1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <common/FlagManager.h>
20 #include <common/trace.h>
21 #include <compositionengine/CompositionEngine.h>
22 #include <compositionengine/CompositionRefreshArgs.h>
23 #include <compositionengine/DisplayColorProfile.h>
24 #include <compositionengine/LayerFE.h>
25 #include <compositionengine/LayerFECompositionState.h>
26 #include <compositionengine/RenderSurface.h>
27 #include <compositionengine/impl/HwcAsyncWorker.h>
28 #include <compositionengine/impl/Output.h>
29 #include <compositionengine/impl/OutputCompositionState.h>
30 #include <compositionengine/impl/OutputLayer.h>
31 #include <compositionengine/impl/OutputLayerCompositionState.h>
32 #include <compositionengine/impl/planner/Planner.h>
33 #include <ftl/algorithm.h>
34 #include <ftl/future.h>
35 #include <ftl/optional.h>
36 #include <scheduler/FrameTargeter.h>
37 #include <scheduler/Time.h>
38
39 #include <com_android_graphics_libgui_flags.h>
40
41 #include <optional>
42 #include <thread>
43
44 #include "renderengine/ExternalTexture.h"
45
46 // TODO(b/129481165): remove the #pragma below and fix conversion issues
47 #pragma clang diagnostic push
48 #pragma clang diagnostic ignored "-Wconversion"
49
50 #include <renderengine/DisplaySettings.h>
51 #include <renderengine/RenderEngine.h>
52
53 // TODO(b/129481165): remove the #pragma below and fix conversion issues
54 #pragma clang diagnostic pop // ignored "-Wconversion"
55
56 #include <android-base/properties.h>
57 #include <ui/DebugUtils.h>
58 #include <ui/HdrCapabilities.h>
59
60 #include "TracedOrdinal.h"
61
62 using aidl::android::hardware::graphics::composer3::Composition;
63
64 namespace android::compositionengine {
65
66 Output::~Output() = default;
67
68 namespace impl {
69 using CompositionStrategyPredictionState =
70 OutputCompositionState::CompositionStrategyPredictionState;
71 namespace {
72
73 template <typename T>
74 class Reversed {
75 public:
Reversed(const T & container)76 explicit Reversed(const T& container) : mContainer(container) {}
begin()77 auto begin() { return mContainer.rbegin(); }
end()78 auto end() { return mContainer.rend(); }
79
80 private:
81 const T& mContainer;
82 };
83
84 // Helper for enumerating over a container in reverse order
85 template <typename T>
reversed(const T & c)86 Reversed<T> reversed(const T& c) {
87 return Reversed<T>(c);
88 }
89
90 struct ScaleVector {
91 float x;
92 float y;
93 };
94
95 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
96 // where to' will have the same size as "to". In the case where "from" and "to"
97 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)98 ScaleVector getScale(const Rect& from, const Rect& to) {
99 return {.x = static_cast<float>(to.width()) / from.width(),
100 .y = static_cast<float>(to.height()) / from.height()};
101 }
102
103 } // namespace
104
createOutput(const compositionengine::CompositionEngine & compositionEngine)105 std::shared_ptr<Output> createOutput(
106 const compositionengine::CompositionEngine& compositionEngine) {
107 return createOutputTemplated<Output>(compositionEngine);
108 }
109
110 Output::~Output() = default;
111
isValid() const112 bool Output::isValid() const {
113 return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
114 mRenderSurface->isValid();
115 }
116
getDisplayId() const117 ftl::Optional<DisplayId> Output::getDisplayId() const {
118 return {};
119 }
120
getDisplayIdVariant() const121 ftl::Optional<DisplayIdVariant> Output::getDisplayIdVariant() const {
122 return {};
123 }
124
getName() const125 const std::string& Output::getName() const {
126 return mName;
127 }
128
setName(const std::string & name)129 void Output::setName(const std::string& name) {
130 mName = name;
131 auto displayIdOpt = getDisplayId();
132 mNamePlusId = displayIdOpt ? base::StringPrintf("%s (%s)", mName.c_str(),
133 to_string(*displayIdOpt).c_str())
134 : mName;
135 }
136
setCompositionEnabled(bool enabled)137 void Output::setCompositionEnabled(bool enabled) {
138 auto& outputState = editState();
139 if (outputState.isEnabled == enabled) {
140 return;
141 }
142
143 outputState.isEnabled = enabled;
144 dirtyEntireOutput();
145 }
146
setLayerCachingEnabled(bool enabled)147 void Output::setLayerCachingEnabled(bool enabled) {
148 if (enabled == (mPlanner != nullptr)) {
149 return;
150 }
151
152 if (enabled) {
153 mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
154 if (mRenderSurface) {
155 mPlanner->setDisplaySize(mRenderSurface->getSize());
156 }
157 } else {
158 mPlanner.reset();
159 }
160
161 for (auto* outputLayer : getOutputLayersOrderedByZ()) {
162 if (!outputLayer) {
163 continue;
164 }
165
166 outputLayer->editState().overrideInfo = {};
167 }
168 }
169
setLayerCachingTexturePoolEnabled(bool enabled)170 void Output::setLayerCachingTexturePoolEnabled(bool enabled) {
171 if (mPlanner) {
172 mPlanner->setTexturePoolEnabled(enabled);
173 }
174 }
175
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)176 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
177 const Rect& orientedDisplaySpaceRect) {
178 auto& outputState = editState();
179
180 outputState.displaySpace.setOrientation(orientation);
181 LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT,
182 "The display bounds are unknown.");
183
184 // Compute orientedDisplaySpace
185 ui::Size orientedSize = outputState.displaySpace.getBounds();
186 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
187 std::swap(orientedSize.width, orientedSize.height);
188 }
189 outputState.orientedDisplaySpace.setBounds(orientedSize);
190 outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect);
191
192 // Compute displaySpace.content
193 const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
194 ui::Transform rotation;
195 if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
196 const auto displaySize = outputState.displaySpace.getBoundsAsRect();
197 rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
198 }
199 outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect));
200
201 // Compute framebufferSpace
202 outputState.framebufferSpace.setOrientation(orientation);
203 LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT,
204 "The framebuffer bounds are unknown.");
205 const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(),
206 outputState.framebufferSpace.getBoundsAsRect());
207 outputState.framebufferSpace.setContent(
208 outputState.displaySpace.getContent().scale(scale.x, scale.y));
209
210 // Compute layerStackSpace
211 outputState.layerStackSpace.setContent(layerStackSpaceRect);
212 outputState.layerStackSpace.setBounds(
213 ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight()));
214
215 outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
216 outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
217 dirtyEntireOutput();
218 }
219
setNextBrightness(float brightness)220 void Output::setNextBrightness(float brightness) {
221 editState().displayBrightness = brightness;
222 }
223
setDisplaySize(const ui::Size & size)224 void Output::setDisplaySize(const ui::Size& size) {
225 mRenderSurface->setDisplaySize(size);
226
227 auto& state = editState();
228
229 // Update framebuffer space
230 const ui::Size newBounds(size);
231 state.framebufferSpace.setBounds(newBounds);
232
233 // Update display space
234 state.displaySpace.setBounds(newBounds);
235 state.transform = state.layerStackSpace.getTransform(state.displaySpace);
236
237 // Update oriented display space
238 const auto orientation = state.displaySpace.getOrientation();
239 ui::Size orientedSize = size;
240 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
241 std::swap(orientedSize.width, orientedSize.height);
242 }
243 const ui::Size newOrientedBounds(orientedSize);
244 state.orientedDisplaySpace.setBounds(newOrientedBounds);
245
246 if (mPlanner) {
247 mPlanner->setDisplaySize(size);
248 }
249
250 dirtyEntireOutput();
251 }
252
getTransformHint() const253 ui::Transform::RotationFlags Output::getTransformHint() const {
254 return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
255 }
256
setLayerFilter(ui::LayerFilter filter)257 void Output::setLayerFilter(ui::LayerFilter filter) {
258 editState().layerFilter = filter;
259 dirtyEntireOutput();
260 }
261
setColorTransform(const compositionengine::CompositionRefreshArgs & args)262 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
263 auto& colorTransformMatrix = editState().colorTransformMatrix;
264 if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
265 return;
266 }
267
268 colorTransformMatrix = *args.colorTransformMatrix;
269
270 dirtyEntireOutput();
271 }
272
setColorProfile(const ColorProfile & colorProfile)273 void Output::setColorProfile(const ColorProfile& colorProfile) {
274 auto& outputState = editState();
275 if (outputState.colorMode == colorProfile.mode &&
276 outputState.dataspace == colorProfile.dataspace &&
277 outputState.renderIntent == colorProfile.renderIntent) {
278 return;
279 }
280
281 outputState.colorMode = colorProfile.mode;
282 outputState.dataspace = colorProfile.dataspace;
283 outputState.renderIntent = colorProfile.renderIntent;
284
285 mRenderSurface->setBufferDataspace(colorProfile.dataspace);
286
287 ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
