• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22 
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)
25 
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28 
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30                                              int num_pixels) {
31   int i;
32   for (i = 0; i + 4 <= num_pixels; i += 4) {
33     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
35     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
37     const __m128i out = _mm_sub_epi8(in, C);
38     _mm_storeu_si128((__m128i*)&argb_data[i], out);
39   }
40   // fallthrough and finish off with plain-C
41   if (i != num_pixels) {
42     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43   }
44 }
45 
46 //------------------------------------------------------------------------------
47 // Color Transform
48 
49 #define MK_CST_16(HI, LO) \
50   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
51 
TransformColor_SSE2(const VP8LMultipliers * WEBP_RESTRICT const m,uint32_t * WEBP_RESTRICT argb_data,int num_pixels)52 static void TransformColor_SSE2(const VP8LMultipliers* WEBP_RESTRICT const m,
53                                 uint32_t* WEBP_RESTRICT argb_data,
54                                 int num_pixels) {
55   const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
56                                      CST_5b(m->green_to_blue_));
57   const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
58   const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00);  // alpha-green masks
59   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);       // red-blue masks
60   int i;
61   for (i = 0; i + 4 <= num_pixels; i += 4) {
62     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
63     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
64     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
65     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
66     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
67     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
68     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
69     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
70     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
71     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
72     const __m128i out = _mm_sub_epi8(in, I);
73     _mm_storeu_si128((__m128i*)&argb_data[i], out);
74   }
75   // fallthrough and finish off with plain-C
76   if (i != num_pixels) {
77     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
78   }
79 }
80 
81 //------------------------------------------------------------------------------
82 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * WEBP_RESTRICT argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,uint32_t histo[])83 static void CollectColorBlueTransforms_SSE2(const uint32_t* WEBP_RESTRICT argb,
84                                             int stride,
85                                             int tile_width, int tile_height,
86                                             int green_to_blue, int red_to_blue,
87                                             uint32_t histo[]) {
88   const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
89   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
90   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
91   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
92   int y;
93   for (y = 0; y < tile_height; ++y) {
94     const uint32_t* const src = argb + y * stride;
95     int i, x;
96     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
97       uint16_t values[SPAN];
98       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
99       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
100       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
101       const __m128i A1 = _mm_slli_epi16(in1, 8);
102       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
103       const __m128i B1 = _mm_and_si128(in1, mask_g);
104       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
105       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
106       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
107       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
108       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
109       const __m128i E1 = _mm_sub_epi8(in1, D1);
110       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
111       const __m128i F1 = _mm_srli_epi32(C1, 16);
112       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
113       const __m128i G1 = _mm_sub_epi8(E1, F1);
114       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
115       const __m128i H1 = _mm_and_si128(G1, mask_b);
116       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
117       _mm_storeu_si128((__m128i*)values, I);
118       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
119     }
120   }
121   {
122     const int left_over = tile_width & (SPAN - 1);
123     if (left_over > 0) {
124       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
125                                        left_over, tile_height,
126                                        green_to_blue, red_to_blue, histo);
127     }
128   }
129 }
130 
CollectColorRedTransforms_SSE2(const uint32_t * WEBP_RESTRICT argb,int stride,int tile_width,int tile_height,int green_to_red,uint32_t histo[])131 static void CollectColorRedTransforms_SSE2(const uint32_t* WEBP_RESTRICT argb,
132                                            int stride,
133                                            int tile_width, int tile_height,
134                                            int green_to_red, uint32_t histo[]) {
135   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
136   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
137   const __m128i mask = _mm_set1_epi32(0xff);
138 
139   int y;
140   for (y = 0; y < tile_height; ++y) {
141     const uint32_t* const src = argb + y * stride;
142     int i, x;
143     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
144       uint16_t values[SPAN];
145       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
146       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
147       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
148       const __m128i A1 = _mm_and_si128(in1, mask_g);
149       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
150       const __m128i B1 = _mm_srli_epi32(in1, 16);
151       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
152       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
153       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
154       const __m128i E1 = _mm_sub_epi8(B1, C1);
155       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
156       const __m128i F1 = _mm_and_si128(E1, mask);
157       const __m128i I = _mm_packs_epi32(F0, F1);
158       _mm_storeu_si128((__m128i*)values, I);
159       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
160     }
161   }
162   {
163     const int left_over = tile_width & (SPAN - 1);
164     if (left_over > 0) {
165       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
166                                       left_over, tile_height,
167                                       green_to_red, histo);
168     }
169   }
170 }
171 #undef SPAN
172 #undef MK_CST_16
173 
174 //------------------------------------------------------------------------------
175 
176 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
177 // that's ok since the histogram values are less than 1<<28 (max picture size).
