• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 
3 
4 
5 
6 /* Host communication command constants for Chrome EC */
7 
8 /*
9  * TODO(b/272518464): Work around coreboot GCC preprocessor bug.
10  * #line marks the *next* line, so it is off by one.
11  */
12 #line 13
13 
14 #ifndef __CROS_EC_EC_COMMANDS_H
15 #define __CROS_EC_EC_COMMANDS_H
16 
17 #if !defined(__ACPI__) && !defined(__KERNEL__)
18 #include <stdint.h>
19 #endif
20 
21 #ifdef CHROMIUM_EC
22 /*
23  * CHROMIUM_EC is defined by the Makefile system of Chromium EC repository.
24  * It is used to not include macros that may cause conflicts in foreign
25  * projects (refer to crbug.com/984623).
26  */
27 
28 /*
29  * Include common.h for CONFIG_HOSTCMD_ALIGNED, if it's defined. This
30  * generates more efficient code for accessing request/response structures on
31  * ARM Cortex-M if the structures are guaranteed 32-bit aligned.
32  */
33 #include "common.h"
34 #include "compile_time_macros.h"
35 
36 #else
37 /* If BUILD_ASSERT isn't already defined, make it a no-op */
38 #ifndef BUILD_ASSERT
39 #define BUILD_ASSERT(_cond)
40 #endif /* !BUILD_ASSERT */
41 #endif /* CHROMIUM_EC */
42 
43 #ifdef __KERNEL__
44 #include <linux/limits.h>
45 #else
46 /*
47  * Defines macros that may be needed but are for sure defined by the linux
48  * kernel. This section is removed when cros_ec_commands.h is generated (by
49  * util/make_linux_ec_commands_h.sh).
50  * cros_ec_commands.h looks more integrated to the kernel.
51  */
52 
53 #ifndef BIT
54 #define BIT(nr) (1UL << (nr))
55 #endif
56 
57 #ifndef BIT_ULL
58 #define BIT_ULL(nr) (1ULL << (nr))
59 #endif
60 
61 /*
62  * When building Zephyr, this file ends up being included before Zephyr's
63  * include/sys/util.h so causes a warning there. We don't want to add an #ifdef
64  * in that file since it won't be accepted upstream. So work around it here.
65  */
66 #ifndef CONFIG_ZEPHYR
67 #ifndef GENMASK
68 #define GENMASK(h, l) (((BIT(h) << 1) - 1) ^ (BIT(l) - 1))
69 #endif
70 
71 #ifndef GENMASK_ULL
72 #define GENMASK_ULL(h, l) (((BIT_ULL(h) << 1) - 1) ^ (BIT_ULL(l) - 1))
73 #endif
74 #endif
75 
76 #endif /* __KERNEL__ */
77 
78 #ifdef __cplusplus
79 extern "C" {
80 #endif
81 
82 /**
83  * Constant for creation of flexible array members that work in both C and
84  * C++. Flexible array members were added in C99 and are not part of the C++
85  * standard. However, clang++ supports them for C++.
86  * When compiling with gcc, flexible array members are not allowed to appear
87  * in an otherwise empty struct, so we use the GCC zero-length array
88  * extension that works with both clang/gcc/g++.
89  */
90 #if defined(__cplusplus) && defined(__clang__)
91 #define FLEXIBLE_ARRAY_MEMBER_SIZE
92 #else
93 #define FLEXIBLE_ARRAY_MEMBER_SIZE 0
94 #endif
95 
96 /*
97  * Current version of this protocol
98  *
99  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
100  * determined in other ways.  Remove this once the kernel code no longer
101  * depends on it.
102  */
103 #define EC_PROTO_VERSION 0x00000002
104 
105 /* Command version mask */
106 #define EC_VER_MASK(version) BIT(version)
107 
108 /* I/O addresses for ACPI commands */
109 #define EC_LPC_ADDR_ACPI_DATA 0x62
110 #define EC_LPC_ADDR_ACPI_CMD 0x66
111 
112 /* I/O addresses for host command */
113 #define EC_LPC_ADDR_HOST_DATA 0x200
114 #define EC_LPC_ADDR_HOST_CMD 0x204
115 
116 /* I/O addresses for host command args and params */
117 /* Protocol version 2 */
118 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
119 /* For version 2 params; size is EC_PROTO2_MAX_PARAM_SIZE */
120 #define EC_LPC_ADDR_HOST_PARAM 0x804
121 
122 /* Protocol version 3 */
123 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
124 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
125 
126 /*
127  * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
128  * and they tell the kernel that so we have to think of it as two parts.
129  *
130  * Other BIOSes report only the I/O port region spanned by the Microchip
131  * MEC series EC; an attempt to address a larger region may fail.
132  */
133 #define EC_HOST_CMD_REGION0 0x800
134 #define EC_HOST_CMD_REGION1 0x880
135 #define EC_HOST_CMD_REGION_SIZE 0x80
136 #define EC_HOST_CMD_MEC_REGION_SIZE 0x8
137 
138 /* EC command register bit functions */
139 #define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */
140 #define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */
141 #define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */
142 #define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */
143 #define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */
144 #define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */
145 #define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */
146 
147 #define EC_LPC_ADDR_MEMMAP 0x900
148 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
149 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
150 
151 /* The offset address of each type of data in mapped memory. */
152 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
153 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
154 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
155 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
156 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
157 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
158 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
159 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
160 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
161 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
162 /* Unused 0x28 - 0x2f */
163 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
164 /* Unused 0x31 - 0x33 */
165 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */
166 /* Battery values are all 32 bits, unless otherwise noted. */
167 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
168 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
169 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
170 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */
171 #define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */
172 #define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */
173 /* Unused 0x4f */
174 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
175 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
176 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
177 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
178 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
179 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
180 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
181 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
182 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
183 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
184 /* Unused 0x84 - 0x8f */
185 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
186 /* Unused 0x91 */
187 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */
188 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
189 /* 0x94 - 0x99: 1st Accelerometer */
190 /* 0x9a - 0x9f: 2nd Accelerometer */
191 
192 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
193 #define EC_MEMMAP_GPU 0xa6 /* GPU-specific, 8 bits */
194 
195 /*
196  * Bit fields for EC_MEMMAP_GPU
197  * 0:2: D-Notify level (0:D1, ... 4:D5)
198  * 3: Over temperature
199  */
200 #define EC_MEMMAP_GPU_D_NOTIFY_MASK GENMASK(2, 0)
201 #define EC_MEMMAP_GPU_OVERT_BIT BIT(3)
202 
203 /* Power Participant related components */
204 #define EC_MEMMAP_PWR_SRC 0xa7 /* Power source (8-bit) */
205 /* Unused 0xa8 - 0xdf */
206 
207 /*
208  * ACPI is unable to access memory mapped data at or above this offset due to
209  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
210  * which might be needed by ACPI.
211  */
212 #define EC_MEMMAP_NO_ACPI 0xe0
213 
214 /* Define the format of the accelerometer mapped memory status byte. */
215 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
216 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4)
217 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7)
218 
219 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
220 #define EC_TEMP_SENSOR_ENTRIES 16
221 /*
222  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
223  *
224  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
225  */
226 #define EC_TEMP_SENSOR_B_ENTRIES 8
227 
228 /* Max temp sensor entries for host commands */
229 #define EC_MAX_TEMP_SENSOR_ENTRIES \
230 	(EC_TEMP_SENSOR_ENTRIES + EC_TEMP_SENSOR_B_ENTRIES)
231 
232 /* Special values for mapped temperature sensors */
233 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff
234 #define EC_TEMP_SENSOR_ERROR 0xfe
235 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd
236 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
237 /*
238  * The offset of temperature value stored in mapped memory.  This allows
239  * reporting a temperature range of 200K to 454K = -73C to 181C.
240  */
241 #define EC_TEMP_SENSOR_OFFSET 200
242 
243 /*
244  * Number of ALS readings at EC_MEMMAP_ALS
245  */
246 #define EC_ALS_ENTRIES 2
247 
248 /*
249  * The default value a temperature sensor will return when it is present but
250  * has not been read this boot.  This is a reasonable number to avoid
251  * triggering alarms on the host.
252  */
253 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
254 
255 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
256 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
257 
258 /* Report 0 for fan stalled so userspace applications can take
259  * an appropriate action based on this value to control the fan.
260  */
261 #define EC_FAN_SPEED_STALLED 0x0
262 /* This should be used only for ectool to support old ECs. */
263 #define EC_FAN_SPEED_STALLED_DEPRECATED 0xfffe
264 
265 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
266 #define EC_BATT_FLAG_AC_PRESENT 0x01
267 #define EC_BATT_FLAG_BATT_PRESENT 0x02
268 #define EC_BATT_FLAG_DISCHARGING 0x04
269 #define EC_BATT_FLAG_CHARGING 0x08
270 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
271 /* Set if some of the static/dynamic data is invalid (or outdated). */
272 #define EC_BATT_FLAG_INVALID_DATA 0x20
273 #define EC_BATT_FLAG_CUT_OFF 0x40
274 
275 /* Switch flags at EC_MEMMAP_SWITCHES */
276 #define EC_SWITCH_LID_OPEN 0x01
277 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
278 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
279 /* Was recovery requested via keyboard; now unused. */
280 #define EC_SWITCH_IGNORE1 0x08
281 /* Recovery requested via dedicated signal (from servo board) */
282 #define EC_SWITCH_DEDICATED_RECOVERY 0x10
283 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
284 #define EC_SWITCH_IGNORE0 0x20
285 
286 /* Host command interface flags */
287 /* Host command interface supports LPC args (LPC interface only) */
288 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
289 /* Host command interface supports version 3 protocol */
290 #define EC_HOST_CMD_FLAG_VERSION_3 0x02
291 
292 /* Wireless switch flags */
293 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
294 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
295 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
296 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
297 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
298 
299 /*****************************************************************************/
300 /*
301  * ACPI commands
302  *
303  * These are valid ONLY on the ACPI command/data port.
304  */
305 
306 /*
307  * ACPI Read Embedded Controller
308  *
309  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
310  *
311  * Use the following sequence:
312  *
313  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
314  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
315  *    - Write address to EC_LPC_ADDR_ACPI_DATA
316  *    - Wait for EC_LPC_CMDR_DATA bit to set
317  *    - Read value from EC_LPC_ADDR_ACPI_DATA
318  */
319 #define EC_CMD_ACPI_READ 0x0080
320 
321 /*
322  * ACPI Write Embedded Controller
323  *
324  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
325  *
326  * Use the following sequence:
327  *
328  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
329  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
330  *    - Write address to EC_LPC_ADDR_ACPI_DATA
331  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
332  *    - Write value to EC_LPC_ADDR_ACPI_DATA
333  */
334 #define EC_CMD_ACPI_WRITE 0x0081
335 
336 /*
337  * ACPI Burst Enable Embedded Controller
338  *
339  * This enables burst mode on the EC to allow the host to issue several
340  * commands back-to-back. While in this mode, writes to mapped multi-byte
341  * data are locked out to ensure data consistency.
342  */
343 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
344 
345 /*
346  * ACPI Burst Disable Embedded Controller
347  *
348  * This disables burst mode on the EC and stops preventing EC writes to mapped
349  * multi-byte data.
350  */
351 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
352 
353 /*
354  * ACPI Query Embedded Controller
355  *
356  * This clears the lowest-order bit in the currently pending host events, and
357  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
358  * event 0x80000000 = 32), or 0 if no event was pending.
359  */
360 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
361 
362 /* Valid addresses in ACPI memory space, for read/write commands */
363 
364 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
365 #define EC_ACPI_MEM_VERSION 0x00
366 /*
367  * Test location; writing value here updates test compliment byte to (0xff -
368  * value).
369  */
370 #define EC_ACPI_MEM_TEST 0x01
371 /* Test compliment; writes here are ignored. */
372 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
373 
374 /* Keyboard backlight brightness percent (0 - 100) */
375 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
376 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
377 #define EC_ACPI_MEM_FAN_DUTY 0x04
378 
379 /*
380  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
381  * independent thresholds attached to them. The current value of the ID
382  * register determines which sensor is affected by the THRESHOLD and COMMIT
383  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
384  * as the memory-mapped sensors. The COMMIT register applies those settings.
385  *
386  * The spec does not mandate any way to read back the threshold settings
387  * themselves, but when a threshold is crossed the AP needs a way to determine
388  * which sensor(s) are responsible. Each reading of the ID register clears and
389  * returns one sensor ID that has crossed one of its threshold (in either
390  * direction) since the last read. A value of 0xFF means "no new thresholds
391  * have tripped". Setting or enabling the thresholds for a sensor will clear
392  * the unread event count for that sensor.
393  */
394 #define EC_ACPI_MEM_TEMP_ID 0x05
395 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
396 #define EC_ACPI_MEM_TEMP_COMMIT 0x07
397 /*
398  * Here are the bits for the COMMIT register:
399  *   bit 0 selects the threshold index for the chosen sensor (0/1)
400  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
401  * Each write to the commit register affects one threshold.
402  */
403 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
404 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
405 /*
406  * Example:
407  *
408  * Set the thresholds for sensor 2 to 50 C and 60 C:
409  *   write 2 to [0x05]      --  select temp sensor 2
410  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
411  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
412  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
413  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
414  *
415  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
416  *   write 2 to [0x05]      --  select temp sensor 2
417  *   write 0x1 to [0x07]    --  disable threshold 1
418  */
419 
420 /* DPTF battery charging current limit */
421 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08
422 
423 /* Charging limit is specified in 64 mA steps */
424 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
425 /* Value to disable DPTF battery charging limit */
426 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
427 
428 /*
429  * Report device orientation
430  *  Bits       Definition
431  *  4          Off Body/On Body status: 0 = Off Body.
432  *  3:1        Device DPTF Profile Number (DDPN)
433  *               0   = Reserved for backward compatibility (indicates no valid
434  *                     profile number. Host should fall back to using TBMD).
435  *              1..7 = DPTF Profile number to indicate to host which table needs
436  *                     to be loaded.
437  *   0         Tablet Mode Device Indicator (TBMD)
438  */
439 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
440 #define EC_ACPI_MEM_TBMD_SHIFT 0
441 #define EC_ACPI_MEM_TBMD_MASK 0x1
442 #define EC_ACPI_MEM_DDPN_SHIFT 1
443 #define EC_ACPI_MEM_DDPN_MASK 0x7
444 #define EC_ACPI_MEM_STTB_SHIFT 4
445 #define EC_ACPI_MEM_STTB_MASK 0x1
446 
447 /*
448  * Report device features. Uses the same format as the host command, except:
449  *
450  * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
451  * of features", which is of limited interest when the system is already
452  * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
453  * these are supported, it defaults to 0.
454  * This allows detecting the presence of this field since older versions of
455  * the EC codebase would simply return 0xff to that unknown address. Check
456  * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
457  * are valid.
458  */
459 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
460 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
461 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
462 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
463 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
464 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
465 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
466 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
467 
468 #define EC_ACPI_MEM_BATTERY_INDEX 0x12
469 
470 /*
471  * USB Port Power. Each bit indicates whether the corresponding USB ports' power
472  * is enabled (1) or disabled (0).
473  *   bit 0 USB port ID 0
474  *   ...
475  *   bit 7 USB port ID 7
476  */
477 #define EC_ACPI_MEM_USB_PORT_POWER 0x13
478 
479 /*
480  * USB Retimer firmware update.
481  * Read:
482  *      Result of last operation AP requested
483  * Write:
484  *      bits[3:0]: USB-C port number
485  *      bits[7:4]: Operation requested by AP
486  *
487  * NDA (no device attached) case:
488  * To update retimer firmware, AP needs set up TBT Alt mode.
489  * AP requests operations in this sequence:
490  * 1. Get port information about which ports support retimer firmware update.
491  * In the query result, each bit represents one port.
492  * 2. Get current MUX mode, it's NDA.
493  * 3. Suspend specified PD port's task.
494  * 4. AP requests EC to enter USB mode -> enter Safe mode -> enter TBT mode ->
495  * update firmware -> disconnect MUX -> resume PD task.
496  *
497  * DA (device attached) cases:
498  * Retimer firmware update is not supported in DA cases.
499  * 1. Get port information about which ports support retimer firmware update
500  * 2. Get current MUX mode, it's DA.
501  * 3. AP continues. No more retimer firmware update activities.
502  *
503  */
504 #define EC_ACPI_MEM_USB_RETIMER_FW_UPDATE 0x14
505 
506 #define USB_RETIMER_FW_UPDATE_OP_SHIFT 4
507 #define USB_RETIMER_FW_UPDATE_ERR 0xfe
508 #define USB_RETIMER_FW_UPDATE_INVALID_MUX 0xff
509 /* Mask to clear unused MUX bits in retimer firmware update  */
510 #define USB_RETIMER_FW_UPDATE_MUX_MASK                          \
511 	(USB_PD_MUX_USB_ENABLED | USB_PD_MUX_DP_ENABLED |       \
512 	 USB_PD_MUX_SAFE_MODE | USB_PD_MUX_TBT_COMPAT_ENABLED | \
513 	 USB_PD_MUX_USB4_ENABLED)
514 
515 /* Retimer firmware update operations */
516 #define USB_RETIMER_FW_UPDATE_QUERY_PORT 0 /* Which ports has retimer */
517 #define USB_RETIMER_FW_UPDATE_SUSPEND_PD 1 /* Suspend PD port */
518 #define USB_RETIMER_FW_UPDATE_RESUME_PD 2 /* Resume PD port  */
519 #define USB_RETIMER_FW_UPDATE_GET_MUX 3 /* Read current USB MUX  */
520 #define USB_RETIMER_FW_UPDATE_SET_USB 4 /* Set MUX to USB mode   */
521 #define USB_RETIMER_FW_UPDATE_SET_SAFE 5 /* Set MUX to Safe mode  */
522 #define USB_RETIMER_FW_UPDATE_SET_TBT 6 /* Set MUX to TBT mode   */
523 #define USB_RETIMER_FW_UPDATE_DISCONNECT 7 /* Set MUX to disconnect */
524 
525 #define EC_ACPI_MEM_USB_RETIMER_PORT(x) ((x) & 0x0f)
526 #define EC_ACPI_MEM_USB_RETIMER_OP(x) \
527 	(((x) & 0xf0) >> USB_RETIMER_FW_UPDATE_OP_SHIFT)
528 
529 /*
530  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
531  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
532  */
533 #define EC_ACPI_MEM_MAPPED_BEGIN 0x20
534 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0
535 
536 /* Current version of ACPI memory address space */
537 #define EC_ACPI_MEM_VERSION_CURRENT 2
538 
539 /*
540  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
541  * is pre-processed to handle constants but the ASL compiler is unable to
542  * handle actual C code so keep it separate.
543  */
544 #ifndef __ACPI__
545 
546 #ifndef __KERNEL__
547 /*
548  * Define __packed if someone hasn't beat us to it.  Linux kernel style
549  * checking prefers __packed over __attribute__((packed)).
550  */
551 #ifndef __packed
552 #define __packed __attribute__((packed))
553 #endif
554 
555 #ifndef __aligned
556 #define __aligned(x) __attribute__((aligned(x)))
557 #endif
558 #endif /* __KERNEL__ */
559 
560 /*
561  * Attributes for EC request and response packets.  Just defining __packed
562  * results in inefficient assembly code on ARM, if the structure is actually
563  * 32-bit aligned, as it should be for all buffers.
564  *
565  * Be very careful when adding these to existing structures.  They will round
566  * up the structure size to the specified boundary.
567  *
568  * Also be very careful to make that if a structure is included in some other
569  * parent structure that the alignment will still be true given the packing of
570  * the parent structure.  This is particularly important if the sub-structure
571  * will be passed as a pointer to another function, since that function will
572  * not know about the misalignment caused by the parent structure's packing.
573  *
574  * Also be very careful using __packed - particularly when nesting non-packed
575  * structures inside packed ones.  In fact, DO NOT use __packed directly;
576  * always use one of these attributes.
577  *
578  * Once everything is annotated properly, the following search strings should
579  * not return ANY matches in this file other than right here:
580  *
581  * "__packed" - generates inefficient code; all sub-structs must also be packed
582  *
583  * "struct [^_]" - all structs should be annotated, except for structs that are
584  * members of other structs/unions (and their original declarations should be
585  * annotated).
586  */
587 #ifdef CONFIG_HOSTCMD_ALIGNED
588 
589 /*
590  * Packed structures where offset and size are always aligned to 1, 2, or 4
591  * byte boundary.
592  */
593 #define __ec_align1 __packed
594 #define __ec_align2 __packed __aligned(2)
595 #define __ec_align4 __packed __aligned(4)
596 
597 /*
598  * Packed structure which must be under-aligned, because its size is not a
599  * 4-byte multiple.  This is sub-optimal because it forces byte-wise access
600  * of all multi-byte fields in it, even though they are themselves aligned.