288 decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
289 decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
290
291 dirtyEntireOutput();
292 }
293
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)294 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
295 auto& outputState = editState();
296 if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
297 outputState.displayBrightnessNits == displayBrightnessNits) {
298 // Nothing changed
299 return;
300 }
301 outputState.sdrWhitePointNits = sdrWhitePointNits;
302 outputState.displayBrightnessNits = displayBrightnessNits;
303 dirtyEntireOutput();
304 }
305
dump(std::string & out) const306 void Output::dump(std::string& out) const {
307 base::StringAppendF(&out, "Output \"%s\"", mName.c_str());
308 out.append("\n Composition Output State:\n");
309
310 dumpBase(out);
311 }
312
dumpBase(std::string & out) const313 void Output::dumpBase(std::string& out) const {
314 dumpState(out);
315 out += '\n';
316
317 if (mDisplayColorProfile) {
318 mDisplayColorProfile->dump(out);
319 } else {
320 out.append(" No display color profile!\n");
321 }
322
323 out += '\n';
324
325 if (mRenderSurface) {
326 mRenderSurface->dump(out);
327 } else {
328 out.append(" No render surface!\n");
329 }
330
331 base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
332 for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
333 if (!outputLayer) {
334 continue;
335 }
336 outputLayer->dump(out);
337 }
338 }
339
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const340 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
341 if (!mPlanner) {
342 out.append("Planner is disabled\n");
343 return;
344 }
345 base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
346 mPlanner->dump(args, out);
347 }
348
getDisplayColorProfile() const349 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
350 return mDisplayColorProfile.get();
351 }
352
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)353 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
354 mDisplayColorProfile = std::move(mode);
355 }
356
getReleasedLayersForTest() const357 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
358 return mReleasedLayers;
359 }
360
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)361 void Output::setDisplayColorProfileForTest(
362 std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
363 mDisplayColorProfile = std::move(mode);
364 }
365
getRenderSurface() const366 compositionengine::RenderSurface* Output::getRenderSurface() const {
367 return mRenderSurface.get();
368 }
369
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)370 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
371 mRenderSurface = std::move(surface);
372 const auto size = mRenderSurface->getSize();
373 editState().framebufferSpace.setBounds(size);
374 if (mPlanner) {
375 mPlanner->setDisplaySize(size);
376 }
377 dirtyEntireOutput();
378 }
379
cacheClientCompositionRequests(uint32_t cacheSize)380 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
381 if (cacheSize == 0) {
382 mClientCompositionRequestCache.reset();
383 } else {
384 mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
385 }
386 };
387
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)388 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
389 mRenderSurface = std::move(surface);
390 }
391
getDirtyRegion() const392 Region Output::getDirtyRegion() const {
393 const auto& outputState = getState();
394 return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent());
395 }
396
includesLayer(ui::LayerFilter filter) const397 bool Output::includesLayer(ui::LayerFilter filter) const {
398 return getState().layerFilter.includes(filter);
399 }
400
includesLayer(const sp<LayerFE> & layerFE) const401 bool Output::includesLayer(const sp<LayerFE>& layerFE) const {
402 const auto* layerFEState = layerFE->getCompositionState();
403 return layerFEState && includesLayer(layerFEState->outputFilter);
404 }
405
createOutputLayer(const sp<LayerFE> & layerFE) const406 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
407 const sp<LayerFE>& layerFE) const {
408 return impl::createOutputLayer(*this, layerFE);
409 }
410
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const411 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
412 auto index = findCurrentOutputLayerForLayer(layerFE);
413 return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
414 }
415
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const416 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
417 const sp<compositionengine::LayerFE>& layer) const {
418 for (size_t i = 0; i < getOutputLayerCount(); i++) {
419 auto outputLayer = getOutputLayerOrderedByZByIndex(i);
420 if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
421 return i;
422 }
423 }
424 return std::nullopt;
425 }
426
setReleasedLayers(Output::ReleasedLayers && layers)427 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
428 mReleasedLayers = std::move(layers);
429 }
430
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)431 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
432 LayerFESet& geomSnapshots) {
433 SFTRACE_CALL();
434 ALOGV(__FUNCTION__);
435
436 rebuildLayerStacks(refreshArgs, geomSnapshots);
437 uncacheBuffers(refreshArgs.bufferIdsToUncache);
438 }
439
present(const compositionengine::CompositionRefreshArgs & refreshArgs)440 ftl::Future<std::monostate> Output::present(
441 const compositionengine::CompositionRefreshArgs& refreshArgs) {
442 const auto stringifyExpectedPresentTime = [this, &refreshArgs]() -> std::string {
443 return getDisplayIdVariant()
444 .and_then(asPhysicalDisplayId)
445 .and_then([&refreshArgs](PhysicalDisplayId id) {
446 return refreshArgs.frameTargets.get(id);
447 })
448 .transform([](const auto& frameTargetPtr) {
449 return frameTargetPtr.get()->expectedPresentTime();
450 })
451 .transform([](TimePoint expectedPresentTime) {
452 return base::StringPrintf(" vsyncIn %.2fms",
453 ticks<std::milli, float>(expectedPresentTime -
454 TimePoint::now()));
455 })
456 .or_else([] {
457 // There is no vsync for this output.
458 return std::make_optional(std::string());
459 })
460 .value();
461 };
462 SFTRACE_FORMAT("%s for %s%s", __func__, mNamePlusId.c_str(),
463 stringifyExpectedPresentTime().c_str());
464 ALOGV(__FUNCTION__);
465
466 updateColorProfile(refreshArgs);
467 updateCompositionState(refreshArgs);
468 planComposition();
469 writeCompositionState(refreshArgs);
470 setColorTransform(refreshArgs);
471 beginFrame();
472
473 if (isPowerHintSessionEnabled()) {
474 // always reset the flag before the composition prediction
475 setHintSessionRequiresRenderEngine(false);
476 }
477 GpuCompositionResult result;
478 const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs);
479 if (predictCompositionStrategy) {
480 result = prepareFrameAsync();
481 } else {
482 prepareFrame();
483 }
484
485 devOptRepaintFlash(refreshArgs);
486 finishFrame(std::move(result));
487 ftl::Future<std::monostate> future;
488 const bool flushEvenWhenDisabled = !refreshArgs.bufferIdsToUncache.empty();
489 if (mOffloadPresent) {
490 future = presentFrameAndReleaseLayersAsync(flushEvenWhenDisabled);
491
492 // Only offload for this frame. The next frame will determine whether it
493 // needs to be offloaded. Leave the HwcAsyncWorker in place. For one thing,
494 // it is currently presenting. Further, it may be needed next frame, and
495 // we don't want to churn.
496 mOffloadPresent = false;
497 } else {
498 presentFrameAndReleaseLayers(flushEvenWhenDisabled);
499 future = ftl::yield<std::monostate>({});
500 }
501 renderCachedSets(refreshArgs);
502 return future;
503 }
504
offloadPresentNextFrame()505 void Output::offloadPresentNextFrame() {
506 mOffloadPresent = true;
507 updateHwcAsyncWorker();
508 }
509
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)510 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
511 LayerFESet& layerFESet) {
512 auto& outputState = editState();
513
514 // Do nothing if this output is not enabled or there is no need to perform this update
515 if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
516 return;
517 }
518 SFTRACE_CALL();
519 ALOGV(__FUNCTION__);
520
521 // Process the layers to determine visibility and coverage
522 compositionengine::Output::CoverageState coverage{layerFESet};
523 coverage.aboveCoveredLayersExcludingOverlays = refreshArgs.hasTrustedPresentationListener
524 ? std::make_optional<Region>()
525 : std::nullopt;
526 collectVisibleLayers(refreshArgs, coverage);
527
528 // Compute the resulting coverage for this output, and store it for later
529 const ui::Transform& tr = outputState.transform;
530 Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()};
531 undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
532
533 outputState.undefinedRegion = undefinedRegion;
534 outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
535 }
536
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)537 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
538 compositionengine::Output::CoverageState& coverage) {
539 // Evaluate the layers from front to back to determine what is visible. This
540 // also incrementally calculates the coverage information for each layer as
541 // well as the entire output.
