1 /**
2 * libf2fs.c
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 * Copyright (c) 2019 Google Inc.
7 * http://www.google.com/
8 * Copyright (c) 2020 Google Inc.
9 * Robin Hsu <robinhsu@google.com>
10 * : add quick-buffer for sload compression support
11 *
12 * Dual licensed under the GPL or LGPL version 2 licenses.
13 */
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <errno.h>
18 #include <unistd.h>
19 #include <fcntl.h>
20 #ifdef HAVE_MNTENT_H
21 #include <mntent.h>
22 #endif
23 #include <time.h>
24 #ifdef HAVE_SYS_STAT_H
25 #include <sys/stat.h>
26 #endif
27 #ifdef HAVE_SYS_MOUNT_H
28 #include <sys/mount.h>
29 #endif
30 #ifdef HAVE_SYS_IOCTL_H
31 #include <sys/ioctl.h>
32 #endif
33 #ifdef HAVE_LINUX_HDREG_H
34 #include <linux/hdreg.h>
35 #endif
36
37 #ifndef F_SET_RW_HINT
38 #define F_LINUX_SPECIFIC_BASE 1024
39 #define F_SET_RW_HINT (F_LINUX_SPECIFIC_BASE + 12)
40 #endif
41
42 #include <stdbool.h>
43 #include <assert.h>
44 #include <inttypes.h>
45 #include "f2fs_fs.h"
46
47 struct f2fs_configuration c;
48
49 #ifdef HAVE_SPARSE_SPARSE_H
50 #include <sparse/sparse.h>
51 struct sparse_file *f2fs_sparse_file;
52 static char **blocks;
53 uint64_t blocks_count;
54 static char *zeroed_block;
55 #endif
56
__get_device_fd(__u64 * offset)57 static int __get_device_fd(__u64 *offset)
58 {
59 __u64 blk_addr = *offset >> F2FS_BLKSIZE_BITS;
60 int i;
61
62 for (i = 0; i < c.ndevs; i++) {
63 if (c.devices[i].start_blkaddr <= blk_addr &&
64 c.devices[i].end_blkaddr >= blk_addr) {
65 *offset -=
66 c.devices[i].start_blkaddr << F2FS_BLKSIZE_BITS;
67 return c.devices[i].fd;
68 }
69 }
70 return -1;
71 }
72
73 /* ---------- dev_cache, Least Used First (LUF) policy ------------------- */
74 /*
75 * Least used block will be the first victim to be replaced when max hash
76 * collision exceeds
77 */
78 static bool *dcache_valid; /* is the cached block valid? */
79 static off_t *dcache_blk; /* which block it cached */
80 static uint64_t *dcache_lastused; /* last used ticks for cache entries */
81 static char *dcache_buf; /* cached block data */
82 static uint64_t dcache_usetick; /* current use tick */
83
84 static uint64_t dcache_raccess;
85 static uint64_t dcache_rhit;
86 static uint64_t dcache_rmiss;
87 static uint64_t dcache_rreplace;
88
89 static bool dcache_exit_registered = false;
90
91 /*
92 * Shadow config:
93 *
94 * Active set of the configurations.