601  *
602  * In theory, we could duplicate the structure with __aligned(4) for accessing
603  * its members, but use the __packed version for sizeof().
604  */
605 #define __ec_align_size1 __packed
606 
607 /*
608  * Packed structure which must be under-aligned, because its offset inside a
609  * parent structure is not a 4-byte multiple.
610  */
611 #define __ec_align_offset1 __packed
612 #define __ec_align_offset2 __packed __aligned(2)
613 
614 /*
615  * Structures which are complicated enough that I'm skipping them on the first
616  * pass.  They are effectively unchanged from their previous definitions.
617  *
618  * TODO(rspangler): Figure out what to do with these.  It's likely necessary
619  * to work out the size and offset of each member and add explicit padding to
620  * maintain those.
621  */
622 #define __ec_todo_packed __packed
623 #define __ec_todo_unpacked
624 
625 #else /* !CONFIG_HOSTCMD_ALIGNED */
626 
627 /*
628  * Packed structures make no assumption about alignment, so they do inefficient
629  * byte-wise reads.
630  */
631 #define __ec_align1 __packed
632 #define __ec_align2 __packed
633 #define __ec_align4 __packed
634 #define __ec_align_size1 __packed
635 #define __ec_align_offset1 __packed
636 #define __ec_align_offset2 __packed
637 #define __ec_todo_packed __packed
638 #define __ec_todo_unpacked
639 
640 #endif /* !CONFIG_HOSTCMD_ALIGNED */
641 
642 /* LPC command status byte masks */
643 /* EC has written a byte in the data register and host hasn't read it yet */
644 #define EC_LPC_STATUS_TO_HOST 0x01
645 /* Host has written a command/data byte and the EC hasn't read it yet */
646 #define EC_LPC_STATUS_FROM_HOST 0x02
647 /* EC is processing a command */
648 #define EC_LPC_STATUS_PROCESSING 0x04
649 /* Last write to EC was a command, not data */
650 #define EC_LPC_STATUS_LAST_CMD 0x08
651 /* EC is in burst mode */
652 #define EC_LPC_STATUS_BURST_MODE 0x10
653 /* SCI event is pending (requesting SCI query) */
654 #define EC_LPC_STATUS_SCI_PENDING 0x20
655 /* SMI event is pending (requesting SMI query) */
656 #define EC_LPC_STATUS_SMI_PENDING 0x40
657 /* (reserved) */
658 #define EC_LPC_STATUS_RESERVED 0x80
659 
660 /*
661  * EC is busy.  This covers both the EC processing a command, and the host has
662  * written a new command but the EC hasn't picked it up yet.
663  */
664 #define EC_LPC_STATUS_BUSY_MASK \
665 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
666 
667 /*
668  * Host command response codes (16-bit).
669  */
670 enum ec_status {
671 	EC_RES_SUCCESS = 0,
672 	EC_RES_INVALID_COMMAND = 1,
673 	EC_RES_ERROR = 2,
674 	EC_RES_INVALID_PARAM = 3,
675 	EC_RES_ACCESS_DENIED = 4,
676 	EC_RES_INVALID_RESPONSE = 5,
677 	EC_RES_INVALID_VERSION = 6,
678 	EC_RES_INVALID_CHECKSUM = 7,
679 	EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
680 	EC_RES_UNAVAILABLE = 9, /* No response available */
681 	EC_RES_TIMEOUT = 10, /* We got a timeout */
682 	EC_RES_OVERFLOW = 11, /* Table / data overflow */
683 	EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
684 	EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
685 	EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */
686 	EC_RES_BUS_ERROR = 15, /* Communications bus error */
687 	EC_RES_BUSY = 16, /* Up but too busy.  Should retry */
688 	EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */
689 	EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */
690 	EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */
691 	EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */
692 
693 	EC_RES_COUNT,
694 
695 	EC_RES_MAX = UINT16_MAX, /**< Force enum to be 16 bits */
696 } __packed;
697 BUILD_ASSERT(sizeof(enum ec_status) == sizeof(uint16_t));
698 #ifdef CONFIG_EC_HOST_CMD
699 /*
700  * Make sure Zephyre uses the same status codes.
701  */
702 #include <zephyr/mgmt/ec_host_cmd/ec_host_cmd.h>
703 
704 BUILD_ASSERT((uint16_t)EC_RES_SUCCESS == (uint16_t)EC_HOST_CMD_SUCCESS);
705 BUILD_ASSERT((uint16_t)EC_RES_INVALID_COMMAND ==
706 	     (uint16_t)EC_HOST_CMD_INVALID_COMMAND);
707 BUILD_ASSERT((uint16_t)EC_RES_ERROR == (uint16_t)EC_HOST_CMD_ERROR);
708 BUILD_ASSERT((uint16_t)EC_RES_INVALID_PARAM ==
709 	     (uint16_t)EC_HOST_CMD_INVALID_PARAM);
710 BUILD_ASSERT((uint16_t)EC_RES_ACCESS_DENIED ==
711 	     (uint16_t)EC_HOST_CMD_ACCESS_DENIED);
712 BUILD_ASSERT((uint16_t)EC_RES_INVALID_RESPONSE ==
713 	     (uint16_t)EC_HOST_CMD_INVALID_RESPONSE);
714 BUILD_ASSERT((uint16_t)EC_RES_INVALID_VERSION ==
715 	     (uint16_t)EC_HOST_CMD_INVALID_VERSION);
716 BUILD_ASSERT((uint16_t)EC_RES_INVALID_CHECKSUM ==
717 	     (uint16_t)EC_HOST_CMD_INVALID_CHECKSUM);
718 BUILD_ASSERT((uint16_t)EC_RES_IN_PROGRESS == (uint16_t)EC_HOST_CMD_IN_PROGRESS);
719 BUILD_ASSERT((uint16_t)EC_RES_UNAVAILABLE == (uint16_t)EC_HOST_CMD_UNAVAILABLE);
720 BUILD_ASSERT((uint16_t)EC_RES_TIMEOUT == (uint16_t)EC_HOST_CMD_TIMEOUT);
721 BUILD_ASSERT((uint16_t)EC_RES_OVERFLOW == (uint16_t)EC_HOST_CMD_OVERFLOW);
722 BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER ==
723 	     (uint16_t)EC_HOST_CMD_INVALID_HEADER);
724 BUILD_ASSERT((uint16_t)EC_RES_REQUEST_TRUNCATED ==
725 	     (uint16_t)EC_HOST_CMD_REQUEST_TRUNCATED);
726 BUILD_ASSERT((uint16_t)EC_RES_RESPONSE_TOO_BIG ==
727 	     (uint16_t)EC_HOST_CMD_RESPONSE_TOO_BIG);
728 BUILD_ASSERT((uint16_t)EC_RES_BUS_ERROR == (uint16_t)EC_HOST_CMD_BUS_ERROR);
729 BUILD_ASSERT((uint16_t)EC_RES_BUSY == (uint16_t)EC_HOST_CMD_BUSY);
730 BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER_VERSION ==
731 	     (uint16_t)EC_HOST_CMD_INVALID_HEADER_VERSION);
732 BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER_CRC ==
733 	     (uint16_t)EC_HOST_CMD_INVALID_HEADER_CRC);
734 BUILD_ASSERT((uint16_t)EC_RES_INVALID_DATA_CRC ==
735 	     (uint16_t)EC_HOST_CMD_INVALID_DATA_CRC);
736 BUILD_ASSERT((uint16_t)EC_RES_DUP_UNAVAILABLE ==
737 	     (uint16_t)EC_HOST_CMD_DUP_UNAVAILABLE);
738 BUILD_ASSERT((uint16_t)EC_RES_MAX == (uint16_t)EC_HOST_CMD_MAX);
739 
740 #endif
741 
742 /* clang-format off */
743 #define EC_STATUS_TEXT                                                        \
744 	{                                                                     \
745 	EC_MAP_ITEM(EC_RES_SUCCESS, SUCCESS),                                 \
746 	EC_MAP_ITEM(EC_RES_INVALID_COMMAND, INVALID_COMMAND),                 \
747 	EC_MAP_ITEM(EC_RES_ERROR, ERROR),                                     \
748 	EC_MAP_ITEM(EC_RES_INVALID_PARAM, INVALID_PARAM),                     \
749 	EC_MAP_ITEM(EC_RES_ACCESS_DENIED, ACCESS_DENIED),                     \
750 	EC_MAP_ITEM(EC_RES_INVALID_RESPONSE, INVALID_RESPONSE),               \
751 	EC_MAP_ITEM(EC_RES_INVALID_VERSION, INVALID_VERSION),                 \
752 	EC_MAP_ITEM(EC_RES_INVALID_CHECKSUM, INVALID_CHECKSUM),               \
753 	EC_MAP_ITEM(EC_RES_IN_PROGRESS, IN_PROGRESS),                         \
754 	EC_MAP_ITEM(EC_RES_UNAVAILABLE, UNAVAILABLE),                         \
755 	EC_MAP_ITEM(EC_RES_TIMEOUT, TIMEOUT),                                 \
756 	EC_MAP_ITEM(EC_RES_OVERFLOW, OVERFLOW),                               \
757 	EC_MAP_ITEM(EC_RES_INVALID_HEADER, INVALID_HEADER),                   \
758 	EC_MAP_ITEM(EC_RES_REQUEST_TRUNCATED, REQUEST_TRUNCATED),             \
759 	EC_MAP_ITEM(EC_RES_RESPONSE_TOO_BIG, RESPONSE_TOO_BIG),               \
760 	EC_MAP_ITEM(EC_RES_BUS_ERROR, BUS_ERROR),                             \
761 	EC_MAP_ITEM(EC_RES_BUSY, BUSY),                                       \
762 	EC_MAP_ITEM(EC_RES_INVALID_HEADER_VERSION, INVALID_HEADER_VERSION),   \
763 	EC_MAP_ITEM(EC_RES_INVALID_HEADER_CRC, INVALID_HEADER_CRC),           \
764 	EC_MAP_ITEM(EC_RES_INVALID_DATA_CRC, INVALID_DATA_CRC),               \
765 	EC_MAP_ITEM(EC_RES_DUP_UNAVAILABLE, DUP_UNAVAILABLE),                 \
766 	}
767 /* clang-format on */
768 
769 #ifndef __cplusplus
770 #define EC_MAP_ITEM(k, v) [k] = #v
771 BUILD_ASSERT(ARRAY_SIZE(((const char *[])EC_STATUS_TEXT)) == EC_RES_COUNT);
772 #undef EC_MAP_ITEM
773 #endif
774 
775 /*
776  * Host event codes. ACPI query EC command uses code 0 to mean "no event
777  * pending".  We explicitly specify each value in the enum listing so they won't
778  * change if we delete/insert an item or rearrange the list (it needs to be
779  * stable across platforms, not just within a single compiled instance).
780  */
781 enum host_event_code {
782 	EC_HOST_EVENT_NONE = 0,
783 	EC_HOST_EVENT_LID_CLOSED = 1,
784 	EC_HOST_EVENT_LID_OPEN = 2,
785 	EC_HOST_EVENT_POWER_BUTTON = 3,
786 	EC_HOST_EVENT_AC_CONNECTED = 4,
787 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
788 	EC_HOST_EVENT_BATTERY_LOW = 6,
789 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
790 	EC_HOST_EVENT_BATTERY = 8,
791 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
792 	/* Event generated by a device attached to the EC */
793 	EC_HOST_EVENT_DEVICE = 10,
794 	EC_HOST_EVENT_THERMAL = 11,
795 	/* GPU related event. Formerly named EC_HOST_EVENT_USB_CHARGER. */
796 	EC_HOST_EVENT_GPU = 12,
797 	EC_HOST_EVENT_KEY_PRESSED = 13,
798 	/*
799 	 * EC has finished initializing the host interface.  The host can check
800 	 * for this event following sending a EC_CMD_REBOOT_EC command to
801 	 * determine when the EC is ready to accept subsequent commands.
802 	 */
803 	EC_HOST_EVENT_INTERFACE_READY = 14,
804 	/* Keyboard recovery combo has been pressed */
805 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
806 
807 	/* Shutdown due to thermal overload */
808 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
809 	/* Shutdown due to battery level too low */
810 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
811 
812 	/* Suggest that the AP throttle itself */
813 	EC_HOST_EVENT_THROTTLE_START = 18,
814 	/* Suggest that the AP resume normal speed */
815 	EC_HOST_EVENT_THROTTLE_STOP = 19,
816 
817 	/* Hang detect logic detected a hang and host event timeout expired */
818 	EC_HOST_EVENT_HANG_DETECT = 20,
819 	/* Hang detect logic detected a hang and warm rebooted the AP */
820 	EC_HOST_EVENT_HANG_REBOOT = 21,
821 
822 	/* PD MCU triggering host event */
823 	EC_HOST_EVENT_PD_MCU = 22,
824 
825 	/* Battery Status flags have changed */
826 	EC_HOST_EVENT_BATTERY_STATUS = 23,
827 
828 	/* EC encountered a panic, triggering a reset */
829 	EC_HOST_EVENT_PANIC = 24,
830 
831 	/* Keyboard fastboot combo has been pressed */
832 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
833 
834 	/* EC RTC event occurred */
835 	EC_HOST_EVENT_RTC = 26,
836 
837 	/* Emulate MKBP event */
838 	EC_HOST_EVENT_MKBP = 27,
839 
840 	/* EC desires to change state of host-controlled USB mux */
841 	EC_HOST_EVENT_USB_MUX = 28,
842 
843 	/*
844 	 * The device has changed "modes". This can be one of the following:
845 	 *
846 	 * - TABLET/LAPTOP mode
847 	 * - detachable base attach/detach event
848 	 * - on body/off body transition event
849 	 */
850 	EC_HOST_EVENT_MODE_CHANGE = 29,
851 
852 	/* Keyboard recovery combo with hardware reinitialization */
853 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
854 
855 	/* WoV */
856 	EC_HOST_EVENT_WOV = 31,
857 
858 	/*
859 	 * The high bit of the event mask is not used as a host event code.  If
860 	 * it reads back as set, then the entire event mask should be
861 	 * considered invalid by the host.  This can happen when reading the
862 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
863 	 * not initialized on the EC, or improperly configured on the host.
864 	 */
865 	EC_HOST_EVENT_INVALID = 32,
866 
867 	/* Body detect (lap/desk) change event */
868 	EC_HOST_EVENT_BODY_DETECT_CHANGE = 33,
869 
870 	/*
871 	 * Only 64 host events are supported. This enum uses 1-based counting so
872 	 * it can skip 0 (NONE), so the last legal host event number is 64.
873 	 */
874 };
875 
876 /* Host event mask */
877 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code)-1)
878 
879 /* clang-format off */
880 #define HOST_EVENT_TEXT                                                        \
881 	{                                                                      \
882 		[EC_HOST_EVENT_NONE] = "NONE",                                 \
883 		[EC_HOST_EVENT_LID_CLOSED] = "LID_CLOSED",                     \
884 		[EC_HOST_EVENT_LID_OPEN] = "LID_OPEN",                         \
885 		[EC_HOST_EVENT_POWER_BUTTON] = "POWER_BUTTON",                 \
886 		[EC_HOST_EVENT_AC_CONNECTED] = "AC_CONNECTED",                 \
887 		[EC_HOST_EVENT_AC_DISCONNECTED] = "AC_DISCONNECTED",           \
888 		[EC_HOST_EVENT_BATTERY_LOW] = "BATTERY_LOW",                   \
889 		[EC_HOST_EVENT_BATTERY_CRITICAL] = "BATTERY_CRITICAL",         \
890 		[EC_HOST_EVENT_BATTERY] = "BATTERY",                           \
891 		[EC_HOST_EVENT_THERMAL_THRESHOLD] = "THERMAL_THRESHOLD",       \
892 		[EC_HOST_EVENT_DEVICE] = "DEVICE",                             \
893 		[EC_HOST_EVENT_THERMAL] = "THERMAL",                           \
894 		[EC_HOST_EVENT_GPU] = "GPU",                                   \
895 		[EC_HOST_EVENT_KEY_PRESSED] = "KEY_PRESSED",                   \
896 		[EC_HOST_EVENT_INTERFACE_READY] = "INTERFACE_READY",           \
897 		[EC_HOST_EVENT_KEYBOARD_RECOVERY] = "KEYBOARD_RECOVERY",       \
898 		[EC_HOST_EVENT_THERMAL_SHUTDOWN] = "THERMAL_SHUTDOWN",         \
899 		[EC_HOST_EVENT_BATTERY_SHUTDOWN] = "BATTERY_SHUTDOWN",         \
900 		[EC_HOST_EVENT_THROTTLE_START] = "THROTTLE_START",             \
901 		[EC_HOST_EVENT_THROTTLE_STOP] = "THROTTLE_STOP",               \
902 		[EC_HOST_EVENT_HANG_DETECT] = "HANG_DETECT",                   \
903 		[EC_HOST_EVENT_HANG_REBOOT] = "HANG_REBOOT",                   \
904 		[EC_HOST_EVENT_PD_MCU] = "PD_MCU",                             \
905 		[EC_HOST_EVENT_BATTERY_STATUS] = "BATTERY_STATUS",             \
906 		[EC_HOST_EVENT_PANIC] = "PANIC",                               \
907 		[EC_HOST_EVENT_KEYBOARD_FASTBOOT] = "KEYBOARD_FASTBOOT",       \
908 		[EC_HOST_EVENT_RTC] = "RTC",                                   \
909 		[EC_HOST_EVENT_MKBP] = "MKBP",                                 \
910 		[EC_HOST_EVENT_USB_MUX] = "USB_MUX",                           \
911 		[EC_HOST_EVENT_MODE_CHANGE] = "MODE_CHANGE",                   \
912 		[EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT] =                  \
913 			"KEYBOARD_RECOVERY_HW_REINIT",                         \
914 		[EC_HOST_EVENT_WOV] = "WOV",                                   \
915 		[EC_HOST_EVENT_INVALID] = "INVALID",                           \
916 		[EC_HOST_EVENT_BODY_DETECT_CHANGE] = "BODY_DETECT_CHANGE",     \
917 	}
918 /* clang-format on */
919 
920 /**
921  * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
922  * @flags: The host argument flags.
923  * @command_version: Command version.
924  * @data_size: The length of data.
925  * @checksum: Checksum; sum of command + flags + command_version + data_size +
926  *            all params/response data bytes.
927  */
928 struct ec_lpc_host_args {
929 	uint8_t flags;
930 	uint8_t command_version;
931 	uint8_t data_size;
932 	uint8_t checksum;
933 } __ec_align4;
934 
935 /* Flags for ec_lpc_host_args.flags */
936 /*
937  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
938  * params.
939  *
940  * If EC gets a command and this flag is not set, this is an old-style command.
941  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
942  * unknown length.  EC must respond with an old-style response (that is,
943  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
944  */
945 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
946 /*
947  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
948  *
949  * If EC responds to a command and this flag is not set, this is an old-style
950  * response.  Command version is 0 and response data from EC is at
951  * EC_LPC_ADDR_OLD_PARAM with unknown length.
952  */
953 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02
954 
955 /*****************************************************************************/
956 /*
957  * Byte codes returned by EC over SPI interface.
958  *
959  * These can be used by the AP to debug the EC interface, and to determine
960  * when the EC is not in a state where it will ever get around to responding
961  * to the AP.
962  *
963  * Example of sequence of bytes read from EC for a current good transfer:
964  *   1. -                  - AP asserts chip select (CS#)
965  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
966  *   3. -                  - EC starts handling CS# interrupt
967  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
968  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
969  *                           bytes looking for EC_SPI_FRAME_START
970  *   6. -                  - EC finishes processing and sets up response
971  *   7. EC_SPI_FRAME_START - AP reads frame byte
972  *   8. (response packet)  - AP reads response packet
973  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
974  *   10 -                  - AP deasserts chip select
975  *   11 -                  - EC processes CS# interrupt and sets up DMA for
976  *                           next request
977  *
978  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
979  * the following byte values:
980  *   EC_SPI_OLD_READY
981  *   EC_SPI_RX_READY
982  *   EC_SPI_RECEIVING
983  *   EC_SPI_PROCESSING
984  *
985  * Then the EC found an error in the request, or was not ready for the request
986  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
987  * because the EC is unable to tell when the AP is done sending its request.
988  */
989 
990 /*
991  * Framing byte which precedes a response packet from the EC.  After sending a
992  * request, the AP will clock in bytes until it sees the framing byte, then
993  * clock in the response packet.