542 for (auto layer : reversed(refreshArgs.layers)) {
543 // Incrementally process the coverage for each layer
544 ensureOutputLayerIfVisible(layer, coverage);
545
546 // TODO(b/121291683): Stop early if the output is completely covered and
547 // no more layers could even be visible underneath the ones on top.
548 }
549
550 setReleasedLayers(refreshArgs);
551
552 finalizePendingOutputLayers();
553 }
554
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)555 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
556 compositionengine::Output::CoverageState& coverage) {
557 // Ensure we have a snapshot of the basic geometry layer state. Limit the
558 // snapshots to once per frame for each candidate layer, as layers may
559 // appear on multiple outputs.
560 if (!coverage.latchedLayers.count(layerFE)) {
561 coverage.latchedLayers.insert(layerFE);
562 }
563
564 // Only consider the layers on this output
565 if (!includesLayer(layerFE)) {
566 return;
567 }
568
569 // Obtain a read-only pointer to the front-end layer state
570 const auto* layerFEState = layerFE->getCompositionState();
571 if (CC_UNLIKELY(!layerFEState)) {
572 return;
573 }
574
575 // handle hidden surfaces by setting the visible region to empty
576 if (CC_UNLIKELY(!layerFEState->isVisible)) {
577 return;
578 }
579
580 bool computeAboveCoveredExcludingOverlays = coverage.aboveCoveredLayersExcludingOverlays &&
581 !layerFEState->outputFilter.toInternalDisplay;
582
583 /*
584 * opaqueRegion: area of a surface that is fully opaque.
585 */
586 Region opaqueRegion;
587
588 /*
589 * visibleRegion: area of a surface that is visible on screen and not fully
590 * transparent. This is essentially the layer's footprint minus the opaque
591 * regions above it. Areas covered by a translucent surface are considered
592 * visible.
593 */
594 Region visibleRegion;
595
596 /*
597 * coveredRegion: area of a surface that is covered by all visible regions
598 * above it (which includes the translucent areas).
599 */
600 Region coveredRegion;
601
602 /*
603 * transparentRegion: area of a surface that is hinted to be completely
604 * transparent.
605 * This is used to tell when the layer has no visible non-transparent
606 * regions and can be removed from the layer list. It does not affect the
607 * visibleRegion of this layer or any layers beneath it. The hint may not
608 * be correct if apps don't respect the SurfaceView restrictions (which,
609 * sadly, some don't).
610 *
611 * In addition, it is used on DISPLAY_DECORATION layers to specify the
612 * blockingRegion, allowing the DPU to skip it to save power. Once we have
613 * hardware that supports a blockingRegion on frames with AFBC, it may be
614 * useful to use this for other layers, too, so long as we can prevent
615 * regressions on b/7179570.
616 */
617 Region transparentRegion;
618
619 /*
620 * shadowRegion: Region cast by the layer's shadow.
621 */
622 Region shadowRegion;
623
624 /**
625 * covered region above excluding internal display overlay layers
626 */
627 std::optional<Region> coveredRegionExcludingDisplayOverlays = std::nullopt;
628
629 const ui::Transform& tr = layerFEState->geomLayerTransform;
630
631 // Get the visible region
632 // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
633 // for computations like this?
634 const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
635 visibleRegion.set(visibleRect);
636
637 if (layerFEState->shadowSettings.length > 0.0f) {
638 // if the layer casts a shadow, offset the layers visible region and
639 // calculate the shadow region.
640 const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowSettings.length) * -1.0f);
641 Rect visibleRectWithShadows(visibleRect);
642 visibleRectWithShadows.inset(inset, inset, inset, inset);
643 visibleRegion.set(visibleRectWithShadows);
644 shadowRegion = visibleRegion.subtract(visibleRect);
645 }
646
647 if (visibleRegion.isEmpty()) {
648 return;
649 }
650
651 // Remove the transparent area from the visible region
652 if (!layerFEState->isOpaque) {
653 if (tr.preserveRects()) {
654 // Clip the transparent region to geomLayerBounds first
655 // The transparent region may be influenced by applications, for
656 // instance, by overriding ViewGroup#gatherTransparentRegion with a
657 // custom view. Once the layer stack -> display mapping is known, we
658 // must guard against very wrong inputs to prevent underflow or
659 // overflow errors. We do this here by constraining the transparent
660 // region to be within the pre-transform layer bounds, since the
661 // layer bounds are expected to play nicely with the full
662 // transform.
663 const Region clippedTransparentRegionHint =
664 layerFEState->transparentRegionHint.intersect(
665 Rect(layerFEState->geomLayerBounds));
666
667 if (clippedTransparentRegionHint.isEmpty()) {
668 if (!layerFEState->transparentRegionHint.isEmpty()) {
669 ALOGD("Layer: %s had an out of bounds transparent region",
670 layerFE->getDebugName());
671 layerFEState->transparentRegionHint.dump("transparentRegionHint");
672 }
673 transparentRegion.clear();
674 } else {
675 transparentRegion = tr.transform(clippedTransparentRegionHint);
676 }
677 } else {
678 // transformation too complex, can't do the
679 // transparent region optimization.
680 transparentRegion.clear();
681 }
682 }
683
684 // compute the opaque region
685 const auto layerOrientation = tr.getOrientation();
686 if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
687 // If we one of the simple category of transforms (0/90/180/270 rotation
688 // + any flip), then the opaque region is the layer's footprint.
689 // Otherwise we don't try and compute the opaque region since there may
690 // be errors at the edges, and we treat the entire layer as
691 // translucent.
692 opaqueRegion.set(visibleRect);
693 }
694
695 // Clip the covered region to the visible region
696 coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
697
698 // Update accumAboveCoveredLayers for next (lower) layer
699 coverage.aboveCoveredLayers.orSelf(visibleRegion);
700
701 if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
702 coveredRegionExcludingDisplayOverlays =
703 coverage.aboveCoveredLayersExcludingOverlays->intersect(visibleRegion);
704 coverage.aboveCoveredLayersExcludingOverlays->orSelf(visibleRegion);
705 }
706
707 // subtract the opaque region covered by the layers above us
708 visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
709
710 if (visibleRegion.isEmpty()) {
711 return;
712 }
713
714 // Get coverage information for the layer as previously displayed,
715 // also taking over ownership from mOutputLayersorderedByZ.
716 auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
717 auto prevOutputLayer =
718 prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
719
720 // Get coverage information for the layer as previously displayed
721 // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
722 const Region kEmptyRegion;
723 const Region& oldVisibleRegion =
724 prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
725 const Region& oldCoveredRegion =
726 prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
727
728 // compute this layer's dirty region
729 Region dirty;
730 if (layerFEState->contentDirty) {
731 // we need to invalidate the whole region
732 dirty = visibleRegion;
733 // as well, as the old visible region
734 dirty.orSelf(oldVisibleRegion);
735 } else {
736 /* compute the exposed region:
737 * the exposed region consists of two components:
738 * 1) what's VISIBLE now and was COVERED before
739 * 2) what's EXPOSED now less what was EXPOSED before
740 *
741 * note that (1) is conservative, we start with the whole visible region
742 * but only keep what used to be covered by something -- which mean it
743 * may have been exposed.
744 *
745 * (2) handles areas that were not covered by anything but got exposed
746 * because of a resize.
747 *
748 */
749 const Region newExposed = visibleRegion - coveredRegion;
750 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
751 dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
752 }
753 dirty.subtractSelf(coverage.aboveOpaqueLayers);
754
755 // accumulate to the screen dirty region
756 coverage.dirtyRegion.orSelf(dirty);
757
758 // Update accumAboveOpaqueLayers for next (lower) layer
759 coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
760
761 // Compute the visible non-transparent region
762 Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
763
764 // Perform the final check to see if this layer is visible on this output
765 // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
766 const auto& outputState = getState();
767 Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
768 drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect());
769 if (drawRegion.isEmpty()) {
770 return;
771 }
772
773 Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
774
775 // The layer is visible. Either reuse the existing outputLayer if we have
776 // one, or create a new one if we do not.
777 auto outputLayer = ensureOutputLayer(prevOutputLayerIndex, layerFE);
778
779 // Store the layer coverage information into the layer state as some of it
780 // is useful later.