95 * Global configuration 'dcache_config' will be transferred here when
96 * when dcache_init() is called
97 */
98 static dev_cache_config_t dcache_config = {0, 16, 1};
99 static bool dcache_initialized = false;
100
101 #define MIN_NUM_CACHE_ENTRY 1024L
102 #define MAX_MAX_HASH_COLLISION 16
103
104 static long dcache_relocate_offset0[] = {
105 20, -20, 40, -40, 80, -80, 160, -160,
106 320, -320, 640, -640, 1280, -1280, 2560, -2560,
107 };
108 static int dcache_relocate_offset[16];
109
dcache_print_statistics(void)110 static void dcache_print_statistics(void)
111 {
112 long i;
113 long useCnt;
114
115 /* Number of used cache entries */
116 useCnt = 0;
117 for (i = 0; i < dcache_config.num_cache_entry; i++)
118 if (dcache_valid[i])
119 ++useCnt;
120
121 /*
122 * c: number of cache entries
123 * u: used entries
124 * RA: number of read access blocks
125 * CH: cache hit
126 * CM: cache miss
127 * Repl: read cache replaced
128 */
129 printf ("\nc, u, RA, CH, CM, Repl=\n");
130 printf ("%ld %ld %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
131 dcache_config.num_cache_entry,
132 useCnt,
133 dcache_raccess,
134 dcache_rhit,
135 dcache_rmiss,
136 dcache_rreplace);
137 }
138
dcache_release(void)139 void dcache_release(void)
140 {
141 if (!dcache_initialized)
142 return;
143
144 dcache_initialized = false;
145
146 if (c.cache_config.dbg_en)
147 dcache_print_statistics();
148
149 if (dcache_blk != NULL)
150 free(dcache_blk);
151 if (dcache_lastused != NULL)
152 free(dcache_lastused);
153 if (dcache_buf != NULL)
154 free(dcache_buf);
155 if (dcache_valid != NULL)
156 free(dcache_valid);
157 dcache_config.num_cache_entry = 0;
158 dcache_blk = NULL;
159 dcache_lastused = NULL;
160 dcache_buf = NULL;
161 dcache_valid = NULL;
162 }
163
164 // return 0 for success, error code for failure.
dcache_alloc_all(long n)165 static int dcache_alloc_all(long n)
166 {
167 if (n <= 0)
168 return -1;
169 if ((dcache_blk = (off_t *) malloc(sizeof(off_t) * n)) == NULL
170 || (dcache_lastused = (uint64_t *)
171 malloc(sizeof(uint64_t) * n)) == NULL
172 || (dcache_buf = (char *) malloc (F2FS_BLKSIZE * n)) == NULL
173 || (dcache_valid = (bool *) calloc(sizeof(bool) * n, 1)) == NULL)
174 {
175 dcache_release();
176 return -1;
177 }
178 dcache_config.num_cache_entry = n;
179 return 0;
180 }
181
dcache_relocate_init(void)182 static void dcache_relocate_init(void)
183 {
184 int i;
185 int n0 = (sizeof(dcache_relocate_offset0)
186 / sizeof(dcache_relocate_offset0[0]));
187 int n = (sizeof(dcache_relocate_offset)
188 / sizeof(dcache_relocate_offset[0]));
189
190 ASSERT(n == n0);
191 for (i = 0; i < n && i < dcache_config.max_hash_collision; i++) {
192 if (labs(dcache_relocate_offset0[i])
193 > dcache_config.num_cache_entry / 2) {
194 dcache_config.max_hash_collision = i;
195 break;
196 }
197 dcache_relocate_offset[i] =
198 dcache_config.num_cache_entry
199 + dcache_relocate_offset0[i];
200 }
201 }
202
dcache_init(void)203 void dcache_init(void)
204 {
205 long n;
206
207 if (c.cache_config.num_cache_entry <= 0)
208 return;
209
210 /* release previous cache init, if any */
211 dcache_release();
212
213 dcache_blk = NULL;
214 dcache_lastused = NULL;
215 dcache_buf = NULL;
216 dcache_valid = NULL;
217
218 dcache_config = c.cache_config;
219
220 n = max(MIN_NUM_CACHE_ENTRY, dcache_config.num_cache_entry);
221
222 /* halve alloc size until alloc succeed, or min cache reached */
223 while (dcache_alloc_all(n) != 0 && n != MIN_NUM_CACHE_ENTRY)
224 n = max(MIN_NUM_CACHE_ENTRY, n/2);
225
226 /* must be the last: data dependent on num_cache_entry */
227 dcache_relocate_init();
228 dcache_initialized = true;
229
230 if (!dcache_exit_registered) {
231 dcache_exit_registered = true;
232 atexit(dcache_release); /* auto release */
233 }
234
235 dcache_raccess = 0;
236 dcache_rhit = 0;
237 dcache_rmiss = 0;
238 dcache_rreplace = 0;
239 }
240
dcache_addr(long entry)241 static inline char *dcache_addr(long entry)
242 {
243 return dcache_buf + F2FS_BLKSIZE * entry;
244 }
245
