dep_cost = 0;
902   double cbcmp_base = 1;
903   double srcrf_dist = 0;
904   double srcrf_sse = 0;
905   double srcrf_rate = 0;
906   const int mi_wide = mi_size_wide[bsize];
907   const int mi_high = mi_size_high[bsize];
908   const int base_qindex = cm->quant_params.base_qindex;
909 
910   if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
911 
912   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
913   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
914   int tpl_stride = tpl_frame->stride;
915   if (!tpl_frame->is_valid) return base_qindex;
916 
917 #ifndef NDEBUG
918   int mi_count = 0;
919 #endif
920   const int mi_col_sr =
921       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
922   const int mi_col_end_sr =
923       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
924   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
925   const int step = 1 << block_mis_log2;
926   const int row_step = step;
927   const int col_step_sr =
928       coded_to_superres_mi(step, cm->superres_scale_denominator);
929   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
930     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
931       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
932       TplDepStats *this_stats =
933           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
934       double cbcmp = (double)this_stats->srcrf_dist;
935       int64_t mc_dep_delta =
936           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
937                  this_stats->mc_dep_dist);
938       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
939       intra_cost += log(dist_scaled) * cbcmp;
940       mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
941       mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
942       srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
943       srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
944       srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
945 #ifndef NDEBUG
946       mi_count++;
947 #endif
948       cbcmp_base += cbcmp;
949     }
950   }
951   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
952 
953   int offset = 0;
954   double beta = 1.0;
955   double rk;
956   if (mc_dep_cost > 0 && intra_cost > 0) {
957     const double r0 = cpi->rd.r0;
958     rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
959     td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
960     beta = (r0 / rk);
961     assert(beta > 0.0);
962   } else {
963     return base_qindex;
964   }
965   offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
966 
967   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
968   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
969   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
970   int qindex = cm->quant_params.base_qindex + offset;
971   qindex = AOMMIN(qindex, MAXQ);
972   qindex = AOMMAX(qindex, MINQ);
973 
974   int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
975   int sbs_qstep =
976       av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);
977 
978   if (delta_dist) {
979     double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
980     double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
981     sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
982     *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
983     *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
984     *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
985   }
986   return qindex;
987 }
988 
989 #if !DISABLE_HDR_LUMA_DELTAQ
990 // offset table defined in Table3 of T-REC-H.Sup15 document.
991 static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0,   301, 367, 434, 501, 567,
992                                                   634, 701, 767, 834, 1024 };
993 
994 static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3,  2,  1,  0,  -1,
995                                                     -2, -3, -4, -5, -6 };
996 #endif
997 
av1_get_q_for_hdr(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col)998 int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
999                       BLOCK_SIZE bsize, int mi_row, int mi_col) {
1000   AV1_COMMON *const cm = &cpi->common;
1001   assert(cm->seq_params->bit_depth == AOM_BITS_10);
1002 
1003 #if DISABLE_HDR_LUMA_DELTAQ
1004   (void)x;
1005   (void)bsize;
1006   (void)mi_row;
1007   (void)mi_col;
1008   return cm->quant_params.base_qindex;
1009 #else
1010   // calculate pixel average
1011   const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
1012   // adjust offset based on average of the pixel block
1013   int offset = 0;
1014   for (int i = 0; i < HDR_QP_LEVELS; i++) {
1015     if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
1016       offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
1017       break;
1018     }
1019   }
1020 
1021   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
1022   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
1023   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
1024   int qindex = cm->quant_params.base_qindex + offset;
1025   qindex = AOMMIN(qindex, MAXQ);
1026   qindex = AOMMAX(qindex, MINQ);
1027 
1028   return qindex;
1029 #endif
1030 }
1031 #endif  // !CONFIG_REALTIME_ONLY
1032 
av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE * sms_tree,BLOCK_SIZE bsize)1033 void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
1034                                             BLOCK_SIZE bsize) {
1035   if (sms_tree == NULL) return;
1036   sms_tree->partitioning = PARTITION_NONE;
1037 
1038   if (bsize >= BLOCK_8X8) {
1039     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1040     for (int idx = 0; idx < 4; ++idx)
1041       av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
1042   }
1043 }
1044 
1045 // Record the ref frames that have been selected by square partition blocks.
