1 /*
2 * Copyright 2022 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/ClipStack.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkShader.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/gpu/graphite/Recorder.h"
14 #include "src/base/SkTLazy.h"
15 #include "src/core/SkPathPriv.h"
16 #include "src/core/SkRRectPriv.h"
17 #include "src/core/SkRectPriv.h"
18 #include "src/gpu/graphite/AtlasProvider.h"
19 #include "src/gpu/graphite/ClipAtlasManager.h"
20 #include "src/gpu/graphite/Device.h"
21 #include "src/gpu/graphite/DrawParams.h"
22 #include "src/gpu/graphite/RecorderPriv.h"
23 #include "src/gpu/graphite/geom/BoundsManager.h"
24 #include "src/gpu/graphite/geom/Geometry.h"
25
26 namespace skgpu::graphite {
27
28 namespace {
29
subtract(const Rect & a,const Rect & b,bool exact)30 Rect subtract(const Rect& a, const Rect& b, bool exact) {
31 SkRect diff;
32 if (SkRectPriv::Subtract(a.asSkRect(), b.asSkRect(), &diff) || !exact) {
33 // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
34 // and can settle for the subrect of A excluded from B (which is also 'diff')
35 return Rect{diff};
36 } else {
37 // For our purposes, we want the original A when A-B cannot be exactly represented
38 return a;
39 }
40 }
41
42 static constexpr uint32_t kInvalidGenID = 0;
43 static constexpr uint32_t kEmptyGenID = 1;
44 static constexpr uint32_t kWideOpenGenID = 2;
45
next_gen_id()46 uint32_t next_gen_id() {
47 // 0-2 are reserved for invalid, empty & wide-open
48 static const uint32_t kFirstUnreservedGenID = 3;
49 static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
50
51 uint32_t id;
52 do {
53 id = nextID.fetch_add(1, std::memory_order_relaxed);
54 } while (id < kFirstUnreservedGenID);
55 return id;
56 }
57
oriented_bbox_intersection(const Rect & a,const Transform & aXform,const Rect & b,const Transform & bXform)58 bool oriented_bbox_intersection(const Rect& a, const Transform& aXform,
59 const Rect& b, const Transform& bXform) {
60 // NOTE: We intentionally exclude projected bounds for two reasons:
61 // 1. We can skip the division by w and worring about clipping to w = 0.
62 // 2. W/o the projective case, the separating axes are simpler to compute (see below).
63 SkASSERT(aXform.type() != Transform::Type::kPerspective &&
64 bXform.type() != Transform::Type::kPerspective);
65 SkV4 quadA[4], quadB[4];
66
67 aXform.mapPoints(a, quadA);
68 bXform.mapPoints(b, quadB);
69
70 // There are 4 separating axes, defined by the two normals from quadA and from quadB, but
71 // since they were produced by transforming a rectangle by an affine transform, we know the
72 // normals are orthoganal to the basis vectors of upper 2x2 of their two transforms.
73 auto axesX = skvx::float4(-aXform.matrix().rc(1,0), -aXform.matrix().rc(1,1),
74 -bXform.matrix().rc(1,0), -bXform.matrix().rc(1,1));
75 auto axesY = skvx::float4(aXform.matrix().rc(0,0), aXform.matrix().rc(0,1),
76 bXform.matrix().rc(0,0), bXform.matrix().rc(0,1));
77
78 // Projections of the 4 corners of each quadrilateral vs. the 4 axes. For orthonormal
79 // transforms, the projections of a quad's corners to its own normal axes should work out
80 // to the original dimensions of the rectangle, but this code handles skew and scale factors
81 // without branching.
82 auto aProj0 = quadA[0].x * axesX + quadA[0].y * axesY;
83 auto aProj1 = quadA[1].x * axesX + quadA[1].y * axesY;
84 auto aProj2 = quadA[2].x * axesX + quadA[2].y * axesY;
85 auto aProj3 = quadA[3].x * axesX + quadA[3].y * axesY;
86
87 auto bProj0 = quadB[0].x * axesX + quadB[0].y * axesY;
88 auto bProj1 = quadB[1].x * axesX + quadB[1].y * axesY;
89 auto bProj2 = quadB[2].x * axesX + quadB[2].y * axesY;
90 auto bProj3 = quadB[3].x * axesX + quadB[3].y * axesY;
91
92 // Minimum and maximum projected values against the 4 axes, for both quadA and quadB, which
93 // gives us four pairs of intervals to test for separation.
94 auto minA = min(min(aProj0, aProj1), min(aProj2, aProj3));
95 auto maxA = max(max(aProj0, aProj1), max(aProj2, aProj3));
96 auto minB = min(min(bProj0, bProj1), min(bProj2, bProj3));
97 auto maxB = max(max(bProj0, bProj1), max(bProj2, bProj3));
98
99 auto overlaps = (minB <= maxA) & (minA <= maxB);
100 return all(overlaps); // any non-overlapping interval would imply no intersection
101 }
102
103 static constexpr Transform kIdentity = Transform::Identity();
104
105 } // anonymous namespace
106
107 ///////////////////////////////////////////////////////////////////////////////
108 // ClipStack::TransformedShape
109
110 // A flyweight object describing geometry, subject to a local-to-device transform.
111 // This can be used by SaveRecords, Elements, and draws to determine how two shape operations
112 // interact with each other, without needing to share a base class, friend each other, or have a
113 // template for each combination of two types.
114 struct ClipStack::TransformedShape {
115 const Transform& fLocalToDevice;
116 const Shape& fShape;
117 const Rect& fOuterBounds;
118 const Rect& fInnerBounds;
119
120 SkClipOp fOp;
121
122 // contains() performs a fair amount of work to be as accurate as possible since it can mean
123 // greatly simplifying the clip stack. However, in some contexts this isn't worth doing because
124 // the actual shape is only an approximation (save records), or there's no current way to take
125 // advantage of knowing this shape contains another (draws containing a clip hypothetically
126 // could replace their geometry to draw the clip directly, but that isn't implemented now).
127 bool fContainsChecksOnlyBounds = false;
128
129 bool intersects(const TransformedShape&) const;
130 bool contains(const TransformedShape&) const;
131 };
132
intersects(const TransformedShape & o) const133 bool ClipStack::TransformedShape::intersects(const TransformedShape& o) const {
134 if (!fOuterBounds.intersects(o.fOuterBounds)) {
135 return false;
136 }
137
138 if (fLocalToDevice.type() <= Transform::Type::kRectStaysRect &&
139 o.fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
140 // The two shape's coordinate spaces are different but both rect-stays-rect or simpler.
141 // This means, though, that their outer bounds approximations are tight to their transormed
142 // shape bounds. There's no point to do further tests given that and that we already found
143 // that these outer bounds *do* intersect.
144 return true;
145 } else if (fLocalToDevice == o.fLocalToDevice) {
146 // Since the two shape's local coordinate spaces are the same, we can compare shape
147 // bounds directly for a more accurate intersection test. We intentionally do not go
148 // further and do shape-specific intersection tests since these could have unknown
149 // complexity (for paths) and limited utility (e.g. two round rects that are disjoint
150 // solely from their corner curves).
151 return fShape.bounds().intersects(o.fShape.bounds());
152 } else if (fLocalToDevice.type() != Transform::Type::kPerspective &&
153 o.fLocalToDevice.type() != Transform::Type::kPerspective) {
154 // The shapes don't share the same coordinate system, and their approximate 'outer'
155 // bounds in device space could have substantial outsetting to contain the transformed
156 // shape (e.g. 45 degree rotation). Perform a more detailed check on their oriented
157 // bounding boxes.
158 return oriented_bbox_intersection(fShape.bounds(), fLocalToDevice,
159 o.fShape.bounds(), o.fLocalToDevice);
160 }
161 // Else multiple perspective transforms are involved, so assume intersection and allow the
162 // rasterizer to handle perspective clipping.
163 return true;
164 }
165
contains(const TransformedShape & o) const166 bool ClipStack::TransformedShape::contains(const TransformedShape& o) const {
167 if (fInnerBounds.contains(o.fOuterBounds)) {
168 return true;
169 }
170 // Skip more expensive contains() checks if configured not to, or if the extent of 'o' exceeds
171 // this shape's outer bounds. When that happens there must be some part of 'o' that cannot be
172 // contained in this shape.