AddVector_SSE2(const uint32_t * WEBP_RESTRICT a,const uint32_t * WEBP_RESTRICT b,uint32_t * WEBP_RESTRICT out,int size)178 static void AddVector_SSE2(const uint32_t* WEBP_RESTRICT a,
179                            const uint32_t* WEBP_RESTRICT b,
180                            uint32_t* WEBP_RESTRICT out, int size) {
181   int i = 0;
182   int aligned_size = size & ~15;
183   // Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
184   // NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
185   // 2). See the usage in VP8LHistogramAdd().
186   assert(size >= 16);
187   assert(size % 2 == 0);
188 
189   do {
190     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
191     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
192     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
193     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
194     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
195     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
196     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
197     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
198     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
199     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
200     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
201     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
202     i += 16;
203   } while (i != aligned_size);
204 
205   if ((size & 8) != 0) {
206     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
207     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
208     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]);
209     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]);
210     _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
211     _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
212     i += 8;
213   }
214 
215   size &= 7;
216   if (size == 4) {
217     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i]);
218     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i]);
219     _mm_storeu_si128((__m128i*)&out[i], _mm_add_epi32(a0, b0));
220   } else if (size == 2) {
221     const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[i]);
222     const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[i]);
223     _mm_storel_epi64((__m128i*)&out[i], _mm_add_epi32(a0, b0));
224   }
225 }
226 
AddVectorEq_SSE2(const uint32_t * WEBP_RESTRICT a,uint32_t * WEBP_RESTRICT out,int size)227 static void AddVectorEq_SSE2(const uint32_t* WEBP_RESTRICT a,
228                              uint32_t* WEBP_RESTRICT out, int size) {
229   int i = 0;
230   int aligned_size = size & ~15;
231   // Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
232   // NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
233   // 2). See the usage in VP8LHistogramAdd().
234   assert(size >= 16);
235   assert(size % 2 == 0);
236 
237   do {
238     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
239     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
240     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
241     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
242     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
243     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
244     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
245     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
246     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
247     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
248     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
249     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
250     i += 16;
251   } while (i != aligned_size);
252 
253   if ((size & 8) != 0) {
254     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
255     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
256     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]);
257     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]);
258     _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
259     _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
260     i += 8;
261   }
262 
263   size &= 7;
264   if (size == 4) {
265     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i]);
266     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i]);
267     _mm_storeu_si128((__m128i*)&out[i], _mm_add_epi32(a0, b0));
268   } else if (size == 2) {
269     const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[i]);
270     const __m128i b0 = _mm_loadl_epi64((const __m128i*)&out[i]);
271     _mm_storel_epi64((__m128i*)&out[i], _mm_add_epi32(a0, b0));
272   }
273 }
274 
275 //------------------------------------------------------------------------------
276 // Entropy
277 
278 #if !defined(WEBP_HAVE_SLOW_CLZ_CTZ)
279 
CombinedShannonEntropy_SSE2(const uint32_t X[256],const uint32_t Y[256])280 static uint64_t CombinedShannonEntropy_SSE2(const uint32_t X[256],
281                                             const uint32_t Y[256]) {
282   int i;
283   uint64_t retval = 0;
284   uint32_t sumX = 0, sumXY = 0;
285   const __m128i zero = _mm_setzero_si128();
286 
287   for (i = 0; i < 256; i += 16) {
288     const __m128i x0 = _mm_loadu_si128((const __m128i*)(X + i +  0));