av1_update_picked_ref_frames_mask(MACROBLOCK * const x,int ref_type,BLOCK_SIZE bsize,int mib_size,int mi_row,int mi_col)1046 void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
1047                                        BLOCK_SIZE bsize, int mib_size,
1048                                        int mi_row, int mi_col) {
1049   assert(mi_size_wide[bsize] == mi_size_high[bsize]);
1050   const int sb_size_mask = mib_size - 1;
1051   const int mi_row_in_sb = mi_row & sb_size_mask;
1052   const int mi_col_in_sb = mi_col & sb_size_mask;
1053   const int mi_size = mi_size_wide[bsize];
1054   for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
1055     for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
1056       x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
1057     }
1058   }
1059 }
1060 
avg_cdf_symbol(aom_cdf_prob * cdf_ptr_left,aom_cdf_prob * cdf_ptr_tr,int num_cdfs,int cdf_stride,int nsymbs,int wt_left,int wt_tr)1061 static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
1062                            int num_cdfs, int cdf_stride, int nsymbs,
1063                            int wt_left, int wt_tr) {
1064   for (int i = 0; i < num_cdfs; i++) {
1065     for (int j = 0; j <= nsymbs; j++) {
1066       cdf_ptr_left[i * cdf_stride + j] =
1067           (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
1068                           (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
1069                           ((wt_left + wt_tr) / 2)) /
1070                          (wt_left + wt_tr));
1071       assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
1072              cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
1073     }
1074   }
1075 }
1076 
1077 #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
1078   AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
1079 
1080 #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \
1081   do {                                                                     \
1082     aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \
1083     aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \
1084     int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \
1085     int num_cdfs = array_size / cdf_stride;                                \
1086     avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
1087                    wt_left, wt_tr);                                        \
1088   } while (0)
1089 
avg_nmv(nmv_context * nmv_left,nmv_context * nmv_tr,int wt_left,int wt_tr)1090 static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
1091                     int wt_tr) {
1092   AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
1093   for (int i = 0; i < 2; i++) {
1094     AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
1095                 MV_CLASSES);
1096     AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
1097                 nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
1098     AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
1099     AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
1100     AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
1101                 nmv_tr->comps[i].class0_hp_cdf, 2);
1102     AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
1103     AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
1104                 CLASS0_SIZE);
1105     AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
1106   }
1107 }
1108 
1109 // In case of row-based multi-threading of encoder, since we always
1110 // keep a top - right sync, we can average the top - right SB's CDFs and
1111 // the left SB's CDFs and use the same for current SB's encoding to
1112 // improve the performance. This function facilitates the averaging
1113 // of CDF and used only when row-mt is enabled in encoder.
av1_avg_cdf_symbols(FRAME_CONTEXT * ctx_left,FRAME_CONTEXT * ctx_tr,int wt_left,int wt_tr)1114 void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
1115                          int wt_left, int wt_tr) {
1116   AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
1117   AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
1118   AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
1119   AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
1120   AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
1121   AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
1122   AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
1123   AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
1124   AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
1125   AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
1126   AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
1127   AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
1128   AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
1129   AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
1130   AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
1131   AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
1132   AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
1133   AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
1134               ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
1135   AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
1136               MASKED_COMPOUND_TYPES);
1137   AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
1138   AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
1139   AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
1140   AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
1141               INTERINTRA_MODES);
1142   AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
1143   AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
1144   AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
1145               PALETTE_SIZES);
1146   AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
1147               PALETTE_SIZES);
1148   for (int j = 0; j < PALETTE_SIZES; j++) {
1149     int nsymbs = j + PALETTE_MIN_SIZE;
1150     AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
1151                    ctx_tr->palette_y_color_index_cdf[j], nsymbs,
1152                    CDF_SIZE(PALETTE_COLORS));
1153     AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
1154                    ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
1155                    CDF_SIZE(PALETTE_COLORS));
1156   }
1157   AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
1158   AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