173 if (fContainsChecksOnlyBounds || !fOuterBounds.contains(o.fOuterBounds)) {
174 return false;
175 }
176
177 if (fContainsChecksOnlyBounds) {
178 return false; // don't do any more work
179 }
180
181 if (fLocalToDevice == o.fLocalToDevice) {
182 // Test the shapes directly against each other, with a special check for a rrect+rrect
183 // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
184 // path for small paths means they contain each other).
185 static constexpr int kMaxPathComparePoints = 16;
186 if (fShape.isRRect() && o.fShape.isRRect()) {
187 return SkRRectPriv::ConservativeIntersect(fShape.rrect(), o.fShape.rrect())
188 == o.fShape.rrect();
189 } else if (fShape.isPath() && o.fShape.isPath()) {
190 // TODO: Is this worth doing still if clips only cost as much as a single draw?
191 return (fShape.path().getGenerationID() == o.fShape.path().getGenerationID()) ||
192 (fShape.path().countPoints() <= kMaxPathComparePoints &&
193 fShape.path() == o.fShape.path());
194 } else {
195 return fShape.conservativeContains(o.fShape.bounds());
196 }
197 } else if (fLocalToDevice.type() <= Transform::Type::kRectStaysRect &&
198 o.fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
199 // Optimize the common case where o's bounds can be mapped tightly into this coordinate
200 // space and then tested against our shape.
201 Rect localBounds = fLocalToDevice.inverseMapRect(
202 o.fLocalToDevice.mapRect(o.fShape.bounds()));
203 return fShape.conservativeContains(localBounds);
204 } else if (fShape.convex()) {
205 // Since this shape is convex, if all four corners of o's bounding box are inside it
206 // then the entirety of o is also guaranteed to be inside it.
207 SkV4 deviceQuad[4];
208 o.fLocalToDevice.mapPoints(o.fShape.bounds(), deviceQuad);
209 SkV4 localQuad[4];
210 fLocalToDevice.inverseMapPoints(deviceQuad, localQuad, 4);
211 for (int i = 0; i < 4; ++i) {
212 // TODO: Would be nice to make this consistent with how the GPU clips NDC w.
213 if (deviceQuad[i].w < SkPathPriv::kW0PlaneDistance ||
214 localQuad[i].w < SkPathPriv::kW0PlaneDistance) {
215 // Something in O actually projects behind the W = 0 plane and would be clipped
216 // to infinity, so it's extremely unlikely that this contains O.
217 return false;
218 }
219 if (!fShape.conservativeContains(skvx::float2::Load(localQuad + i) / localQuad[i].w)) {
220 return false;
221 }
222 }
223 return true;
224 }
225
226 // Else not an easily comparable pair of shapes so assume this doesn't contain O
227 return false;
228 }
229
Simplify(const TransformedShape & a,const TransformedShape & b)230 ClipStack::SimplifyResult ClipStack::Simplify(const TransformedShape& a,
231 const TransformedShape& b) {
232 enum class ClipCombo {
233 kDD = 0b00,
234 kDI = 0b01,
235 kID = 0b10,
236 kII = 0b11
237 };
238
239 switch(static_cast<ClipCombo>(((int) a.fOp << 1) | (int) b.fOp)) {
240 case ClipCombo::kII:
241 // Intersect (A) + Intersect (B)
242 if (!a.intersects(b)) {
243 // Regions with non-zero coverage are disjoint, so intersection = empty
244 return SimplifyResult::kEmpty;
245 } else if (b.contains(a)) {
246 // B's full coverage region contains entirety of A, so intersection = A
247 return SimplifyResult::kAOnly;
248 } else if (a.contains(b)) {
249 // A's full coverage region contains entirety of B, so intersection = B
250 return SimplifyResult::kBOnly;
251 } else {
252 // The shapes intersect in some non-trivial manner
253 return SimplifyResult::kBoth;
254 }
255 case ClipCombo::kID:
256 // Intersect (A) + Difference (B)
257 if (!a.intersects(b)) {
258 // A only intersects B's full coverage region, so intersection = A
259 return SimplifyResult::kAOnly;
260 } else if (b.contains(a)) {
261 // B's zero coverage region completely contains A, so intersection = empty
262 return SimplifyResult::kEmpty;
263 } else {
264 // Intersection cannot be simplified. Note that the combination of a intersect
265 // and difference op in this order cannot produce kBOnly
266 return SimplifyResult::kBoth;
267 }
268 case ClipCombo::kDI:
269 // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
270 // but combining is commutative so this is equivalent barring naming.
271 if (!b.intersects(a)) {
272 // B only intersects A's full coverage region, so intersection = B
273 return SimplifyResult::kBOnly;
274 } else if (a.contains(b)) {
275 // A's zero coverage region completely contains B, so intersection = empty
276 return SimplifyResult::kEmpty;
277 } else {
278 // Cannot be simplified
279 return SimplifyResult::kBoth;
280 }
281 case ClipCombo::kDD:
282 // Difference (A) + Difference (B)
283 if (a.contains(b)) {
284 // A's zero coverage region contains B, so B doesn't remove any extra
285 // coverage from their intersection.
286 return SimplifyResult::kAOnly;
287 } else if (b.contains(a)) {
288 // Mirror of the above case, intersection = B instead
289 return SimplifyResult::kBOnly;
290 } else {
291 // Intersection of the two differences cannot be simplified. Note that for
292 // this op combination it is not possible to produce kEmpty.
293 return SimplifyResult::kBoth;
294 }
295 }
296 SkUNREACHABLE;
297 }
298
299 ///////////////////////////////////////////////////////////////////////////////
300 // ClipStack::Element
301
RawElement(const Rect & deviceBounds,const Transform & localToDevice,const Shape & shape,SkClipOp op,PixelSnapping snapping)302 ClipStack::RawElement::RawElement(const Rect& deviceBounds,
303 const Transform& localToDevice,
304 const Shape& shape,
305 SkClipOp op,
306 PixelSnapping snapping)
307 : Element{shape, localToDevice, op}
308 , fUsageBounds{Rect::InfiniteInverted()}
309 , fOrder(DrawOrder::kNoIntersection)
310 , fMaxZ(DrawOrder::kClearDepth)
311 , fInvalidatedByIndex(-1) {
312 // Discard shapes that don't have any area (including when a transform can't be inverted, since
313 // it means the two dimensions are collapsed to 0 or 1 dimension in device space).
314 if (fShape.isLine() || !localToDevice.valid()) {
315 fShape.reset();
316 }
317 // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
318 // with the clip op toggled.
319 if (fShape.inverted()) {
320 fOp = (fOp == SkClipOp::kIntersect) ? SkClipOp::kDifference : SkClipOp::kIntersect;
321 }
322
323 fOuterBounds = fLocalToDevice.mapRect(fShape.bounds()).makeIntersect(deviceBounds);
324 fInnerBounds = Rect::InfiniteInverted();
325
326 // Apply rect-stays-rect transforms to rects and round rects to reduce the number of unique
327 // local coordinate systems that are in play.
328 if (!fOuterBounds.isEmptyNegativeOrNaN() &&
329 fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
330 if (fShape.isRect()) {
331 // The actual geometry can be updated to the device-intersected bounds and we know the
332 // inner bounds are equal to the outer.
333 if (snapping == PixelSnapping::kYes) {
334 fOuterBounds.round();
335 }
336 fShape.setRect(fOuterBounds);
337 fLocalToDevice = kIdentity;
338 fInnerBounds = fOuterBounds;
339 } else if (fShape.isRRect()) {
340 // Can't transform in place and must still check transform result since some very
341 // ill-formed scale+translate matrices can cause invalid rrect radii.
342 SkRRect xformed;
343 if (fShape.rrect().transform(fLocalToDevice, &xformed)) {
344 if (snapping == PixelSnapping::kYes) {
345 // The rounded corners will still be anti-aliased, but snap the horizontal and
346 // vertical edges to pixel values.