781 auto& outputLayerState = outputLayer->editState();
782 outputLayerState.visibleRegion = visibleRegion;
783 outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
784 outputLayerState.coveredRegion = coveredRegion;
785 outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
786 visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent()));
787 outputLayerState.shadowRegion = shadowRegion;
788 outputLayerState.outputSpaceBlockingRegionHint =
789 layerFEState->compositionType == Composition::DISPLAY_DECORATION
790 ? outputState.transform.transform(
791 transparentRegion.intersect(outputState.layerStackSpace.getContent()))
792 : Region();
793 if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
794 outputLayerState.coveredRegionExcludingDisplayOverlays =
795 std::move(coveredRegionExcludingDisplayOverlays);
796 }
797 }
798
uncacheBuffers(std::vector<uint64_t> const & bufferIdsToUncache)799 void Output::uncacheBuffers(std::vector<uint64_t> const& bufferIdsToUncache) {
800 if (bufferIdsToUncache.empty()) {
801 return;
802 }
803 for (auto outputLayer : getOutputLayersOrderedByZ()) {
804 outputLayer->uncacheBuffers(bufferIdsToUncache);
805 }
806 }
807
commitPictureProfilesToCompositionState()808 void Output::commitPictureProfilesToCompositionState() {
809 if (!com_android_graphics_libgui_flags_apply_picture_profiles()) {
810 return;
811 }
812 if (!hasPictureProcessing()) {
813 return;
814 }
815 auto compare = [](const ::android::compositionengine::OutputLayer* lhs,
816 const ::android::compositionengine::OutputLayer* rhs) {
817 return lhs->getPictureProfilePriority() < rhs->getPictureProfilePriority();
818 };
819 std::priority_queue<::android::compositionengine::OutputLayer*,
820 std::vector<::android::compositionengine::OutputLayer*>, decltype(compare)>
821 layersWithProfiles;
822 for (auto outputLayer : getOutputLayersOrderedByZ()) {
823 if (outputLayer->getPictureProfileHandle()) {
824 layersWithProfiles.push(outputLayer);
825 }
826 }
827
828 // TODO(b/337330263): Use the default display picture profile from SurfaceFlinger
829 editState().pictureProfileHandle = PictureProfileHandle::NONE;
830
831 // When layer-specific picture processing is supported, apply as many high priority profiles as
832 // possible to the layers, and ignore the low priority layers.
833 if (getMaxLayerPictureProfiles() > 0) {
834 for (int i = 0; i < getMaxLayerPictureProfiles() && !layersWithProfiles.empty();
835 layersWithProfiles.pop(), ++i) {
836 layersWithProfiles.top()->commitPictureProfileToCompositionState();
837 layersWithProfiles.top()->getLayerFE().onPictureProfileCommitted();
838 }
839 // No layer-specific picture processing, so apply the highest priority picture profile to
840 // the entire display.
841 } else if (!layersWithProfiles.empty()) {
842 editState().pictureProfileHandle = layersWithProfiles.top()->getPictureProfileHandle();
843 layersWithProfiles.top()->getLayerFE().onPictureProfileCommitted();
844 }
845 }
846
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)847 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
848 // The base class does nothing with this call.
849 }
850
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)851 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
852 SFTRACE_CALL();
853 ALOGV(__FUNCTION__);
854
855 if (!getState().isEnabled) {
856 return;
857 }
858
859 mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
860 bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
861
862 auto* properties = getOverlaySupport();
863
864 for (auto* layer : getOutputLayersOrderedByZ()) {
865 layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
866 refreshArgs.devOptForceClientComposition ||
867 forceClientComposition,
868 refreshArgs.internalDisplayRotationFlags,
869 properties ? properties->lutProperties : std::nullopt);
870
871 if (mLayerRequestingBackgroundBlur == layer) {
872 forceClientComposition = false;
873 }
874 }
875 commitPictureProfilesToCompositionState();
876 }
877
planComposition()878 void Output::planComposition() {
879 if (!mPlanner || !getState().isEnabled) {
880 return;
881 }
882
883 SFTRACE_CALL();
884 ALOGV(__FUNCTION__);
885
886 mPlanner->plan(getOutputLayersOrderedByZ());
887 }
888
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)889 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
890 SFTRACE_CALL();
891 ALOGV(__FUNCTION__);
892
893 if (!getState().isEnabled) {
894 return;
895 }
896
897 if (auto frameTargetPtrOpt = getDisplayIdVariant()
898 .and_then(asPhysicalDisplayId)
899 .and_then([&refreshArgs](PhysicalDisplayId id) {
900 return refreshArgs.frameTargets.get(id);
901 })) {
902 editState().earliestPresentTime = frameTargetPtrOpt->get()->earliestPresentTime();
903 editState().expectedPresentTime = frameTargetPtrOpt->get()->expectedPresentTime().ns();
904 const auto debugPresentDelay = frameTargetPtrOpt->get()->debugPresentDelay();
905 if (debugPresentDelay) {
906 SFTRACE_FORMAT_INSTANT("DEBUG delaying presentation by %.2fms",
907 debugPresentDelay->ns() / 1e6f);
908 editState().expectedPresentTime += debugPresentDelay->ns();
909 }
910 }
911 editState().frameInterval = refreshArgs.frameInterval;
912 editState().powerCallback = refreshArgs.powerCallback;
913
914 applyPictureProfile();
915
916 auto* properties = getOverlaySupport();
917 bool hasLutsProperties = properties && properties->lutProperties.has_value();
918
919 compositionengine::OutputLayer* peekThroughLayer = nullptr;
920 sp<GraphicBuffer> previousOverride = nullptr;
921 bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
922 uint32_t z = 0;
923 bool overrideZ = false;
924 uint64_t outputLayerHash = 0;
925 for (auto* layer : getOutputLayersOrderedByZ()) {
926 if (layer == peekThroughLayer) {
927 // No longer needed, although it should not show up again, so
928 // resetting it is not truly needed either.
929 peekThroughLayer = nullptr;
930
931 // peekThroughLayer was already drawn ahead of its z order.
932 continue;
933 }
934 bool skipLayer = false;
935 const auto& overrideInfo = layer->getState().overrideInfo;
936 if (overrideInfo.buffer != nullptr) {
937 if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
938 ALOGV("Skipping redundant buffer");
939 skipLayer = true;
940 } else {
941 // First layer with the override buffer.
942 if (overrideInfo.peekThroughLayer) {
943 peekThroughLayer = overrideInfo.peekThroughLayer;
944
945 // Draw peekThroughLayer first.
946 overrideZ = true;
947 includeGeometry = true;
948 constexpr bool isPeekingThrough = true;
949 peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
950 isPeekingThrough, hasLutsProperties);
951 outputLayerHash ^= android::hashCombine(
952 reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()),
953 z, includeGeometry, overrideZ, isPeekingThrough,
954 peekThroughLayer->requiresClientComposition());
955 }
956
957 previousOverride = overrideInfo.buffer->getBuffer();
958 }
959 }
960
961 constexpr bool isPeekingThrough = false;
962 layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough,
963 hasLutsProperties);
964 if (!skipLayer) {
965 outputLayerHash ^= android::hashCombine(
966 reinterpret_cast<uint64_t>(&layer->getLayerFE()),
967 z, includeGeometry, overrideZ, isPeekingThrough,
968 layer->requiresClientComposition());
969 }
970 }
971 editState().outputLayerHash = outputLayerHash;
972 }
973
findLayerRequestingBackgroundComposition() const974 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
975 compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
976 for (auto* layer : getOutputLayersOrderedByZ()) {
977 const auto* compState = layer->getLayerFE().getCompositionState();
978
979 // If any layer has a sideband stream, we will disable blurs. In that case, we don't
980 // want to force client composition because of the blur.
981 if (compState->sidebandStream != nullptr) {
982 return nullptr;
983 }
984
985 // If RenderEngine cannot render protected content, we cannot blur.
986 if (compState->hasProtectedContent &&
987 !getCompositionEngine().getRenderEngine().supportsProtectedContent()) {
988 return nullptr;
989 }
990 if (compState->isOpaque) {
991 continue;
992 }
993 if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
994 layerRequestingBgComposition = layer;
995 }
996 }
997 return layerRequestingBgComposition;
998 }
999
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)1000 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
1001 setColorProfile(pickColorProfile(refreshArgs));
1002 }
1003
1004 // Returns a data space that fits all visible layers. The returned data space
1005 // can only be one of
1006 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
1007 // - Dataspace::DISPLAY_P3
1008 // - Dataspace::DISPLAY_BT2020
1009 // The returned HDR data space is one of
1010 // - Dataspace::UNKNOWN
1011 // - Dataspace::BT2020_HLG
1012 // - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const1013 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
1014 bool* outIsHdrClientComposition) const {
1015 ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
1016 *outHdrDataSpace = ui::Dataspace::UNKNOWN;
1017
1018 // An Output's layers may be stale when it is disabled. As a consequence, the layers returned by
1019 // getOutputLayersOrderedByZ may not be in a valid state and it is not safe to access their
1020 // properties. Return a default dataspace value in this case.