994  */
995 #define EC_SPI_FRAME_START 0xec
996 
997 /*
998  * Padding bytes which are clocked out after the end of a response packet.
999  */
1000 #define EC_SPI_PAST_END 0xed
1001 
1002 /*
1003  * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
1004  * that the AP will send a valid packet header (starting with
1005  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
1006  *
1007  * NOTE: Some SPI configurations place the Most Significant Bit on SDO when
1008  *	 CS goes low. This macro has the Most Significant Bit set to zero,
1009  *	 so SDO will not be driven high when CS goes low.
1010  */
1011 #define EC_SPI_RX_READY 0x78
1012 
1013 /*
1014  * EC has started receiving the request from the AP, but hasn't started
1015  * processing it yet.
1016  */
1017 #define EC_SPI_RECEIVING 0xf9
1018 
1019 /* EC has received the entire request from the AP and is processing it. */
1020 #define EC_SPI_PROCESSING 0xfa
1021 
1022 /*
1023  * EC received bad data from the AP, such as a packet header with an invalid
1024  * length.  EC will ignore all data until chip select deasserts.
1025  */
1026 #define EC_SPI_RX_BAD_DATA 0xfb
1027 
1028 /*
1029  * EC received data from the AP before it was ready.  That is, the AP asserted
1030  * chip select and started clocking data before the EC was ready to receive it.
1031  * EC will ignore all data until chip select deasserts.
1032  */
1033 #define EC_SPI_NOT_READY 0xfc
1034 
1035 /*
1036  * EC was ready to receive a request from the AP.  EC has treated the byte sent
1037  * by the AP as part of a request packet, or (for old-style ECs) is processing
1038  * a fully received packet but is not ready to respond yet.
1039  */
1040 #define EC_SPI_OLD_READY 0xfd
1041 
1042 /*****************************************************************************/
1043 
1044 /*
1045  * Protocol version 2 for I2C and SPI send a request this way:
1046  *
1047  *	0	EC_CMD_VERSION0 + (command version)
1048  *	1	Command number
1049  *	2	Length of params = N
1050  *	3..N+2	Params, if any
1051  *	N+3	8-bit checksum of bytes 0..N+2
1052  *
1053  * The corresponding response is:
1054  *
1055  *	0	Result code (EC_RES_*)
1056  *	1	Length of params = M
1057  *	2..M+1	Params, if any
1058  *	M+2	8-bit checksum of bytes 0..M+1
1059  */
1060 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
1061 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
1062 #define EC_PROTO2_REQUEST_OVERHEAD \
1063 	(EC_PROTO2_REQUEST_HEADER_BYTES + EC_PROTO2_REQUEST_TRAILER_BYTES)
1064 
1065 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
1066 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
1067 #define EC_PROTO2_RESPONSE_OVERHEAD \
1068 	(EC_PROTO2_RESPONSE_HEADER_BYTES + EC_PROTO2_RESPONSE_TRAILER_BYTES)
1069 
1070 /* Parameter length was limited by the LPC interface */
1071 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
1072 
1073 /* Maximum request and response packet sizes for protocol version 2 */
1074 #define EC_PROTO2_MAX_REQUEST_SIZE \
1075 	(EC_PROTO2_REQUEST_OVERHEAD + EC_PROTO2_MAX_PARAM_SIZE)
1076 #define EC_PROTO2_MAX_RESPONSE_SIZE \
1077 	(EC_PROTO2_RESPONSE_OVERHEAD + EC_PROTO2_MAX_PARAM_SIZE)
1078 
1079 /*****************************************************************************/
1080 
1081 /*
1082  * Value written to legacy command port / prefix byte to indicate protocol
1083  * 3+ structs are being used.  Usage is bus-dependent.
1084  */
1085 #define EC_COMMAND_PROTOCOL_3 0xda
1086 
1087 #define EC_HOST_REQUEST_VERSION 3
1088 
1089 /**
1090  * struct ec_host_request - Version 3 request from host.
1091  * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
1092  *                  receives a header with a version it doesn't know how to
1093  *                  parse.
1094  * @checksum: Checksum of request and data; sum of all bytes including checksum
1095  *            should total to 0.
1096  * @command: Command to send (EC_CMD_...)
1097  * @command_version: Command version.
1098  * @reserved: Unused byte in current protocol version; set to 0.
1099  * @data_len: Length of data which follows this header.
1100  */
1101 struct ec_host_request {
1102 	uint8_t struct_version;
1103 	uint8_t checksum;
1104 	uint16_t command;
1105 	uint8_t command_version;
1106 	uint8_t reserved;
1107 	uint16_t data_len;
1108 } __ec_align4;
1109 
1110 #define EC_HOST_RESPONSE_VERSION 3
1111 
1112 /**
1113  * struct ec_host_response - Version 3 response from EC.
1114  * @struct_version: Struct version (=3).
1115  * @checksum: Checksum of response and data; sum of all bytes including
1116  *            checksum should total to 0.
1117  * @result: EC's response to the command (separate from communication failure)
1118  * @data_len: Length of data which follows this header.
1119  * @reserved: Unused bytes in current protocol version; set to 0.
1120  */
1121 struct ec_host_response {
1122 	uint8_t struct_version;
1123 	uint8_t checksum;
1124 	uint16_t result;
1125 	uint16_t data_len;
1126 	uint16_t reserved;
1127 } __ec_align4;
1128 
1129 /*****************************************************************************/
1130 
1131 /*
1132  * Host command protocol V4.
1133  *
1134  * Packets always start with a request or response header.  They are followed
1135  * by data_len bytes of data.  If the data_crc_present flag is set, the data
1136  * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1
1137  * polynomial.
1138  *
1139  * Host algorithm when sending a request q:
1140  *
1141  * 101) tries_left=(some value, e.g. 3);
1142  * 102) q.seq_num++
1143  * 103) q.seq_dup=0
1144  * 104) Calculate q.header_crc.
1145  * 105) Send request q to EC.
1146  * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
1147  *
1148  * 201) If r.struct_version != 4, go to 301.
1149  * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
1150  * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
1151  * 204) If r.seq_num != q.seq_num, go to 301.
1152  * 205) If r.seq_dup == q.seq_dup, return success.
1153  * 207) If r.seq_dup == 1, go to 301.
1154  * 208) Return error.
1155  *
1156  * 301) If --tries_left <= 0, return error.
1157  * 302) If q.seq_dup == 1, go to 105.
1158  * 303) q.seq_dup = 1
1159  * 304) Go to 104.
1160  *
1161  * EC algorithm when receiving a request q.
1162  * EC has response buffer r, error buffer e.
1163  *
1164  * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
1165  *      and go to 301
1166  * 102) If q.header_crc mismatches calculated CRC, set e.result =
1167  *      EC_RES_INVALID_HEADER_CRC and go to 301
1168  * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
1169  *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
1170  *      and go to 301.
1171  * 104) If q.seq_dup == 0, go to 201.
1172  * 105) If q.seq_num != r.seq_num, go to 201.
1173  * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
1174  *
1175  * 201) Process request q into response r.
1176  * 202) r.seq_num = q.seq_num
1177  * 203) r.seq_dup = q.seq_dup
1178  * 204) Calculate r.header_crc
1179  * 205) If r.data_len > 0 and data is no longer available, set e.result =
1180  *      EC_RES_DUP_UNAVAILABLE and go to 301.
1181  * 206) Send response r.
1182  *
1183  * 301) e.seq_num = q.seq_num
1184  * 302) e.seq_dup = q.seq_dup
1185  * 303) Calculate e.header_crc.
1186  * 304) Send error response e.
1187  */
1188 
1189 /* Version 4 request from host */
1190 struct ec_host_request4 {
1191 	/*
1192 	 * bits 0-3: struct_version: Structure version (=4)
1193 	 * bit    4: is_response: Is response (=0)
1194 	 * bits 5-6: seq_num: Sequence number
1195 	 * bit    7: seq_dup: Sequence duplicate flag
1196 	 */
1197 	uint8_t fields0;
1198 
1199 	/*
1200 	 * bits 0-4: command_version: Command version
1201 	 * bits 5-6: Reserved (set 0, ignore on read)
1202 	 * bit    7: data_crc_present: Is data CRC present after data
1203 	 */
1204 	uint8_t fields1;
1205 
1206 	/* Command code (EC_CMD_*) */
1207 	uint16_t command;
1208 
1209 	/* Length of data which follows this header (not including data CRC) */
1210 	uint16_t data_len;
1211 
1212 	/* Reserved (set 0, ignore on read) */
1213 	uint8_t reserved;
1214 
1215 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
1216 	uint8_t header_crc;
1217 } __ec_align4;
1218 
1219 /* Version 4 response from EC */
1220 struct ec_host_response4 {
1221 	/*
1222 	 * bits 0-3: struct_version: Structure version (=4)
1223 	 * bit    4: is_response: Is response (=1)
1224 	 * bits 5-6: seq_num: Sequence number
1225 	 * bit    7: seq_dup: Sequence duplicate flag
1226 	 */
1227 	uint8_t fields0;
1228 
1229 	/*
1230 	 * bits 0-6: Reserved (set 0, ignore on read)
1231 	 * bit    7: data_crc_present: Is data CRC present after data
1232 	 */
1233 	uint8_t fields1;
1234 
1235 	/* Result code (EC_RES_*) */
1236 	uint16_t result;
1237 
1238 	/* Length of data which follows this header (not including data CRC) */
1239 	uint16_t data_len;
1240 
1241 	/* Reserved (set 0, ignore on read) */
1242 	uint8_t reserved;
1243 
1244 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
1245 	uint8_t header_crc;
1246 } __ec_align4;
1247 
1248 /* Fields in fields0 byte */
1249 #define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f
1250 #define EC_PACKET4_0_IS_RESPONSE_MASK 0x10
1251 #define EC_PACKET4_0_SEQ_NUM_SHIFT 5
1252 #define EC_PACKET4_0_SEQ_NUM_MASK 0x60
1253 #define EC_PACKET4_0_SEQ_DUP_MASK 0x80
1254 
1255 /* Fields in fields1 byte */
1256 #define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */
1257 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80
1258 
1259 /*****************************************************************************/
1260 /*
1261  * Notes on commands:
1262  *
1263  * Each command is an 16-bit command value.  Commands which take params or
1264  * return response data specify structures for that data.  If no structure is
1265  * specified, the command does not input or output data, respectively.
1266  * Parameter/response length is implicit in the structs.  Some underlying
1267  * communication protocols (I2C, SPI) may add length or checksum headers, but
1268  * those are implementation-dependent and not defined here.
1269  *
1270  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
1271  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
1272  */
1273 
1274 /*****************************************************************************/
1275 /* General / test commands */
1276 
1277 /*
1278  * Get protocol version, used to deal with non-backward compatible protocol
1279  * changes.
1280  */
1281 #define EC_CMD_PROTO_VERSION 0x0000
1282 
1283 /**
1284  * struct ec_response_proto_version - Response to the proto version command.
1285  * @version: The protocol version.
1286  */
1287 struct ec_response_proto_version {
1288 	uint32_t version;
1289 } __ec_align4;
1290 
1291 /*
1292  * Hello.  This is a simple command to test the EC is responsive to
1293  * commands.
1294  */
1295 #define EC_CMD_HELLO 0x0001
1296 
1297 /**
1298  * struct ec_params_hello - Parameters to the hello command.
1299  * @in_data: Pass anything here.
1300  */
1301 struct ec_params_hello {
1302 	uint32_t in_data;
1303 } __ec_align4;
1304 
1305 /**
1306  * struct ec_response_hello - Response to the hello command.
1307  * @out_data: Output will be in_data + 0x01020304.
1308  */
1309 struct ec_response_hello {
1310 	uint32_t out_data;
1311 } __ec_align4;
1312 
1313 /* Get version number */
1314 #define EC_CMD_GET_VERSION 0x0002
1315 
1316 enum ec_image {
1317 	EC_IMAGE_UNKNOWN = 0,
1318 	EC_IMAGE_RO,
1319 	EC_IMAGE_RW,
1320 	EC_IMAGE_RW_A = EC_IMAGE_RW,
1321 	EC_IMAGE_RO_B,
1322 	EC_IMAGE_RW_B,
1323 };
1324 
1325 /**
1326  * struct ec_response_get_version - Response to the v0 get version command.
1327  * @version_string_ro: Null-terminated RO firmware version string.
1328  * @version_string_rw: Null-terminated RW firmware version string.
1329  * @reserved: Unused bytes; was previously RW-B firmware version string.
1330  * @current_image: One of ec_image.
1331  */
1332 struct ec_response_get_version {
1333 	char version_string_ro[32];
1334 	char version_string_rw[32];
1335 	char reserved[32]; /* Changed to cros_fwid_ro in version 1 */
1336 	uint32_t current_image;
1337 } __ec_align4;
1338 
1339 /**
1340  * struct ec_response_get_version_v1 - Response to the v1 get version command.
1341  *
1342  * ec_response_get_version_v1 is a strict superset of ec_response_get_version.
1343  * The v1 response changes the semantics of one field (reserved to cros_fwid_ro)
1344  * and adds one additional field (cros_fwid_rw).
1345  *
1346  * @version_string_ro: Null-terminated RO firmware version string.
1347  * @version_string_rw: Null-terminated RW firmware version string.
1348  * @cros_fwid_ro: Null-terminated RO CrOS FWID string.
1349  * @current_image: One of ec_image.
1350  * @cros_fwid_rw: Null-terminated RW CrOS FWID string.
1351  */
1352 struct ec_response_get_version_v1 {
1353 	char version_string_ro[32];
1354 	char version_string_rw[32];
1355 	char cros_fwid_ro[32]; /* Added in version 1 (Used to be reserved) */
1356 	uint32_t current_image;
1357 	char cros_fwid_rw[32]; /* Added in version 1 */
1358 } __ec_align4;
1359 
1360 /* Read test - OBSOLETE */
1361 #define EC_CMD_READ_TEST 0x0003
1362 
1363 /*
1364  * Get build information
1365  *
1366  * Response is null-terminated string.
1367  */
1368 #define EC_CMD_GET_BUILD_INFO 0x0004
1369 
1370 /* Get chip info */
1371 #define EC_CMD_GET_CHIP_INFO 0x0005
1372 
1373 /**
1374  * struct ec_response_get_chip_info - Response to the get chip info command.
1375  * @vendor: Null-terminated string for chip vendor.
1376  * @name: Null-terminated string for chip name.
1377  * @revision: Null-terminated string for chip mask version.
1378  */
1379 struct ec_response_get_chip_info {
1380 	char vendor[32];
1381 	char name[32];
1382 	char revision[32];
1383 } __ec_align4;
1384 
1385 /* Get board HW version */
1386 #define EC_CMD_GET_BOARD_VERSION 0x0006
1387 
1388 /**
1389  * struct ec_response_board_version - Response to the board version command.
1390  * @board_version: A monotonously incrementing number.
1391  */
1392 struct ec_response_board_version {
1393 	uint16_t board_version;
1394 } __ec_align2;
1395 
1396 /*
1397  * Read memory-mapped data.
1398  *
1399  * This is an alternate interface to memory-mapped data for bus protocols
1400  * which don't support direct-mapped memory - I2C, SPI, etc.
1401  *
1402  * Response is params.size bytes of data.
1403  */
1404 #define EC_CMD_READ_MEMMAP 0x0007
1405 
1406 /**
1407  * struct ec_params_read_memmap - Parameters for the read memory map command.
1408  * @offset: Offset in memmap (EC_MEMMAP_*).
1409  * @size: Size to read in bytes.
1410  */
1411 struct ec_params_read_memmap {
1412 	uint8_t offset;
1413 	uint8_t size;
1414 } __ec_align1;
1415 
1416 /* Read versions supported for a command */
1417 #define EC_CMD_GET_CMD_VERSIONS 0x0008
1418 
1419 /**
1420  * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1421  * @cmd: Command to check.
1422  */
1423 struct ec_params_get_cmd_versions {
1424 	uint8_t cmd;
1425 } __ec_align1;
1426 
1427 /**
1428  * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1429  *         versions (v1)
1430  * @cmd: Command to check.
1431  */
1432 struct ec_params_get_cmd_versions_v1 {
1433 	uint16_t cmd;
1434 } __ec_align2;
1435 
1436 /**
1437  * struct ec_response_get_cmd_version - Response to the get command versions.
1438  * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1439  *                a desired version.
1440  */
1441 struct ec_response_get_cmd_versions {
1442 	uint32_t version_mask;
1443 } __ec_align4;
1444 
1445 /*
1446  * Check EC communications status (busy). This is needed on i2c/spi but not
1447  * on lpc since it has its own out-of-band busy indicator.
1448  *
1449  * lpc must read the status from the command register. Attempting this on
1450  * lpc will overwrite the args/parameter space and corrupt its data.
1451  */
1452 #define EC_CMD_GET_COMMS_STATUS 0x0009
1453 
1454 /* Avoid using ec_status which is for return values */
1455 enum ec_comms_status {
1456 	EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */
1457 };
1458 
1459 /**
1460  * struct ec_response_get_comms_status - Response to the get comms status
1461  *         command.
1462  * @flags: Mask of enum ec_comms_status.
1463  */
1464 struct ec_response_get_comms_status {
1465 	uint32_t flags; /* Mask of enum ec_comms_status */
1466 } __ec_align4;
1467 
1468 /* Fake a variety of responses, purely for testing purposes. */
1469 #define EC_CMD_TEST_PROTOCOL 0x000A
1470 
1471 /* Tell the EC what to send back to us. */
1472 struct ec_params_test_protocol {
1473 	uint32_t ec_result;
1474 	uint32_t ret_len;
1475 	uint8_t buf[32];
1476 } __ec_align4;
1477 
1478 /* Here it comes... */
1479 struct ec_response_test_protocol {
1480 	uint8_t buf[32];
1481 } __ec_align4;
1482 
1483 /* Get protocol information */
1484 #define EC_CMD_GET_PROTOCOL_INFO 0x000B
1485 
1486 /* Flags for ec_response_get_protocol_info.flags */
1487 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1488 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1489 
1490 /**
1491  * struct ec_response_get_protocol_info - Response to the get protocol info.
1492  * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1493  *                     version n).
1494  * @max_request_packet_size: Maximum request packet size in bytes.
1495  * @max_response_packet_size: Maximum response packet size in bytes.
1496  * @flags: see EC_PROTOCOL_INFO_*
1497  */
1498 struct ec_response_get_protocol_info {
1499 	/* Fields which exist if at least protocol version 3 supported */
1500 	uint32_t protocol_versions;
1501 	uint16_t max_request_packet_size;
1502 	uint16_t max_response_packet_size;
1503 	uint32_t flags;
1504 } __ec_align4;
1505 
1506 /*****************************************************************************/
1507 /* Get/Set miscellaneous values */
1508 
1509 /* The upper byte of .flags tells what to do (nothing means "get") */
1510 #define EC_GSV_SET 0x80000000
1511 
1512 /*
1513  * The lower three bytes of .flags identifies the parameter, if that has
1514  * meaning for an individual command.
1515  */
1516 #define EC_GSV_PARAM_MASK 0x00ffffff
1517 
1518 struct ec_params_get_set_value {
1519 	uint32_t flags;
1520 	uint32_t value;
1521 } __ec_align4;
1522 
1523 struct ec_response_get_set_value {
1524 	uint32_t flags;
1525 	uint32_t value;
1526 } __ec_align4;
1527 
1528 /* More than one command can use these structs to get/set parameters. */
1529 #define EC_CMD_GSV_PAUSE_IN_S5 0x000C
1530 
1531 /*****************************************************************************/
1532 /* List the features supported by the firmware */
1533 #define EC_CMD_GET_FEATURES 0x000D
1534 
1535 /* Supported features */
1536 enum ec_feature_code {
1537 	/*
1538 	 * This image contains a limited set of features. Another image
1539 	 * in RW partition may support more features.
1540 	 */
1541 	EC_FEATURE_LIMITED = 0,
1542 	/*
1543 	 * Commands for probing/reading/writing/erasing the flash in the
1544 	 * EC are present.
1545 	 */
1546 	EC_FEATURE_FLASH = 1,
1547 	/*
1548 	 * Can control the fan speed directly.
1549 	 */
1550 	EC_FEATURE_PWM_FAN = 2,
1551 	/*
1552 	 * Can control the intensity of the keyboard backlight.
1553 	 */
1554 	EC_FEATURE_PWM_KEYB = 3,
1555 	/*
1556 	 * Support Google lightbar, introduced on Pixel.
1557 	 */
1558 	EC_FEATURE_LIGHTBAR = 4,
1559 	/* Control of LEDs  */
1560 	EC_FEATURE_LED = 5,
1561 	/* Exposes an interface to control gyro and sensors.
1562 	 * The host goes through the EC to access these sensors.