347 xformed.setRectRadii(SkRect::Make(xformed.rect().round()),
348 xformed.radii().data());
349 }
350 fShape.setRRect(xformed);
351 fLocalToDevice = kIdentity;
352 // Refresh outer bounds to match the transformed round rect in case
353 // SkRRect::transform produces slightly different results from Transform::mapRect.
354 fOuterBounds = fShape.bounds().makeIntersect(deviceBounds);
355 fInnerBounds = Rect{SkRRectPriv::InnerBounds(xformed)}.makeIntersect(fOuterBounds);
356 }
357 }
358 }
359
360 if (fOuterBounds.isEmptyNegativeOrNaN()) {
361 // Either was already an empty shape or a non-empty shape is offscreen, so treat it as such.
362 fShape.reset();
363 fInnerBounds = Rect::InfiniteInverted();
364 }
365
366 // Now that fOp and fShape are canonical, set the shape's fill type to match how it needs to be
367 // drawn as a depth-only shape everywhere that is clipped out (intersect is thus inverse-filled)
368 fShape.setInverted(fOp == SkClipOp::kIntersect);
369
370 // Post-conditions on inner and outer bounds
371 SkASSERT(fShape.isEmpty() || deviceBounds.contains(fOuterBounds));
372 this->validate();
373 }
374
operator ClipStack::TransformedShape() const375 ClipStack::RawElement::operator ClipStack::TransformedShape() const {
376 return {fLocalToDevice, fShape, fOuterBounds, fInnerBounds, fOp};
377 }
378
drawClip(Device * device)379 void ClipStack::RawElement::drawClip(Device* device) {
380 this->validate();
381
382 // Skip elements that have not affected any draws
383 if (!this->hasPendingDraw()) {
384 SkASSERT(fUsageBounds.isEmptyNegativeOrNaN());
385 return;
386 }
387
388 SkASSERT(!fUsageBounds.isEmptyNegativeOrNaN());
389 // For clip draws, the usage bounds is the scissor.
390 Rect scissor = fUsageBounds.makeRoundOut();
391 Rect drawBounds = fOuterBounds.makeIntersect(scissor);
392 if (!drawBounds.isEmptyNegativeOrNaN()) {
393 // Although we are recording this clip draw after all the draws it affects, 'fOrder' was
394 // determined at the first usage, so after sorting by DrawOrder the clip draw will be in the
395 // right place. Unlike regular draws that use their own "Z", by writing (1 + max Z this clip
396 // affects), it will cause those draws to fail either GREATER and GEQUAL depth tests where
397 // they need to be clipped.
398 DrawOrder order{fMaxZ.next(), fOrder};
399 // An element's clip op is encoded in the shape's fill type. Inverse fills are intersect ops
400 // and regular fills are difference ops. This means fShape is already in the right state to
401 // draw directly.
402 SkASSERT((fOp == SkClipOp::kDifference && !fShape.inverted()) ||
403 (fOp == SkClipOp::kIntersect && fShape.inverted()));
404 device->drawClipShape(fLocalToDevice,
405 fShape,
406 Clip{drawBounds, drawBounds, scissor.asSkIRect(),
407 /* nonMSAAClip= */ {}, /* shader= */ nullptr},
408 order);
409 }
410
411 // After the clip shape is drawn, reset its state. If the clip element is being popped off the
412 // stack or overwritten because a new clip invalidated it, this won't matter. But if the clips
413 // were drawn because the Device had to flush pending work while the clip stack was not empty,
414 // subsequent draws will still need to be clipped to the elements. In this case, the usage
415 // accumulation process will begin again and automatically use the Device's post-flush Z values
416 // and BoundsManager state.
417 fUsageBounds = Rect::InfiniteInverted();
418 fOrder = DrawOrder::kNoIntersection;
419 fMaxZ = DrawOrder::kClearDepth;
420 }
421
validate() const422 void ClipStack::RawElement::validate() const {
423 // If the shape type isn't empty, the outer bounds shouldn't be empty; if the inner bounds are
424 // not empty, they must be contained in outer.
425 SkASSERT((fShape.isEmpty() || !fOuterBounds.isEmptyNegativeOrNaN()) &&
426 (fInnerBounds.isEmptyNegativeOrNaN() || fOuterBounds.contains(fInnerBounds)));
427 SkASSERT((fOp == SkClipOp::kDifference && !fShape.inverted()) ||
428 (fOp == SkClipOp::kIntersect && fShape.inverted()));
429 SkASSERT(!this->hasPendingDraw() || !fUsageBounds.isEmptyNegativeOrNaN());
430 }
431
markInvalid(const SaveRecord & current)432 void ClipStack::RawElement::markInvalid(const SaveRecord& current) {
433 SkASSERT(!this->isInvalid());
434 fInvalidatedByIndex = current.firstActiveElementIndex();
435 // NOTE: We don't draw the accumulated clip usage when the element is marked invalid. Some
436 // invalidated elements are part of earlier save records so can become re-active after a restore
437 // in which case they should continue to accumulate. Invalidated elements that are part of the
438 // active save record are removed at the end of the stack modification, which is when they are
439 // explicitly drawn.
440 }
441
restoreValid(const SaveRecord & current)442 void ClipStack::RawElement::restoreValid(const SaveRecord& current) {
443 if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
444 fInvalidatedByIndex = -1;
445 }
446 }
447
combine(const RawElement & other,const SaveRecord & current)448 bool ClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
449 // Don't combine elements that have collected draw usage, since that changes their geometry.
450 if (this->hasPendingDraw() || other.hasPendingDraw()) {
451 return false;
452 }
453 // To reduce the number of possibilities, only consider intersect+intersect. Difference and
454 // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
455 // occurrence and the math is much more complicated.
456 if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
457 return false;
458 }
459
460 // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
461 // treated as a degenerate case of rrect+rrect).
462 bool shapeUpdated = false;
463 if (fShape.isRect() && other.fShape.isRect()) {
464 if (fLocalToDevice == other.fLocalToDevice) {
465 Rect intersection = fShape.rect().makeIntersect(other.fShape.rect());
466 // Simplify() should have caught this case
467 SkASSERT(!intersection.isEmptyNegativeOrNaN());
468 fShape.setRect(intersection);
469 shapeUpdated = true;
470 }
471 } else if ((fShape.isRect() || fShape.isRRect()) &&
472 (other.fShape.isRect() || other.fShape.isRRect())) {
473 if (fLocalToDevice == other.fLocalToDevice) {
474 // Treat rrect+rect intersections as rrect+rrect
475 SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect().asSkRect())
476 : fShape.rrect();
477 SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect().asSkRect())
478 : other.fShape.rrect();
479
480 SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
481 if (!joined.isEmpty()) {
482 // Can reduce to a single element
483 if (joined.isRect()) {
484 // And with a simplified type
485 fShape.setRect(joined.rect());
486 } else {
487 fShape.setRRect(joined);
488 }
489 shapeUpdated = true;
490 }
491 // else the intersection isn't representable as a rrect, or doesn't actually intersect.
492 // ConservativeIntersect doesn't disambiguate those two cases, and just testing bounding
493 // boxes for non-intersection would have already been caught by Simplify(), so
494 // just don't combine the two elements and let rasterization resolve the combination.
495 }
496 }
497
498 if (shapeUpdated) {
499 // This logic works under the assumption that both combined elements were intersect.
500 SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
501 fOuterBounds.intersect(other.fOuterBounds);
502 fInnerBounds.intersect(other.fInnerBounds);
503 // Inner bounds can become empty, but outer bounds should not be able to.
504 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN());
505 fShape.setInverted(true); // the setR[R]ect operations reset to non-inverse
506 this->validate();
507 return true;
508 } else {
509 return false;
510 }
511 }
512
updateForElement(RawElement * added,const SaveRecord & current)513 void ClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
514 if (this->isInvalid()) {
515 // Already doesn't do anything, so skip this element
516 return;
517 }
518
519 // 'A' refers to this element, 'B' refers to 'added'.