1159   AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
1160   AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
1161   AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
1162   AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
1163   AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
1164   AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
1165   AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
1166   AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
1167   AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
1168   AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
1169   AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
1170   AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
1171   avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
1172   avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
1173   AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
1174   AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
1175   AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
1176               ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
1177   AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
1178   AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
1179               FILTER_INTRA_MODES);
1180   AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
1181               RESTORE_SWITCHABLE_TYPES);
1182   AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
1183   AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
1184   AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
1185   AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
1186                  UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
1187   AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
1188   for (int i = 0; i < PARTITION_CONTEXTS; i++) {
1189     if (i < 4) {
1190       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
1191                      CDF_SIZE(10));
1192     } else if (i < 16) {
1193       AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
1194     } else {
1195       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
1196                      CDF_SIZE(10));
1197     }
1198   }
1199   AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
1200               SWITCHABLE_FILTERS);
1201   AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
1202   AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
1203               2 * MAX_ANGLE_DELTA + 1);
1204   AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
1205                  CDF_SIZE(MAX_TX_DEPTH + 1));
1206   AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
1207               MAX_TX_DEPTH + 1);
1208   AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
1209               MAX_TX_DEPTH + 1);
1210   AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
1211               MAX_TX_DEPTH + 1);
1212   AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
1213   AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
1214   for (int i = 0; i < FRAME_LF_COUNT; i++) {
1215     AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
1216                 DELTA_LF_PROBS + 1);
1217   }
1218   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
1219                  CDF_SIZE(TX_TYPES));
1220   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
1221                  CDF_SIZE(TX_TYPES));
1222   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
1223                  CDF_SIZE(TX_TYPES));
1224   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
1225                  CDF_SIZE(TX_TYPES));
1226   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
1227                  CDF_SIZE(TX_TYPES));
1228   AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
1229   AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
1230               CFL_ALPHABET_SIZE);
1231 }
1232 
1233 // Check neighbor blocks' motion information.
check_neighbor_blocks(MB_MODE_INFO ** mi,int mi_stride,const TileInfo * const tile_info,int mi_row,int mi_col)1234 static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
1235                                  const TileInfo *const tile_info, int mi_row,
1236                                  int mi_col) {
1237   int is_above_low_motion = 1;
1238   int is_left_low_motion = 1;
1239   const int thr = 24;
1240 
1241   // Check above block.
1242   if (mi_row > tile_info->mi_row_start) {
1243     const MB_MODE_INFO *above_mbmi = mi[-mi_stride];
1244     const int_mv above_mv = above_mbmi->mv[0];
1245     if (above_mbmi->mode >= INTRA_MODE_END &&
1246         (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr))
1247       is_above_low_motion = 0;
1248   }
1249 
1250   // Check left block.
1251   if (mi_col > tile_info->mi_col_start) {
1252     const MB_MODE_INFO *left_mbmi = mi[-1];
1253     const int_mv left_mv = left_mbmi->mv[0];
1254     if (left_mbmi->mode >= INTRA_MODE_END &&
1255         (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr))
1256       is_left_low_motion = 0;
1257   }
1258 
1259   return (is_above_low_motion && is_left_low_motion);
1260 }
1261 
1262 // Check this block's motion in a fast way.
fast_detect_non_zero_motion(AV1_COMP * cpi,const uint8_t * src_y,int src_ystride,const uint8_t * last_src_y,int last_src_ystride,int mi_row,int mi_col)1263 static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
1264                                        int src_ystride,
1265                                        const uint8_t *last_src_y,
1266                                        int last_src_ystride, int mi_row,
1267                                        int mi_col) {
1268   AV1_COMMON *const cm = &cpi->common;
1269   const BLOCK_SIZE bsize = cm->seq_params->sb_size;
1270   unsigned int blk_sad = INT_MAX;
1271   if (cpi->src_sad_blk_64x64 != NULL) {
1272     const int sb_size_by_mb = (bsize == BLOCK_128X128)
1273                                   ? (cm->seq_params->mib_size >> 1)
1274                                   : cm->seq_params->mib_size;
1275     const int sb_cols =
1276         (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
1277     const int sbi_col = mi_col / sb_size_by_mb;
1278     const int sbi_row = mi_row / sb_size_by_mb;
1279     blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
1280   } else {
1281     blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
1282                                           last_src_ystride);
1283   }
1284 
1285   // Search 4 1-away points.