289     const __m128i y0 = _mm_loadu_si128((const __m128i*)(Y + i +  0));
290     const __m128i x1 = _mm_loadu_si128((const __m128i*)(X + i +  4));
291     const __m128i y1 = _mm_loadu_si128((const __m128i*)(Y + i +  4));
292     const __m128i x2 = _mm_loadu_si128((const __m128i*)(X + i +  8));
293     const __m128i y2 = _mm_loadu_si128((const __m128i*)(Y + i +  8));
294     const __m128i x3 = _mm_loadu_si128((const __m128i*)(X + i + 12));
295     const __m128i y3 = _mm_loadu_si128((const __m128i*)(Y + i + 12));
296     const __m128i x4 = _mm_packs_epi16(_mm_packs_epi32(x0, x1),
297                                        _mm_packs_epi32(x2, x3));
298     const __m128i y4 = _mm_packs_epi16(_mm_packs_epi32(y0, y1),
299                                        _mm_packs_epi32(y2, y3));
300     const int32_t mx = _mm_movemask_epi8(_mm_cmpgt_epi8(x4, zero));
301     int32_t my = _mm_movemask_epi8(_mm_cmpgt_epi8(y4, zero)) | mx;
302     while (my) {
303       const int32_t j = BitsCtz(my);
304       uint32_t xy;
305       if ((mx >> j) & 1) {
306         const int x = X[i + j];
307         sumXY += x;
308         retval += VP8LFastSLog2(x);
309       }
310       xy = X[i + j] + Y[i + j];
311       sumX += xy;
312       retval += VP8LFastSLog2(xy);
313       my &= my - 1;
314     }
315   }
316   retval = VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY) - retval;
317   return retval;
318 }
319 
320 #else
321 
322 #define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC   // won't be faster
323 
324 #endif
325 
326 //------------------------------------------------------------------------------
327 
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)328 static int VectorMismatch_SSE2(const uint32_t* const array1,
329                                const uint32_t* const array2, int length) {
330   int match_len;
331 
332   if (length >= 12) {
333     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
334     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
335     match_len = 0;
336     do {
337       // Loop unrolling and early load both provide a speedup of 10% for the
338       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
339       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
340       const __m128i B0 =
341           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
342       const __m128i B1 =
343           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
344       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
345       match_len += 4;
346 
347       {
348         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
349         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
350         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
351         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
352         match_len += 4;
353       }
354     } while (match_len + 12 < length);
355   } else {
356     match_len = 0;
357     // Unroll the potential first two loops.
358     if (length >= 4 &&
359         _mm_movemask_epi8(_mm_cmpeq_epi32(
360             _mm_loadu_si128((const __m128i*)&array1[0]),
361             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
362       match_len = 4;
363       if (length >= 8 &&
364           _mm_movemask_epi8(_mm_cmpeq_epi32(
365               _mm_loadu_si128((const __m128i*)&array1[4]),
366               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
367         match_len = 8;
368       }
369     }
370   }
371 
372   while (match_len < length && array1[match_len] == array2[match_len]) {
373     ++match_len;
374   }
375   return match_len;
376 }
377 
378 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * WEBP_RESTRICT const row,int width,int xbits,uint32_t * WEBP_RESTRICT dst)379 static void BundleColorMap_SSE2(const uint8_t* WEBP_RESTRICT const row,
380                                 int width, int xbits,
381                                 uint32_t* WEBP_RESTRICT dst) {
382   int x;
383   assert(xbits >= 0);
384   assert(xbits <= 3);
385   switch (xbits) {
386     case 0: {
387       const __m128i ff = _mm_set1_epi16((short)0xff00);
388       const __m128i zero = _mm_setzero_si128();
389       // Store 0xff000000 | (row[x] << 8).
390       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
391         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
392         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
393         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
394         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
395         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
396         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
397         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
398         _mm_storeu_si128((__m128i*)&dst[0], dst0);
399         _mm_storeu_si128((__m128i*)&dst[4], dst1);
400         _mm_storeu_si128((__m128i*)&dst[8], dst2);
401         _mm_storeu_si128((__m128i*)&dst[12], dst3);
402       }
403       break;
404     }
405     case 1: {
406       const __m128i ff = _mm_set1_epi16((short)0xff00);
407       const __m128i mul = _mm_set1_epi16(0x110);
408       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
409         // 0a0b | (where a/b are 4 bits).