520 switch (Simplify(*this, *added)) {
521 case SimplifyResult::kEmpty:
522 // Mark both elements as invalid to signal that the clip is fully empty
523 this->markInvalid(current);
524 added->markInvalid(current);
525 break;
526
527 case SimplifyResult::kAOnly:
528 // This element already clips more than 'added', so mark 'added' is invalid to skip it
529 added->markInvalid(current);
530 break;
531
532 case SimplifyResult::kBOnly:
533 // 'added' clips more than this element, so mark this as invalid
534 this->markInvalid(current);
535 break;
536
537 case SimplifyResult::kBoth:
538 // Else the bounds checks think we need to keep both, but depending on the combination
539 // of the ops and shape kinds, we may be able to do better.
540 if (added->combine(*this, current)) {
541 // 'added' now fully represents the combination of the two elements
542 this->markInvalid(current);
543 }
544 break;
545 }
546 }
547
548 ClipStack::RawElement::DrawInfluence
testForDraw(const TransformedShape & draw) const549 ClipStack::RawElement::testForDraw(const TransformedShape& draw) const {
550 if (this->isInvalid()) {
551 // Cannot affect the draw
552 return DrawInfluence::kNone;
553 }
554
555 // For this analysis, A refers to the Element and B refers to the draw
556 switch(Simplify(*this, draw)) {
557 case SimplifyResult::kEmpty:
558 // The more detailed per-element checks have determined the draw is clipped out.
559 return DrawInfluence::kClipOut;
560
561 case SimplifyResult::kBOnly:
562 // This element does not affect the draw
563 return DrawInfluence::kNone;
564
565 case SimplifyResult::kAOnly:
566 // If this were the only element, we could replace the draw's geometry but that only
567 // gives us a win if we know that the clip element would only be used by this draw.
568 // For now, just fall through to regular clip handling.
569 [[fallthrough]];
570
571 case SimplifyResult::kBoth:
572 return DrawInfluence::kIntersect;
573 }
574
575 SkUNREACHABLE;
576 }
577
updateForDraw(const BoundsManager * boundsManager,const Rect & drawBounds,PaintersDepth drawZ)578 CompressedPaintersOrder ClipStack::RawElement::updateForDraw(const BoundsManager* boundsManager,
579 const Rect& drawBounds,
580 PaintersDepth drawZ) {
581 SkASSERT(!this->isInvalid());
582 SkASSERT(!drawBounds.isEmptyNegativeOrNaN());
583
584 if (!this->hasPendingDraw()) {
585 // No usage yet so we need an order that we will use when drawing to just the depth
586 // attachment. It is sufficient to use the next CompressedPaintersOrder after the
587 // most recent draw under this clip's outer bounds. It is necessary to use the
588 // entire clip's outer bounds because the order has to be determined before the
589 // final usage bounds are known and a subsequent draw could require a completely
590 // different portion of the clip than this triggering draw.
591 //
592 // Lazily determining the order has several benefits to computing it when the clip
593 // element was first created:
594 // - Elements that are invalidated by nested clips before draws are made do not
595 // waste time in the BoundsManager.
596 // - Elements that never actually modify a draw (e.g. a defensive clip) do not
597 // waste time in the BoundsManager.
598 // - A draw that triggers clip usage on multiple elements will more likely assign
599 // the same order to those elements, meaning their depth-only draws are more
600 // likely to batch in the final DrawPass.
601 //
602 // However, it does mean that clip elements can have the same order as each other,
603 // or as later draws (e.g. after the clip has been popped off the stack). Any
604 // overlap between clips or draws is addressed when the clip is drawn by selecting
605 // an appropriate DisjointStencilIndex value. Stencil-aside, this order assignment
606 // logic, max Z tracking, and the depth test during rasterization are able to
607 // resolve everything correctly even if clips have the same order value.
608 // See go/clip-stack-order for a detailed analysis of why this works.
609 fOrder = boundsManager->getMostRecentDraw(fOuterBounds).next();
610 fUsageBounds = drawBounds;
611 fMaxZ = drawZ;
612 } else {
613 // Earlier draws have already used this element so we cannot change where the
614 // depth-only draw will be sorted to, but we need to ensure we cover the new draw's
615 // bounds and use a Z value that will clip out its pixels as appropriate.
616 fUsageBounds.join(drawBounds);
617 if (drawZ > fMaxZ) {
618 fMaxZ = drawZ;
619 }
620 }
621
622 return fOrder;
623 }
624
clipType() const625 ClipStack::ClipState ClipStack::RawElement::clipType() const {
626 // Map from the internal shape kind to the clip state enum
627 switch (fShape.type()) {
628 case Shape::Type::kEmpty:
629 return ClipState::kEmpty;
630
631 case Shape::Type::kRect:
632 return fOp == SkClipOp::kIntersect &&
633 fLocalToDevice.type() == Transform::Type::kIdentity
634 ? ClipState::kDeviceRect : ClipState::kComplex;
635
636 case Shape::Type::kRRect:
637 return fOp == SkClipOp::kIntersect &&
638 fLocalToDevice.type() == Transform::Type::kIdentity
639 ? ClipState::kDeviceRRect : ClipState::kComplex;
640
641 case Shape::Type::kArc:
642 case Shape::Type::kLine:
643 // These types should never become RawElements, but call them kComplex in release builds
644 SkASSERT(false);
645 [[fallthrough]];
646
647 case Shape::Type::kPath:
648 return ClipState::kComplex;
649 }
650 SkUNREACHABLE;
651 }
652
653 ///////////////////////////////////////////////////////////////////////////////
654 // ClipStack::SaveRecord
655
SaveRecord(const Rect & deviceBounds)656 ClipStack::SaveRecord::SaveRecord(const Rect& deviceBounds)
657 : fInnerBounds(deviceBounds)
658 , fOuterBounds(deviceBounds)
659 , fShader(nullptr)
660 , fStartingElementIndex(0)
661 , fOldestValidIndex(0)
662 , fDeferredSaveCount(0)
663 , fStackOp(SkClipOp::kIntersect)
664 , fState(ClipState::kWideOpen)
665 , fGenID(kInvalidGenID) {}
666
SaveRecord(const SaveRecord & prior,int startingElementIndex)667 ClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
668 int startingElementIndex)
669 : fInnerBounds(prior.fInnerBounds)
670 , fOuterBounds(prior.fOuterBounds)
671 , fShader(prior.fShader)
672 , fStartingElementIndex(startingElementIndex)
673 , fOldestValidIndex(prior.fOldestValidIndex)
674 , fDeferredSaveCount(0)
675 , fStackOp(prior.fStackOp)
676 , fState(prior.fState)
677 , fGenID(kInvalidGenID) {
678 // If the prior record added an element, this one will insert into the same index
679 // (that's okay since we'll remove it when this record is popped off the stack).
680 SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
681 }
682
genID() const683 uint32_t ClipStack::SaveRecord::genID() const {
684 if (fState == ClipState::kEmpty) {
685 return kEmptyGenID;
686 } else if (fState == ClipState::kWideOpen) {
687 return kWideOpenGenID;
688 } else {
689 // The gen ID shouldn't be empty or wide open, since they are reserved for the above
690 // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
691 SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
692 return fGenID;
693 }
694 }
695
state() const696 ClipStack::ClipState ClipStack::SaveRecord::state() const {
697 if (fShader && fState != ClipState::kEmpty) {
698 return ClipState::kComplex;
699 } else {
700 return fState;
701 }
702 }
703
scissor(const Rect & deviceBounds,const Rect & drawBounds) const704 Rect ClipStack::SaveRecord::scissor(const Rect& deviceBounds, const Rect& drawBounds) const {
705 // This should only be called when the clip stack actually has something non-trivial to evaluate
706 // It is effectively a reduced version of Simplify() dealing only with device-space bounds and
707 // returning the intersection results.
708 SkASSERT(this->state() != ClipState::kEmpty && this->state() != ClipState::kWideOpen);
709 SkASSERT(deviceBounds.contains(drawBounds)); // This should have already been handled.
710
711 if (fStackOp == SkClipOp::kDifference) {
712 // kDifference nominally uses the draw's bounds minus the save record's inner bounds as the
713 // scissor. However, if the draw doesn't intersect the clip at all then it doesn't have any
714 // visual effect and we can switch to the device bounds as the canonical scissor.
715 if (!fOuterBounds.intersects(drawBounds)) {
716 return deviceBounds;
717 } else {
718 // This automatically detects the case where the draw is contained in inner bounds and
719 // would be entirely clipped out.
