1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_eu.h"
25 #include "brw_nir.h"
26 #include "compiler/nir/nir.h"
27 #include "util/u_dynarray.h"
28
29 /**
30 * \file brw_nir_analyze_ubo_ranges.c
31 *
32 * This pass decides which portions of UBOs to upload as push constants,
33 * so shaders can access them as part of the thread payload, rather than
34 * having to issue expensive memory reads to pull the data.
35 *
36 * The 3DSTATE_CONSTANT_* mechanism can push data from up to 4 different
37 * buffers, in GRF sized units. This was always 256 bits (32 bytes).
38 * Starting with Xe2, it is 512 bits (64 bytes).
39 *
40 * To do this, we examine NIR load_ubo intrinsics, recording the number of
41 * loads at each offset. We track offsets at a sizeof(GRF) granularity, so even
42 * fields with a bit of padding between them tend to fall into contiguous
43 * ranges. We build a list of these ranges, tracking their "cost" (number
44 * of registers required) and "benefit" (number of pull loads eliminated
45 * by pushing the range). We then sort the list to obtain the four best
46 * ranges (most benefit for the least cost).
47 */
48
49 struct ubo_range_entry
50 {
51 struct brw_ubo_range range;
52 int benefit;
53 };
54
55 static int
score(const struct ubo_range_entry * entry)56 score(const struct ubo_range_entry *entry)
57 {
58 return 2 * entry->benefit - entry->range.length;
59 }
60
61 /**
62 * Compares score for two UBO range entries.
63 *
64 * For a descending qsort().
65 */
66 static int
cmp_ubo_range_entry(const void * va,const void * vb)67 cmp_ubo_range_entry(const void *va, const void *vb)
68 {
69 const struct ubo_range_entry *a = va;
70 const struct ubo_range_entry *b = vb;
71
72 /* Rank based on scores, descending order */
73 int delta = score(b) - score(a);
74
75 /* Then use the UBO block index as a tie-breaker, descending order */
76 if (delta == 0)
77 delta = b->range.block - a->range.block;
78
79 /* Finally use the start offset as a second tie-breaker, ascending order */
80 if (delta == 0)
81 delta = a->range.start - b->range.start;
82
83 return delta;
84 }
85
86 struct ubo_block_info
87 {
88 /* Each bit in the offsets bitfield represents a 32-byte section of data.
89 * If it's set to one, there is interesting UBO data at that offset. If
90 * not, there's a "hole" - padding between data - or just nothing at all.
91 */
92 uint64_t offsets;
93 uint8_t uses[64];
94 };
95
96 struct ubo_analysis_state
97 {
98 struct hash_table *blocks;
99 const struct intel_device_info *devinfo;
100 };
101
102 static struct ubo_block_info *
get_block_info(struct ubo_analysis_state * state,int block)103 get_block_info(struct ubo_analysis_state *state, int block)
104 {
105 uint32_t hash = block + 1;
106 void *key = (void *) (uintptr_t) hash;
107
108 struct hash_entry *entry =
109 _mesa_hash_table_search_pre_hashed(state->blocks, hash, key);
110
111 if (entry)
112 return (struct ubo_block_info *) entry->data;
113
114 struct ubo_block_info *info =
115 rzalloc(state->blocks, struct ubo_block_info);
116 _mesa_hash_table_insert_pre_hashed(state->blocks, hash, key, info);
117
118 return info;
119 }
120
121 static void
analyze_ubos_block(struct ubo_analysis_state * state,nir_block * block)122 analyze_ubos_block(struct ubo_analysis_state *state, nir_block *block)
123 {
124 nir_foreach_instr(instr, block) {
125 if (instr->type != nir_instr_type_intrinsic)
126 continue;
127
128 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
129 if (intrin->intrinsic != nir_intrinsic_load_ubo)
130 continue;
131
132 if (brw_nir_ubo_surface_index_is_pushable(intrin->src[0]) &&
133 nir_src_is_const(intrin->src[1])) {
134 const int block = brw_nir_ubo_surface_index_get_push_block(intrin->src[0]);
135 const unsigned byte_offset = nir_src_as_uint(intrin->src[1]);
136 const unsigned sizeof_GRF = REG_SIZE * reg_unit(state->devinfo);
137 const int offset = byte_offset / sizeof_GRF;
138
139 /* Avoid shifting by larger than the width of our bitfield, as this
140 * is undefined in C. Even if we require multiple bits to represent
141 * the entire value, it's OK to record a partial value - the backend
142 * is capable of falling back to pull loads for later components of
143 * vectors, as it has to shrink ranges for other reasons anyway.