1021 if (!getState().isEnabled) {
1022 return ui::Dataspace::V0_SRGB;
1023 }
1024
1025 for (const auto* layer : getOutputLayersOrderedByZ()) {
1026 switch (layer->getLayerFE().getCompositionState()->dataspace) {
1027 case ui::Dataspace::V0_SCRGB:
1028 case ui::Dataspace::V0_SCRGB_LINEAR:
1029 case ui::Dataspace::BT2020:
1030 case ui::Dataspace::BT2020_ITU:
1031 case ui::Dataspace::BT2020_LINEAR:
1032 case ui::Dataspace::DISPLAY_BT2020:
1033 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
1034 break;
1035 case ui::Dataspace::DISPLAY_P3:
1036 bestDataSpace = ui::Dataspace::DISPLAY_P3;
1037 break;
1038 case ui::Dataspace::BT2020_PQ:
1039 case ui::Dataspace::BT2020_ITU_PQ:
1040 bestDataSpace = ui::Dataspace::DISPLAY_P3;
1041 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
1042 *outIsHdrClientComposition =
1043 layer->getLayerFE().getCompositionState()->forceClientComposition;
1044 break;
1045 case ui::Dataspace::BT2020_HLG:
1046 case ui::Dataspace::BT2020_ITU_HLG:
1047 bestDataSpace = ui::Dataspace::DISPLAY_P3;
1048 // When there's mixed PQ content and HLG content, we set the HDR
1049 // data space to be BT2020_HLG and convert PQ to HLG.
1050 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
1051 *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
1052 }
1053 break;
1054 default:
1055 break;
1056 }
1057 }
1058
1059 return bestDataSpace;
1060 }
1061
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const1062 compositionengine::Output::ColorProfile Output::pickColorProfile(
1063 const compositionengine::CompositionRefreshArgs& refreshArgs) const {
1064 if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
1065 return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
1066 ui::RenderIntent::COLORIMETRIC};
1067 }
1068
1069 ui::Dataspace hdrDataSpace;
1070 bool isHdrClientComposition = false;
1071 ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
1072
1073 switch (refreshArgs.forceOutputColorMode) {
1074 case ui::ColorMode::SRGB:
1075 bestDataSpace = ui::Dataspace::V0_SRGB;
1076 break;
1077 case ui::ColorMode::DISPLAY_P3:
1078 bestDataSpace = ui::Dataspace::DISPLAY_P3;
1079 break;
1080 default:
1081 break;
1082 }
1083
1084 // respect hdrDataSpace only when there is no legacy HDR support
1085 const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
1086 !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
1087 if (isHdr) {
1088 bestDataSpace = hdrDataSpace;
1089 }
1090
1091 ui::RenderIntent intent;
1092 switch (refreshArgs.outputColorSetting) {
1093 case OutputColorSetting::kManaged:
1094 case OutputColorSetting::kUnmanaged:
1095 intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
1096 : ui::RenderIntent::COLORIMETRIC;
1097 break;
1098 case OutputColorSetting::kEnhanced:
1099 intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
1100 break;
1101 default: // vendor display color setting
1102 intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
1103 break;
1104 }
1105
1106 ui::ColorMode outMode;
1107 ui::Dataspace outDataSpace;
1108 ui::RenderIntent outRenderIntent;
1109 mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
1110 &outRenderIntent);
1111
1112 return ColorProfile{outMode, outDataSpace, outRenderIntent};
1113 }
1114
beginFrame()1115 void Output::beginFrame() {
1116 auto& outputState = editState();
1117 const bool dirty = !getDirtyRegion().isEmpty();
1118 const bool empty = getOutputLayerCount() == 0;
1119 const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
1120
1121 // If nothing has changed (!dirty), don't recompose.
1122 // If something changed, but we don't currently have any visible layers,
1123 // and didn't when we last did a composition, then skip it this time.
1124 // The second rule does two things:
1125 // - When all layers are removed from a display, we'll emit one black
1126 // frame, then nothing more until we get new layers.
1127 // - When a display is created with a private layer stack, we won't
1128 // emit any black frames until a layer is added to the layer stack.
1129 mMustRecompose = dirty && !(empty && wasEmpty);
1130
1131 const char flagPrefix[] = {'-', '+'};
1132 static_cast<void>(flagPrefix);
1133 ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__,
1134 mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
1135 flagPrefix[empty], flagPrefix[wasEmpty]);
1136
1137 mRenderSurface->beginFrame(mMustRecompose);
1138
1139 if (mMustRecompose) {
1140 outputState.lastCompositionHadVisibleLayers = !empty;
1141 }
1142 }
1143
prepareFrame()1144 void Output::prepareFrame() {
1145 SFTRACE_CALL();
1146 ALOGV(__FUNCTION__);
1147
1148 auto& outputState = editState();
1149 if (!outputState.isEnabled) {
1150 return;
1151 }
1152
1153 std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1154 bool success = chooseCompositionStrategy(&changes);
1155 resetCompositionStrategy();
1156 outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED;
1157 outputState.previousDeviceRequestedChanges = changes;
1158 outputState.previousDeviceRequestedSuccess = success;
1159 if (success) {
1160 applyCompositionStrategy(changes);
1161 }
1162 finishPrepareFrame();
1163 }
1164
presentFrameAndReleaseLayersAsync(bool flushEvenWhenDisabled)1165 ftl::Future<std::monostate> Output::presentFrameAndReleaseLayersAsync(bool flushEvenWhenDisabled) {
1166 return ftl::Future<bool>(mHwComposerAsyncWorker->send([this, flushEvenWhenDisabled]() {
1167 presentFrameAndReleaseLayers(flushEvenWhenDisabled);
1168 return true;
1169 }))
1170 .then([](bool) { return std::monostate{}; });
1171 }
1172
chooseCompositionStrategyAsync(std::optional<android::HWComposer::DeviceRequestedChanges> * changes)1173 std::future<bool> Output::chooseCompositionStrategyAsync(
1174 std::optional<android::HWComposer::DeviceRequestedChanges>* changes) {
1175 return mHwComposerAsyncWorker->send(
1176 [&, changes]() { return chooseCompositionStrategy(changes); });
1177 }
1178
prepareFrameAsync()1179 GpuCompositionResult Output::prepareFrameAsync() {
1180 SFTRACE_CALL();
1181 ALOGV(__FUNCTION__);
1182 auto& state = editState();
1183 const auto& previousChanges = state.previousDeviceRequestedChanges;
1184 std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1185 resetCompositionStrategy();
1186 auto hwcResult = chooseCompositionStrategyAsync(&changes);
1187 if (state.previousDeviceRequestedSuccess) {
1188 applyCompositionStrategy(previousChanges);
1189 }
1190 finishPrepareFrame();
1191
1192 base::unique_fd bufferFence;
1193 std::shared_ptr<renderengine::ExternalTexture> buffer;
1194 updateProtectedContentState();
1195 const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer);
1196 GpuCompositionResult compositionResult;
1197 if (dequeueSucceeded) {
1198 std::optional<base::unique_fd> optFd =
1199 composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1200 if (optFd) {
1201 compositionResult.fence = std::move(*optFd);
1202 }
1203 }
1204
1205 auto chooseCompositionSuccess = hwcResult.get();
1206 const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges;
1207 state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS
1208 : CompositionStrategyPredictionState::FAIL;
1209 if (!predictionSucceeded) {
1210 SFTRACE_NAME("CompositionStrategyPredictionMiss");
1211 resetCompositionStrategy();
1212 if (chooseCompositionSuccess) {
1213 applyCompositionStrategy(changes);
1214 }
1215 finishPrepareFrame();
1216 // Track the dequeued buffer to reuse so we don't need to dequeue another one.