246 /* relocate on (n+1)-th collision */
dcache_relocate(long entry,int n)247 static inline long dcache_relocate(long entry, int n)
248 {
249 assert(dcache_config.num_cache_entry != 0);
250 return (entry + dcache_relocate_offset[n]) %
251 dcache_config.num_cache_entry;
252 }
253
dcache_find(__u64 blk)254 static long dcache_find(__u64 blk)
255 {
256 register long n = dcache_config.num_cache_entry;
257 register unsigned m = dcache_config.max_hash_collision;
258 long entry, least_used, target;
259 unsigned try;
260
261 assert(n > 0);
262 target = least_used = entry = blk % n; /* simple modulo hash */
263
264 for (try = 0; try < m; try++) {
265 if (!dcache_valid[target] || dcache_blk[target] == blk)
266 return target; /* found target or empty cache slot */
267 if (dcache_lastused[target] < dcache_lastused[least_used])
268 least_used = target;
269 target = dcache_relocate(entry, try); /* next target */
270 }
271 return least_used; /* max search reached, return least used slot */
272 }
273
274 /* Physical read into cache */
dcache_io_read(long entry,__u64 offset,off_t blk)275 static int dcache_io_read(long entry, __u64 offset, off_t blk)
276 {
277 int fd = __get_device_fd(&offset);
278
279 if (fd < 0)
280 return fd;
281
282 #ifdef HAVE_PREAD
283 if (pread(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE, offset) < 0) {
284 MSG(0, "\n pread() fail.\n");
285 return -1;
286 }
287 #else
288 if (lseek(fd, offset, SEEK_SET) < 0) {
289 MSG(0, "\n lseek fail.\n");
290 return -1;
291 }
292 if (read(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
293 MSG(0, "\n read() fail.\n");
294 return -1;
295 }
296 #endif
297 dcache_lastused[entry] = ++dcache_usetick;
298 dcache_valid[entry] = true;
299 dcache_blk[entry] = blk;
300 return 0;
301 }
302
303 /*
304 * - Note: Read/Write are not symmetric:
305 * For read, we need to do it block by block, due to the cache nature:
306 * some blocks may be cached, and others don't.
307 * For write, since we always do a write-thru, we can join all writes into one,
308 * and write it once at the caller. This function updates the cache for write, but
309 * not the do a physical write. The caller is responsible for the physical write.
310 * - Note: We concentrate read/write together, due to the fact of similar structure to find
311 * the relavant cache entries
312 * - Return values:
313 * 0: success
314 * 1: cache not available (uninitialized)
315 * -1: error
316 */
dcache_update_rw(void * buf,__u64 offset,size_t byte_count,bool is_write)317 static int dcache_update_rw(void *buf, __u64 offset,
318 size_t byte_count, bool is_write)
319 {
320 __u64 blk, start;
321 int addr_in_blk;
322
323 if (!dcache_initialized)
324 dcache_init(); /* auto initialize */
325
326 if (!dcache_initialized)
327 return 1; /* not available */
328
329 blk = offset / F2FS_BLKSIZE;
330 addr_in_blk = offset % F2FS_BLKSIZE;
331 start = blk * F2FS_BLKSIZE;
332
333 while (byte_count != 0) {
334 size_t cur_size = min(byte_count,
335 (size_t)(F2FS_BLKSIZE - addr_in_blk));
336 long entry = dcache_find(blk);
337
338 if (!is_write)
339 ++dcache_raccess;
340
341 if (dcache_valid[entry] && dcache_blk[entry] == blk) {
342 /* cache hit */
343 if (is_write) /* write: update cache */
344 memcpy(dcache_addr(entry) + addr_in_blk,
345 buf, cur_size);
346 else
347 ++dcache_rhit;
348 } else {
349 /* cache miss */
350 if (!is_write) {
351 int err;
352 ++dcache_rmiss;
353 if (dcache_valid[entry])
354 ++dcache_rreplace;
355 /* read: physical I/O read into cache */
356 err = dcache_io_read(entry, start, blk);
357 if (err)
358 return err;
359 }
360 }
361
362 /* read: copy data from cache */
363 /* write: nothing to do, since we don't do physical write. */
364 if (!is_write)
365 memcpy(buf, dcache_addr(entry) + addr_in_blk,
366 cur_size);
367
368 /* next block */
369 ++blk;
370 buf += cur_size;
371 start += F2FS_BLKSIZE;
372 byte_count -= cur_size;
373 addr_in_blk = 0;
374 }
375 return 0;
376 }
377
378 /*
379 * dcache_update_cache() just update cache, won't do physical I/O.