410         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
411         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
412         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
413         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
414         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
415         _mm_storeu_si128((__m128i*)&dst[0], dst0);
416         _mm_storeu_si128((__m128i*)&dst[4], dst1);
417       }
418       break;
419     }
420     case 2: {
421       const __m128i mask_or = _mm_set1_epi32((int)0xff000000);
422       const __m128i mul_cst = _mm_set1_epi16(0x0104);
423       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
424       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
425         // 000a000b000c000d | (where a/b/c/d are 2 bits).
426         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
427         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
428         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
429         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
430         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
431         // Convert to 0xff00**00.
432         const __m128i res = _mm_or_si128(pack, mask_or);
433         _mm_storeu_si128((__m128i*)dst, res);
434       }
435       break;
436     }
437     default: {
438       assert(xbits == 3);
439       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
440         // 0000000a00000000b... | (where a/b are 1 bit).
441         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
442         const __m128i shift = _mm_slli_epi64(in, 7);
443         const uint32_t move = _mm_movemask_epi8(shift);
444         dst[0] = 0xff000000 | ((move & 0xff) << 8);
445         dst[1] = 0xff000000 | (move & 0xff00);
446       }
447       break;
448     }
449   }
450   if (x != width) {
451     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
452   }
453 }
454 
455 //------------------------------------------------------------------------------
456 // Batch version of Predictor Transform subtraction
457 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)458 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
459                                        const __m128i* const a1,
460                                        __m128i* const avg) {
461   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
462   const __m128i ones = _mm_set1_epi8(1);
463   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
464   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
465   *avg = _mm_sub_epi8(avg1, one);
466 }
467 
468 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)469 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
470                                int num_pixels, uint32_t* WEBP_RESTRICT out) {
471   int i;
472   const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
473   for (i = 0; i + 4 <= num_pixels; i += 4) {
474     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
475     const __m128i res = _mm_sub_epi8(src, black);
476     _mm_storeu_si128((__m128i*)&out[i], res);
477   }
478   if (i != num_pixels) {
479     VP8LPredictorsSub_C[0](in + i, NULL, num_pixels - i, out + i);
480   }
481   (void)upper;
482 }
483 
484 #define GENERATE_PREDICTOR_1(X, IN)                                         \
485   static void PredictorSub##X##_SSE2(const uint32_t* const in,              \
486                                      const uint32_t* const upper,           \
487                                      int num_pixels,                        \
488                                      uint32_t* WEBP_RESTRICT const out) {   \
489     int i;                                                                  \
490     for (i = 0; i + 4 <= num_pixels; i += 4) {                              \
491       const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);          \
492       const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));          \
493       const __m128i res = _mm_sub_epi8(src, pred);                          \
494       _mm_storeu_si128((__m128i*)&out[i], res);                             \
495     }                                                                       \
496     if (i != num_pixels) {                                                  \
497       VP8LPredictorsSub_C[(X)](in + i, WEBP_OFFSET_PTR(upper, i),           \
498                                num_pixels - i, out + i);                    \
499     }                                                                       \
500   }
501 
502 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
503 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
504 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
505 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
506 #undef GENERATE_PREDICTOR_1
507 
508 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)509 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
510                                int num_pixels, uint32_t* WEBP_RESTRICT out) {
511   int i;
512   for (i = 0; i + 4 <= num_pixels; i += 4) {
513     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
514     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
515     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
516     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
517     __m128i avg, pred, res;
518     Average2_m128i(&L, &TR, &avg);
519     Average2_m128i(&avg, &T, &pred);
520     res = _mm_sub_epi8(src, pred);
521     _mm_storeu_si128((__m128i*)&out[i], res);
522   }
523   if (i != num_pixels) {
524     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
525   }
526 }
527 
528 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
529 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
530                                    int num_pixels,                            \
531                                    uint32_t* WEBP_RESTRICT out) {             \
532   int i;                                                                      \
533   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
534     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
535     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
536     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
537     __m128i pred, res;                                                        \
538     Average2_m128i(&tA, &tB, &pred);                                          \
539     res = _mm_sub_epi8(src, pred);                                            \
540     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
541   }                                                                           \
542   if (i != num_pixels) {                                                      \
543     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
544   }                                                                           \
545 }
546 
547 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
548 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
549 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
550 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
551 #undef GENERATE_PREDICTOR_2
552 
553 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)554 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
555                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
556   int i;
557   for (i = 0; i + 4 <= num_pixels; i += 4) {
558     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
559     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
560     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
561     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
562     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
563     __m128i avgTTR, avgLTL, avg, res;
564     Average2_m128i(&T, &TR, &avgTTR);
565     Average2_m128i(&L, &TL, &avgLTL);
566     Average2_m128i(&avgTTR, &avgLTL, &avg);
567     res = _mm_sub_epi8(src, avg);
568     _mm_storeu_si128((__m128i*)&out[i], res);
569   }
570   if (i != num_pixels) {
571     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
572   }
573 }
574 
575 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)576 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
577                                  __m128i* const out) {
578   // We can unpack with any value on the upper 32 bits, provided it's the same
579   // on both operands (to that their sum of abs diff is zero). Here we use *A.