1217 compositionResult.buffer = buffer;
1218 } else {
1219 SFTRACE_NAME("CompositionStrategyPredictionHit");
1220 }
1221 state.previousDeviceRequestedChanges = std::move(changes);
1222 state.previousDeviceRequestedSuccess = chooseCompositionSuccess;
1223 return compositionResult;
1224 }
1225
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)1226 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
1227 if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
1228 return;
1229 }
1230
1231 if (getState().isEnabled) {
1232 if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) {
1233 base::unique_fd bufferFence;
1234 std::shared_ptr<renderengine::ExternalTexture> buffer;
1235 updateProtectedContentState();
1236 dequeueRenderBuffer(&bufferFence, &buffer);
1237 static_cast<void>(composeSurfaces(dirtyRegion, buffer, bufferFence));
1238 mRenderSurface->queueBuffer(base::unique_fd(), getHdrSdrRatio(buffer));
1239 }
1240 }
1241
1242 constexpr bool kFlushEvenWhenDisabled = false;
1243 presentFrameAndReleaseLayers(kFlushEvenWhenDisabled);
1244
1245 std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
1246
1247 prepareFrame();
1248 }
1249
finishFrame(GpuCompositionResult && result)1250 void Output::finishFrame(GpuCompositionResult&& result) {
1251 SFTRACE_CALL();
1252 ALOGV(__FUNCTION__);
1253 const auto& outputState = getState();
1254 if (!outputState.isEnabled) {
1255 return;
1256 }
1257
1258 std::optional<base::unique_fd> optReadyFence;
1259 std::shared_ptr<renderengine::ExternalTexture> buffer;
1260 base::unique_fd bufferFence;
1261 if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) {
1262 optReadyFence = std::move(result.fence);
1263 } else {
1264 if (result.bufferAvailable()) {
1265 buffer = std::move(result.buffer);
1266 bufferFence = std::move(result.fence);
1267 } else {
1268 updateProtectedContentState();
1269 if (!dequeueRenderBuffer(&bufferFence, &buffer)) {
1270 return;
1271 }
1272 }
1273 // Repaint the framebuffer (if needed), getting the optional fence for when
1274 // the composition completes.
1275 optReadyFence = composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1276 }
1277 if (!optReadyFence) {
1278 return;
1279 }
1280 if (isPowerHintSessionEnabled() && !isPowerHintSessionGpuReportingEnabled()) {
1281 // get fence end time to know when gpu is complete in display
1282 setHintSessionGpuFence(
1283 std::make_unique<FenceTime>(sp<Fence>::make(dup(optReadyFence->get()))));
1284 }
1285 // swap buffers (presentation)
1286 mRenderSurface->queueBuffer(std::move(*optReadyFence), getHdrSdrRatio(buffer));
1287 }
1288
updateProtectedContentState()1289 void Output::updateProtectedContentState() {
1290 const auto& outputState = getState();
1291 auto& renderEngine = getCompositionEngine().getRenderEngine();
1292 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1293
1294 bool isProtected;
1295 if (FlagManager::getInstance().display_protected()) {
1296 isProtected = outputState.isProtected;
1297 } else {
1298 isProtected = outputState.isSecure;
1299 }
1300
1301 // We need to set the render surface as protected (DRM) if all the following conditions are met:
1302 // 1. The display is protected (in legacy, check if the display is secure)
1303 // 2. Protected content is supported
1304 // 3. At least one layer has protected content.
1305 if (isProtected && supportsProtectedContent) {
1306 auto layers = getOutputLayersOrderedByZ();
1307 bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1308 return layer->getLayerFE().getCompositionState()->hasProtectedContent &&
1309 (!FlagManager::getInstance().protected_if_client() ||
1310 layer->requiresClientComposition());
1311 });
1312 if (needsProtected != mRenderSurface->isProtected()) {
1313 mRenderSurface->setProtected(needsProtected);
1314 }
1315 }
1316 }
1317
dequeueRenderBuffer(base::unique_fd * bufferFence,std::shared_ptr<renderengine::ExternalTexture> * tex)1318 bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence,
1319 std::shared_ptr<renderengine::ExternalTexture>* tex) {
1320 const auto& outputState = getState();
1321
1322 // If we aren't doing client composition on this output, but do have a
1323 // flipClientTarget request for this frame on this output, we still need to
1324 // dequeue a buffer.
1325 if (outputState.usesClientComposition || outputState.flipClientTarget) {
1326 *tex = mRenderSurface->dequeueBuffer(bufferFence);
1327 if (*tex == nullptr) {
1328 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1329 "client composition for this frame",
1330 mName.c_str());
1331 return false;
1332 }
1333 }
1334 return true;
1335 }
1336
composeSurfaces(const Region & debugRegion,std::shared_ptr<renderengine::ExternalTexture> tex,base::unique_fd & fd)1337 std::optional<base::unique_fd> Output::composeSurfaces(
1338 const Region& debugRegion, std::shared_ptr<renderengine::ExternalTexture> tex,
1339 base::unique_fd& fd) {
1340 SFTRACE_CALL();
1341 ALOGV(__FUNCTION__);
1342
1343 const auto& outputState = getState();
1344 const TracedOrdinal<bool> hasClientComposition = {
1345 base::StringPrintf("hasClientComposition %s", mNamePlusId.c_str()),
1346 outputState.usesClientComposition};
1347 if (!hasClientComposition) {
1348 setExpensiveRenderingExpected(false);
1349 return base::unique_fd();
1350 }
1351
1352 if (tex == nullptr) {
1353 ALOGW("Buffer not valid for display [%s], bailing out of "
1354 "client composition for this frame",
1355 mName.c_str());
1356 return {};
1357 }
1358
1359 ALOGV("hasClientComposition");
1360
1361 renderengine::DisplaySettings clientCompositionDisplay =
1362 generateClientCompositionDisplaySettings(tex);
1363
1364 // Generate the client composition requests for the layers on this output.
1365 auto& renderEngine = getCompositionEngine().getRenderEngine();
1366 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1367 std::vector<LayerFE*> clientCompositionLayersFE;
1368 std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1369 generateClientCompositionRequests(supportsProtectedContent,
1370 clientCompositionDisplay.outputDataspace,
1371 clientCompositionLayersFE);
1372 appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1373
1374 OutputCompositionState& outputCompositionState = editState();
1375 // Check if the client composition requests were rendered into the provided graphic buffer. If
1376 // so, we can reuse the buffer and avoid client composition.
1377 if (mClientCompositionRequestCache) {
1378 if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1379 clientCompositionDisplay,
1380 clientCompositionLayers)) {
1381 SFTRACE_NAME("ClientCompositionCacheHit");
1382 outputCompositionState.reusedClientComposition = true;
1383 setExpensiveRenderingExpected(false);
1384 // b/239944175 pass the fence associated with the buffer.
1385 return base::unique_fd(std::move(fd));
1386 }
1387 SFTRACE_NAME("ClientCompositionCacheMiss");
1388 mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1389 clientCompositionLayers);
1390 }
1391
1392 // We boost GPU frequency here because there will be color spaces conversion
1393 // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1394 // GPU composition can finish in time. We must reset GPU frequency afterwards,
1395 // because high frequency consumes extra battery.
1396 const bool expensiveBlurs = mLayerRequestingBackgroundBlur != nullptr;
1397 const bool expensiveRenderingExpected = expensiveBlurs ||
1398 std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1399 [outputDataspace =
1400 clientCompositionDisplay.outputDataspace](const auto& layer) {
1401 return layer.sourceDataspace != outputDataspace;
1402 });
1403 if (expensiveRenderingExpected) {
1404 setExpensiveRenderingExpected(true);
1405 }
1406
1407 std::vector<renderengine::LayerSettings> clientRenderEngineLayers;
1408 clientRenderEngineLayers.reserve(clientCompositionLayers.size());
1409 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1410 std::back_inserter(clientRenderEngineLayers),
1411 [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings {
1412 return settings;
1413 });
1414
1415 const nsecs_t renderEngineStart = systemTime();
1416 auto fenceResult = renderEngine
1417 .drawLayers(clientCompositionDisplay, clientRenderEngineLayers, tex,
1418 std::move(fd))
1419 .get();
1420
1421 if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) {
1422 // If rendering was not successful, remove the request from the cache.