380 * Thus even no error, we need normal non-cache I/O for actual write
381 *
382 * return value: 1: cache not available
383 * 0: success, -1: I/O error
384 */
dcache_update_cache(void * buf,__u64 offset,size_t count)385 int dcache_update_cache(void *buf, __u64 offset, size_t count)
386 {
387 return dcache_update_rw(buf, offset, count, true);
388 }
389
390 /* handles read into cache + read into buffer */
dcache_read(void * buf,__u64 offset,size_t count)391 int dcache_read(void *buf, __u64 offset, size_t count)
392 {
393 return dcache_update_rw(buf, offset, count, false);
394 }
395
396 /*
397 * IO interfaces
398 */
dev_read_version(void * buf,__u64 offset,size_t len)399 int dev_read_version(void *buf, __u64 offset, size_t len)
400 {
401 if (c.sparse_mode)
402 return 0;
403 #ifdef HAVE_RPEAD
404 if (pread(c.kd, buf, len, (off_t)offset) < 0)
405 return -1;
406 #else
407 if (lseek(c.kd, (off_t)offset, SEEK_SET) < 0)
408 return -1;
409 if (read(c.kd, buf, len) < 0)
410 return -1;
411 #endif
412 return 0;
413 }
414
415 #ifdef HAVE_SPARSE_SPARSE_H
sparse_read_blk(__u64 block,int count,void * buf)416 static int sparse_read_blk(__u64 block, int count, void *buf)
417 {
418 int i;
419 char *out = buf;
420 __u64 cur_block;
421
422 for (i = 0; i < count; ++i) {
423 cur_block = block + i;
424 if (blocks[cur_block])
425 memcpy(out + (i * F2FS_BLKSIZE),
426 blocks[cur_block], F2FS_BLKSIZE);
427 else if (blocks)
428 memset(out + (i * F2FS_BLKSIZE), 0, F2FS_BLKSIZE);
429 }
430 return 0;
431 }
432
sparse_write_blk(__u64 block,int count,const void * buf)433 static int sparse_write_blk(__u64 block, int count, const void *buf)
434 {
435 int i;
436 __u64 cur_block;
437 const char *in = buf;
438
439 for (i = 0; i < count; ++i) {
440 cur_block = block + i;
441 if (blocks[cur_block] == zeroed_block)
442 blocks[cur_block] = NULL;
443 if (!blocks[cur_block]) {
444 blocks[cur_block] = calloc(1, F2FS_BLKSIZE);
445 if (!blocks[cur_block])
446 return -ENOMEM;
447 }
448 memcpy(blocks[cur_block], in + (i * F2FS_BLKSIZE),
449 F2FS_BLKSIZE);
450 }
451 return 0;
452 }
453
sparse_write_zeroed_blk(__u64 block,int count)454 static int sparse_write_zeroed_blk(__u64 block, int count)
455 {
456 int i;
457 __u64 cur_block;
458
459 for (i = 0; i < count; ++i) {
460 cur_block = block + i;
461 if (blocks[cur_block])
462 continue;
463 blocks[cur_block] = zeroed_block;
464 }
465 return 0;
466 }
467
468 #ifdef SPARSE_CALLBACK_USES_SIZE_T
sparse_import_segment(void * UNUSED (priv),const void * data,size_t len,unsigned int block,unsigned int nr_blocks)469 static int sparse_import_segment(void *UNUSED(priv), const void *data,
470 size_t len, unsigned int block, unsigned int nr_blocks)
471 #else
472 static int sparse_import_segment(void *UNUSED(priv), const void *data, int len,
473 unsigned int block, unsigned int nr_blocks)
474 #endif
475 {
476 /* Ignore chunk headers, only write the data */