580   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
581   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
582   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
583   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
584   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
585   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
586   *out = _mm_packs_epi32(s_lo, s_hi);
587 }
588 
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)589 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
590                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
591   int i;
592   for (i = 0; i + 4 <= num_pixels; i += 4) {
593     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
594     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
595     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
596     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
597     __m128i pa, pb;
598     GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
599     GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
600     {
601       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
602       const __m128i A = _mm_and_si128(mask, L);
603       const __m128i B = _mm_andnot_si128(mask, T);
604       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
605       const __m128i res = _mm_sub_epi8(src, pred);
606       _mm_storeu_si128((__m128i*)&out[i], res);
607     }
608   }
609   if (i != num_pixels) {
610     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
611   }
612 }
613 
614 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)615 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
616                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
617   int i;
618   const __m128i zero = _mm_setzero_si128();
619   for (i = 0; i + 4 <= num_pixels; i += 4) {
620     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
621     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
622     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
623     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
624     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
625     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
626     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
627     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
628     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
629     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
630     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
631     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
632     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
633     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
634     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
635     const __m128i res = _mm_sub_epi8(src, pred);
636     _mm_storeu_si128((__m128i*)&out[i], res);
637   }
638   if (i != num_pixels) {
639     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
640   }
641 }
642 
643 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * WEBP_RESTRICT out)644 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
645                                 int num_pixels, uint32_t* WEBP_RESTRICT out) {
646   int i;
647   const __m128i zero = _mm_setzero_si128();
648   for (i = 0; i + 2 <= num_pixels; i += 2) {
649     // we can only process two pixels at a time
650     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
651     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
652     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
653     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
654     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
655     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
656     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
657     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
658     const __m128i avg = _mm_srli_epi16(sum, 1);
659     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
660     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
661     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
662     const __m128i A3 = _mm_srai_epi16(A2, 1);
663     const __m128i A4 = _mm_add_epi16(avg, A3);
664     const __m128i pred = _mm_packus_epi16(A4, A4);
665     const __m128i res = _mm_sub_epi8(src, pred);
666     _mm_storel_epi64((__m128i*)&out[i], res);
667   }
668   if (i != num_pixels) {
669     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
670   }
671 }
672 
673 //------------------------------------------------------------------------------
674 // Entry point
675 
676 extern void VP8LEncDspInitSSE2(void);
677 
VP8LEncDspInitSSE2(void)678 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
679   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
680   VP8LTransformColor = TransformColor_SSE2;
681   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
682   VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
683   VP8LAddVector = AddVector_SSE2;
684   VP8LAddVectorEq = AddVectorEq_SSE2;
685 #if !defined(DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC)
686   VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
687 #endif
688   VP8LVectorMismatch = VectorMismatch_SSE2;
689   VP8LBundleColorMap = BundleColorMap_SSE2;
690 
691   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
692   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
693   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
694   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
695   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
696   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
697   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
698   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
699   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
700   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
701   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
702   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
703   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
704   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
705   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
706   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
707 }
708 
709 #else  // !WEBP_USE_SSE2
710 
711 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
712 
713 #endif  // WEBP_USE_SSE2
714