1286   const uint8_t *const search_pos[4] = {
1287     last_src_y - last_src_ystride,
1288     last_src_y - 1,
1289     last_src_y + 1,
1290     last_src_y + last_src_ystride,
1291   };
1292   unsigned int sad_arr[4];
1293   cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos,
1294                                  last_src_ystride, sad_arr);
1295 
1296   blk_sad = (blk_sad * 5) >> 3;
1297   return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] &&
1298           blk_sad < sad_arr[2] && blk_sad < sad_arr[3]);
1299 }
1300 
1301 // Grade the temporal variation of the source by comparing the current sb and
1302 // its collocated block in the last frame.
av1_source_content_sb(AV1_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col)1303 void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
1304                            int mi_row, int mi_col) {
1305   if (cpi->last_source->y_width != cpi->source->y_width ||
1306       cpi->last_source->y_height != cpi->source->y_height)
1307     return;
1308 #if CONFIG_AV1_HIGHBITDEPTH
1309   if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
1310 #endif
1311 
1312   unsigned int tmp_sse;
1313   unsigned int tmp_variance;
1314   const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
1315   uint8_t *src_y = cpi->source->y_buffer;
1316   const int src_ystride = cpi->source->y_stride;
1317   const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2);
1318   uint8_t *last_src_y = cpi->last_source->y_buffer;
1319   const int last_src_ystride = cpi->last_source->y_stride;
1320   const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2);
1321   uint64_t avg_source_sse_threshold_verylow = 10000;     // ~1.5*1.5*(64*64)
1322   uint64_t avg_source_sse_threshold_low[2] = { 100000,   // ~5*5*(64*64)
1323                                                36000 };  // ~3*3*(64*64)
1324 
1325   uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64)
1326   if (cpi->sf.rt_sf.increase_source_sad_thresh) {
1327     avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1;
1328     avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1;
1329     avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1;
1330   }
1331   uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5
1332   src_y += src_offset;
1333   last_src_y += last_src_offset;
1334   tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
1335                                             last_src_ystride, &tmp_sse);
1336   // rd thresholds
1337   if (tmp_sse < avg_source_sse_threshold_low[1])
1338     x->content_state_sb.source_sad_rd = kLowSad;
1339 
1340   // nonrd thresholds
1341   if (tmp_sse == 0) {
1342     x->content_state_sb.source_sad_nonrd = kZeroSad;
1343     return;
1344   }
1345   if (tmp_sse < avg_source_sse_threshold_verylow)
1346     x->content_state_sb.source_sad_nonrd = kVeryLowSad;
1347   else if (tmp_sse < avg_source_sse_threshold_low[0])
1348     x->content_state_sb.source_sad_nonrd = kLowSad;
1349   else if (tmp_sse > avg_source_sse_threshold_high)
1350     x->content_state_sb.source_sad_nonrd = kHighSad;
1351 
1352   // Detect large lighting change.
1353   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1354   if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
1355     x->content_state_sb.lighting_change = 1;
1356   if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
1357     x->content_state_sb.low_sumdiff = 1;
1358 
1359   if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) &&
1360       !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff)
1361     x->sb_force_fixed_part = 0;
1362 
1363   if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
1364       cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
1365     return;
1366 
1367   // In-place temporal filter. If psnr calculation is enabled, we store the
1368   // source for that.
1369   AV1_COMMON *const cm = &cpi->common;
1370   // Calculate n*mean^2
1371   const unsigned int nmean2 = tmp_sse - tmp_variance;
1372   const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
1373                                          cm->seq_params->bit_depth);
1374   const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
1375   const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME],
1376                                           0, cm->seq_params->bit_depth);
1377 
1378   const unsigned int threshold =
1379       (cpi->sf.rt_sf.use_rtc_tf == 1)
1380           ? (clamp(avg_q_step, 250, 1000)) * ac_q_step
1381           : 250 * ac_q_step;
1382 
1383   // TODO(yunqing): use a weighted sum instead of averaging in filtering.