720 return subtract(drawBounds, fInnerBounds, /*exact=*/true);
721 }
722 } else {
723 // kIntersect nominally uses the save record's outer bounds as the scissor. However, if the
724 // draw is contained entirely within those bounds, it doesn't have any visual effect so
725 // switch to using the device bounds as the canonical scissor to minimize state changes.
726 if (fOuterBounds.contains(drawBounds)) {
727 return deviceBounds;
728 } else {
729 // This automatically detects the case where the draw does not intersect the clip.
730 return fOuterBounds;
731 }
732 }
733 }
734
removeElements(RawElement::Stack * elements,Device * device)735 void ClipStack::SaveRecord::removeElements(RawElement::Stack* elements, Device* device) {
736 while (elements->count() > fStartingElementIndex) {
737 // Since the element is being deleted now, it won't be in the ClipStack when the Device
738 // calls recordDeferredClipDraws(). Record the clip's draw now (if it needs it).
739 elements->back().drawClip(device);
740 elements->pop_back();
741 }
742 }
743
restoreElements(RawElement::Stack * elements)744 void ClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
745 // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
746 // from its starting index to restoreCount - 1. Elements from the old save record have
747 // been destroyed already, so their indices would have been >= restoreCount, and any
748 // still-present element can be un-invalidated based on that.
749 int i = elements->count() - 1;
750 for (RawElement& e : elements->ritems()) {
751 if (i < fOldestValidIndex) {
752 break;
753 }
754 e.restoreValid(*this);
755 --i;
756 }
757 }
758
addShader(sk_sp<SkShader> shader)759 void ClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
760 SkASSERT(shader);
761 SkASSERT(this->canBeUpdated());
762 if (!fShader) {
763 fShader = std::move(shader);
764 } else {
765 // The total coverage is computed by multiplying the coverage from each element (shape or
766 // shader), but since multiplication is associative, we can use kSrcIn blending to make
767 // a new shader that represents 'shader' * 'fShader'
768 fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
769 }
770 }
771
addElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)772 bool ClipStack::SaveRecord::addElement(RawElement&& toAdd,
773 RawElement::Stack* elements,
774 Device* device) {
775 // Validity check the element's state first
776 toAdd.validate();
777
778 // And we shouldn't be adding an element if we have a deferred save
779 SkASSERT(this->canBeUpdated());
780
781 if (fState == ClipState::kEmpty) {
782 // The clip is already empty, and we only shrink, so there's no need to record this element.
783 return false;
784 } else if (toAdd.shape().isEmpty()) {
785 // An empty difference op should have been detected earlier, since it's a no-op
786 SkASSERT(toAdd.op() == SkClipOp::kIntersect);
787 fState = ClipState::kEmpty;
788 this->removeElements(elements, device);
789 return true;
790 }
791
792 // Here we treat the SaveRecord as a "TransformedShape" with the identity transform, and a shape
793 // equal to its outer bounds. This lets us get accurate intersection tests against the new
794 // element, but we pass true to skip more detailed contains checks because the SaveRecord's
795 // shape is potentially very different from its aggregate outer bounds.
796 Shape outerSaveBounds{fOuterBounds};
797 TransformedShape save{kIdentity, outerSaveBounds, fOuterBounds, fInnerBounds, fStackOp,
798 /*containsChecksOnlyBounds=*/true};
799
800 // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
801 // element.
802 switch (Simplify(save, toAdd)) {
803 case SimplifyResult::kEmpty:
804 // The combination results in an empty clip
805 fState = ClipState::kEmpty;
806 this->removeElements(elements, device);
807 return true;
808
809 case SimplifyResult::kAOnly:
810 // The combination would not be any different than the existing clip
811 return false;
812
813 case SimplifyResult::kBOnly:
814 // The combination would invalidate the entire existing stack and can be replaced with
815 // just the new element.
816 this->replaceWithElement(std::move(toAdd), elements, device);
817 return true;
818
819 case SimplifyResult::kBoth:
820 // The new element combines in a complex manner, so update the stack's bounds based on
821 // the combination of its and the new element's ops (handled below)
822 break;
823 }
824
825 if (fState == ClipState::kWideOpen) {
826 // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
827 // simply to keep the element and update the stack bounds to be the element's intersected
828 // with the device.
829 this->replaceWithElement(std::move(toAdd), elements, device);
830 return true;
831 }
832
833 // Some form of actual clip element(s) to combine with.
834 if (fStackOp == SkClipOp::kIntersect) {
835 if (toAdd.op() == SkClipOp::kIntersect) {
836 // Intersect (stack) + Intersect (toAdd)
837 // - Bounds updates is simply the paired intersections of outer and inner.
838 fOuterBounds.intersect(toAdd.outerBounds());
839 fInnerBounds.intersect(toAdd.innerBounds());
840 // Outer should not have become empty, but is allowed to if there's no intersection.
841 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN());
842 } else {
843 // Intersect (stack) + Difference (toAdd)
844 // - Shrink the stack's outer bounds if the difference op's inner bounds completely
845 // cuts off an edge.
846 // - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
847 fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
848 fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
849 }
850 } else {
851 if (toAdd.op() == SkClipOp::kIntersect) {
852 // Difference (stack) + Intersect (toAdd)
853 // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
854 Rect oldOuter = fOuterBounds;
855 fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
856 fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
857 } else {
858 // Difference (stack) + Difference (toAdd)
859 // - The updated outer bounds is the union of outer bounds and the inner becomes the
860 // largest of the two possible inner bounds
861 fOuterBounds.join(toAdd.outerBounds());
862 if (toAdd.innerBounds().area() > fInnerBounds.area()) {
863 fInnerBounds = toAdd.innerBounds();
864 }
865 }
866 }
867
868 // If we get here, we're keeping the new element and the stack's bounds have been updated.
869 // We ought to have caught the cases where the stack bounds resemble an empty or wide open
870 // clip, so assert that's the case.
871 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN() &&
872 (fInnerBounds.isEmptyNegativeOrNaN() || fOuterBounds.contains(fInnerBounds)));
873
874 return this->appendElement(std::move(toAdd), elements, device);
875 }
876
appendElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)877 bool ClipStack::SaveRecord::appendElement(RawElement&& toAdd,
878 RawElement::Stack* elements,
879 Device* device) {
880 // Update past elements to account for the new element
881 int i = elements->count() - 1;
882
883 // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
884 // removed from the stack (these are the active elements that have been invalidated by the
885 // newest element; since it's the active part of the stack, no restore() can bring them back).
886 int youngestValid = fStartingElementIndex - 1;
887 // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
888 // becomes the save record's new fLastValidIndex value.
889 int oldestValid = elements->count();
890 // After the loop, this is the earliest active element that was invalidated. It may be
891 // older in the stack than earliestValid, so cannot be popped off, but can be used to store
892 // the new element instead of allocating more.
893 RawElement* oldestActiveInvalid = nullptr;
894 int oldestActiveInvalidIndex = elements->count();
895
896 for (RawElement& existing : elements->ritems()) {
897 if (i < fOldestValidIndex) {
898 break;
899 }
900 // We don't need to pass the actual index that toAdd will be saved to; just the minimum
901 // index of this save record, since that will result in the same restoration behavior later.
902 existing.updateForElement(&toAdd, *this);
903
904 if (toAdd.isInvalid()) {
905 if (existing.isInvalid()) {
906 // Both new and old invalid implies the entire clip becomes empty
907 fState = ClipState::kEmpty;
908 return true;
909 } else {
910 // The new element doesn't change the clip beyond what the old element already does
911 return false;
912 }
913 } else if (existing.isInvalid()) {
914 // The new element cancels out the old element. The new element may have been modified
915 // to account for the old element's geometry.