144 */
145 if (offset >= 64)
146 continue;
147
148 /* The value might span multiple sizeof(GRF) chunks. */
149 const unsigned num_components =
150 nir_def_last_component_read(&intrin->def) + 1;
151 const int bytes = num_components * (intrin->def.bit_size / 8);
152 const int start = ROUND_DOWN_TO(byte_offset, sizeof_GRF);
153 const int end = ALIGN(byte_offset + bytes, sizeof_GRF);
154 const int chunks = (end - start) / sizeof_GRF;
155
156 /* TODO: should we count uses in loops as higher benefit? */
157
158 struct ubo_block_info *info = get_block_info(state, block);
159 info->offsets |= ((1ull << chunks) - 1) << offset;
160 info->uses[offset]++;
161 }
162 }
163 }
164
165 static void
print_ubo_entry(FILE * file,const struct ubo_range_entry * entry,struct ubo_analysis_state * state)166 print_ubo_entry(FILE *file,
167 const struct ubo_range_entry *entry,
168 struct ubo_analysis_state *state)
169 {
170 struct ubo_block_info *info = get_block_info(state, entry->range.block);
171
172 fprintf(file,
173 "block %2d, start %2d, length %2d, bits = %"PRIx64", "
174 "benefit %2d, cost %2d, score = %2d\n",
175 entry->range.block, entry->range.start, entry->range.length,
176 info->offsets, entry->benefit, entry->range.length, score(entry));
177 }
178
179 void
brw_nir_analyze_ubo_ranges(const struct brw_compiler * compiler,nir_shader * nir,struct brw_ubo_range out_ranges[4])180 brw_nir_analyze_ubo_ranges(const struct brw_compiler *compiler,
181 nir_shader *nir,
182 struct brw_ubo_range out_ranges[4])
183 {
184 void *mem_ctx = ralloc_context(NULL);
185
186 struct ubo_analysis_state state = {
187 .blocks =
188 _mesa_hash_table_create(mem_ctx, NULL, _mesa_key_pointer_equal),
189 .devinfo = compiler->devinfo,
190 };
191
192 /* Walk the IR, recording how many times each UBO block/offset is used. */
193 nir_foreach_function_impl(impl, nir) {
194 nir_foreach_block(block, impl) {
195 analyze_ubos_block(&state, block);
196 }
197 }
198
199 /* Find ranges: a block, starting register-size aligned byte offset, and
200 * length.
201 */
202 struct util_dynarray ranges;
203 util_dynarray_init(&ranges, mem_ctx);
204
205 hash_table_foreach(state.blocks, entry) {
206 const int b = entry->hash - 1;
207 const struct ubo_block_info *info = entry->data;
208 uint64_t offsets = info->offsets;
209
210 /* Walk through the offsets bitfield, finding contiguous regions of
211 * set bits:
212 *
213 * 0000000001111111111111000000000000111111111111110000000011111100
214 * ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^ ^^^^^^
215 *
216 * Each of these will become a UBO range.
217 */
218 while (offsets != 0) {
219 /* Find the first 1 in the offsets bitfield. This represents the
220 * start of a range of interesting UBO data. Make it zero-indexed.
221 */
222 int first_bit = ffsll(offsets) - 1;
223
224 /* Find the first 0 bit in offsets beyond first_bit. To find the
225 * first zero bit, we find the first 1 bit in the complement. In
226 * order to ignore bits before first_bit, we mask off those bits.
227 */
228 int first_hole = ffsll(~offsets & ~((1ull << first_bit) - 1)) - 1;
229
230 if (first_hole == -1) {
231 /* If we didn't find a hole, then set it to the end of the
232 * bitfield. There are no more ranges to process.
233 */
234 first_hole = 64;
235 offsets = 0;
236 } else {
237 /* We've processed all bits before first_hole. Mask them off. */
238 offsets &= ~((1ull << first_hole) - 1);
239 }
240
241 struct ubo_range_entry *entry =
242 util_dynarray_grow(&ranges, struct ubo_range_entry, 1);
243
244 entry->range.block = b;
245 entry->range.start = first_bit;
246 /* first_hole is one beyond the end, so we don't need to add 1 */
247 entry->range.length = first_hole - first_bit;
248 entry->benefit = 0;
249
250 for (int i = 0; i < entry->range.length; i++)
251 entry->benefit += info->uses[first_bit + i];
252 }
253 }
254
255 int nr_entries = ranges.size / sizeof(struct ubo_range_entry);
256
257 if (0) {
258 util_dynarray_foreach(&ranges, struct ubo_range_entry, entry) {
259 print_ubo_entry(stderr, entry, &state);
260 }
261 }
262
263 /* TODO: Consider combining ranges.
264 *
265 * We can only push 4 ranges via 3DSTATE_CONSTANT_XS. If there are
266 * more ranges, and two are close by with only a small hole, it may be
267 * worth combining them. The holes will waste register space, but the
268 * benefit of removing pulls may outweigh that cost.
269 */
270
271 /* Sort the list so the most beneficial ranges are at the front. */
272 if (nr_entries > 0) {
273 qsort(ranges.data, nr_entries, sizeof(struct ubo_range_entry),
274 cmp_ubo_range_entry);
275 }
276
277 struct ubo_range_entry *entries = ranges.data;
278
279 /* Return the top 4, limited to the maximum number of push registers.
280 *
281 * The Vulkan driver sets up additional non-UBO push constants, so it may
282 * need to shrink these ranges further (see anv_nir_compute_push_layout.c).
283 * The OpenGL driver treats legacy uniforms as a UBO, so this is enough.
284 *
285 * To limit further, simply drop the tail of the list, as that's the least
286 * valuable portion.
287 */
288 const int max_ubos = 4;
289 nr_entries = MIN2(nr_entries, max_ubos);
290
291 const unsigned max_push_regs = 64 / reg_unit(compiler->devinfo);
292 unsigned total_push_regs = 0;
293
294 for (unsigned i = 0; i < nr_entries; i++) {
295 if (total_push_regs + entries[i].range.length > max_push_regs)
296 entries[i].range.length = max_push_regs - total_push_regs;
297 total_push_regs += entries[i].range.length;
298 }
299
300 for (int i = 0; i < nr_entries; i++) {
301 out_ranges[i] = entries[i].range;
302
303 /* To this point, various values have been tracked in terms of the real
304 * hardware register sizes. However, the rest of the compiler expects
305 * values in terms of pre-Xe2 256-bit registers. Scale start and length
306 * to account for this.
307 */
308 out_ranges[i].start *= reg_unit(compiler->devinfo);
309 out_ranges[i].length *= reg_unit(compiler->devinfo);
310 }
311 for (int i = nr_entries; i < 4; i++) {
312 out_ranges[i].block = 0;
313 out_ranges[i].start = 0;
314 out_ranges[i].length = 0;
315 }
316
317 ralloc_free(ranges.mem_ctx);
318 }
319