1563 	 * In addition, the EC may provide composite sensors, like lid angle.
1564 	 */
1565 	EC_FEATURE_MOTION_SENSE = 6,
1566 	/* The keyboard is controlled by the EC */
1567 	EC_FEATURE_KEYB = 7,
1568 	/* The AP can use part of the EC flash as persistent storage. */
1569 	EC_FEATURE_PSTORE = 8,
1570 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1571 	EC_FEATURE_PORT80 = 9,
1572 	/*
1573 	 * Thermal management: include TMP specific commands.
1574 	 * Higher level than direct fan control.
1575 	 */
1576 	EC_FEATURE_THERMAL = 10,
1577 	/* Can switch the screen backlight on/off */
1578 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1579 	/* Can switch the wifi module on/off */
1580 	EC_FEATURE_WIFI_SWITCH = 12,
1581 	/* Monitor host events, through for example SMI or SCI */
1582 	EC_FEATURE_HOST_EVENTS = 13,
1583 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1584 	EC_FEATURE_GPIO = 14,
1585 	/* The EC can send i2c messages to downstream devices. */
1586 	EC_FEATURE_I2C = 15,
1587 	/* Command to control charger are included */
1588 	EC_FEATURE_CHARGER = 16,
1589 	/* Simple battery support. */
1590 	EC_FEATURE_BATTERY = 17,
1591 	/*
1592 	 * Support Smart battery protocol
1593 	 * (Common Smart Battery System Interface Specification)
1594 	 */
1595 	EC_FEATURE_SMART_BATTERY = 18,
1596 	/* EC can detect when the host hangs. */
1597 	EC_FEATURE_HANG_DETECT = 19,
1598 	/* Report power information, for pit only */
1599 	EC_FEATURE_PMU = 20,
1600 	/* Another Cros EC device is present downstream of this one */
1601 	EC_FEATURE_SUB_MCU = 21,
1602 	/* Support USB Power delivery (PD) commands */
1603 	EC_FEATURE_USB_PD = 22,
1604 	/* Control USB multiplexer, for audio through USB port for instance. */
1605 	EC_FEATURE_USB_MUX = 23,
1606 	/* Motion Sensor code has an internal software FIFO */
1607 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1608 	/* Support temporary secure vstore */
1609 	EC_FEATURE_VSTORE = 25,
1610 	/* EC decides on USB-C SS mux state, muxes configured by host */
1611 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1612 	/* EC has RTC feature that can be controlled by host commands */
1613 	EC_FEATURE_RTC = 27,
1614 	/* The MCU exposes a Fingerprint sensor */
1615 	EC_FEATURE_FINGERPRINT = 28,
1616 	/* The MCU exposes a Touchpad */
1617 	EC_FEATURE_TOUCHPAD = 29,
1618 	/* The MCU has RWSIG task enabled */
1619 	EC_FEATURE_RWSIG = 30,
1620 	/* EC has device events support */
1621 	EC_FEATURE_DEVICE_EVENT = 31,
1622 	/* EC supports the unified wake masks for LPC/eSPI systems */
1623 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1624 	/* EC supports 64-bit host events */
1625 	EC_FEATURE_HOST_EVENT64 = 33,
1626 	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1627 	EC_FEATURE_EXEC_IN_RAM = 34,
1628 	/* EC supports CEC commands */
1629 	EC_FEATURE_CEC = 35,
1630 	/* EC supports tight sensor timestamping. */
1631 	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1632 	/*
1633 	 * EC supports tablet mode detection aligned to Chrome and allows
1634 	 * setting of threshold by host command using
1635 	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1636 	 */
1637 	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1638 	/*
1639 	 * Early Firmware Selection ver.2. Enabled by CONFIG_VBOOT_EFS2.
1640 	 * Note this is a RO feature. So, a query (EC_CMD_GET_FEATURES) should
1641 	 * be sent to RO to be precise.
1642 	 */
1643 	EC_FEATURE_EFS2 = 38,
1644 	/* The MCU is a System Companion Processor (SCP). */
1645 	EC_FEATURE_SCP = 39,
1646 	/* The MCU is an Integrated Sensor Hub */
1647 	EC_FEATURE_ISH = 40,
1648 	/* New TCPMv2 TYPEC_ prefaced commands supported */
1649 	EC_FEATURE_TYPEC_CMD = 41,
1650 	/*
1651 	 * The EC will wait for direction from the AP to enter Type-C alternate
1652 	 * modes or USB4.
1653 	 */
1654 	EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1655 	/*
1656 	 * The EC will wait for an acknowledge from the AP after setting the
1657 	 * mux.
1658 	 */
1659 	EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1660 	/*
1661 	 * The EC supports entering and residing in S4.
1662 	 */
1663 	EC_FEATURE_S4_RESIDENCY = 44,
1664 	/*
1665 	 * The EC supports the AP directing mux sets for the board.
1666 	 */
1667 	EC_FEATURE_TYPEC_AP_MUX_SET = 45,
1668 	/*
1669 	 * The EC supports the AP composing VDMs for us to send.
1670 	 */
1671 	EC_FEATURE_TYPEC_AP_VDM_SEND = 46,
1672 	/*
1673 	 * The EC supports system safe mode panic recovery.
1674 	 */
1675 	EC_FEATURE_SYSTEM_SAFE_MODE = 47,
1676 	/*
1677 	 * The EC will reboot on runtime assertion failures.
1678 	 */
1679 	EC_FEATURE_ASSERT_REBOOTS = 48,
1680 	/*
1681 	 * The EC image is built with tokenized logging enabled.
1682 	 */
1683 	EC_FEATURE_TOKENIZED_LOGGING = 49,
1684 	/*
1685 	 * The EC supports triggering an STB dump.
1686 	 */
1687 	EC_FEATURE_AMD_STB_DUMP = 50,
1688 	/*
1689 	 * The EC supports memory dump commands.
1690 	 */
1691 	EC_FEATURE_MEMORY_DUMP = 51,
1692 	/*
1693 	 * The EC supports DP2.1 capability
1694 	 */
1695 	EC_FEATURE_TYPEC_DP2_1 = 52,
1696 	/*
1697 	 * The MCU is System Companion Processor Core 1
1698 	 */
1699 	EC_FEATURE_SCP_C1 = 53,
1700 	/*
1701 	 * The EC supports UCSI PPM.
1702 	 */
1703 	EC_FEATURE_UCSI_PPM = 54,
1704 };
1705 
1706 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1707 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1708 
1709 struct ec_response_get_features {
1710 	uint32_t flags[2];
1711 } __ec_align4;
1712 
1713 /*****************************************************************************/
1714 /* Get the board's SKU ID from EC */
1715 #define EC_CMD_GET_SKU_ID 0x000E
1716 
1717 /* Set SKU ID from AP */
1718 #define EC_CMD_SET_SKU_ID 0x000F
1719 
1720 struct ec_sku_id_info {
1721 	uint32_t sku_id;
1722 } __ec_align4;
1723 
1724 /*****************************************************************************/
1725 /* Flash commands */
1726 
1727 /* Get flash info */
1728 #define EC_CMD_FLASH_INFO 0x0010
1729 #define EC_VER_FLASH_INFO 2
1730 
1731 /**
1732  * struct ec_response_flash_info - Response to the flash info command.
1733  * @flash_size: Usable flash size in bytes.
1734  * @write_block_size: Write block size. Write offset and size must be a
1735  *                    multiple of this.
1736  * @erase_block_size: Erase block size. Erase offset and size must be a
1737  *                    multiple of this.
1738  * @protect_block_size: Protection block size. Protection offset and size
1739  *                      must be a multiple of this.
1740  *
1741  * Version 0 returns these fields.
1742  */
1743 struct ec_response_flash_info {
1744 	uint32_t flash_size;
1745 	uint32_t write_block_size;
1746 	uint32_t erase_block_size;
1747 	uint32_t protect_block_size;
1748 } __ec_align4;
1749 
1750 /*
1751  * Flags for version 1+ flash info command
1752  * EC flash erases bits to 0 instead of 1.
1753  */
1754 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1755 
1756 /*
1757  * Flash must be selected for read/write/erase operations to succeed.  This may
1758  * be necessary on a chip where write/erase can be corrupted by other board
1759  * activity, or where the chip needs to enable some sort of programming voltage,
1760  * or where the read/write/erase operations require cleanly suspending other
1761  * chip functionality.
1762  */
1763 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1764 
1765 /**
1766  * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1767  * @flash_size: Usable flash size in bytes.
1768  * @write_block_size: Write block size. Write offset and size must be a
1769  *                    multiple of this.
1770  * @erase_block_size: Erase block size. Erase offset and size must be a
1771  *                    multiple of this.
1772  * @protect_block_size: Protection block size. Protection offset and size
1773  *                      must be a multiple of this.
1774  * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1775  *                    size is exactly this and offset is a multiple of this.
1776  *                    For example, an EC may have a write buffer which can do
1777  *                    half-page operations if data is aligned, and a slower
1778  *                    word-at-a-time write mode.
1779  * @flags: Flags; see EC_FLASH_INFO_*
1780  *
1781  * Version 1 returns the same initial fields as version 0, with additional
1782  * fields following.
1783  *
1784  * gcc anonymous structs don't seem to get along with the __packed directive;
1785  * if they did we'd define the version 0 structure as a sub-structure of this
1786  * one.
1787  *
1788  * Version 2 supports flash banks of different sizes:
1789  * The caller specified the number of banks it has preallocated
1790  * (num_banks_desc)
1791  * The EC returns the number of banks describing the flash memory.
1792  * It adds banks descriptions up to num_banks_desc.
1793  */
1794 struct ec_response_flash_info_1 {
1795 	/* Version 0 fields; see above for description */
1796 	uint32_t flash_size;
1797 	uint32_t write_block_size;
1798 	uint32_t erase_block_size;
1799 	uint32_t protect_block_size;
1800 
1801 	/* Version 1 adds these fields: */
1802 	uint32_t write_ideal_size;
1803 	uint32_t flags;
1804 } __ec_align4;
1805 
1806 struct ec_params_flash_info_2 {
1807 	/* Number of banks to describe */
1808 	uint16_t num_banks_desc;
1809 	/* Reserved; set 0; ignore on read */
1810 	uint8_t reserved[2];
1811 } __ec_align4;
1812 
1813 struct ec_flash_bank {
1814 	/* Number of sector is in this bank. */
1815 	uint16_t count;
1816 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1817 	uint8_t size_exp;
1818 	/* Minimal write size for the sectors in this bank */
1819 	uint8_t write_size_exp;
1820 	/* Erase size for the sectors in this bank */
1821 	uint8_t erase_size_exp;
1822 	/* Size for write protection, usually identical to erase size. */
1823 	uint8_t protect_size_exp;
1824 	/* Reserved; set 0; ignore on read */
1825 	uint8_t reserved[2];
1826 };
1827 
1828 struct ec_response_flash_info_2 {
1829 	/* Total flash in the EC. */
1830 	uint32_t flash_size;
1831 	/* Flags; see EC_FLASH_INFO_* */
1832 	uint32_t flags;
1833 	/* Maximum size to use to send data to write to the EC. */
1834 	uint32_t write_ideal_size;
1835 	/* Number of banks present in the EC. */
1836 	uint16_t num_banks_total;
1837 	/* Number of banks described in banks array. */
1838 	uint16_t num_banks_desc;
1839 	struct ec_flash_bank banks[0];
1840 } __ec_align4;
1841 
1842 /*
1843  * Read flash
1844  *
1845  * Response is params.size bytes of data.
1846  */
1847 #define EC_CMD_FLASH_READ 0x0011
1848 
1849 /**
1850  * struct ec_params_flash_read - Parameters for the flash read command.
1851  * @offset: Byte offset to read.
1852  * @size: Size to read in bytes.
1853  */
1854 struct ec_params_flash_read {
1855 	uint32_t offset;
1856 	uint32_t size;
1857 } __ec_align4;
1858 
1859 /* Write flash */
1860 #define EC_CMD_FLASH_WRITE 0x0012
1861 #define EC_VER_FLASH_WRITE 1
1862 
1863 /* Version 0 of the flash command supported only 64 bytes of data */
1864 #define EC_FLASH_WRITE_VER0_SIZE 64
1865 
1866 /**
1867  * struct ec_params_flash_write - Parameters for the flash write command.
1868  * @offset: Byte offset to write.
1869  * @size: Size to write in bytes.
1870  * @data: Data to write.
1871  * @data.words32: uint32_t data to write.
1872  * @data.bytes: uint8_t data to write.
1873  */
1874 struct ec_params_flash_write {
1875 	uint32_t offset;
1876 	uint32_t size;
1877 	/* Followed by data to write. This union allows accessing an
1878 	 * underlying buffer as uint32s or uint8s for convenience.
1879 	 */
1880 	union {
1881 		uint32_t words32[FLEXIBLE_ARRAY_MEMBER_SIZE];
1882 		uint8_t bytes[FLEXIBLE_ARRAY_MEMBER_SIZE];
1883 	} data;
1884 } __ec_align4;
1885 BUILD_ASSERT(member_size(struct ec_params_flash_write, data) == 0);
1886 
1887 /* Erase flash */
1888 #define EC_CMD_FLASH_ERASE 0x0013
1889 
1890 /**
1891  * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1892  * @offset: Byte offset to erase.
1893  * @size: Size to erase in bytes.
1894  */
1895 struct ec_params_flash_erase {
1896 	uint32_t offset;
1897 	uint32_t size;
1898 } __ec_align4;
1899 
1900 /*
1901  * v1 add async erase:
1902  * subcommands can returns:
1903  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1904  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1905  * EC_RES_ERROR : other errors.
1906  * EC_RES_BUSY : an existing erase operation is in progress.
1907  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1908  *
1909  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1910  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1911  * the proper result.
1912  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1913  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1914  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1915  * permitted while erasing. (For instance, STM32F4).
1916  */
1917 enum ec_flash_erase_cmd {
1918 	FLASH_ERASE_SECTOR, /* Erase and wait for result */
1919 	FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */
1920 	FLASH_ERASE_GET_RESULT, /* Ask for last erase result */
1921 };
1922 
1923 /**
1924  * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1925  * @cmd: One of ec_flash_erase_cmd.
1926  * @reserved: Pad byte; currently always contains 0.
1927  * @flag: No flags defined yet; set to 0.
1928  * @params: Same as v0 parameters.
1929  */
1930 struct ec_params_flash_erase_v1 {
1931 	uint8_t cmd;
1932 	uint8_t reserved;
1933 	uint16_t flag;
1934 	struct ec_params_flash_erase params;
1935 } __ec_align4;
1936 
1937 /*
1938  * Get/set flash protection.
1939  *
1940  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1941  * firmware write protect GPIO, not all flags will take effect immediately;
1942  * some flags require a subsequent hard reset to take effect.  Check the
1943  * returned flags bits to see what actually happened.
1944  *
1945  * If mask=0, simply returns the current flags state.
1946  */
1947 #define EC_CMD_FLASH_PROTECT 0x0015
1948 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
1949 
1950 /* Flags for flash protection */
1951 /* RO flash code protected when the EC boots */
1952 #define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0)
1953 /*
1954  * RO flash code protected now.  If this bit is set, at-boot status cannot
1955  * be changed.
1956  */
1957 #define EC_FLASH_PROTECT_RO_NOW BIT(1)
1958 /* Entire flash code protected now, until reboot. */
1959 #define EC_FLASH_PROTECT_ALL_NOW BIT(2)
1960 /* Flash write protect GPIO is asserted now */
1961 #define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3)
1962 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1963 #define EC_FLASH_PROTECT_ERROR_STUCK BIT(4)
1964 /*
1965  * Error - flash protection is in inconsistent state.  At least one bank of
1966  * flash which should be protected is not protected.  Usually fixed by
1967  * re-requesting the desired flags, or by a hard reset if that fails.
1968  */
1969 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1970 /* Entire flash code protected when the EC boots */
1971 #define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6)
1972 /* RW flash code protected when the EC boots */
1973 #define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7)
1974 /* RW flash code protected now. */
1975 #define EC_FLASH_PROTECT_RW_NOW BIT(8)
1976 /* Rollback information flash region protected when the EC boots */
1977 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9)
1978 /* Rollback information flash region protected now */
1979 #define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10)
1980 /* Error - Unknown error */
1981 #define EC_FLASH_PROTECT_ERROR_UNKNOWN BIT(11)
1982 
1983 /**
1984  * struct ec_params_flash_protect - Parameters for the flash protect command.
1985  * @mask: Bits in flags to apply.
1986  * @flags: New flags to apply.
1987  */
1988 struct ec_params_flash_protect {
1989 	uint32_t mask;
1990 	uint32_t flags;
1991 } __ec_align4;
1992 
1993 enum flash_protect_action {
1994 	FLASH_PROTECT_ASYNC = 0,
1995 	FLASH_PROTECT_GET_RESULT = 1,
1996 };
1997 
1998 /* Version 2 of the command is "asynchronous". */
1999 struct ec_params_flash_protect_v2 {
2000 	uint8_t action; /**< enum flash_protect_action */
2001 	uint8_t reserved[3]; /**< padding for alignment */
2002 	uint32_t mask;
2003 	uint32_t flags;
2004 } __ec_align4;
2005 
2006 /**
2007  * struct ec_response_flash_protect - Response to the flash protect command.
2008  * @flags: Current value of flash protect flags.
2009  * @valid_flags: Flags which are valid on this platform. This allows the
2010  *               caller to distinguish between flags which aren't set vs. flags
2011  *               which can't be set on this platform.
2012  * @writable_flags: Flags which can be changed given the current protection
2013  *                  state.
2014  */
2015 struct ec_response_flash_protect {
2016 	uint32_t flags;
2017 	uint32_t valid_flags;
2018 	uint32_t writable_flags;
2019 } __ec_align4;
2020 
2021 /*
2022  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
2023  * write protect.  These commands may be reused with version > 0.
2024  */
2025 
2026 /* Get the region offset/size */
2027 #define EC_CMD_FLASH_REGION_INFO 0x0016
2028 #define EC_VER_FLASH_REGION_INFO 1
2029 
2030 enum ec_flash_region {
2031 	/* Region which holds read-only EC image */
2032 	EC_FLASH_REGION_RO = 0,
2033 	/*
2034 	 * Region which holds active RW image. 'Active' is different from
2035 	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
2036 	 * scheduled to run, active/non-active applies only to RW images (for
2037 	 * the same reason 'update' applies only to RW images. It's a state of
2038 	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
2039 	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
2040 	 * doesn't enter 'running' state but it's still active on a flash.
2041 	 */
2042 	EC_FLASH_REGION_ACTIVE,
2043 	/*
2044 	 * Region which should be write-protected in the factory (a superset of
2045 	 * EC_FLASH_REGION_RO)
2046 	 */
2047 	EC_FLASH_REGION_WP_RO,
2048 	/* Region which holds updatable (non-active) RW image */
2049 	EC_FLASH_REGION_UPDATE,
2050 	/* Number of regions */
2051 	EC_FLASH_REGION_COUNT,
2052 };
2053 /*
2054  * 'RW' is vague if there are multiple RW images; we mean the active one,
2055  * so the old constant is deprecated.
2056  */
2057 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
2058 
2059 /**
2060  * struct ec_params_flash_region_info - Parameters for the flash region info
2061  *         command.
2062  * @region: Flash region; see EC_FLASH_REGION_*
2063  */
2064 struct ec_params_flash_region_info {
2065 	uint32_t region;
2066 } __ec_align4;
2067 
2068 struct ec_response_flash_region_info {
2069 	uint32_t offset;
2070 	uint32_t size;
2071 } __ec_align4;
2072 
2073 /* Get SPI flash information */
2074 #define EC_CMD_FLASH_SPI_INFO 0x0018
2075 
2076 struct ec_response_flash_spi_info {
2077 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
2078 	uint8_t jedec[3];
2079 
2080 	/* Pad byte; currently always contains 0 */
2081 	uint8_t reserved0;
2082 
2083 	/* Manufacturer / device ID from command 0x90 */
2084 	uint8_t mfr_dev_id[2];
2085 
2086 	/* Status registers from command 0x05 and 0x35 */
2087 	uint8_t sr1, sr2;
2088 } __ec_align1;
2089 
2090 /* Select flash during flash operations */
2091 #define EC_CMD_FLASH_SELECT 0x0019
2092 
2093 /**
2094  * struct ec_params_flash_select - Parameters for the flash select command.
2095  * @select: 1 to select flash, 0 to deselect flash
2096  */
2097 struct ec_params_flash_select {
2098 	uint8_t select;
2099 } __ec_align4;
2100 
2101 /**
2102  * Request random numbers to be generated and returned.
2103  * Can be used to test the random number generator is truly random.