916 if (i >= fStartingElementIndex) {
917 // Still active, so the invalidated index could be used to store the new element
918 oldestActiveInvalid = &existing;
919 oldestActiveInvalidIndex = i;
920 }
921 } else {
922 // Keep both new and old elements
923 oldestValid = i;
924 if (i > youngestValid) {
925 youngestValid = i;
926 }
927 }
928
929 --i;
930 }
931
932 // Post-iteration validity check
933 SkASSERT(oldestValid == elements->count() ||
934 (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
935 SkASSERT(youngestValid == fStartingElementIndex - 1 ||
936 (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
937 SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
938 oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
939
940 // Update final state
941 SkASSERT(oldestValid >= fOldestValidIndex);
942 fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
943 fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
944 if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
945 // The stack remains in difference mode only as long as all elements are difference
946 fStackOp = SkClipOp::kIntersect;
947 }
948
949 int targetCount = youngestValid + 1;
950 if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
951 // toAdd will be stored right after youngestValid
952 targetCount++;
953 oldestActiveInvalid = nullptr;
954 }
955 while (elements->count() > targetCount) {
956 SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
957 elements->back().drawClip(device);
958 elements->pop_back();
959 }
960 if (oldestActiveInvalid) {
961 oldestActiveInvalid->drawClip(device);
962 *oldestActiveInvalid = std::move(toAdd);
963 } else if (elements->count() < targetCount) {
964 elements->push_back(std::move(toAdd));
965 } else {
966 elements->back().drawClip(device);
967 elements->back() = std::move(toAdd);
968 }
969
970 // Changing this will prompt ClipStack to invalidate any masks associated with this record.
971 fGenID = next_gen_id();
972 return true;
973 }
974
replaceWithElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)975 void ClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd,
976 RawElement::Stack* elements,
977 Device* device) {
978 // The aggregate state of the save record mirrors the element
979 fInnerBounds = toAdd.innerBounds();
980 fOuterBounds = toAdd.outerBounds();
981 fStackOp = toAdd.op();
982 fState = toAdd.clipType();
983
984 // All prior active element can be removed from the stack: [startingIndex, count - 1]
985 int targetCount = fStartingElementIndex + 1;
986 while (elements->count() > targetCount) {
987 elements->back().drawClip(device);
988 elements->pop_back();
989 }
990 if (elements->count() < targetCount) {
991 elements->push_back(std::move(toAdd));
992 } else {
993 elements->back().drawClip(device);
994 elements->back() = std::move(toAdd);
995 }
996
997 SkASSERT(elements->count() == fStartingElementIndex + 1);
998
999 // This invalidates all older elements that are owned by save records lower in the clip stack.
1000 fOldestValidIndex = fStartingElementIndex;
1001 fGenID = next_gen_id();
1002 }
1003
1004 ///////////////////////////////////////////////////////////////////////////////
1005 // ClipStack
1006
1007 // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
1008 // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
1009 // SaveRecord::Stack (this conveniently keeps the size of ClipStack manageable). The max
1010 // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
1011 // these stacks means that clip management will incur a single allocation for the remaining 2%
1012 // of the draws, with extra head room for more complex clips encountered in the wild.
1013 static constexpr int kElementStackIncrement = 8;
1014 static constexpr int kSaveStackIncrement = 8;
1015
ClipStack(Device * owningDevice)1016 ClipStack::ClipStack(Device* owningDevice)
1017 : fElements(kElementStackIncrement)
1018 , fSaves(kSaveStackIncrement)
1019 , fDevice(owningDevice) {
1020 // Start with a save record that is wide open
1021 fSaves.emplace_back(this->deviceBounds());
1022 }
1023
1024 ClipStack::~ClipStack() = default;
1025
save()1026 void ClipStack::save() {
1027 SkASSERT(!fSaves.empty());
1028 fSaves.back().pushSave();
1029 }
1030
restore()1031 void ClipStack::restore() {
1032 SkASSERT(!fSaves.empty());
1033 SaveRecord& current = fSaves.back();
1034 if (current.popSave()) {
1035 // This was just a deferred save being undone, so the record doesn't need to be removed yet
1036 return;
1037 }
1038
1039 // When we remove a save record, we delete all elements >= its starting index and any masks
1040 // that were rasterized for it.
1041 current.removeElements(&fElements, fDevice);
1042
1043 fSaves.pop_back();
1044 // Restore any remaining elements that were only invalidated by the now-removed save record.
1045 fSaves.back().restoreElements(&fElements);
1046 }
1047
deviceBounds() const1048 Rect ClipStack::deviceBounds() const {
1049 return Rect::WH(fDevice->width(), fDevice->height());
1050 }
1051
conservativeBounds() const1052 Rect ClipStack::conservativeBounds() const {
1053 const SaveRecord& current = this->currentSaveRecord();
1054 if (current.state() == ClipState::kEmpty) {
1055 return Rect::InfiniteInverted();
1056 } else if (current.state() == ClipState::kWideOpen) {
1057 return this->deviceBounds();
1058 } else {
1059 if (current.op() == SkClipOp::kDifference) {
1060 // The outer/inner bounds represent what's cut out, so full bounds remains the device
1061 // bounds, minus any fully clipped content that spans the device edge.
1062 return subtract(this->deviceBounds(), current.innerBounds(), /* exact */ true);
1063 } else {
1064 SkASSERT(this->deviceBounds().contains(current.outerBounds()));
1065 return current.outerBounds();
1066 }
1067 }
1068 }
1069
writableSaveRecord(bool * wasDeferred)1070 ClipStack::SaveRecord& ClipStack::writableSaveRecord(bool* wasDeferred) {
1071 SaveRecord& current = fSaves.back();
1072 if (current.canBeUpdated()) {
1073 // Current record is still open, so it can be modified directly
1074 *wasDeferred = false;
1075 return current;
1076 } else {
1077 // Must undefer the save to get a new record.
1078 SkAssertResult(current.popSave());
1079 *wasDeferred = true;
1080 return fSaves.emplace_back(current, fElements.count());
1081 }
1082 }
1083
clipShader(sk_sp<SkShader> shader)1084 void ClipStack::clipShader(sk_sp<SkShader> shader) {
1085 // Shaders can't bring additional coverage
1086 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1087 return;
1088 }
1089
1090 bool wasDeferred;
1091 this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1092 // Geometry elements are not invalidated by updating the clip shader
1093 // TODO(b/238763003): Integrating clipShader into graphite needs more thought, particularly how
1094 // to handle the shader explosion and where to put the effects in the GraphicsPipelineDesc.
1095 // One idea is to use sample locations and draw the clipShader into the depth buffer.
1096 // Another is resolve the clip shader into an alpha mask image that is sampled by the draw.
1097 }
1098
clipShape(const Transform & localToDevice,const Shape & shape,SkClipOp op,PixelSnapping snapping)1099 void ClipStack::clipShape(const Transform& localToDevice,
1100 const Shape& shape,
1101 SkClipOp op,
1102 PixelSnapping snapping) {
1103 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1104 return;
1105 }
1106
1107 // This will apply the transform if it's shape-type preserving, and clip the element's bounds
1108 // to the device bounds (NOT the conservative clip bounds, since those are based on the net
1109 // effect of all elements while device bounds clipping happens implicitly. During addElement,
1110 // we may still be able to invalidate some older elements).
1111 // NOTE: Does not try to simplify the shape type by inspecting the SkPath.
1112 RawElement element{this->deviceBounds(), localToDevice, shape, op, snapping};
1113
1114 // An empty op means do nothing (for difference), or close the save record, so we try and detect
1115 // that early before doing additional unnecessary save record allocation.
1116 if (element.shape().isEmpty()) {
1117 if (element.op() == SkClipOp::kDifference) {
1118 // If the shape is empty and we're subtracting, this has no effect on the clip
1119 return;
1120 }
1121 // else we will make the clip empty, but we need a new save record to record that change
1122 // in the clip state; fall through to below and updateForElement() will handle it.
1123 }
1124
1125 bool wasDeferred;
1126 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1127 SkDEBUGCODE(int elementCount = fElements.count();)
1128 if (!save.addElement(std::move(element), &fElements, fDevice)) {
1129 if (wasDeferred) {
1130 // We made a new save record, but ended up not adding an element to the stack.
1131 // So instead of keeping an empty save record around, pop it off and restore the counter
1132 SkASSERT(elementCount == fElements.count());
1133 fSaves.pop_back();
1134 fSaves.back().pushSave();
1135 }
1136 }
1137 }
1138
1139 // Decide whether we can use this shape to do analytic clipping. Only rects and certain
1140 // rrects are supported. We assume these have been pre-transformed by the RawElement
1141 // constructor, so only identity transforms are allowed.