1384   if (tmp_variance <= threshold && nmean2 <= 15) {
1385     // Check neighbor blocks. If neighbor blocks aren't low-motion blocks,
1386     // skip temporal filtering for this block.
1387     MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
1388                         get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
1389     const TileInfo *const tile_info = &tile_data->tile_info;
1390     const int is_neighbor_blocks_low_motion = check_neighbor_blocks(
1391         mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col);
1392     if (!is_neighbor_blocks_low_motion) return;
1393 
1394     // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB
1395     // size.
1396     // Test several nearby points. If non-zero mv exists, don't do temporal
1397     // filtering.
1398     const int is_this_blk_low_motion = fast_detect_non_zero_motion(
1399         cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col);
1400 
1401     if (!is_this_blk_low_motion) return;
1402 
1403     const int shift_x[2] = { 0, cpi->source->subsampling_x };
1404     const int shift_y[2] = { 0, cpi->source->subsampling_y };
1405     const uint8_t h = block_size_high[bsize];
1406     const uint8_t w = block_size_wide[bsize];
1407 
1408     for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
1409       uint8_t *src = cpi->source->buffers[plane];
1410       const int src_stride = cpi->source->strides[plane != 0];
1411       uint8_t *last_src = cpi->last_source->buffers[plane];
1412       const int last_src_stride = cpi->last_source->strides[plane != 0];
1413       src += src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1414              (mi_col << (2 - shift_x[plane != 0]));
1415       last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1416                   (mi_col << (2 - shift_x[plane != 0]));
1417 
1418       for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) {
1419         for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) {
1420           src[j] = (last_src[j] + src[j]) >> 1;
1421         }
1422         src += src_stride;
1423         last_src += last_src_stride;
1424       }
1425     }
1426   }
1427 }
1428 
1429 // Memset the mbmis at the current superblock to 0
av1_reset_mbmi(CommonModeInfoParams * const mi_params,BLOCK_SIZE sb_size,int mi_row,int mi_col)1430 void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
1431                     int mi_row, int mi_col) {
1432   // size of sb in unit of mi (BLOCK_4X4)
1433   const int sb_size_mi = mi_size_wide[sb_size];
1434   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1435   // size of sb in unit of allocated mi size
1436   const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
1437   assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
1438          "mi is not allocated as a multiple of sb!");
1439   assert(mi_params->mi_stride % sb_size_mi == 0 &&
1440          "mi_grid_base is not allocated as a multiple of sb!");
1441 
1442   const int mi_rows = mi_size_high[sb_size];
1443   for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
1444     assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
1445            mi_params->mi_stride);
1446     const int mi_grid_idx =
1447         get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
1448     const int alloc_mi_idx =
1449         get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
1450     memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
1451            sb_size_mi * sizeof(*mi_params->mi_grid_base));
1452     memset(&mi_params->tx_type_map[mi_grid_idx], 0,
1453            sb_size_mi * sizeof(*mi_params->tx_type_map));
1454     if (cur_mi_row % mi_alloc_size_1d == 0) {
1455       memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
1456              sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
1457     }
1458   }
1459 }
1460 
av1_backup_sb_state(SB_FIRST_PASS_STATS * sb_fp_stats,const AV1_COMP * cpi,ThreadData * td,const TileDataEnc * tile_data,int mi_row,int mi_col)1461 void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
1462                          ThreadData *td, const TileDataEnc *tile_data,
1463                          int mi_row, int mi_col) {
1464   MACROBLOCK *x = &td->mb;
1465   MACROBLOCKD *xd = &x->e_mbd;
1466   const TileInfo *tile_info = &tile_data->tile_info;
1467 
1468   const AV1_COMMON *cm = &cpi->common;
1469   const int num_planes = av1_num_planes(cm);
1470   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1471 
1472   xd->above_txfm_context =
1473       cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
1474   xd->left_txfm_context =
1475       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1476   av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
1477 
1478   sb_fp_stats->rd_count = td->rd_counts;
1479   sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
1480 
1481   sb_fp_stats->fc = *td->counts;
1482 
1483   // Don't copy in row_mt case, otherwise run into data race. No behavior change
1484   // in row_mt case.