2104  * See https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final and
2105  * https://webhome.phy.duke.edu/~rgb/General/dieharder.php.
2106  */
2107 #define EC_CMD_RAND_NUM 0x001A
2108 #define EC_VER_RAND_NUM 0
2109 
2110 struct ec_params_rand_num {
2111 	uint16_t num_rand_bytes; /**< num random bytes to generate */
2112 } __ec_align4;
2113 
2114 struct ec_response_rand_num {
2115 	/**
2116 	 * generated random numbers in the range of 1 to EC_MAX_INSIZE. The true
2117 	 * size of rand is determined by ec_params_rand_num's num_rand_bytes.
2118 	 */
2119 	uint8_t rand[FLEXIBLE_ARRAY_MEMBER_SIZE];
2120 } __ec_align1;
2121 BUILD_ASSERT(sizeof(struct ec_response_rand_num) == 0);
2122 
2123 /**
2124  * Get information about the key used to sign the RW firmware.
2125  * For more details on the fields, see "struct vb21_packed_key".
2126  */
2127 #define EC_CMD_RWSIG_INFO 0x001B
2128 #define EC_VER_RWSIG_INFO 0
2129 
2130 #define VBOOT2_KEY_ID_BYTES 20
2131 
2132 #ifdef CHROMIUM_EC
2133 /* Don't force external projects to depend on the vboot headers. */
2134 #include "vb21_struct.h"
2135 BUILD_ASSERT(sizeof(struct vb2_id) == VBOOT2_KEY_ID_BYTES);
2136 #endif
2137 
2138 struct ec_response_rwsig_info {
2139 	/**
2140 	 * Signature algorithm used by the key
2141 	 * (enum vb2_signature_algorithm).
2142 	 */
2143 	uint16_t sig_alg;
2144 
2145 	/**
2146 	 * Hash digest algorithm used with the key
2147 	 * (enum vb2_hash_algorithm).
2148 	 */
2149 	uint16_t hash_alg;
2150 
2151 	/** Key version. */
2152 	uint32_t key_version;
2153 
2154 	/** Key ID (struct vb2_id). */
2155 	uint8_t key_id[VBOOT2_KEY_ID_BYTES];
2156 
2157 	uint8_t key_is_valid;
2158 
2159 	/** Alignment padding. */
2160 	uint8_t reserved[3];
2161 } __ec_align4;
2162 
2163 BUILD_ASSERT(sizeof(struct ec_response_rwsig_info) == 32);
2164 
2165 /**
2166  * Get information about the system, such as reset flags, locked state, etc.
2167  */
2168 #define EC_CMD_SYSINFO 0x001C
2169 #define EC_VER_SYSINFO 0
2170 
2171 enum sysinfo_flags {
2172 	SYSTEM_IS_LOCKED = BIT(0),
2173 	SYSTEM_IS_FORCE_LOCKED = BIT(1),
2174 	SYSTEM_JUMP_ENABLED = BIT(2),
2175 	SYSTEM_JUMPED_TO_CURRENT_IMAGE = BIT(3),
2176 	SYSTEM_REBOOT_AT_SHUTDOWN = BIT(4),
2177 	/*
2178 	 * Used internally. It's set when EC_HOST_EVENT_KEYBOARD_RECOVERY is
2179 	 * set and cleared when the system shuts down (not when the host event
2180 	 * flag is cleared).
2181 	 */
2182 	SYSTEM_IN_MANUAL_RECOVERY = BIT(5),
2183 };
2184 
2185 struct ec_response_sysinfo {
2186 	uint32_t reset_flags; /**< EC_RESET_FLAG_* flags */
2187 	uint32_t current_image; /**< enum ec_image */
2188 	uint32_t flags; /**< enum sysinfo_flags */
2189 } __ec_align4;
2190 
2191 /*****************************************************************************/
2192 /* PWM commands */
2193 
2194 /* Get fan target RPM */
2195 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
2196 
2197 struct ec_response_pwm_get_fan_rpm {
2198 	uint32_t rpm;
2199 } __ec_align4;
2200 
2201 /* Set target fan RPM */
2202 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
2203 
2204 /* Version 0 of input params */
2205 struct ec_params_pwm_set_fan_target_rpm_v0 {
2206 	uint32_t rpm;
2207 } __ec_align4;
2208 
2209 /* Version 1 of input params */
2210 struct ec_params_pwm_set_fan_target_rpm_v1 {
2211 	uint32_t rpm;
2212 	uint8_t fan_idx;
2213 } __ec_align_size1;
2214 
2215 /* Get keyboard backlight */
2216 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
2217 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
2218 
2219 struct ec_response_pwm_get_keyboard_backlight {
2220 	uint8_t percent;
2221 	uint8_t enabled;
2222 } __ec_align1;
2223 
2224 /* Set keyboard backlight */
2225 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
2226 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
2227 
2228 struct ec_params_pwm_set_keyboard_backlight {
2229 	uint8_t percent;
2230 } __ec_align1;
2231 
2232 /* Set target fan PWM duty cycle */
2233 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
2234 
2235 /* Version 0 of input params */
2236 struct ec_params_pwm_set_fan_duty_v0 {
2237 	uint32_t percent;
2238 } __ec_align4;
2239 
2240 /* Version 1 of input params */
2241 struct ec_params_pwm_set_fan_duty_v1 {
2242 	uint32_t percent;
2243 	uint8_t fan_idx;
2244 } __ec_align_size1;
2245 
2246 #define EC_CMD_PWM_SET_DUTY 0x0025
2247 /* 16 bit duty cycle, 0xffff = 100% */
2248 #define EC_PWM_MAX_DUTY 0xffff
2249 
2250 enum ec_pwm_type {
2251 	/* All types, indexed by board-specific enum pwm_channel */
2252 	EC_PWM_TYPE_GENERIC = 0,
2253 	/* Keyboard backlight */
2254 	EC_PWM_TYPE_KB_LIGHT,
2255 	/* Display backlight */
2256 	EC_PWM_TYPE_DISPLAY_LIGHT,
2257 	EC_PWM_TYPE_COUNT,
2258 };
2259 
2260 struct ec_params_pwm_set_duty {
2261 	uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
2262 	uint8_t pwm_type; /* ec_pwm_type */
2263 	uint8_t index; /* Type-specific index, or 0 if unique */
2264 } __ec_align4;
2265 
2266 #define EC_CMD_PWM_GET_DUTY 0x0026
2267 
2268 struct ec_params_pwm_get_duty {
2269 	uint8_t pwm_type; /* ec_pwm_type */
2270 	uint8_t index; /* Type-specific index, or 0 if unique */
2271 } __ec_align1;
2272 
2273 struct ec_response_pwm_get_duty {
2274 	uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
2275 } __ec_align2;
2276 
2277 /*****************************************************************************/
2278 /*
2279  * Lightbar commands. This looks worse than it is. Since we only use one HOST
2280  * command to say "talk to the lightbar", we put the "and tell it to do X" part
2281  * into a subcommand. We'll make separate structs for subcommands with
2282  * different input args, so that we know how much to expect.
2283  */
2284 #define EC_CMD_LIGHTBAR_CMD 0x0028
2285 
2286 struct rgb_s {
2287 	uint8_t r, g, b;
2288 } __ec_todo_unpacked;
2289 
2290 #define LB_BATTERY_LEVELS 4
2291 
2292 /*
2293  * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
2294  * host command, but the alignment is the same regardless. Keep it that way.
2295  */
2296 struct lightbar_params_v0 {
2297 	/* Timing */
2298 	int32_t google_ramp_up;
2299 	int32_t google_ramp_down;
2300 	int32_t s3s0_ramp_up;
2301 	int32_t s0_tick_delay[2]; /* AC=0/1 */
2302 	int32_t s0a_tick_delay[2]; /* AC=0/1 */
2303 	int32_t s0s3_ramp_down;
2304 	int32_t s3_sleep_for;
2305 	int32_t s3_ramp_up;
2306 	int32_t s3_ramp_down;
2307 
2308 	/* Oscillation */
2309 	uint8_t new_s0;
2310 	uint8_t osc_min[2]; /* AC=0/1 */
2311 	uint8_t osc_max[2]; /* AC=0/1 */
2312 	uint8_t w_ofs[2]; /* AC=0/1 */
2313 
2314 	/* Brightness limits based on the backlight and AC. */
2315 	uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
2316 	uint8_t bright_bl_on_min[2]; /* AC=0/1 */
2317 	uint8_t bright_bl_on_max[2]; /* AC=0/1 */
2318 
2319 	/* Battery level thresholds */
2320 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
2321 
2322 	/* Map [AC][battery_level] to color index */
2323 	uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
2324 	uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
2325 
2326 	/* Color palette */
2327 	struct rgb_s color[8]; /* 0-3 are Google colors */
2328 } __ec_todo_packed;
2329 
2330 struct lightbar_params_v1 {
2331 	/* Timing */
2332 	int32_t google_ramp_up;
2333 	int32_t google_ramp_down;
2334 	int32_t s3s0_ramp_up;
2335 	int32_t s0_tick_delay[2]; /* AC=0/1 */
2336 	int32_t s0a_tick_delay[2]; /* AC=0/1 */
2337 	int32_t s0s3_ramp_down;
2338 	int32_t s3_sleep_for;
2339 	int32_t s3_ramp_up;
2340 	int32_t s3_ramp_down;
2341 	int32_t s5_ramp_up;
2342 	int32_t s5_ramp_down;
2343 	int32_t tap_tick_delay;
2344 	int32_t tap_gate_delay;
2345 	int32_t tap_display_time;
2346 
2347 	/* Tap-for-battery params */
2348 	uint8_t tap_pct_red;
2349 	uint8_t tap_pct_green;
2350 	uint8_t tap_seg_min_on;
2351 	uint8_t tap_seg_max_on;
2352 	uint8_t tap_seg_osc;
2353 	uint8_t tap_idx[3];
2354 
2355 	/* Oscillation */
2356 	uint8_t osc_min[2]; /* AC=0/1 */
2357 	uint8_t osc_max[2]; /* AC=0/1 */
2358 	uint8_t w_ofs[2]; /* AC=0/1 */
2359 
2360 	/* Brightness limits based on the backlight and AC. */
2361 	uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
2362 	uint8_t bright_bl_on_min[2]; /* AC=0/1 */
2363 	uint8_t bright_bl_on_max[2]; /* AC=0/1 */
2364 
2365 	/* Battery level thresholds */
2366 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
2367 
2368 	/* Map [AC][battery_level] to color index */
2369 	uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
2370 	uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
2371 
2372 	/* s5: single color pulse on inhibited power-up */
2373 	uint8_t s5_idx;
2374 
2375 	/* Color palette */
2376 	struct rgb_s color[8]; /* 0-3 are Google colors */
2377 } __ec_todo_packed;
2378 
2379 /* Lightbar command params v2
2380  * crbug.com/467716
2381  *
2382  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
2383  * logical groups to make it more manageable ( < 120 bytes).
2384  *
2385  * NOTE: Each of these groups must be less than 120 bytes.
2386  */
2387 
2388 struct lightbar_params_v2_timing {
2389 	/* Timing */
2390 	int32_t google_ramp_up;
2391 	int32_t google_ramp_down;
2392 	int32_t s3s0_ramp_up;
2393 	int32_t s0_tick_delay[2]; /* AC=0/1 */
2394 	int32_t s0a_tick_delay[2]; /* AC=0/1 */
2395 	int32_t s0s3_ramp_down;
2396 	int32_t s3_sleep_for;
2397 	int32_t s3_ramp_up;
2398 	int32_t s3_ramp_down;
2399 	int32_t s5_ramp_up;
2400 	int32_t s5_ramp_down;
2401 	int32_t tap_tick_delay;
2402 	int32_t tap_gate_delay;
2403 	int32_t tap_display_time;
2404 } __ec_todo_packed;
2405 
2406 struct lightbar_params_v2_tap {
2407 	/* Tap-for-battery params */
2408 	uint8_t tap_pct_red;
2409 	uint8_t tap_pct_green;
2410 	uint8_t tap_seg_min_on;
2411 	uint8_t tap_seg_max_on;
2412 	uint8_t tap_seg_osc;
2413 	uint8_t tap_idx[3];
2414 } __ec_todo_packed;
2415 
2416 struct lightbar_params_v2_oscillation {
2417 	/* Oscillation */
2418 	uint8_t osc_min[2]; /* AC=0/1 */
2419 	uint8_t osc_max[2]; /* AC=0/1 */
2420 	uint8_t w_ofs[2]; /* AC=0/1 */
2421 } __ec_todo_packed;
2422 
2423 struct lightbar_params_v2_brightness {
2424 	/* Brightness limits based on the backlight and AC. */
2425 	uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
2426 	uint8_t bright_bl_on_min[2]; /* AC=0/1 */
2427 	uint8_t bright_bl_on_max[2]; /* AC=0/1 */
2428 } __ec_todo_packed;
2429 
2430 struct lightbar_params_v2_thresholds {
2431 	/* Battery level thresholds */
2432 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
2433 } __ec_todo_packed;
2434 
2435 struct lightbar_params_v2_colors {
2436 	/* Map [AC][battery_level] to color index */
2437 	uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
2438 	uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
2439 
2440 	/* s5: single color pulse on inhibited power-up */
2441 	uint8_t s5_idx;
2442 
2443 	/* Color palette */
2444 	struct rgb_s color[8]; /* 0-3 are Google colors */
2445 } __ec_todo_packed;
2446 
2447 /* Lightbar program. */
2448 #define EC_LB_PROG_LEN 192
2449 struct lightbar_program {
2450 	uint8_t size;
2451 	uint8_t data[EC_LB_PROG_LEN];
2452 } __ec_todo_unpacked;
2453 
2454 struct ec_params_lightbar {
2455 	uint8_t cmd; /* Command (see enum lightbar_command) */
2456 	union {
2457 		/*
2458 		 * The following commands have no args:
2459 		 *
2460 		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
2461 		 * version, get_brightness, get_demo, suspend, resume,
2462 		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
2463 		 * get_params_v2_bright, get_params_v2_thlds,
2464 		 * get_params_v2_colors
2465 		 *
2466 		 * Don't use an empty struct, because C++ hates that.
2467 		 */
2468 
2469 		struct __ec_todo_unpacked {
2470 			uint8_t num;
2471 		} set_brightness, seq, demo;
2472 
2473 		struct __ec_todo_unpacked {
2474 			uint8_t ctrl, reg, value;
2475 		} reg;
2476 
2477 		struct __ec_todo_unpacked {
2478 			uint8_t led, red, green, blue;
2479 		} set_rgb;
2480 
2481 		struct __ec_todo_unpacked {
2482 			uint8_t led;
2483 		} get_rgb;
2484 
2485 		struct __ec_todo_unpacked {
2486 			uint8_t enable;
2487 		} manual_suspend_ctrl;
2488 
2489 		struct lightbar_params_v0 set_params_v0;
2490 		struct lightbar_params_v1 set_params_v1;
2491 
2492 		struct lightbar_params_v2_timing set_v2par_timing;
2493 		struct lightbar_params_v2_tap set_v2par_tap;
2494 		struct lightbar_params_v2_oscillation set_v2par_osc;
2495 		struct lightbar_params_v2_brightness set_v2par_bright;
2496 		struct lightbar_params_v2_thresholds set_v2par_thlds;
2497 		struct lightbar_params_v2_colors set_v2par_colors;
2498 
2499 		struct lightbar_program set_program;
2500 	};
2501 } __ec_todo_packed;
2502 
2503 struct ec_response_lightbar {
2504 	union {
2505 		struct __ec_todo_unpacked {
2506 			struct __ec_todo_unpacked {
2507 				uint8_t reg;
2508 				uint8_t ic0;
2509 				uint8_t ic1;
2510 			} vals[23];
2511 		} dump;
2512 
2513 		struct __ec_todo_unpacked {
2514 			uint8_t num;
2515 		} get_seq, get_brightness, get_demo;
2516 
2517 		struct lightbar_params_v0 get_params_v0;
2518 		struct lightbar_params_v1 get_params_v1;
2519 
2520 		struct lightbar_params_v2_timing get_params_v2_timing;
2521 		struct lightbar_params_v2_tap get_params_v2_tap;
2522 		struct lightbar_params_v2_oscillation get_params_v2_osc;
2523 		struct lightbar_params_v2_brightness get_params_v2_bright;
2524 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2525 		struct lightbar_params_v2_colors get_params_v2_colors;
2526 
2527 		struct __ec_todo_unpacked {
2528 			uint32_t num;
2529 			uint32_t flags;
2530 		} version;
2531 
2532 		struct __ec_todo_unpacked {
2533 			uint8_t red, green, blue;
2534 		} get_rgb;
2535 
2536 		/*
2537 		 * The following commands have no response:
2538 		 *
2539 		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2540 		 * set_params_v0, set_params_v1, set_program,
2541 		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2542 		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2543 		 * set_v2par_thlds, set_v2par_colors
2544 		 */
2545 	};
2546 } __ec_todo_packed;
2547 
2548 /* Lightbar commands */
2549 enum lightbar_command {
2550 	LIGHTBAR_CMD_DUMP = 0,
2551 	LIGHTBAR_CMD_OFF = 1,
2552 	LIGHTBAR_CMD_ON = 2,
2553 	LIGHTBAR_CMD_INIT = 3,
2554 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2555 	LIGHTBAR_CMD_SEQ = 5,
2556 	LIGHTBAR_CMD_REG = 6,
2557 	LIGHTBAR_CMD_SET_RGB = 7,
2558 	LIGHTBAR_CMD_GET_SEQ = 8,
2559 	LIGHTBAR_CMD_DEMO = 9,
2560 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2561 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2562 	LIGHTBAR_CMD_VERSION = 12,
2563 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2564 	LIGHTBAR_CMD_GET_RGB = 14,
2565 	LIGHTBAR_CMD_GET_DEMO = 15,
2566 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2567 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2568 	LIGHTBAR_CMD_SET_PROGRAM = 18,
2569 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2570 	LIGHTBAR_CMD_SUSPEND = 20,
2571 	LIGHTBAR_CMD_RESUME = 21,
2572 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2573 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2574 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2575 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2576 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2577 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2578 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2579 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2580 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2581 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2582 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2583 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2584 	LIGHTBAR_NUM_CMDS,
2585 };
2586 
2587 /*****************************************************************************/
2588 /* LED control commands */
2589 
2590 #define EC_CMD_LED_CONTROL 0x0029
2591 
2592 enum ec_led_id {
2593 	/* LED to indicate battery state of charge */
2594 	EC_LED_ID_BATTERY_LED = 0,
2595 	/*
2596 	 * LED to indicate system power state (on or in suspend).
2597 	 * May be on power button or on C-panel.
2598 	 */
2599 	EC_LED_ID_POWER_LED,
2600 	/* LED on power adapter or its plug */
2601 	EC_LED_ID_ADAPTER_LED,
2602 	/* LED to indicate left side */
2603 	EC_LED_ID_LEFT_LED,
2604 	/* LED to indicate right side */
2605 	EC_LED_ID_RIGHT_LED,
2606 	/* LED to indicate recovery mode with HW_REINIT */
2607 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2608 	/* LED to indicate sysrq debug mode. */
2609 	EC_LED_ID_SYSRQ_DEBUG_LED,
2610 
2611 	EC_LED_ID_COUNT,
2612 };
2613 
2614 /* LED control flags */
2615 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2616 #define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */
2617 
2618 enum ec_led_colors {
2619 	EC_LED_COLOR_INVALID = -1,
2620 	EC_LED_COLOR_RED = 0,
2621 	EC_LED_COLOR_GREEN,
2622 	EC_LED_COLOR_BLUE,
2623 	EC_LED_COLOR_YELLOW,
2624 	EC_LED_COLOR_WHITE,
2625 	EC_LED_COLOR_AMBER,
2626 
2627 	EC_LED_COLOR_COUNT,
2628 };
2629 
2630 struct ec_params_led_control {
2631 	uint8_t led_id; /* Which LED to control */
2632 	uint8_t flags; /* Control flags */
2633 
2634 	uint8_t brightness[EC_LED_COLOR_COUNT];
2635 } __ec_align1;
2636 
2637 struct ec_response_led_control {
2638 	/*
2639 	 * Available brightness value range.
2640 	 *
2641 	 * Range 0 means color channel not present.
2642 	 * Range 1 means on/off control.
2643 	 * Other values means the LED is control by PWM.
2644 	 */
2645 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2646 } __ec_align1;
2647 
2648 /*****************************************************************************/
2649 /* Verified boot commands */
2650 
2651 /*
2652  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2653  * reused for other purposes with version > 0.