1142 namespace {
can_apply_analytic_clip(const Shape & shape,const Transform & localToDevice)1143 AnalyticClip can_apply_analytic_clip(const Shape& shape,
1144 const Transform& localToDevice) {
1145 if (localToDevice.type() != Transform::Type::kIdentity) {
1146 return {};
1147 }
1148
1149 // The circular rrect clip only handles rrect radii >= kRadiusMin.
1150 static constexpr SkScalar kRadiusMin = SK_ScalarHalf;
1151
1152 // Can handle Rect directly.
1153 if (shape.isRect()) {
1154 return {shape.rect(), kRadiusMin, AnalyticClip::kNone_EdgeFlag, shape.inverted()};
1155 }
1156
1157 // Otherwise we only handle certain kinds of RRects.
1158 if (!shape.isRRect()) {
1159 return {};
1160 }
1161
1162 const SkRRect& rrect = shape.rrect();
1163 if (rrect.isOval() || rrect.isSimple()) {
1164 SkVector radii = SkRRectPriv::GetSimpleRadii(rrect);
1165 if (radii.fX < kRadiusMin || radii.fY < kRadiusMin) {
1166 // In this case the corners are extremely close to rectangular and we collapse the
1167 // clip to a rectangular clip.
1168 return {rrect.rect(), kRadiusMin, AnalyticClip::kNone_EdgeFlag, shape.inverted()};
1169 }
1170 if (SkScalarNearlyEqual(radii.fX, radii.fY)) {
1171 return {rrect.rect(), radii.fX, AnalyticClip::kAll_EdgeFlag, shape.inverted()};
1172 } else {
1173 return {};
1174 }
1175 }
1176
1177 if (rrect.isComplex() || rrect.isNinePatch()) {
1178 // Check for the "tab" cases - two adjacent circular corners and two square corners.
1179 constexpr uint32_t kCornerFlags[4] = {
1180 AnalyticClip::kTop_EdgeFlag | AnalyticClip::kLeft_EdgeFlag,
1181 AnalyticClip::kTop_EdgeFlag | AnalyticClip::kRight_EdgeFlag,
1182 AnalyticClip::kBottom_EdgeFlag | AnalyticClip::kRight_EdgeFlag,
1183 AnalyticClip::kBottom_EdgeFlag | AnalyticClip::kLeft_EdgeFlag,
1184 };
1185 SkScalar circularRadius = 0;
1186 uint32_t edgeFlags = 0;
1187 for (int corner = 0; corner < 4; ++corner) {
1188 SkVector radii = rrect.radii((SkRRect::Corner)corner);
1189 // Can only handle circular radii.
1190 // Also applies to corners with both zero and non-zero radii.
1191 if (!SkScalarNearlyEqual(radii.fX, radii.fY)) {
1192 return {};
1193 }
1194 if (radii.fX < kRadiusMin || radii.fY < kRadiusMin) {
1195 // The corner is square, so no need to flag as circular.
1196 continue;
1197 }
1198 // First circular corner seen
1199 if (!edgeFlags) {
1200 circularRadius = radii.fX;
1201 } else if (!SkScalarNearlyEqual(radii.fX, circularRadius)) {
1202 // Radius doesn't match previously seen circular radius
1203 return {};
1204 }
1205 edgeFlags |= kCornerFlags[corner];
1206 }
1207
1208 if (edgeFlags == AnalyticClip::kNone_EdgeFlag) {
1209 // It's a rect
1210 return {rrect.rect(), kRadiusMin, edgeFlags, shape.inverted()};
1211 } else {
1212 // If any rounded corner pairs are non-adjacent or if there are three rounded
1213 // corners all edge flags will be set, which is not valid.
1214 if (edgeFlags == AnalyticClip::kAll_EdgeFlag) {
1215 return {};
1216 // At least one corner is rounded, or two adjacent corners are rounded.
1217 } else {
1218 return {rrect.rect(), circularRadius, edgeFlags, shape.inverted()};
1219 }
1220 }
1221 }
1222
1223 return {};
1224 }
1225 } // anonymous namespace
1226
visitClipStackForDraw(const Transform & localToDevice,const Geometry & geometry,const SkStrokeRec & style,bool outsetBoundsForAA,bool msaaSupported,ClipStack::ElementList * outEffectiveElements) const1227 Clip ClipStack::visitClipStackForDraw(const Transform& localToDevice,
1228 const Geometry& geometry,
1229 const SkStrokeRec& style,
1230 bool outsetBoundsForAA,
1231 bool msaaSupported,
1232 ClipStack::ElementList* outEffectiveElements) const {
1233 static const Clip kClippedOut = {
1234 Rect::InfiniteInverted(), Rect::InfiniteInverted(), SkIRect::MakeEmpty(),
1235 /* nonMSAAClip= */ {}, /* shader= */ nullptr};
1236
1237 const SaveRecord& cs = this->currentSaveRecord();
1238 if (cs.state() == ClipState::kEmpty) {
1239 // We know the draw is clipped out so don't bother computing the base draw bounds.
1240 return kClippedOut;
1241 }
1242 // Compute draw bounds, clipped only to our device bounds since we need to return that even if
1243 // the clip stack is known to be wide-open.
1244 const Rect deviceBounds = this->deviceBounds();
1245
1246 // When 'style' isn't fill, 'shape' describes the pre-stroke shape so we can't use it to check
1247 // against clip elements and so 'styledShape' will be set to the bounds post-stroking.
1248 SkTCopyOnFirstWrite<Shape> styledShape;
1249 if (geometry.isShape()) {
1250 styledShape.init(geometry.shape());
1251 } else {
1252 // The geometry is something special like text or vertices, in which case it's definitely
1253 // not a shape that could simplify cleanly with the clip stack.
1254 styledShape.initIfNeeded(geometry.bounds());
1255 }
1256
1257 auto origSize = geometry.bounds().size();
1258 if (!SkIsFinite(origSize.x(), origSize.y())) {
1259 // Discard all non-finite geometry as if it were clipped out
1260 return kClippedOut;
1261 }
1262
1263 // Inverse-filled shapes always fill the entire device (restricted to the clip).
1264 // Query the invertedness of the shape before any of the `setRect` calls below, which can
1265 // modify it.
1266 bool infiniteBounds = styledShape->inverted();
1267
1268 // Discard fills and strokes that cannot produce any coverage: an empty fill, or a
1269 // zero-length stroke that has butt caps. Otherwise the stroke style applies to a vertical
1270 // or horizontal line (making it non-empty), or it's a zero-length path segment that
1271 // must produce round or square caps (making it non-empty):
1272 // https://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
1273 if (!infiniteBounds && (styledShape->isLine() || any(origSize == 0.f))) {
1274 if (style.isFillStyle() || (style.getCap() == SkPaint::kButt_Cap && all(origSize == 0.f))) {
1275 return kClippedOut;
1276 }
1277 }
1278
1279 Rect transformedShapeBounds;
1280 bool shapeInDeviceSpace = false;
1281
1282 // Some renderers make the drawn area larger than the geometry for anti-aliasing
1283 float rendererOutset = outsetBoundsForAA ? localToDevice.localAARadius(styledShape->bounds())
1284 : 0.f;
1285 if (!SkIsFinite(rendererOutset)) {
1286 transformedShapeBounds = deviceBounds;
1287 infiniteBounds = true;
1288 } else {
1289 // Will be in device space once style/AA outsets and the localToDevice transform are
1290 // applied.
1291 transformedShapeBounds = styledShape->bounds();
1292
1293 // Regular filled shapes and strokes get larger based on style and transform
1294 if (!style.isHairlineStyle() || rendererOutset != 0.0f) {
1295 float localStyleOutset = style.getInflationRadius() + rendererOutset;
1296 transformedShapeBounds.outset(localStyleOutset);
1297
1298 if (!style.isFillStyle() || rendererOutset != 0.0f) {
1299 // While this loses any shape type, the bounds remain local so hopefully tests are
1300 // fairly accurate.