1485   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1486     memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
1487            sizeof(sb_fp_stats->inter_mode_rd_models));
1488   }
1489 
1490   memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
1491          sizeof(sb_fp_stats->thresh_freq_fact));
1492 
1493   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1494   sb_fp_stats->current_qindex =
1495       cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
1496 
1497 #if CONFIG_INTERNAL_STATS
1498   memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
1499          sizeof(sb_fp_stats->mode_chosen_counts));
1500 #endif  // CONFIG_INTERNAL_STATS
1501 }
1502 
av1_restore_sb_state(const SB_FIRST_PASS_STATS * sb_fp_stats,AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,int mi_col)1503 void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
1504                           ThreadData *td, TileDataEnc *tile_data, int mi_row,
1505                           int mi_col) {
1506   MACROBLOCK *x = &td->mb;
1507 
1508   const AV1_COMMON *cm = &cpi->common;
1509   const int num_planes = av1_num_planes(cm);
1510   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1511 
1512   av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
1513                       num_planes);
1514 
1515   td->rd_counts = sb_fp_stats->rd_count;
1516   x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
1517 
1518   *td->counts = sb_fp_stats->fc;
1519 
1520   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1521     memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
1522            sizeof(sb_fp_stats->inter_mode_rd_models));
1523   }
1524 
1525   memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
1526          sizeof(sb_fp_stats->thresh_freq_fact));
1527 
1528   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1529   cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
1530       sb_fp_stats->current_qindex;
1531 
1532 #if CONFIG_INTERNAL_STATS
1533   memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
1534          sizeof(sb_fp_stats->mode_chosen_counts));
1535 #endif  // CONFIG_INTERNAL_STATS
1536 }
1537 
1538 /*! Checks whether to skip updating the entropy cost based on tile info.
1539  *
1540  * This function contains the common code used to skip the cost update of coeff,
1541  * mode, mv and dv symbols.
1542  */
skip_cost_update(const SequenceHeader * seq_params,const TileInfo * const tile_info,const int mi_row,const int mi_col,INTERNAL_COST_UPDATE_TYPE upd_level)1543 static int skip_cost_update(const SequenceHeader *seq_params,
1544                             const TileInfo *const tile_info, const int mi_row,
1545                             const int mi_col,
1546                             INTERNAL_COST_UPDATE_TYPE upd_level) {
1547   if (upd_level == INTERNAL_COST_UPD_SB) return 0;
1548   if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
1549 
1550   // upd_level is at most as frequent as each sb_row in a tile.
1551   if (mi_col != tile_info->mi_col_start) return 1;
1552 
1553   if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
1554     const int mib_size_log2 = seq_params->mib_size_log2;
1555     const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
1556     const int sb_size = seq_params->mib_size * MI_SIZE;
1557     const int tile_height =
1558         (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
1559     // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
1560     // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
1561     // as the update will not be equally spaced in smaller resolutions making
1562     // it equally spaced by calculating (mv_num_rows_cost_update) the number of
1563     // rows after which the cost update should happen.
1564     const int sb_size_update_freq_map[2] = { 2, 4 };
1565     const int update_freq_sb_rows =
1566         sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
1567     const int update_freq_num_rows = sb_size * update_freq_sb_rows;
1568     // Round-up the division result to next integer.
1569     const int num_updates_per_tile =
1570         (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
1571     const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
1572     // Round-up the division result to next integer.
1573     const int num_sb_rows_per_update =
1574         (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
1575     if ((sb_row % num_sb_rows_per_update) != 0) return 1;
1576   }
1577   return 0;
1578 }
1579 
1580 // Checks for skip status of mv cost update.
skip_mv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1581 static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1582                                const int mi_row, const int mi_col) {
1583   const AV1_COMMON *cm = &cpi->common;
1584   // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
1585   // cost calculation is skipped in this case.
1586   if (frame_is_intra_only(cm)) return 1;
1587 
1588   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1589                           cpi->sf.inter_sf.mv_cost_upd_level);
1590 }
1591 
1592 // Checks for skip status of dv cost update.
skip_dv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1593 static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1594                                const int mi_row, const int mi_col) {
1595   const AV1_COMMON *cm = &cpi->common;
1596   // Intrabc is only applicable to intra frames. So skip if intrabc is not
1597   // allowed.