2654  */
2655 
2656 /* Verified boot hash command */
2657 #define EC_CMD_VBOOT_HASH 0x002A
2658 
2659 struct ec_params_vboot_hash {
2660 	uint8_t cmd; /* enum ec_vboot_hash_cmd */
2661 	uint8_t hash_type; /* enum ec_vboot_hash_type */
2662 	uint8_t nonce_size; /* Nonce size; may be 0 */
2663 	uint8_t reserved0; /* Reserved; set 0 */
2664 	uint32_t offset; /* Offset in flash to hash */
2665 	uint32_t size; /* Number of bytes to hash */
2666 	uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
2667 } __ec_align4;
2668 
2669 struct ec_response_vboot_hash {
2670 	uint8_t status; /* enum ec_vboot_hash_status */
2671 	uint8_t hash_type; /* enum ec_vboot_hash_type */
2672 	uint8_t digest_size; /* Size of hash digest in bytes */
2673 	uint8_t reserved0; /* Ignore; will be 0 */
2674 	uint32_t offset; /* Offset in flash which was hashed */
2675 	uint32_t size; /* Number of bytes hashed */
2676 	uint8_t hash_digest[64]; /* Hash digest data */
2677 } __ec_align4;
2678 
2679 enum ec_vboot_hash_cmd {
2680 	EC_VBOOT_HASH_GET = 0, /* Get current hash status */
2681 	EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
2682 	EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
2683 	EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
2684 };
2685 
2686 enum ec_vboot_hash_type {
2687 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2688 };
2689 
2690 enum ec_vboot_hash_status {
2691 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2692 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2693 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2694 };
2695 
2696 /*
2697  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2698  * If one of these is specified, the EC will automatically update offset and
2699  * size to the correct values for the specified image (RO or RW).
2700  */
2701 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
2702 #define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd
2703 #define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc
2704 
2705 /*
2706  * 'RW' is vague if there are multiple RW images; we mean the active one,
2707  * so the old constant is deprecated.
2708  */
2709 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2710 
2711 /*****************************************************************************/
2712 /*
2713  * Motion sense commands. We'll make separate structs for sub-commands with
2714  * different input args, so that we know how much to expect.
2715  */
2716 #define EC_CMD_MOTION_SENSE_CMD 0x002B
2717 
2718 /* Motion sense commands */
2719 enum motionsense_command {
2720 	/*
2721 	 * Dump command returns all motion sensor data including motion sense
2722 	 * module flags and individual sensor flags.
2723 	 */
2724 	MOTIONSENSE_CMD_DUMP = 0,
2725 
2726 	/*
2727 	 * Info command returns data describing the details of a given sensor,
2728 	 * including enum motionsensor_type, enum motionsensor_location, and
2729 	 * enum motionsensor_chip.
2730 	 */
2731 	MOTIONSENSE_CMD_INFO = 1,
2732 
2733 	/*
2734 	 * EC Rate command is a setter/getter command for the EC sampling rate
2735 	 * in milliseconds.
2736 	 * It is per sensor, the EC run sample task  at the minimum of all
2737 	 * sensors EC_RATE.
2738 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2739 	 * to collect all the sensor samples.
2740 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2741 	 * to process of all motion sensors in milliseconds.
2742 	 */
2743 	MOTIONSENSE_CMD_EC_RATE = 2,
2744 
2745 	/*
2746 	 * Sensor ODR command is a setter/getter command for the output data
2747 	 * rate of a specific motion sensor in millihertz.
2748 	 */
2749 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2750 
2751 	/*
2752 	 * Sensor range command is a setter/getter command for the range of
2753 	 * a specified motion sensor in +/-G's or +/- deg/s.
2754 	 */
2755 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2756 
2757 	/*
2758 	 * Setter/getter command for the keyboard wake angle. When the lid
2759 	 * angle is greater than this value, keyboard wake is disabled in S3,
2760 	 * and when the lid angle goes less than this value, keyboard wake is
2761 	 * enabled. Note, the lid angle measurement is an approximate,
2762 	 * un-calibrated value, hence the wake angle isn't exact.
2763 	 */
2764 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2765 
2766 	/*
2767 	 * Returns a single sensor data.
2768 	 */
2769 	MOTIONSENSE_CMD_DATA = 6,
2770 
2771 	/*
2772 	 * Return sensor fifo info.
2773 	 */
2774 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2775 
2776 	/*
2777 	 * Insert a flush element in the fifo and return sensor fifo info.
2778 	 * The host can use that element to synchronize its operation.
2779 	 */
2780 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2781 
2782 	/*
2783 	 * Return a portion of the fifo.
2784 	 */
2785 	MOTIONSENSE_CMD_FIFO_READ = 9,
2786 
2787 	/*
2788 	 * Perform low level calibration.
2789 	 * On sensors that support it, ask to do offset calibration.
2790 	 */
2791 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2792 
2793 	/*
2794 	 * Sensor Offset command is a setter/getter command for the offset
2795 	 * used for factory calibration.
2796 	 * The offsets can be calculated by the host, or via
2797 	 * PERFORM_CALIB command.
2798 	 */
2799 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2800 
2801 	/*
2802 	 * List available activities for a MOTION sensor.
2803 	 * Indicates if they are enabled or disabled.
2804 	 */
2805 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2806 
2807 	/*
2808 	 * Activity management
2809 	 * Enable/Disable activity recognition.
2810 	 */
2811 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2812 
2813 	/*
2814 	 * Lid Angle
2815 	 */
2816 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2817 
2818 	/*
2819 	 * Allow the FIFO to trigger interrupt via MKBP events.
2820 	 * By default the FIFO does not send interrupt to process the FIFO
2821 	 * until the AP is ready or it is coming from a wakeup sensor.
2822 	 */
2823 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2824 
2825 	/*
2826 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2827 	 * to arbitrary values, or will lock to the last read actual values.
2828 	 */
2829 	MOTIONSENSE_CMD_SPOOF = 16,
2830 
2831 	/* Set lid angle for tablet mode detection. */
2832 	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2833 
2834 	/*
2835 	 * Sensor Scale command is a setter/getter command for the calibration
2836 	 * scale.
2837 	 */
2838 	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2839 
2840 	/*
2841 	 * Read the current online calibration values (if available).
2842 	 */
2843 	MOTIONSENSE_CMD_ONLINE_CALIB_READ = 19,
2844 
2845 	/*
2846 	 * Activity management
2847 	 * Retrieve current status of given activity.
2848 	 */
2849 	MOTIONSENSE_CMD_GET_ACTIVITY = 20,
2850 
2851 	/* Number of motionsense sub-commands. */
2852 	MOTIONSENSE_NUM_CMDS,
2853 };
2854 
2855 /* List of motion sensor types. */
2856 enum motionsensor_type {
2857 	MOTIONSENSE_TYPE_ACCEL = 0,
2858 	MOTIONSENSE_TYPE_GYRO = 1,
2859 	MOTIONSENSE_TYPE_MAG = 2,
2860 	MOTIONSENSE_TYPE_PROX = 3,
2861 	MOTIONSENSE_TYPE_LIGHT = 4,
2862 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2863 	MOTIONSENSE_TYPE_BARO = 6,
2864 	MOTIONSENSE_TYPE_SYNC = 7,
2865 	MOTIONSENSE_TYPE_LIGHT_RGB = 8,
2866 	MOTIONSENSE_TYPE_MAX,
2867 };
2868 
2869 /* List of motion sensor locations. */
2870 enum motionsensor_location {
2871 	MOTIONSENSE_LOC_BASE = 0,
2872 	MOTIONSENSE_LOC_LID = 1,
2873 	MOTIONSENSE_LOC_CAMERA = 2,
2874 	MOTIONSENSE_LOC_MAX,
2875 };
2876 
2877 /* List of motion sensor chips. */
2878 enum motionsensor_chip {
2879 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2880 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2881 	MOTIONSENSE_CHIP_BMI160 = 2,
2882 	MOTIONSENSE_CHIP_SI1141 = 3,
2883 	MOTIONSENSE_CHIP_SI1142 = 4,
2884 	MOTIONSENSE_CHIP_SI1143 = 5,
2885 	MOTIONSENSE_CHIP_KX022 = 6,
2886 	MOTIONSENSE_CHIP_L3GD20H = 7,
2887 	MOTIONSENSE_CHIP_BMA255 = 8,
2888 	MOTIONSENSE_CHIP_BMP280 = 9,
2889 	MOTIONSENSE_CHIP_OPT3001 = 10,
2890 	MOTIONSENSE_CHIP_BH1730 = 11,
2891 	MOTIONSENSE_CHIP_GPIO = 12,
2892 	MOTIONSENSE_CHIP_LIS2DH = 13,
2893 	MOTIONSENSE_CHIP_LSM6DSM = 14,
2894 	MOTIONSENSE_CHIP_LIS2DE = 15,
2895 	MOTIONSENSE_CHIP_LIS2MDL = 16,
2896 	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2897 	MOTIONSENSE_CHIP_LSM6DSO = 18,
2898 	MOTIONSENSE_CHIP_LNG2DM = 19,
2899 	MOTIONSENSE_CHIP_TCS3400 = 20,
2900 	MOTIONSENSE_CHIP_LIS2DW12 = 21,
2901 	MOTIONSENSE_CHIP_LIS2DWL = 22,
2902 	MOTIONSENSE_CHIP_LIS2DS = 23,
2903 	MOTIONSENSE_CHIP_BMI260 = 24,
2904 	MOTIONSENSE_CHIP_ICM426XX = 25,
2905 	MOTIONSENSE_CHIP_ICM42607 = 26,
2906 	MOTIONSENSE_CHIP_BMA422 = 27,
2907 	MOTIONSENSE_CHIP_BMI323 = 28,
2908 	MOTIONSENSE_CHIP_BMI220 = 29,
2909 	MOTIONSENSE_CHIP_CM32183 = 30,
2910 	MOTIONSENSE_CHIP_VEML3328 = 31,
2911 	MOTIONSENSE_CHIP_MAX,
2912 };
2913 
2914 /* List of orientation positions */
2915 enum motionsensor_orientation {
2916 	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2917 	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2918 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2919 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2920 	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2921 };
2922 
2923 struct ec_response_activity_data {
2924 	uint8_t activity; /* motionsensor_activity */
2925 	uint8_t state;
2926 } __ec_todo_packed;
2927 
2928 struct ec_response_motion_sensor_data {
2929 	/* Flags for each sensor. */
2930 	uint8_t flags;
2931 	/* Sensor number the data comes from. */
2932 	uint8_t sensor_num;
2933 	/* Each sensor is up to 3-axis. */
2934 	union {
2935 		int16_t data[3];
2936 		/* for sensors using unsigned data */
2937 		uint16_t udata[3];
2938 		struct __ec_todo_packed {
2939 			uint16_t reserved;
2940 			uint32_t timestamp;
2941 		};
2942 		struct __ec_todo_unpacked {
2943 			struct ec_response_activity_data activity_data;
2944 			int16_t add_info[2];
2945 		};
2946 	};
2947 } __ec_todo_packed;
2948 
2949 /* Response to AP reporting calibration data for a given sensor. */
2950 struct ec_response_online_calibration_data {
2951 	/** The calibration values. */
2952 	int16_t data[3];
2953 };
2954 
2955 /* Note: used in ec_response_get_next_data */
2956 struct ec_response_motion_sense_fifo_info {
2957 	/* Size of the fifo */
2958 	uint16_t size;
2959 	/* Amount of space used in the fifo */
2960 	uint16_t count;
2961 	/* Timestamp recorded in us.
2962 	 * aka accurate timestamp when host event was triggered.
2963 	 */
2964 	uint32_t timestamp;
2965 	/* Total amount of vector lost */
2966 	uint16_t total_lost;
2967 	/* Lost events since the last fifo_info, per sensors */
2968 	uint16_t lost[0];
2969 } __ec_todo_packed;
2970 
2971 struct ec_response_motion_sense_fifo_data {
2972 	uint32_t number_data;
2973 	struct ec_response_motion_sensor_data data[0];
2974 } __ec_todo_packed;
2975 
2976 /* List supported activity recognition */
2977 enum motionsensor_activity {
2978 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2979 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2980 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2981 	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2982 	MOTIONSENSE_ACTIVITY_BODY_DETECTION = 4,
2983 };
2984 
2985 struct ec_motion_sense_activity {
2986 	uint8_t sensor_num;
2987 	uint8_t activity; /* one of enum motionsensor_activity */
2988 	uint8_t enable; /* 1: enable, 0: disable */
2989 	uint8_t reserved;
2990 	uint16_t parameters[4]; /* activity dependent parameters */
2991 } __ec_todo_packed;
2992 
2993 /* Module flag masks used for the dump sub-command. */
2994 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2995 
2996 /* Sensor flag masks used for the dump sub-command. */
2997 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2998 
2999 /*
3000  * Flush entry for synchronization.
3001  * data contains time stamp
3002  */
3003 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
3004 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
3005 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
3006 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
3007 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
3008 
3009 #define MOTIONSENSE_SENSOR_FLAG_BYPASS_FIFO BIT(7)
3010 
3011 /*
3012  * Send this value for the data element to only perform a read. If you
3013  * send any other value, the EC will interpret it as data to set and will
3014  * return the actual value set.
3015  */
3016 #define EC_MOTION_SENSE_NO_VALUE -1
3017 
3018 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP INT16_MIN
3019 
3020 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
3021 /* Set Calibration information */
3022 #define MOTION_SENSE_SET_OFFSET BIT(0)
3023 
3024 /* Default Scale value, factor 1. */
3025 #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
3026 
3027 #define LID_ANGLE_UNRELIABLE 500
3028 
3029 enum motionsense_spoof_mode {
3030 	/* Disable spoof mode. */
3031 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
3032 
3033 	/* Enable spoof mode, but use provided component values. */
3034 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
3035 
3036 	/* Enable spoof mode, but use the current sensor values. */
3037 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
3038 
3039 	/* Query the current spoof mode status for the sensor. */
3040 	MOTIONSENSE_SPOOF_MODE_QUERY,
3041 };
3042 
3043 struct ec_params_motion_sense {
3044 	uint8_t cmd;
3045 	union {
3046 		/* Used for MOTIONSENSE_CMD_DUMP. */
3047 		struct __ec_todo_unpacked {
3048 			/*
3049 			 * Maximal number of sensor the host is expecting.
3050 			 * 0 means the host is only interested in the number
3051 			 * of sensors controlled by the EC.
3052 			 */
3053 			uint8_t max_sensor_count;
3054 		} dump;
3055 
3056 		/*
3057 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
3058 		 */
3059 		struct __ec_todo_unpacked {
3060 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
3061 			 * kb_wake_angle: angle to wakup AP.
3062 			 */
3063 			int16_t data;
3064 		} kb_wake_angle;
3065 
3066 		/*
3067 		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
3068 		 */
3069 		struct __ec_todo_unpacked {
3070 			uint8_t sensor_num;
3071 		} info, info_3, info_4, data, fifo_flush, list_activities;
3072 
3073 		/*
3074 		 * Used for MOTIONSENSE_CMD_PERFORM_CALIB:
3075 		 * Allow entering/exiting the calibration mode.
3076 		 */
3077 		struct __ec_todo_unpacked {
3078 			uint8_t sensor_num;
3079 			uint8_t enable;
3080 		} perform_calib;
3081 
3082 		/*
3083 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
3084 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
3085 		 */
3086 		struct __ec_todo_unpacked {
3087 			uint8_t sensor_num;
3088 
3089 			/* Rounding flag, true for round-up, false for down. */
3090 			uint8_t roundup;
3091 
3092 			uint16_t reserved;
3093 
3094 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
3095 			int32_t data;
3096 		} ec_rate, sensor_odr, sensor_range;
3097 
3098 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
3099 		struct __ec_todo_packed {
3100 			uint8_t sensor_num;
3101 
3102 			/*
3103 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
3104 			 * the calibration information in the EC.
3105 			 * If unset, just retrieve calibration information.
3106 			 */
3107 			uint16_t flags;
3108 
3109 			/*
3110 			 * Temperature at calibration, in units of 0.01 C
3111 			 * 0x8000: invalid / unknown.
3112 			 * 0x0: 0C
3113 			 * 0x7fff: +327.67C
3114 			 */
3115 			int16_t temp;
3116 
3117 			/*
3118 			 * Offset for calibration.
3119 			 * Unit:
3120 			 * Accelerometer: 1/1024 g
3121 			 * Gyro:          1/1024 deg/s
3122 			 * Compass:       1/16 uT
3123 			 */
3124 			int16_t offset[3];
3125 		} sensor_offset;
3126 
3127 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
3128 		struct __ec_todo_packed {
3129 			uint8_t sensor_num;
3130 
3131 			/*
3132 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
3133 			 * the calibration information in the EC.
3134 			 * If unset, just retrieve calibration information.
3135 			 */
3136 			uint16_t flags;
3137 
3138 			/*
3139 			 * Temperature at calibration, in units of 0.01 C
3140 			 * 0x8000: invalid / unknown.
3141 			 * 0x0: 0C
3142 			 * 0x7fff: +327.67C
3143 			 */
3144 			int16_t temp;
3145 
3146 			/*
3147 			 * Scale for calibration:
3148 			 * By default scale is 1, it is encoded on 16bits:
3149 			 * 1 = BIT(15)
3150 			 * ~2 = 0xFFFF
3151 			 * ~0 = 0.
3152 			 */
3153 			uint16_t scale[3];
3154 		} sensor_scale;
3155 
3156 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
3157 		/* (no params) */
3158 
3159 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
3160 		struct __ec_todo_unpacked {
3161 			/*
3162 			 * Number of expected vector to return.
3163 			 * EC may return less or 0 if none available.
3164 			 */
3165 			uint32_t max_data_vector;
3166 		} fifo_read;
3167 
3168 		/* Used for MOTIONSENSE_CMD_SET_ACTIVITY */
3169 		struct ec_motion_sense_activity set_activity;
3170 
3171 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
3172 		/* (no params) */
3173 
3174 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
3175 		struct __ec_todo_unpacked {
3176 			/*
3177 			 * 1: enable, 0 disable fifo,
3178 			 * EC_MOTION_SENSE_NO_VALUE return value.
3179 			 */
3180 			int8_t enable;
3181 		} fifo_int_enable;
3182 
3183 		/* Used for MOTIONSENSE_CMD_SPOOF */
3184 		struct __ec_todo_packed {
3185 			uint8_t sensor_id;
3186 
3187 			/* See enum motionsense_spoof_mode. */
3188 			uint8_t spoof_enable;
3189 
3190 			/* Ignored, used for alignment. */
3191 			uint8_t reserved;
3192 
3193 			union {
3194 				/* Individual component values to spoof. */
3195 				int16_t components[3];
3196 
3197 				/* Used when spoofing an activity */
3198 				struct {
3199 					/* enum motionsensor_activity */
3200 					uint8_t activity_num;
3201 
3202 					/* spoof activity state */
3203 					uint8_t activity_state;
3204 				};
3205 			} __ec_todo_packed;
3206 		} spoof;
3207 
3208 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
3209 		struct __ec_todo_unpacked {
3210 			/*
3211 			 * Lid angle threshold for switching between tablet and
3212 			 * clamshell mode.
3213 			 */
3214 			int16_t lid_angle;
3215 
3216 			/*
3217 			 * Hysteresis degree to prevent fluctuations between
3218 			 * clamshell and tablet mode if lid angle keeps
3219 			 * changing around the threshold. Lid motion driver will
3220 			 * use lid_angle + hys_degree to trigger tablet mode and
3221 			 * lid_angle - hys_degree to trigger clamshell mode.
3222 			 */
3223 			int16_t hys_degree;
3224 		} tablet_mode_threshold;
3225 
3226 		/*
3227 		 * Used for MOTIONSENSE_CMD_ONLINE_CALIB_READ:
3228 		 * Allow reading a single sensor's online calibration value.
3229 		 */
3230 		struct __ec_todo_unpacked {
3231 			uint8_t sensor_num;
3232 		} online_calib_read;
3233 
3234 		/*
3235 		 * Used for MOTIONSENSE_CMD_GET_ACTIVITY.
3236 		 */
3237 		struct __ec_todo_unpacked {
3238 			uint8_t sensor_num;
3239 			uint8_t activity; /* enum motionsensor_activity */
3240 		} get_activity;
3241 	} __ec_todo_packed;
3242 } __ec_todo_packed;
3243 
3244 enum motion_sense_cmd_info_flags {
3245 	/* The sensor supports online calibration */
3246 	MOTION_SENSE_CMD_INFO_FLAG_ONLINE_CALIB = BIT(0),
3247 };
3248 
3249 struct ec_response_motion_sense {
3250 	union {
3251 		/* Used for MOTIONSENSE_CMD_DUMP */
3252 		struct __ec_todo_unpacked {
3253 			/* Flags representing the motion sensor module. */
3254 			uint8_t module_flags;
3255 
3256 			/* Number of sensors managed directly by the EC. */
3257 			uint8_t sensor_count;
3258 
3259 			/*
3260 			 * Sensor data is truncated if response_max is too small
3261 			 * for holding all the data.