477 if (!nr_blocks || len % F2FS_BLKSIZE)
478 return 0;
479
480 return sparse_write_blk(block, nr_blocks, data);
481 }
482
sparse_merge_blocks(uint64_t start,uint64_t num,int zero)483 static int sparse_merge_blocks(uint64_t start, uint64_t num, int zero)
484 {
485 char *buf;
486 uint64_t i;
487
488 if (zero) {
489 blocks[start] = NULL;
490 return sparse_file_add_fill(f2fs_sparse_file, 0x0,
491 F2FS_BLKSIZE * num, start);
492 }
493
494 buf = calloc(num, F2FS_BLKSIZE);
495 if (!buf) {
496 fprintf(stderr, "failed to alloc %llu\n",
497 (unsigned long long)num * F2FS_BLKSIZE);
498 return -ENOMEM;
499 }
500
501 for (i = 0; i < num; i++) {
502 memcpy(buf + i * F2FS_BLKSIZE, blocks[start + i], F2FS_BLKSIZE);
503 free(blocks[start + i]);
504 blocks[start + i] = NULL;
505 }
506
507 /* free_sparse_blocks will release this buf. */
508 blocks[start] = buf;
509
510 return sparse_file_add_data(f2fs_sparse_file, blocks[start],
511 F2FS_BLKSIZE * num, start);
512 }
513 #else
sparse_read_blk(__u64 UNUSED (block),int UNUSED (count),void * UNUSED (buf))514 static int sparse_read_blk(__u64 UNUSED(block),
515 int UNUSED(count), void *UNUSED(buf))
516 {
517 return 0;
518 }
519
sparse_write_blk(__u64 UNUSED (block),int UNUSED (count),const void * UNUSED (buf))520 static int sparse_write_blk(__u64 UNUSED(block),
521 int UNUSED(count), const void *UNUSED(buf))
522 {
523 return 0;
524 }
525
sparse_write_zeroed_blk(__u64 UNUSED (block),int UNUSED (count))526 static int sparse_write_zeroed_blk(__u64 UNUSED(block), int UNUSED(count))
527 {
528 return 0;
529 }
530 #endif
531
dev_read(void * buf,__u64 offset,size_t len)532 int dev_read(void *buf, __u64 offset, size_t len)
533 {
534 int fd;
535 int err;
536
537 if (c.sparse_mode)
538 return sparse_read_blk(offset / F2FS_BLKSIZE,
539 len / F2FS_BLKSIZE, buf);
540
541 /* err = 1: cache not available, fall back to non-cache R/W */
542 /* err = 0: success, err=-1: I/O error */
543 err = dcache_read(buf, offset, len);
544 if (err <= 0)
545 return err;
546
547 fd = __get_device_fd(&offset);
548 if (fd < 0)
549 return fd;
550 #ifdef HAVE_PREAD
551 if (pread(fd, buf, len, (off_t)offset) < 0)
552 return -1;
553 #else
554 if (lseek(fd, (off_t)offset, SEEK_SET) < 0)
555 return -1;
556 if (read(fd, buf, len) < 0)
557 return -1;
558 #endif
559 return 0;
560 }
561
562 #ifdef POSIX_FADV_WILLNEED
dev_readahead(__u64 offset,size_t len)563 int dev_readahead(__u64 offset, size_t len)
564 #else
565 int dev_readahead(__u64 offset, size_t UNUSED(len))
566 #endif
567 {
568 int fd = __get_device_fd(&offset);
569
570 if (fd < 0)
571 return fd;
572 #ifdef POSIX_FADV_WILLNEED
573 return posix_fadvise(fd, offset, len, POSIX_FADV_WILLNEED);
574 #else
575 return 0;
576 #endif
577 }
578 /*
579 * Copied from fs/f2fs/segment.c
580 */
581 /*
582 * This returns write hints for each segment type. This hints will be
583 * passed down to block layer as below by default.