1423 mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1424 }
1425 const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE);
1426 if (isPowerHintSessionEnabled()) {
1427 if (fence != Fence::NO_FENCE && fence->isValid() &&
1428 !outputCompositionState.reusedClientComposition) {
1429 setHintSessionRequiresRenderEngine(true);
1430 if (isPowerHintSessionGpuReportingEnabled()) {
1431 // the order of the two calls here matters as we should check if the previously
1432 // tracked fence has signaled first and archive the previous start time
1433 setHintSessionGpuStart(TimePoint::now());
1434 setHintSessionGpuFence(
1435 std::make_unique<FenceTime>(sp<Fence>::make(dup(fence->get()))));
1436 }
1437 }
1438 }
1439
1440 if (auto timeStats = getCompositionEngine().getTimeStats()) {
1441 if (fence->isValid()) {
1442 timeStats->recordRenderEngineDuration(renderEngineStart,
1443 std::make_shared<FenceTime>(fence));
1444 } else {
1445 timeStats->recordRenderEngineDuration(renderEngineStart, systemTime());
1446 }
1447 }
1448
1449 for (auto* clientComposedLayer : clientCompositionLayersFE) {
1450 clientComposedLayer->setWasClientComposed(fence);
1451 }
1452
1453 return base::unique_fd(fence->dup());
1454 }
1455
generateClientCompositionDisplaySettings(const std::shared_ptr<renderengine::ExternalTexture> & buffer) const1456 renderengine::DisplaySettings Output::generateClientCompositionDisplaySettings(
1457 const std::shared_ptr<renderengine::ExternalTexture>& buffer) const {
1458 const auto& outputState = getState();
1459
1460 renderengine::DisplaySettings clientCompositionDisplay;
1461 clientCompositionDisplay.namePlusId = mNamePlusId;
1462 clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent();
1463 clientCompositionDisplay.clip = outputState.layerStackSpace.getContent();
1464 clientCompositionDisplay.orientation =
1465 ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation());
1466 clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1467 ? outputState.dataspace
1468 : ui::Dataspace::UNKNOWN;
1469
1470 // If we have a valid current display brightness use that, otherwise fall back to the
1471 // display's max desired
1472 clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f
1473 ? outputState.displayBrightnessNits
1474 : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1475 clientCompositionDisplay.maxLuminance =
1476 mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1477
1478 float hdrSdrRatioMultiplier = 1.0f / getHdrSdrRatio(buffer);
1479 clientCompositionDisplay.targetLuminanceNits = outputState.clientTargetBrightness *
1480 outputState.displayBrightnessNits * hdrSdrRatioMultiplier;
1481 clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage;
1482 clientCompositionDisplay.renderIntent =
1483 static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>(
1484 outputState.renderIntent);
1485
1486 // Compute the global color transform matrix.
1487 clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1488 clientCompositionDisplay.deviceHandlesColorTransform =
1489 outputState.usesDeviceComposition || getSkipColorTransform();
1490 return clientCompositionDisplay;
1491 }
1492
generateClientCompositionRequests(bool supportsProtectedContent,ui::Dataspace outputDataspace,std::vector<LayerFE * > & outLayerFEs)1493 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1494 bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) {
1495 std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1496 ALOGV("Rendering client layers");
1497
1498 const auto& outputState = getState();
1499 const Region viewportRegion(outputState.layerStackSpace.getContent());
1500 bool firstLayer = true;
1501
1502 bool disableBlurs = false;
1503 uint64_t previousOverrideBufferId = 0;
1504
1505 for (auto* layer : getOutputLayersOrderedByZ()) {
1506 const auto& layerState = layer->getState();
1507 const auto* layerFEState = layer->getLayerFE().getCompositionState();
1508 auto& layerFE = layer->getLayerFE();
1509 layerFE.setWasClientComposed(nullptr);
1510
1511 const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1512 ALOGV("Layer: %s", layerFE.getDebugName());
1513 if (clip.isEmpty()) {
1514 ALOGV(" Skipping for empty clip");
1515 firstLayer = false;
1516 continue;
1517 }
1518
1519 disableBlurs |= layerFEState->sidebandStream != nullptr;
1520
1521 const bool clientComposition = layer->requiresClientComposition();
1522
1523 // We clear the client target for non-client composed layers if
1524 // requested by the HWC. We skip this if the layer is not an opaque
1525 // rectangle, as by definition the layer must blend with whatever is
1526 // underneath. We also skip the first layer as the buffer target is
1527 // guaranteed to start out cleared.
1528 const bool clearClientComposition =
1529 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1530
1531 ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
1532
1533 // If the layer casts a shadow but the content casting the shadow is occluded, skip
1534 // composing the non-shadow content and only draw the shadows.
1535 const bool realContentIsVisible = clientComposition &&
1536 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1537
1538 if (clientComposition || clearClientComposition) {
1539 if (auto overrideSettings = layer->getOverrideCompositionSettings()) {
1540 if (overrideSettings->bufferId != previousOverrideBufferId) {
1541 previousOverrideBufferId = overrideSettings->bufferId;
1542 clientCompositionLayers.push_back(std::move(*overrideSettings));
1543 ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1544 } else {
1545 ALOGV("Skipping redundant override buffer for [%s] in RE",
1546 layer->getLayerFE().getDebugName());
1547 }
1548 } else {
1549 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1550 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1551 : (layer->getState().overrideInfo.disableBackgroundBlur
1552 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1553 BlurRegionsOnly
1554 : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1555 Enabled);
1556 bool isProtected = supportsProtectedContent;
1557 if (FlagManager::getInstance().display_protected()) {
1558 isProtected = outputState.isProtected && supportsProtectedContent;
1559 }
1560 compositionengine::LayerFE::ClientCompositionTargetSettings
1561 targetSettings{.clip = clip,
1562 .needsFiltering = layer->needsFiltering() ||
1563 outputState.needsFiltering,
1564 .isSecure = outputState.isSecure,
1565 .isProtected = isProtected,
1566 .viewport = outputState.layerStackSpace.getContent(),
1567 .dataspace = outputDataspace,
1568 .realContentIsVisible = realContentIsVisible,
1569 .clearContent = !clientComposition,
1570 .blurSetting = blurSetting,
1571 .whitePointNits = layerState.whitePointNits,
1572 .treat170mAsSrgb = outputState.treat170mAsSrgb,
1573 .luts = layer->getState().hwc ? layer->getState().hwc->luts
1574 : nullptr};
1575 if (auto clientCompositionSettings =
1576 layerFE.prepareClientComposition(targetSettings)) {
1577 clientCompositionLayers.push_back(std::move(*clientCompositionSettings));
1578 if (realContentIsVisible) {
1579 layer->editState().clientCompositionTimestamp = systemTime();
1580 }
1581 }
1582 }
1583
1584 if (clientComposition) {
1585 outLayerFEs.push_back(&layerFE);
1586 }
1587 }
1588
1589 firstLayer = false;
1590 }
1591
1592 return clientCompositionLayers;
1593 }
1594
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1595 void Output::appendRegionFlashRequests(
1596 const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1597 if (flashRegion.isEmpty()) {
1598 return;
1599 }
1600
1601 LayerFE::LayerSettings layerSettings;
1602 layerSettings.source.buffer.buffer = nullptr;
1603 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1604 layerSettings.alpha = half(1.0);
1605
1606 for (const auto& rect : flashRegion) {
1607 layerSettings.geometry.boundaries = rect.toFloatRect();
1608 clientCompositionLayers.push_back(layerSettings);
1609 }
1610 }
1611
setExpensiveRenderingExpected(bool)1612 void Output::setExpensiveRenderingExpected(bool) {
1613 // The base class does nothing with this call.
1614 }
1615
setHintSessionGpuStart(TimePoint)1616 void Output::setHintSessionGpuStart(TimePoint) {
1617 // The base class does nothing with this call.
1618 }
1619
setHintSessionGpuFence(std::unique_ptr<FenceTime> &&)1620 void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) {
1621 // The base class does nothing with this call.
1622 }
1623
setHintSessionRequiresRenderEngine(bool)1624 void Output::setHintSessionRequiresRenderEngine(bool) {
1625 // The base class does nothing with this call.
1626 }
1627
isPowerHintSessionEnabled()1628 bool Output::isPowerHintSessionEnabled() {
1629 return false;
1630 }
1631
isPowerHintSessionGpuReportingEnabled()1632 bool Output::isPowerHintSessionGpuReportingEnabled() {
1633 return false;
1634 }
1635
presentFrameAndReleaseLayers(bool flushEvenWhenDisabled)1636 void Output::presentFrameAndReleaseLayers(bool flushEvenWhenDisabled) {
1637 SFTRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str());
1638 ALOGV(__FUNCTION__);
1639
1640 if (!getState().isEnabled) {
1641 if (flushEvenWhenDisabled && FlagManager::getInstance().flush_buffer_slots_to_uncache()) {
1642 // Some commands, like clearing buffer slots, should still be executed
1643 // even if the display is not enabled.