3262 			 */
3263 			struct ec_response_motion_sensor_data sensor[0];
3264 		} dump;
3265 
3266 		/* Used for MOTIONSENSE_CMD_INFO. */
3267 		struct __ec_todo_unpacked {
3268 			/* Should be element of enum motionsensor_type. */
3269 			uint8_t type;
3270 
3271 			/* Should be element of enum motionsensor_location. */
3272 			uint8_t location;
3273 
3274 			/* Should be element of enum motionsensor_chip. */
3275 			uint8_t chip;
3276 		} info;
3277 
3278 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
3279 		struct __ec_todo_unpacked {
3280 			/* Should be element of enum motionsensor_type. */
3281 			uint8_t type;
3282 
3283 			/* Should be element of enum motionsensor_location. */
3284 			uint8_t location;
3285 
3286 			/* Should be element of enum motionsensor_chip. */
3287 			uint8_t chip;
3288 
3289 			/* Minimum sensor sampling frequency */
3290 			uint32_t min_frequency;
3291 
3292 			/* Maximum sensor sampling frequency */
3293 			uint32_t max_frequency;
3294 
3295 			/* Max number of sensor events that could be in fifo */
3296 			uint32_t fifo_max_event_count;
3297 		} info_3;
3298 
3299 		/* Used for MOTIONSENSE_CMD_INFO version 4 */
3300 		struct __ec_align4 {
3301 			/* Should be element of enum motionsensor_type. */
3302 			uint8_t type;
3303 
3304 			/* Should be element of enum motionsensor_location. */
3305 			uint8_t location;
3306 
3307 			/* Should be element of enum motionsensor_chip. */
3308 			uint8_t chip;
3309 
3310 			/* Minimum sensor sampling frequency */
3311 			uint32_t min_frequency;
3312 
3313 			/* Maximum sensor sampling frequency */
3314 			uint32_t max_frequency;
3315 
3316 			/* Max number of sensor events that could be in fifo */
3317 			uint32_t fifo_max_event_count;
3318 
3319 			/*
3320 			 * Should be elements of
3321 			 * enum motion_sense_cmd_info_flags
3322 			 */
3323 			uint32_t flags;
3324 		} info_4;
3325 
3326 		/* Used for MOTIONSENSE_CMD_DATA */
3327 		struct ec_response_motion_sensor_data data;
3328 
3329 		/*
3330 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
3331 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
3332 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
3333 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
3334 		 * MOTIONSENSE_CMD_SPOOF.
3335 		 */
3336 		struct __ec_todo_unpacked {
3337 			/* Current value of the parameter queried. */
3338 			int32_t ret;
3339 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
3340 			fifo_int_enable, spoof;
3341 
3342 		/*
3343 		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
3344 		 * PERFORM_CALIB.
3345 		 */
3346 		struct __ec_todo_unpacked {
3347 			int16_t temp;
3348 			int16_t offset[3];
3349 		} sensor_offset, perform_calib;
3350 
3351 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
3352 		struct __ec_todo_unpacked {
3353 			int16_t temp;
3354 			uint16_t scale[3];
3355 		} sensor_scale;
3356 
3357 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
3358 
3359 		struct ec_response_motion_sense_fifo_data fifo_read;
3360 
3361 		struct ec_response_online_calibration_data online_calib_read;
3362 
3363 		struct __ec_todo_packed {
3364 			uint16_t reserved;
3365 			uint32_t enabled;
3366 			uint32_t disabled;
3367 		} list_activities;
3368 
3369 		/* No params for set activity */
3370 
3371 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
3372 		struct __ec_todo_unpacked {
3373 			/*
3374 			 * Angle between 0 and 360 degree if available,
3375 			 * LID_ANGLE_UNRELIABLE otherwise.
3376 			 */
3377 			uint16_t value;
3378 		} lid_angle;
3379 
3380 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
3381 		struct __ec_todo_unpacked {
3382 			/*
3383 			 * Lid angle threshold for switching between tablet and
3384 			 * clamshell mode.
3385 			 */
3386 			uint16_t lid_angle;
3387 
3388 			/* Hysteresis degree. */
3389 			uint16_t hys_degree;
3390 		} tablet_mode_threshold;
3391 
3392 		/* USED for MOTIONSENSE_CMD_GET_ACTIVITY. */
3393 		struct __ec_todo_unpacked {
3394 			uint8_t state;
3395 		} get_activity;
3396 	};
3397 } __ec_todo_packed;
3398 
3399 /*****************************************************************************/
3400 /* Force lid open command */
3401 
3402 /* Make lid event always open */
3403 #define EC_CMD_FORCE_LID_OPEN 0x002C
3404 
3405 struct ec_params_force_lid_open {
3406 	uint8_t enabled;
3407 } __ec_align1;
3408 
3409 /*****************************************************************************/
3410 /* Configure the behavior of the power button */
3411 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
3412 
3413 enum ec_config_power_button_flags {
3414 	/* Enable/Disable power button pulses for x86 devices */
3415 	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
3416 };
3417 
3418 struct ec_params_config_power_button {
3419 	/* See enum ec_config_power_button_flags */
3420 	uint8_t flags;
3421 } __ec_align1;
3422 
3423 /*****************************************************************************/
3424 /* USB charging control commands */
3425 
3426 /* Set USB port charging mode */
3427 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
3428 
3429 enum usb_charge_mode {
3430 	/* Disable USB port. */
3431 	USB_CHARGE_MODE_DISABLED,
3432 	/* Set USB port to Standard Downstream Port, USB 2.0 mode. */
3433 	USB_CHARGE_MODE_SDP2,
3434 	/* Set USB port to Charging Downstream Port, BC 1.2. */
3435 	USB_CHARGE_MODE_CDP,
3436 	/* Set USB port to Dedicated Charging Port, BC 1.2. */
3437 	USB_CHARGE_MODE_DCP_SHORT,
3438 	/* Enable USB port (for dumb ports). */
3439 	USB_CHARGE_MODE_ENABLED,
3440 	/* Set USB port to CONFIG_USB_PORT_POWER_SMART_DEFAULT_MODE. */
3441 	USB_CHARGE_MODE_DEFAULT,
3442 
3443 	USB_CHARGE_MODE_COUNT,
3444 };
3445 
3446 enum usb_suspend_charge {
3447 	/* Enable charging in suspend */
3448 	USB_ALLOW_SUSPEND_CHARGE,
3449 	/* Disable charging in suspend */
3450 	USB_DISALLOW_SUSPEND_CHARGE,
3451 };
3452 
3453 struct ec_params_usb_charge_set_mode {
3454 	uint8_t usb_port_id;
3455 	uint8_t mode : 7; /* enum usb_charge_mode */
3456 	uint8_t inhibit_charge : 1; /* enum usb_suspend_charge */
3457 } __ec_align1;
3458 
3459 /*****************************************************************************/
3460 /* Tablet mode commands */
3461 
3462 /* Set tablet mode */
3463 #define EC_CMD_SET_TABLET_MODE 0x0031
3464 
3465 enum tablet_mode_override {
3466 	TABLET_MODE_DEFAULT,
3467 	TABLET_MODE_FORCE_TABLET,
3468 	TABLET_MODE_FORCE_CLAMSHELL,
3469 };
3470 
3471 struct ec_params_set_tablet_mode {
3472 	uint8_t tablet_mode; /* enum tablet_mode_override */
3473 } __ec_align1;
3474 
3475 /*****************************************************************************/
3476 /* Persistent storage for host */
3477 
3478 /* Maximum bytes that can be read/written in a single command */
3479 #define EC_PSTORE_SIZE_MAX 64
3480 
3481 /* Get persistent storage info */
3482 #define EC_CMD_PSTORE_INFO 0x0040
3483 
3484 struct ec_response_pstore_info {
3485 	/* Persistent storage size, in bytes */
3486 	uint32_t pstore_size;
3487 	/* Access size; read/write offset and size must be a multiple of this */
3488 	uint32_t access_size;
3489 } __ec_align4;
3490 
3491 /*
3492  * Read persistent storage
3493  *
3494  * Response is params.size bytes of data.
3495  */
3496 #define EC_CMD_PSTORE_READ 0x0041
3497 
3498 struct ec_params_pstore_read {
3499 	uint32_t offset; /* Byte offset to read */
3500 	uint32_t size; /* Size to read in bytes */
3501 } __ec_align4;
3502 
3503 /* Write persistent storage */
3504 #define EC_CMD_PSTORE_WRITE 0x0042
3505 
3506 struct ec_params_pstore_write {
3507 	uint32_t offset; /* Byte offset to write */
3508 	uint32_t size; /* Size to write in bytes */
3509 	uint8_t data[EC_PSTORE_SIZE_MAX];
3510 } __ec_align4;
3511 
3512 /*****************************************************************************/
3513 /* Real-time clock */
3514 
3515 /* RTC params and response structures */
3516 struct ec_params_rtc {
3517 	uint32_t time;
3518 } __ec_align4;
3519 
3520 struct ec_response_rtc {
3521 	uint32_t time;
3522 } __ec_align4;
3523 
3524 /* These use ec_response_rtc */
3525 #define EC_CMD_RTC_GET_VALUE 0x0044
3526 #define EC_CMD_RTC_GET_ALARM 0x0045
3527 
3528 /* These all use ec_params_rtc */
3529 #define EC_CMD_RTC_SET_VALUE 0x0046
3530 #define EC_CMD_RTC_SET_ALARM 0x0047
3531 
3532 /* Pass as time param to SET_ALARM to clear the current alarm */
3533 #define EC_RTC_ALARM_CLEAR 0
3534 
3535 /*****************************************************************************/
3536 /* Port80 log access */
3537 
3538 /* Maximum entries that can be read/written in a single command */
3539 #define EC_PORT80_SIZE_MAX 32
3540 
3541 /* Get last port80 code from previous boot */
3542 #define EC_CMD_PORT80_LAST_BOOT 0x0048
3543 #define EC_CMD_PORT80_READ 0x0048
3544 
3545 enum ec_port80_subcmd {
3546 	EC_PORT80_GET_INFO = 0,
3547 	EC_PORT80_READ_BUFFER,
3548 };
3549 
3550 struct ec_params_port80_read {
3551 	uint16_t subcmd;
3552 	union {
3553 		struct __ec_todo_unpacked {
3554 			uint32_t offset;
3555 			uint32_t num_entries;
3556 		} read_buffer;
3557 	} __ec_todo_packed;
3558 } __ec_todo_packed;
3559 
3560 struct ec_response_port80_read {
3561 	union {
3562 		struct __ec_todo_unpacked {
3563 			uint32_t writes;
3564 			uint32_t history_size;
3565 			uint32_t last_boot;
3566 		} get_info;
3567 		struct __ec_todo_unpacked {
3568 			uint16_t codes[EC_PORT80_SIZE_MAX];
3569 		} data;
3570 	};
3571 } __ec_todo_packed;
3572 
3573 struct ec_response_port80_last_boot {
3574 	uint16_t code;
3575 } __ec_align2;
3576 
3577 /*****************************************************************************/
3578 /* Temporary secure storage for host verified boot use */
3579 
3580 /* Number of bytes in a vstore slot */
3581 #define EC_VSTORE_SLOT_SIZE 64
3582 
3583 /* Maximum number of vstore slots */
3584 #define EC_VSTORE_SLOT_MAX 32
3585 
3586 /* Get persistent storage info */
3587 #define EC_CMD_VSTORE_INFO 0x0049
3588 struct ec_response_vstore_info {
3589 	/* Indicates which slots are locked */
3590 	uint32_t slot_locked;
3591 	/* Total number of slots available */
3592 	uint8_t slot_count;
3593 } __ec_align_size1;
3594 
3595 /*
3596  * Read temporary secure storage
3597  *
3598  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
3599  */
3600 #define EC_CMD_VSTORE_READ 0x004A
3601 
3602 struct ec_params_vstore_read {
3603 	uint8_t slot; /* Slot to read from */
3604 } __ec_align1;
3605 
3606 struct ec_response_vstore_read {
3607 	uint8_t data[EC_VSTORE_SLOT_SIZE];
3608 } __ec_align1;
3609 
3610 /*
3611  * Write temporary secure storage and lock it.
3612  */
3613 #define EC_CMD_VSTORE_WRITE 0x004B
3614 
3615 struct ec_params_vstore_write {
3616 	uint8_t slot; /* Slot to write to */
3617 	uint8_t data[EC_VSTORE_SLOT_SIZE];
3618 } __ec_align1;
3619 
3620 /*****************************************************************************/
3621 /* Thermal engine commands. Note that there are two implementations. We'll
3622  * reuse the command number, but the data and behavior is incompatible.
3623  * Version 0 is what originally shipped on Link.
3624  * Version 1 separates the CPU thermal limits from the fan control.
3625  */
3626 
3627 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
3628 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
3629 
3630 /* The version 0 structs are opaque. You have to know what they are for
3631  * the get/set commands to make any sense.
3632  */
3633 
3634 /* Version 0 - set */
3635 struct ec_params_thermal_set_threshold {
3636 	uint8_t sensor_type;
3637 	uint8_t threshold_id;
3638 	uint16_t value;
3639 } __ec_align2;
3640 
3641 /* Version 0 - get */
3642 struct ec_params_thermal_get_threshold {
3643 	uint8_t sensor_type;
3644 	uint8_t threshold_id;
3645 } __ec_align1;
3646 
3647 struct ec_response_thermal_get_threshold {
3648 	uint16_t value;
3649 } __ec_align2;
3650 
3651 /* The version 1 structs are visible. */
3652 enum ec_temp_thresholds {
3653 	EC_TEMP_THRESH_WARN = 0,
3654 	EC_TEMP_THRESH_HIGH,
3655 	EC_TEMP_THRESH_HALT,
3656 
3657 	EC_TEMP_THRESH_COUNT,
3658 };
3659 
3660 /*
3661  * Thermal configuration for one temperature sensor. Temps are in degrees K.
3662  * Zero values will be silently ignored by the thermal task.
3663  *
3664  * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3665  * hysteresis.
3666  * For example,
3667  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3668  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3669  * EC will throttle ap when temperature >= 301 K, and release throttling when
3670  * temperature <= 299 K.
3671  *
3672  * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3673  * For example,
3674  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3675  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3676  * EC will throttle ap when temperature >= 301 K, and release throttling when
3677  * temperature <= 294 K.
3678  *
3679  * Note that this structure is a sub-structure of
3680  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3681  */
3682 struct ec_thermal_config {
3683 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3684 	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3685 	uint32_t temp_fan_off; /* no active cooling needed */
3686 	uint32_t temp_fan_max; /* max active cooling needed */
3687 } __ec_align4;
3688 
3689 /* Version 1 - get config for one sensor. */
3690 struct ec_params_thermal_get_threshold_v1 {
3691 	uint32_t sensor_num;
3692 } __ec_align4;
3693 /* This returns a struct ec_thermal_config */
3694 
3695 /*
3696  * Version 1 - set config for one sensor.
3697  * Use read-modify-write for best results!
3698  */
3699 struct ec_params_thermal_set_threshold_v1 {
3700 	uint32_t sensor_num;
3701 	struct ec_thermal_config cfg;
3702 } __ec_align4;
3703 /* This returns no data */
3704 
3705 /****************************************************************************/
3706 
3707 /* Toggle automatic fan control */
3708 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3709 
3710 /* Version 1 of input params */
3711 struct ec_params_auto_fan_ctrl_v1 {
3712 	uint8_t fan_idx;
3713 } __ec_align1;
3714 
3715 /* Get/Set TMP006 calibration data */
3716 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3717 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3718 
3719 /*
3720  * The original TMP006 calibration only needed four params, but now we need
3721  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3722  * the params opaque. The v1 "get" response will include the algorithm number
3723  * and how many params it requires. That way we can change the EC code without
3724  * needing to update this file. We can also use a different algorithm on each
3725  * sensor.
3726  */
3727 
3728 /* This is the same struct for both v0 and v1. */
3729 struct ec_params_tmp006_get_calibration {
3730 	uint8_t index;
3731 } __ec_align1;
3732 
3733 /* Version 0 */
3734 struct ec_response_tmp006_get_calibration_v0 {
3735 	float s0;
3736 	float b0;
3737 	float b1;
3738 	float b2;
3739 } __ec_align4;
3740 
3741 struct ec_params_tmp006_set_calibration_v0 {
3742 	uint8_t index;
3743 	uint8_t reserved[3];
3744 	float s0;
3745 	float b0;
3746 	float b1;
3747 	float b2;
3748 } __ec_align4;
3749 
3750 /* Version 1 */
3751 struct ec_response_tmp006_get_calibration_v1 {
3752 	uint8_t algorithm;
3753 	uint8_t num_params;
3754 	uint8_t reserved[2];
3755 	float val[0];
3756 } __ec_align4;
3757 
3758 struct ec_params_tmp006_set_calibration_v1 {
3759 	uint8_t index;
3760 	uint8_t algorithm;
3761 	uint8_t num_params;
3762 	uint8_t reserved;
3763 	float val[0];
3764 } __ec_align4;
3765 
3766 /* Read raw TMP006 data */
3767 #define EC_CMD_TMP006_GET_RAW 0x0055
3768 
3769 struct ec_params_tmp006_get_raw {
3770 	uint8_t index;
3771 } __ec_align1;
3772 
3773 struct ec_response_tmp006_get_raw {
3774 	int32_t t; /* In 1/100 K */
3775 	int32_t v; /* In nV */
3776 } __ec_align4;
3777 
3778 /*****************************************************************************/
3779 /* MKBP - Matrix KeyBoard Protocol */
3780 
3781 /*
3782  * Read key state
3783  *
3784  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3785  * expected response size.
3786  *
3787  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3788  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3789  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3790  */
3791 #define EC_CMD_MKBP_STATE 0x0060
3792 
3793 /*
3794  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3795  */
3796 #define EC_CMD_MKBP_INFO 0x0061
3797 
3798 struct ec_response_mkbp_info {
3799 	uint32_t rows;
3800 	uint32_t cols;
3801 	/* Formerly "switches", which was 0. */
3802 	uint8_t reserved;
3803 } __ec_align_size1;
3804 
3805 struct ec_params_mkbp_info {
3806 	uint8_t info_type;
3807 	uint8_t event_type;
3808 } __ec_align1;
3809 
3810 enum ec_mkbp_info_type {
3811 	/*
3812 	 * Info about the keyboard matrix: number of rows and columns.
3813 	 *
3814 	 * Returns struct ec_response_mkbp_info.
3815 	 */
3816 	EC_MKBP_INFO_KBD = 0,
3817 
3818 	/*
3819 	 * For buttons and switches, info about which specifically are
3820 	 * supported.  event_type must be set to one of the values in enum
3821 	 * ec_mkbp_event.
3822 	 *
3823 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3824 	 * bitmask indicating which buttons or switches are present.  See the
3825 	 * bit inidices below.
3826 	 */
3827 	EC_MKBP_INFO_SUPPORTED = 1,
3828 
3829 	/*
3830 	 * Instantaneous state of buttons and switches.
3831 	 *
3832 	 * event_type must be set to one of the values in enum ec_mkbp_event.
3833 	 *
3834 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3835 	 * indicating the current state of the keyboard matrix.
3836 	 *
3837 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3838 	 * event state.
3839 	 *
3840 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3841 	 * state of supported buttons.
3842 	 *
3843 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3844 	 * state of supported switches.
3845 	 */
3846 	EC_MKBP_INFO_CURRENT = 2,
3847 };
3848 
3849 /* Simulate key press */
3850 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3851 
3852 struct ec_params_mkbp_simulate_key {
3853 	uint8_t col;
3854 	uint8_t row;
3855 	uint8_t pressed;
3856 } __ec_align1;
3857 
3858 /* Configure keyboard scanning */
3859 #define EC_CMD_MKBP_SET_CONFIG 0x0064
3860 #define EC_CMD_MKBP_GET_CONFIG 0x0065
3861 
3862 /* flags */
3863 enum mkbp_config_flags {
3864 	EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
3865 };
3866 
3867 enum mkbp_config_valid {
3868 	EC_MKBP_VALID_SCAN_PERIOD = BIT(0),
3869 	EC_MKBP_VALID_POLL_TIMEOUT = BIT(1),
3870 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3),
3871 	EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4),
3872 	EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5),
3873 	EC_MKBP_VALID_DEBOUNCE_UP = BIT(6),
3874 	EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7),
3875 };
3876 
3877 /*
3878  * Configuration for our key scanning algorithm.