584 *
585 * User F2FS Block
586 * ---- ---- -----
587 * META WRITE_LIFE_NONE|REQ_META
588 * HOT_NODE WRITE_LIFE_NONE
589 * WARM_NODE WRITE_LIFE_MEDIUM
590 * COLD_NODE WRITE_LIFE_LONG
591 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
592 * extension list " "
593 *
594 * -- buffered io
595 * COLD_DATA WRITE_LIFE_EXTREME
596 * HOT_DATA WRITE_LIFE_SHORT
597 * WARM_DATA WRITE_LIFE_NOT_SET
598 *
599 * -- direct io
600 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
601 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
602 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
603 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
604 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
605 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
606 */
f2fs_io_type_to_rw_hint(int seg_type)607 enum rw_hint f2fs_io_type_to_rw_hint(int seg_type)
608 {
609 switch (seg_type) {
610 case CURSEG_WARM_DATA:
611 return WRITE_LIFE_NOT_SET;
612 case CURSEG_HOT_DATA:
613 return WRITE_LIFE_SHORT;
614 case CURSEG_COLD_DATA:
615 return WRITE_LIFE_EXTREME;
616 case CURSEG_WARM_NODE:
617 return WRITE_LIFE_MEDIUM;
618 case CURSEG_HOT_NODE:
619 return WRITE_LIFE_NONE;
620 case CURSEG_COLD_NODE:
621 return WRITE_LIFE_LONG;
622 default:
623 return WRITE_LIFE_NONE;
624 }
625 }
626
__dev_write(void * buf,__u64 offset,size_t len,enum rw_hint whint)627 static int __dev_write(void *buf, __u64 offset, size_t len, enum rw_hint whint)
628 {
629 int fd;
630
631 fd = __get_device_fd(&offset);
632 if (fd < 0)
633 return fd;
634
635 #if ! defined(__MINGW32__)
636 if (c.need_whint && (c.whint != whint)) {
637 u64 hint = whint;
638 int ret;
639
640 ret = fcntl(fd, F_SET_RW_HINT, &hint);
641 if (ret != -1)
642 c.whint = whint;
643 }
644 #endif
645
646 #ifdef HAVE_PWRITE
647 if (pwrite(fd, buf, len, (off_t)offset) < 0)
648 return -1;
649 #else
650 if (lseek(fd, (off_t)offset, SEEK_SET) < 0)
651 return -1;
652 if (write(fd, buf, len) < 0)
653 return -1;
654 #endif
655
656 c.need_fsync = true;
657
658 return 0;
659 }
660
dev_write(void * buf,__u64 offset,size_t len,enum rw_hint whint)661 int dev_write(void *buf, __u64 offset, size_t len, enum rw_hint whint)
662 {
663 if (c.dry_run)
664 return 0;
665
666 if (c.sparse_mode)
667 return sparse_write_blk(offset / F2FS_BLKSIZE,
668 len / F2FS_BLKSIZE, buf);
669
670 /*
671 * dcache_update_cache() just update cache, won't do I/O.