1644 executeCommands();
1645 }
1646 return;
1647 }
1648
1649 auto& outputState = editState();
1650 outputState.dirtyRegion.clear();
1651
1652 auto frame = presentFrame();
1653
1654 mRenderSurface->onPresentDisplayCompleted();
1655
1656 for (auto* layer : getOutputLayersOrderedByZ()) {
1657 // The layer buffer from the previous frame (if any) is released
1658 // by HWC only when the release fence from this frame (if any) is
1659 // signaled. Always get the release fence from HWC first.
1660 sp<Fence> releaseFence = Fence::NO_FENCE;
1661
1662 if (auto hwcLayer = layer->getHwcLayer()) {
1663 if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1664 releaseFence = f->second;
1665 }
1666 }
1667
1668 // If the layer was client composited in the previous frame, we
1669 // need to merge with the previous client target acquire fence.
1670 // Since we do not track that, always merge with the current
1671 // client target acquire fence when it is available, even though
1672 // this is suboptimal.
1673 // TODO(b/121291683): Track previous frame client target acquire fence.
1674 if (outputState.usesClientComposition) {
1675 releaseFence =
1676 Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1677 }
1678 layer->getLayerFE().setReleaseFence(releaseFence);
1679 layer->getLayerFE().setReleasedBuffer(layer->getLayerFE().getCompositionState()->buffer);
1680 }
1681
1682 // We've got a list of layers needing fences, that are disjoint with
1683 // OutputLayersOrderedByZ. The best we can do is to
1684 // supply them with the present fence.
1685 for (auto& weakLayer : mReleasedLayers) {
1686 if (const auto layer = weakLayer.promote()) {
1687 layer->setReleaseFence(frame.presentFence);
1688 }
1689 }
1690
1691 // Clear out the released layers now that we're done with them.
1692 mReleasedLayers.clear();
1693 }
1694
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1695 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1696 const auto& outputState = getState();
1697 if (mPlanner && outputState.isEnabled) {
1698 mPlanner->renderCachedSets(outputState, refreshArgs.scheduledFrameTime,
1699 outputState.usesDeviceComposition || getSkipColorTransform());
1700 }
1701 }
1702
dirtyEntireOutput()1703 void Output::dirtyEntireOutput() {
1704 auto& outputState = editState();
1705 outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect());
1706 }
1707
resetCompositionStrategy()1708 void Output::resetCompositionStrategy() {
1709 // The base output implementation can only do client composition
1710 auto& outputState = editState();
1711 outputState.usesClientComposition = true;
1712 outputState.usesDeviceComposition = false;
1713 outputState.reusedClientComposition = false;
1714 }
1715
getSkipColorTransform() const1716 bool Output::getSkipColorTransform() const {
1717 return true;
1718 }
1719
presentFrame()1720 compositionengine::Output::FrameFences Output::presentFrame() {
1721 compositionengine::Output::FrameFences result;
1722 if (getState().usesClientComposition) {
1723 result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1724 }
1725 return result;
1726 }
1727
setPredictCompositionStrategy(bool predict)1728 void Output::setPredictCompositionStrategy(bool predict) {
1729 mPredictCompositionStrategy = predict;
1730 updateHwcAsyncWorker();
1731 }
1732
updateHwcAsyncWorker()1733 void Output::updateHwcAsyncWorker() {
1734 if (mPredictCompositionStrategy || mOffloadPresent) {
1735 if (!mHwComposerAsyncWorker) {
1736 mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>();
1737 }
1738 } else {
1739 mHwComposerAsyncWorker.reset(nullptr);
1740 }
1741 }
1742
setTreat170mAsSrgb(bool enable)1743 void Output::setTreat170mAsSrgb(bool enable) {
1744 editState().treat170mAsSrgb = enable;
1745 }
1746
getOverlaySupport()1747 const aidl::android::hardware::graphics::composer3::OverlayProperties* Output::getOverlaySupport() {
1748 return nullptr;
1749 }
1750
canPredictCompositionStrategy(const CompositionRefreshArgs & refreshArgs)1751 bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) {
1752 uint64_t lastOutputLayerHash = getState().lastOutputLayerHash;
1753 uint64_t outputLayerHash = getState().outputLayerHash;
1754 editState().lastOutputLayerHash = outputLayerHash;
1755
1756 if (!getState().isEnabled || !mPredictCompositionStrategy) {
1757 ALOGV("canPredictCompositionStrategy disabled");
1758 return false;
1759 }
1760
1761 if (!getState().previousDeviceRequestedChanges) {
1762 ALOGV("canPredictCompositionStrategy previous changes not available");
1763 return false;
1764 }
1765
1766 if (!mRenderSurface->supportsCompositionStrategyPrediction()) {
1767 ALOGV("canPredictCompositionStrategy surface does not support");
1768 return false;
1769 }
1770
1771 if (refreshArgs.devOptFlashDirtyRegionsDelay) {
1772 ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay");
1773 return false;
1774 }
1775
1776 if (lastOutputLayerHash != outputLayerHash) {
1777 ALOGV("canPredictCompositionStrategy output layers changed");
1778 return false;
1779 }
1780
1781 // If no layer uses clientComposition, then don't predict composition strategy
1782 // because we have less work to do in parallel.
1783 if (!anyLayersRequireClientComposition()) {
1784 ALOGV("canPredictCompositionStrategy no layer uses clientComposition");
1785 return false;
1786 }
1787
1788 return true;
1789 }
1790
anyLayersRequireClientComposition() const1791 bool Output::anyLayersRequireClientComposition() const {
1792 const auto layers = getOutputLayersOrderedByZ();
1793 return std::any_of(layers.begin(), layers.end(),
1794 [](const auto& layer) { return layer->requiresClientComposition(); });
1795 }
1796
finishPrepareFrame()1797 void Output::finishPrepareFrame() {
1798 const auto& state = getState();
1799 if (mPlanner) {
1800 mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
1801 }
1802 mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition);
1803 }
1804
mustRecompose() const1805 bool Output::mustRecompose() const {
1806 return mMustRecompose;
1807 }
1808
getHdrSdrRatio(const std::shared_ptr<renderengine::ExternalTexture> & buffer) const1809 float Output::getHdrSdrRatio(const std::shared_ptr<renderengine::ExternalTexture>& buffer) const {
1810 if (buffer == nullptr) {
1811 return 1.0f;
1812 }
1813
1814 if (!FlagManager::getInstance().fp16_client_target()) {
1815 return 1.0f;
1816 }
1817
1818 if (getState().displayBrightnessNits < 0.0f || getState().sdrWhitePointNits <= 0.0f ||
1819 buffer->getPixelFormat() != PIXEL_FORMAT_RGBA_FP16 ||
1820 (static_cast<int32_t>(getState().dataspace) &
1821 static_cast<int32_t>(ui::Dataspace::RANGE_MASK)) !=
1822 static_cast<int32_t>(ui::Dataspace::RANGE_EXTENDED)) {
1823 return 1.0f;
1824 }
1825
1826 return getState().displayBrightnessNits / getState().sdrWhitePointNits;
1827 }
1828
hasPictureProcessing() const1829 bool Output::hasPictureProcessing() const {
1830 return false;
1831 }
1832
getMaxLayerPictureProfiles() const1833 int32_t Output::getMaxLayerPictureProfiles() const {
1834 return 0;
1835 }
1836
applyPictureProfile()1837 void Output::applyPictureProfile() {
1838 if (!com_android_graphics_libgui_flags_apply_picture_profiles()) {
1839 return;
1840 }
1841
1842 // TODO(b/337330263): Move this into the Display class and add a Display unit test.
1843 if (!getState().pictureProfileHandle) {
1844 return;
1845 }
1846 if (!getDisplayId()) {
1847 return;
1848 }
1849 if (auto displayId = getDisplayIdVariant().and_then(asPhysicalDisplayId)) {
1850 auto& hwc = getCompositionEngine().getHwComposer();
1851 const status_t error =
1852 hwc.setDisplayPictureProfileHandle(*displayId, getState().pictureProfileHandle);
1853 ALOGE_IF(error, "setDisplayPictureProfileHandle failed for %s: %d, (%s)", getName().c_str(),
1854 error, strerror(-error));
1855 }
1856 }
1857
1858 } // namespace impl
1859 } // namespace android::compositionengine
1860