1301 styledShape.writable()->setRect(transformedShapeBounds);
1302 }
1303 }
1304
1305 transformedShapeBounds = localToDevice.mapRect(transformedShapeBounds);
1306
1307 // Hairlines get an extra pixel *after* transforming to device space, unless the renderer
1308 // has already defined an outset
1309 if (style.isHairlineStyle() && rendererOutset == 0.0f) {
1310 transformedShapeBounds.outset(0.5f);
1311 // and the associated transform must be kIdentity since the bounds have been mapped by
1312 // localToDevice already.
1313 styledShape.writable()->setRect(transformedShapeBounds);
1314 shapeInDeviceSpace = true;
1315 }
1316
1317 // Restrict bounds to the device limits.
1318 transformedShapeBounds.intersect(deviceBounds);
1319 }
1320
1321 Rect drawBounds; // defined in device space
1322 if (infiniteBounds) {
1323 drawBounds = deviceBounds;
1324 styledShape.writable()->setRect(drawBounds);
1325 shapeInDeviceSpace = true;
1326 } else {
1327 drawBounds = transformedShapeBounds;
1328 }
1329
1330 if (drawBounds.isEmptyNegativeOrNaN() || cs.state() == ClipState::kWideOpen) {
1331 // Either the draw is off screen, so it's clipped out regardless of the state of the
1332 // SaveRecord, or there are no elements to apply to the draw. In both cases, 'drawBounds'
1333 // has the correct value, the scissor is the device bounds (ignored if clipped-out).
1334 return Clip(drawBounds, transformedShapeBounds, deviceBounds.asSkIRect(), {}, cs.shader());
1335 }
1336
1337 // We don't evaluate Simplify() on the SaveRecord and the draw because a reduced version of
1338 // Simplify is effectively performed in computing the scissor rect.
1339 // Given that, we can skip iterating over the clip elements when:
1340 // - the draw's *scissored* bounds are empty, which happens when the draw was clipped out.
1341 // - the scissored bounds are contained in our inner bounds, which happens if all we need to
1342 // apply to the draw is the computed scissor rect.
1343 // TODO: The Clip's scissor is defined in terms of integer pixel coords, but if we move to
1344 // clip plane distances in the vertex shader, it can be defined in terms of the original float
1345 // coordinates.
1346 Rect scissor = cs.scissor(deviceBounds, drawBounds).makeRoundOut();
1347 drawBounds.intersect(scissor);
1348 transformedShapeBounds.intersect(scissor);
1349 if (drawBounds.isEmptyNegativeOrNaN() || cs.innerBounds().contains(drawBounds)) {
1350 // Like above, in both cases drawBounds holds the right value.
1351 return Clip(drawBounds, transformedShapeBounds, scissor.asSkIRect(), {}, cs.shader());
1352 }
1353
1354 // If we made it here, the clip stack affects the draw in a complex way so iterate each element.
1355 // A draw is a transformed shape that "intersects" the clip. We use empty inner bounds because
1356 // there's currently no way to re-write the draw as the clip's geometry, so there's no need to
1357 // check if the draw contains the clip (vice versa is still checked and represents an unclipped
1358 // draw so is very useful to identify).
1359 TransformedShape draw{shapeInDeviceSpace ? kIdentity : localToDevice,
1360 *styledShape,
1361 /*outerBounds=*/drawBounds,
1362 /*innerBounds=*/Rect::InfiniteInverted(),
1363 /*op=*/SkClipOp::kIntersect,
1364 /*containsChecksOnlyBounds=*/true};
1365
1366 SkASSERT(outEffectiveElements);
1367 SkASSERT(outEffectiveElements->empty());
1368 int i = fElements.count();
1369 NonMSAAClip nonMSAAClip;
1370 for (const RawElement& e : fElements.ritems()) {
1371 --i;
1372 if (i < cs.oldestElementIndex()) {
1373 // All earlier elements have been invalidated by elements already processed so the draw
1374 // can't be affected by them and cannot contribute to their usage bounds.
1375 break;
1376 }
1377
1378 auto influence = e.testForDraw(draw);
1379 if (influence == RawElement::DrawInfluence::kClipOut) {
1380 outEffectiveElements->clear();
1381 return kClippedOut;
1382 }
1383 if (influence == RawElement::DrawInfluence::kIntersect) {
1384 if (nonMSAAClip.fAnalyticClip.isEmpty()) {
1385 nonMSAAClip.fAnalyticClip = can_apply_analytic_clip(e.shape(), e.localToDevice());
1386 if (!nonMSAAClip.fAnalyticClip.isEmpty()) {
1387 continue;
1388 }
1389 }
1390 outEffectiveElements->push_back(&e);
1391 }
1392 }
1393
1394 #if !defined(SK_DISABLE_GRAPHITE_CLIP_ATLAS)
1395 // If there is no MSAA supported, rasterize any remaining elements by flattening them
1396 // into a single mask and storing in an atlas. Otherwise these will be handled by
1397 // Device::drawClip().
1398 AtlasProvider* atlasProvider = fDevice->recorder()->priv().atlasProvider();
1399 if (!msaaSupported && !outEffectiveElements->empty()) {
1400 ClipAtlasManager* clipAtlas = atlasProvider->getClipAtlasManager();
1401 SkASSERT(clipAtlas);
1402 AtlasClip* atlasClip = &nonMSAAClip.fAtlasClip;
1403
1404 SkRect maskBounds = cs.outerBounds().asSkRect();
1405 SkIRect iMaskBounds = maskBounds.roundOut();
1406 const TextureProxy* proxy = clipAtlas->findOrCreateEntry(cs.genID(),
1407 outEffectiveElements,
1408 iMaskBounds,
1409 &atlasClip->fOutPos);
1410 if (proxy) {
1411 // Add to Clip
1412 atlasClip->fMaskBounds = iMaskBounds;
1413 atlasClip->fAtlasTexture = sk_ref_sp(proxy);
1414
1415 // Elements are represented in the clip atlas, discard.
1416 outEffectiveElements->clear();
1417 }
1418 }
1419 #endif
1420
1421 return Clip(drawBounds, transformedShapeBounds, scissor.asSkIRect(), nonMSAAClip, cs.shader());
1422 }
1423
updateClipStateForDraw(const Clip & clip,const ElementList & effectiveElements,const BoundsManager * boundsManager,PaintersDepth z)1424 CompressedPaintersOrder ClipStack::updateClipStateForDraw(const Clip& clip,
1425 const ElementList& effectiveElements,
1426 const BoundsManager* boundsManager,
1427 PaintersDepth z) {
1428 if (clip.isClippedOut()) {
1429 return DrawOrder::kNoIntersection;
1430 }
1431
1432 SkDEBUGCODE(const SaveRecord& cs = this->currentSaveRecord();)
1433 SkASSERT(cs.state() != ClipState::kEmpty);
1434
1435 CompressedPaintersOrder maxClipOrder = DrawOrder::kNoIntersection;
1436 for (int i = 0; i < effectiveElements.size(); ++i) {
1437 // ClipStack owns the elements in the `clipState` so it's OK to downcast and cast away
1438 // const.
1439 // TODO: Enforce the ownership? In debug builds we could invalidate a `ClipStateForDraw` if
1440 // its element pointers become dangling and assert validity here.
1441 const RawElement* e = static_cast<const RawElement*>(effectiveElements[i]);
1442 CompressedPaintersOrder order =
1443 const_cast<RawElement*>(e)->updateForDraw(boundsManager, clip.drawBounds(), z);
1444 maxClipOrder = std::max(order, maxClipOrder);
1445 }
1446
1447 return maxClipOrder;
1448 }
1449
recordDeferredClipDraws()1450 void ClipStack::recordDeferredClipDraws() {
1451 for (auto& e : fElements.items()) {
1452 // When a Device requires all clip elements to be recorded, we have to iterate all elements,
1453 // and will draw clip shapes for elements that are still marked as invalid from the clip
1454 // stack, including those that are older than the current save record's oldest valid index,
1455 // because they could have accumulated draw usage prior to being invalidated, but weren't
1456 // flushed when they were invalidated because of an intervening save.
1457 e.drawClip(fDevice);
1458 }
1459 }
1460
1461 } // namespace skgpu::graphite
1462