672 * Thus even no error, we need normal non-cache I/O for actual write
673 */
674 if (dcache_update_cache(buf, offset, len) < 0)
675 return -1;
676
677 return __dev_write(buf, offset, len, whint);
678 }
679
dev_write_block(void * buf,__u64 blk_addr,enum rw_hint whint)680 int dev_write_block(void *buf, __u64 blk_addr, enum rw_hint whint)
681 {
682 return dev_write(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE, whint);
683 }
684
dev_write_dump(void * buf,__u64 offset,size_t len)685 int dev_write_dump(void *buf, __u64 offset, size_t len)
686 {
687 #ifdef HAVE_PWRITE
688 if (pwrite(c.dump_fd, buf, len, (off_t)offset) < 0)
689 return -1;
690 #else
691 if (lseek(c.dump_fd, (off_t)offset, SEEK_SET) < 0)
692 return -1;
693 if (write(c.dump_fd, buf, len) < 0)
694 return -1;
695 #endif
696 return 0;
697 }
698
699 #if !defined(__MINGW32__)
dev_write_symlink(char * buf,size_t len)700 int dev_write_symlink(char *buf, size_t len)
701 {
702 buf[len] = 0;
703 if (symlink(buf, c.dump_symlink))
704 return -1;
705 return 0;
706 }
707 #endif
708
dev_fill(void * buf,__u64 offset,size_t len,enum rw_hint whint)709 int dev_fill(void *buf, __u64 offset, size_t len, enum rw_hint whint)
710 {
711 if (c.sparse_mode)
712 return sparse_write_zeroed_blk(offset / F2FS_BLKSIZE,
713 len / F2FS_BLKSIZE);
714
715 /* Only allow fill to zero */
716 if (*((__u8*)buf))
717 return -1;
718
719 return __dev_write(buf, offset, len, whint);
720 }
721
dev_fill_block(void * buf,__u64 blk_addr,enum rw_hint whint)722 int dev_fill_block(void *buf, __u64 blk_addr, enum rw_hint whint)
723 {
724 return dev_fill(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE, whint);
725 }
726
dev_read_block(void * buf,__u64 blk_addr)727 int dev_read_block(void *buf, __u64 blk_addr)
728 {
729 return dev_read(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
730 }
731
dev_reada_block(__u64 blk_addr)732 int dev_reada_block(__u64 blk_addr)
733 {
734 return dev_readahead(blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
735 }
736
f2fs_fsync_device(void)737 int f2fs_fsync_device(void)
738 {
739 #ifdef HAVE_FSYNC
740 int i;
741
742 if (!c.need_fsync)
743 return 0;
744
745 for (i = 0; i < c.ndevs; i++) {
746 if (fsync(c.devices[i].fd) < 0) {
747 MSG(0, "\tError: Could not conduct fsync!!!\n");
748 return -1;
749 }
750 }
751 #endif
752 return 0;
753 }
754
f2fs_init_sparse_file(void)755 int f2fs_init_sparse_file(void)
756 {
757 #ifdef HAVE_SPARSE_SPARSE_H
758 if (c.func == MKFS) {
759 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE, c.device_size);
760 if (!f2fs_sparse_file)
761 return -1;
762 } else {
763 f2fs_sparse_file = sparse_file_import(c.devices[0].fd,
764 true, false);
765 if (!f2fs_sparse_file)
766 return -1;
767
768 c.blksize = sparse_file_block_size(f2fs_sparse_file);
769 c.blksize_bits = log_base_2(c.blksize);
770 if (c.blksize_bits == -1) {
771 MSG(0, "\tError: Sparse file blocksize not a power of 2.\n");
772 return -1;
773 }
774
775 c.device_size = sparse_file_len(f2fs_sparse_file, 0, 0);
776 c.device_size &= (~((uint64_t)(F2FS_BLKSIZE - 1)));
777 }
778
779 blocks_count = c.device_size / F2FS_BLKSIZE;
780 blocks = calloc(blocks_count, sizeof(char *));