1598   if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
1599     return 1;
1600   }
1601 
1602   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1603                           cpi->sf.intra_sf.dv_cost_upd_level);
1604 }
1605 
1606 // Update the rate costs of some symbols according to the frequency directed
1607 // by speed features
av1_set_cost_upd_freq(AV1_COMP * cpi,ThreadData * td,const TileInfo * const tile_info,const int mi_row,const int mi_col)1608 void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
1609                            const TileInfo *const tile_info, const int mi_row,
1610                            const int mi_col) {
1611   AV1_COMMON *const cm = &cpi->common;
1612   const int num_planes = av1_num_planes(cm);
1613   MACROBLOCK *const x = &td->mb;
1614   MACROBLOCKD *const xd = &x->e_mbd;
1615 
1616   if (cm->features.disable_cdf_update) {
1617     return;
1618   }
1619 
1620   switch (cpi->sf.inter_sf.coeff_cost_upd_level) {
1621     case INTERNAL_COST_UPD_OFF:
1622     case INTERNAL_COST_UPD_TILE:  // Tile level
1623       break;
1624     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1625     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1626     case INTERNAL_COST_UPD_SB:         // SB level
1627       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1628                            cpi->sf.inter_sf.coeff_cost_upd_level))
1629         break;
1630       av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
1631       break;
1632     default: assert(0);
1633   }
1634 
1635   switch (cpi->sf.inter_sf.mode_cost_upd_level) {
1636     case INTERNAL_COST_UPD_OFF:
1637     case INTERNAL_COST_UPD_TILE:  // Tile level
1638       break;
1639     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1640     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1641     case INTERNAL_COST_UPD_SB:         // SB level
1642       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1643                            cpi->sf.inter_sf.mode_cost_upd_level))
1644         break;
1645       av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
1646       break;
1647     default: assert(0);
1648   }
1649 
1650   switch (cpi->sf.inter_sf.mv_cost_upd_level) {
1651     case INTERNAL_COST_UPD_OFF:
1652     case INTERNAL_COST_UPD_TILE:  // Tile level
1653       break;
1654     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1655     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1656     case INTERNAL_COST_UPD_SB:         // SB level
1657       // Checks for skip status of mv cost update.
1658       if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1659       av1_fill_mv_costs(&xd->tile_ctx->nmvc,
1660                         cm->features.cur_frame_force_integer_mv,
1661                         cm->features.allow_high_precision_mv, x->mv_costs);
1662       break;
1663     default: assert(0);
1664   }
1665 
1666   switch (cpi->sf.intra_sf.dv_cost_upd_level) {
1667     case INTERNAL_COST_UPD_OFF:
1668     case INTERNAL_COST_UPD_TILE:  // Tile level
1669       break;
1670     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1671     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1672     case INTERNAL_COST_UPD_SB:         // SB level
1673       // Checks for skip status of dv cost update.
1674       if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1675       av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
1676       break;
1677     default: assert(0);
1678   }
1679 }
1680 
av1_dealloc_src_diff_buf(struct macroblock * mb,int num_planes)1681 void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {
1682   for (int plane = 0; plane < num_planes; ++plane) {
1683     aom_free(mb->plane[plane].src_diff);
1684     mb->plane[plane].src_diff = NULL;
1685   }
1686 }
1687 
av1_alloc_src_diff_buf(const struct AV1Common * cm,struct macroblock * mb)1688 void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {
1689   const int num_planes = av1_num_planes(cm);
1690 #ifndef NDEBUG
1691   for (int plane = 0; plane < num_planes; ++plane) {
1692     assert(!mb->plane[plane].src_diff);
1693   }
1694 #endif
1695   for (int plane = 0; plane < num_planes; ++plane) {
1696     const int subsampling_xy =
1697         plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
1698               : 0;
1699     const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
1700     CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff,
1701                     (int16_t *)aom_memalign(
1702                         32, sizeof(*mb->plane[plane].src_diff) * sb_size));
1703   }
1704 }
1705