781 if (!blocks) {
782 MSG(0, "\tError: Calloc Failed for blocks!!!\n");
783 return -1;
784 }
785
786 zeroed_block = calloc(1, F2FS_BLKSIZE);
787 if (!zeroed_block) {
788 MSG(0, "\tError: Calloc Failed for zeroed block!!!\n");
789 return -1;
790 }
791
792 return sparse_file_foreach_chunk(f2fs_sparse_file, true, false,
793 sparse_import_segment, NULL);
794 #else
795 MSG(0, "\tError: Sparse mode is only supported for android\n");
796 return -1;
797 #endif
798 }
799
f2fs_release_sparse_resource(void)800 void f2fs_release_sparse_resource(void)
801 {
802 #ifdef HAVE_SPARSE_SPARSE_H
803 int j;
804
805 if (c.sparse_mode) {
806 if (f2fs_sparse_file != NULL) {
807 sparse_file_destroy(f2fs_sparse_file);
808 f2fs_sparse_file = NULL;
809 }
810 for (j = 0; j < blocks_count; j++)
811 free(blocks[j]);
812 free(blocks);
813 blocks = NULL;
814 free(zeroed_block);
815 zeroed_block = NULL;
816 }
817 #endif
818 }
819
820 #define MAX_CHUNK_SIZE (1 * 1024 * 1024 * 1024ULL)
821 #define MAX_CHUNK_COUNT (MAX_CHUNK_SIZE / F2FS_BLKSIZE)
f2fs_finalize_device(void)822 int f2fs_finalize_device(void)
823 {
824 int i;
825 int ret = 0;
826
827 #ifdef HAVE_SPARSE_SPARSE_H
828 if (c.sparse_mode) {
829 int64_t chunk_start = (blocks[0] == NULL) ? -1 : 0;
830 uint64_t j;
831
832 if (c.func != MKFS) {
833 sparse_file_destroy(f2fs_sparse_file);
834 ret = ftruncate(c.devices[0].fd, 0);
835 ASSERT(!ret);
836 lseek(c.devices[0].fd, 0, SEEK_SET);
837 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE,
838 c.device_size);
839 }
840
841 for (j = 0; j < blocks_count; ++j) {
842 if (chunk_start != -1) {
843 if (j - chunk_start >= MAX_CHUNK_COUNT) {
844 ret = sparse_merge_blocks(chunk_start,
845 j - chunk_start, 0);
846 ASSERT(!ret);
847 chunk_start = -1;
848 }
849 }
850
851 if (chunk_start == -1) {
852 if (!blocks[j])
853 continue;
854
855 if (blocks[j] == zeroed_block) {
856 ret = sparse_merge_blocks(j, 1, 1);
857 ASSERT(!ret);
858 } else {
859 chunk_start = j;
860 }
861 } else {
862 if (blocks[j] && blocks[j] != zeroed_block)
863 continue;
864
865 ret = sparse_merge_blocks(chunk_start,
866 j - chunk_start, 0);
867 ASSERT(!ret);
868
869 if (blocks[j] == zeroed_block) {
870 ret = sparse_merge_blocks(j, 1, 1);
871 ASSERT(!ret);
872 }
873
874 chunk_start = -1;
875 }
876 }
877 if (chunk_start != -1) {
878 ret = sparse_merge_blocks(chunk_start,
879 blocks_count - chunk_start, 0);
880 ASSERT(!ret);
881 }
882
883 sparse_file_write(f2fs_sparse_file, c.devices[0].fd,
884 /*gzip*/0, /*sparse*/1, /*crc*/0);
885
886 f2fs_release_sparse_resource();
887 }
888 #endif
889 /*
890 * We should call fsync() to flush out all the dirty pages
891 * in the block device page cache.
892 */
893 for (i = 0; i < c.ndevs; i++) {
894 #ifdef HAVE_FSYNC
895 if (c.need_fsync) {
896 ret = fsync(c.devices[i].fd);
897 if (ret < 0) {
898 MSG(0, "\tError: Could not conduct fsync!!!\n");
899 break;
900 }
901 }
902 #endif
903 ret = close(c.devices[i].fd);
904 if (ret < 0) {
905 MSG(0, "\tError: Failed to close device file!!!\n");
906 break;
907 }
908 free(c.devices[i].path);
909 free(c.devices[i].zone_cap_blocks);
910 }
911 close(c.kd);
912
913 return ret;
914 }
915