3879  *
3880  * Note that this is used as a sub-structure of
3881  * ec_{params/response}_mkbp_get_config.
3882  */
3883 struct ec_mkbp_config {
3884 	uint32_t valid_mask; /* valid fields */
3885 	uint8_t flags; /* some flags (enum mkbp_config_flags) */
3886 	uint8_t valid_flags; /* which flags are valid */
3887 	uint16_t scan_period_us; /* period between start of scans */
3888 	/* revert to interrupt mode after no activity for this long */
3889 	uint32_t poll_timeout_us;
3890 	/*
3891 	 * minimum post-scan relax time. Once we finish a scan we check
3892 	 * the time until we are due to start the next one. If this time is
3893 	 * shorter this field, we use this instead.
3894 	 */
3895 	uint16_t min_post_scan_delay_us;
3896 	/* delay between setting up output and waiting for it to settle */
3897 	uint16_t output_settle_us;
3898 	uint16_t debounce_down_us; /* time for debounce on key down */
3899 	uint16_t debounce_up_us; /* time for debounce on key up */
3900 	/* maximum depth to allow for fifo (0 = no keyscan output) */
3901 	uint8_t fifo_max_depth;
3902 } __ec_align_size1;
3903 
3904 struct ec_params_mkbp_set_config {
3905 	struct ec_mkbp_config config;
3906 } __ec_align_size1;
3907 
3908 struct ec_response_mkbp_get_config {
3909 	struct ec_mkbp_config config;
3910 } __ec_align_size1;
3911 
3912 /* Run the key scan emulation */
3913 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3914 
3915 enum ec_keyscan_seq_cmd {
3916 	EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
3917 	EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
3918 	EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
3919 	EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
3920 	EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
3921 };
3922 
3923 enum ec_collect_flags {
3924 	/*
3925 	 * Indicates this scan was processed by the EC. Due to timing, some
3926 	 * scans may be skipped.
3927 	 */
3928 	EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0),
3929 };
3930 
3931 struct ec_collect_item {
3932 	uint8_t flags; /* some flags (enum ec_collect_flags) */
3933 } __ec_align1;
3934 
3935 struct ec_params_keyscan_seq_ctrl {
3936 	uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
3937 	union {
3938 		struct __ec_align1 {
3939 			uint8_t active; /* still active */
3940 			uint8_t num_items; /* number of items */
3941 			/* Current item being presented */
3942 			uint8_t cur_item;
3943 		} status;
3944 		struct __ec_todo_unpacked {
3945 			/*
3946 			 * Absolute time for this scan, measured from the
3947 			 * start of the sequence.
3948 			 */
3949 			uint32_t time_us;
3950 			uint8_t scan[0]; /* keyscan data */
3951 		} add;
3952 		struct __ec_align1 {
3953 			uint8_t start_item; /* First item to return */
3954 			uint8_t num_items; /* Number of items to return */
3955 		} collect;
3956 	};
3957 } __ec_todo_packed;
3958 
3959 struct ec_result_keyscan_seq_ctrl {
3960 	union {
3961 		struct __ec_todo_unpacked {
3962 			uint8_t num_items; /* Number of items */
3963 			/* Data for each item */
3964 			struct ec_collect_item item[0];
3965 		} collect;
3966 	};
3967 } __ec_todo_packed;
3968 
3969 /*
3970  * Get the next pending MKBP event.
3971  *
3972  * Returns EC_RES_UNAVAILABLE if there is no event pending.
3973  *
3974  * V0: ec_response_get_next_data
3975  * V1: ec_response_get_next_data_v1. Increased key_matrix size from 13 -> 16.
3976  * V2: Added EC_MKBP_HAS_MORE_EVENTS.
3977  * V3: ec_response_get_next_data_v3. Increased key_matrix size from 16 -> 18.
3978  */
3979 #define EC_CMD_GET_NEXT_EVENT 0x0067
3980 
3981 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3982 
3983 /*
3984  * We use the most significant bit of the event type to indicate to the host
3985  * that the EC has more MKBP events available to provide.
3986  */
3987 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3988 
3989 /* The mask to apply to get the raw event type */
3990 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3991 
3992 enum ec_mkbp_event {
3993 	/* Keyboard matrix changed. The event data is the new matrix state. */
3994 	EC_MKBP_EVENT_KEY_MATRIX = 0,
3995 
3996 	/* New host event. The event data is 4 bytes of host event flags. */
3997 	EC_MKBP_EVENT_HOST_EVENT = 1,
3998 
3999 	/* New Sensor FIFO data. The event data is fifo_info structure. */
4000 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
4001 
4002 	/* The state of the non-matrixed buttons have changed. */
4003 	EC_MKBP_EVENT_BUTTON = 3,
4004 
4005 	/* The state of the switches have changed. */
4006 	EC_MKBP_EVENT_SWITCH = 4,
4007 
4008 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
4009 	EC_MKBP_EVENT_FINGERPRINT = 5,
4010 
4011 	/*
4012 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
4013 	 * corresponding to the key to be pressed.
4014 	 */
4015 	EC_MKBP_EVENT_SYSRQ = 6,
4016 
4017 	/*
4018 	 * New 64-bit host event.
4019 	 * The event data is 8 bytes of host event flags.
4020 	 */
4021 	EC_MKBP_EVENT_HOST_EVENT64 = 7,
4022 
4023 	/* Notify the AP that something happened on CEC */
4024 	EC_MKBP_EVENT_CEC_EVENT = 8,
4025 
4026 	/* Send an incoming CEC message to the AP */
4027 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
4028 
4029 	/* We have entered DisplayPort Alternate Mode on a Type-C port. */
4030 	EC_MKBP_EVENT_DP_ALT_MODE_ENTERED = 10,
4031 
4032 	/* New online calibration values are available. */
4033 	EC_MKBP_EVENT_ONLINE_CALIBRATION = 11,
4034 
4035 	/* Peripheral device charger event */
4036 	EC_MKBP_EVENT_PCHG = 12,
4037 
4038 	/* Number of MKBP events */
4039 	EC_MKBP_EVENT_COUNT,
4040 };
4041 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
4042 
4043 /* clang-format off */
4044 #define EC_MKBP_EVENT_TEXT                                                     \
4045 	{                                                                      \
4046 		[EC_MKBP_EVENT_KEY_MATRIX] = "KEY_MATRIX",                     \
4047 		[EC_MKBP_EVENT_HOST_EVENT] = "HOST_EVENT",                     \
4048 		[EC_MKBP_EVENT_SENSOR_FIFO] = "SENSOR_FIFO",                   \
4049 		[EC_MKBP_EVENT_BUTTON] = "BUTTON",                             \
4050 		[EC_MKBP_EVENT_SWITCH] = "SWITCH",                             \
4051 		[EC_MKBP_EVENT_FINGERPRINT] = "FINGERPRINT",                   \
4052 		[EC_MKBP_EVENT_SYSRQ] = "SYSRQ",                               \
4053 		[EC_MKBP_EVENT_HOST_EVENT64] = "HOST_EVENT64",                 \
4054 		[EC_MKBP_EVENT_CEC_EVENT] = "CEC_EVENT",                       \
4055 		[EC_MKBP_EVENT_CEC_MESSAGE] = "CEC_MESSAGE",                   \
4056 		[EC_MKBP_EVENT_DP_ALT_MODE_ENTERED] = "DP_ALT_MODE_ENTERED",   \
4057 		[EC_MKBP_EVENT_ONLINE_CALIBRATION] = "ONLINE_CALIBRATION",     \
4058 		[EC_MKBP_EVENT_PCHG] = "PCHG",                                 \
4059 	}
4060 /* clang-format on */
4061 
4062 union __ec_align_offset1 ec_response_get_next_data {
4063 	uint8_t key_matrix[13];
4064 
4065 	/* Unaligned */
4066 	uint32_t host_event;
4067 	uint64_t host_event64;
4068 
4069 	struct __ec_todo_unpacked {
4070 		/* For aligning the fifo_info */
4071 		uint8_t reserved[3];
4072 		struct ec_response_motion_sense_fifo_info info;
4073 	} sensor_fifo;
4074 
4075 	uint32_t buttons;
4076 
4077 	uint32_t switches;
4078 
4079 	uint32_t fp_events;
4080 
4081 	uint32_t sysrq;
4082 
4083 	/* CEC events from enum mkbp_cec_event */
4084 	uint32_t cec_events;
4085 };
4086 
4087 union __ec_align_offset1 ec_response_get_next_data_v1 {
4088 	uint8_t key_matrix[16];
4089 
4090 	/* Unaligned */
4091 	uint32_t host_event;
4092 	uint64_t host_event64;
4093 
4094 	struct __ec_todo_unpacked {
4095 		/* For aligning the fifo_info */
4096 		uint8_t reserved[3];
4097 		struct ec_response_motion_sense_fifo_info info;
4098 	} sensor_fifo;
4099 
4100 	uint32_t buttons;
4101 
4102 	uint32_t switches;
4103 
4104 	uint32_t fp_events;
4105 
4106 	uint32_t sysrq;
4107 
4108 	/* CEC events from enum mkbp_cec_event */
4109 	uint32_t cec_events;
4110 
4111 	uint8_t cec_message[16];
4112 };
4113 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
4114 
4115 union __ec_align_offset1 ec_response_get_next_data_v3 {
4116 	uint8_t key_matrix[18];
4117 
4118 	/* Unaligned */
4119 	uint32_t host_event;
4120 	uint64_t host_event64;
4121 
4122 	struct __ec_todo_unpacked {
4123 		/* For aligning the fifo_info */
4124 		uint8_t reserved[3];
4125 		struct ec_response_motion_sense_fifo_info info;
4126 	} sensor_fifo;
4127 
4128 	uint32_t buttons;
4129 
4130 	uint32_t switches;
4131 
4132 	uint32_t fp_events;
4133 
4134 	uint32_t sysrq;
4135 
4136 	/* CEC events from enum mkbp_cec_event */
4137 	uint32_t cec_events;
4138 
4139 	uint8_t cec_message[16];
4140 };
4141 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v3) == 18);
4142 
4143 struct ec_response_get_next_event {
4144 	uint8_t event_type;
4145 	/* Followed by event data if any */
4146 	union ec_response_get_next_data data;
4147 } __ec_align1;
4148 
4149 struct ec_response_get_next_event_v1 {
4150 	uint8_t event_type;
4151 	/* Followed by event data if any */
4152 	union ec_response_get_next_data_v1 data;
4153 } __ec_align1;
4154 
4155 struct ec_response_get_next_event_v3 {
4156 	uint8_t event_type;
4157 	/* Followed by event data if any */
4158 	union ec_response_get_next_data_v3 data;
4159 } __ec_align1;
4160 
4161 /* Bit indices for buttons and switches.*/
4162 /* Buttons */
4163 #define EC_MKBP_POWER_BUTTON 0
4164 #define EC_MKBP_VOL_UP 1
4165 #define EC_MKBP_VOL_DOWN 2
4166 #define EC_MKBP_RECOVERY 3
4167 
4168 /* Switches */
4169 #define EC_MKBP_LID_OPEN 0
4170 #define EC_MKBP_TABLET_MODE 1
4171 #define EC_MKBP_BASE_ATTACHED 2
4172 #define EC_MKBP_FRONT_PROXIMITY 3
4173 
4174 /* Run keyboard factory test scanning */
4175 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
4176 
4177 struct ec_response_keyboard_factory_test {
4178 	uint16_t shorted; /* Keyboard pins are shorted */
4179 } __ec_align2;
4180 
4181 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
4182 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
4183 #define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F)
4184 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
4185 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) \
4186 	(((fpe) & 0x00000FF0) >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
4187 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
4188 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
4189 #define EC_MKBP_FP_MATCH_IDX(fpe) \
4190 	(((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) >> EC_MKBP_FP_MATCH_IDX_OFFSET)
4191 #define EC_MKBP_FP_ENROLL BIT(27)
4192 #define EC_MKBP_FP_MATCH BIT(28)
4193 #define EC_MKBP_FP_FINGER_DOWN BIT(29)
4194 #define EC_MKBP_FP_FINGER_UP BIT(30)
4195 #define EC_MKBP_FP_IMAGE_READY BIT(31)
4196 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
4197 #define EC_MKBP_FP_ERR_ENROLL_OK 0
4198 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1
4199 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2
4200 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3
4201 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5
4202 /* Can be used to detect if image was usable for enrollment or not. */
4203 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1
4204 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
4205 #define EC_MKBP_FP_ERR_MATCH_NO 0
4206 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6
4207 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7
4208 #define EC_MKBP_FP_ERR_MATCH_NO_AUTH_FAIL 8
4209 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2
4210 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4
4211 #define EC_MKBP_FP_ERR_MATCH_YES 1
4212 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3
4213 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
4214 
4215 #define EC_CMD_MKBP_WAKE_MASK 0x0069
4216 enum ec_mkbp_event_mask_action {
4217 	/* Retrieve the value of a wake mask. */
4218 	GET_WAKE_MASK = 0,
4219 
4220 	/* Set the value of a wake mask. */
4221 	SET_WAKE_MASK,
4222 };
4223 
4224 enum ec_mkbp_mask_type {
4225 	/*
4226 	 * These are host events sent via MKBP.
4227 	 *
4228 	 * Some examples are:
4229 	 *    EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_OPEN)
4230 	 *    EC_HOST_EVENT_MASK(EC_HOST_EVENT_KEY_PRESSED)
4231 	 *
4232 	 * The only things that should be in this mask are:
4233 	 *    EC_HOST_EVENT_MASK(EC_HOST_EVENT_*)
4234 	 */
4235 	EC_MKBP_HOST_EVENT_WAKE_MASK = 0,
4236 
4237 	/*
4238 	 * These are MKBP events. Some examples are:
4239 	 *
4240 	 *    EC_MKBP_EVENT_KEY_MATRIX
4241 	 *    EC_MKBP_EVENT_SWITCH
4242 	 *
4243 	 * The only things that should be in this mask are EC_MKBP_EVENT_*.
4244 	 */
4245 	EC_MKBP_EVENT_WAKE_MASK,
4246 };
4247 
4248 struct ec_params_mkbp_event_wake_mask {
4249 	/* One of enum ec_mkbp_event_mask_action */
4250 	uint8_t action;
4251 
4252 	/*
4253 	 * Which MKBP mask are you interested in acting upon?  This is one of
4254 	 * ec_mkbp_mask_type.
4255 	 */
4256 	uint8_t mask_type;
4257 
4258 	/* If setting a new wake mask, this contains the mask to set. */
4259 	uint32_t new_wake_mask;
4260 };
4261 
4262 struct ec_response_mkbp_event_wake_mask {
4263 	uint32_t wake_mask;
4264 };
4265 
4266 /*****************************************************************************/
4267 /* Temperature sensor commands */
4268 
4269 /* Read temperature sensor info */
4270 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
4271 
4272 struct ec_params_temp_sensor_get_info {
4273 	uint8_t id;
4274 } __ec_align1;
4275 
4276 struct ec_response_temp_sensor_get_info {
4277 	char sensor_name[32];
4278 	uint8_t sensor_type;
4279 } __ec_align1;
4280 
4281 /*****************************************************************************/
4282 
4283 /*
4284  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
4285  * commands accidentally sent to the wrong interface.  See the ACPI section
4286  * below.
4287  */
4288 
4289 /*****************************************************************************/
4290 /* Host event commands */
4291 
4292 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
4293 /*
4294  * Host event mask params and response structures, shared by all of the host
4295  * event commands below.
4296  */
4297 struct ec_params_host_event_mask {
4298 	uint32_t mask;
4299 } __ec_align4;
4300 
4301 struct ec_response_host_event_mask {
4302 	uint32_t mask;
4303 } __ec_align4;
4304 
4305 /* These all use ec_response_host_event_mask */
4306 #define EC_CMD_HOST_EVENT_GET_B 0x0087
4307 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088
4308 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089
4309 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
4310 
4311 /* These all use ec_params_host_event_mask */
4312 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A
4313 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B
4314 #define EC_CMD_HOST_EVENT_CLEAR 0x008C
4315 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
4316 #define EC_CMD_HOST_EVENT_CLEAR_B 0x008F
4317 
4318 /*
4319  * Unified host event programming interface - Should be used by newer versions
4320  * of BIOS/OS to program host events and masks
4321  *
4322  * EC returns:
4323  * - EC_RES_INVALID_PARAM: Action or mask type is unknown.
4324  * - EC_RES_ACCESS_DENIED: Action is prohibited for specified mask type.
4325  */
4326 
4327 struct ec_params_host_event {
4328 	/* Action requested by host - one of enum ec_host_event_action. */
4329 	uint8_t action;
4330 
4331 	/*
4332 	 * Mask type that the host requested the action on - one of
4333 	 * enum ec_host_event_mask_type.
4334 	 */
4335 	uint8_t mask_type;
4336 
4337 	/* Set to 0, ignore on read */
4338 	uint16_t reserved;
4339 
4340 	/* Value to be used in case of set operations. */
4341 	uint64_t value;
4342 } __ec_align4;
4343 
4344 /*
4345  * Response structure returned by EC_CMD_HOST_EVENT.
4346  * Update the value on a GET request. Set to 0 on GET/CLEAR
4347  */
4348 
4349 struct ec_response_host_event {
4350 	/* Mask value in case of get operation */
4351 	uint64_t value;
4352 } __ec_align4;
4353 
4354 enum ec_host_event_action {
4355 	/*
4356 	 * params.value is ignored. Value of mask_type populated
4357 	 * in response.value
4358 	 */
4359 	EC_HOST_EVENT_GET,
4360 
4361 	/* Bits in params.value are set */
4362 	EC_HOST_EVENT_SET,
4363 
4364 	/* Bits in params.value are cleared */
4365 	EC_HOST_EVENT_CLEAR,
4366 };
4367 
4368 enum ec_host_event_mask_type {
4369 
4370 	/* Main host event copy */
4371 	EC_HOST_EVENT_MAIN,
4372 
4373 	/* Copy B of host events */
4374 	EC_HOST_EVENT_B,
4375 
4376 	/* SCI Mask */
4377 	EC_HOST_EVENT_SCI_MASK,
4378 
4379 	/* SMI Mask */
4380 	EC_HOST_EVENT_SMI_MASK,
4381 
4382 	/* Mask of events that should be always reported in hostevents */
4383 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
4384 
4385 	/* Active wake mask */
4386 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
4387 
4388 	/* Lazy wake mask for S0ix */
4389 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
4390 
4391 	/* Lazy wake mask for S3 */
4392 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
4393 
4394 	/* Lazy wake mask for S5 */
4395 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
4396 };
4397 
4398 #define EC_CMD_HOST_EVENT 0x00A4
4399 
4400 /*****************************************************************************/
4401 /* Switch commands */
4402 
4403 /* Enable/disable LCD backlight */
4404 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
4405 
4406 struct ec_params_switch_enable_backlight {
4407 	uint8_t enabled;
4408 } __ec_align1;
4409 
4410 /* Enable/disable WLAN/Bluetooth */
4411 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
4412 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
4413 
4414 /* Version 0 params; no response */
4415 struct ec_params_switch_enable_wireless_v0 {
4416 	uint8_t enabled;
4417 } __ec_align1;
4418 
4419 /* Version 1 params */
4420 struct ec_params_switch_enable_wireless_v1 {
4421 	/* Flags to enable now */
4422 	uint8_t now_flags;
4423 
4424 	/* Which flags to copy from now_flags */
4425 	uint8_t now_mask;
4426 
4427 	/*
4428 	 * Flags to leave enabled in S3, if they're on at the S0->S3
4429 	 * transition.  (Other flags will be disabled by the S0->S3
4430 	 * transition.)
4431 	 */
4432 	uint8_t suspend_flags;
4433 
4434 	/* Which flags to copy from suspend_flags */
4435 	uint8_t suspend_mask;
4436 } __ec_align1;
4437 
4438 /* Version 1 response */
4439 struct ec_response_switch_enable_wireless_v1 {
4440 	/* Flags to enable now */
4441 	uint8_t now_flags;
4442 
4443 	/* Flags to leave enabled in S3 */
4444 	uint8_t suspend_flags;
4445 } __ec_align1;
4446 
4447 /*****************************************************************************/
4448 /* GPIO commands. Only available on EC if write protect has been disabled. */
4449 
4450 /* Set GPIO output value */
4451 #define EC_CMD_GPIO_SET 0x0092
4452 
4453 struct ec_params_gpio_set {
4454 	char name[32];
4455 	uint8_t val;
4456 } __ec_align1;
4457 
4458 /* Get GPIO value */
4459 #define EC_CMD_GPIO_GET 0x0093
4460 
4461 /* Version 0 of input params and response */
4462 struct ec_params_gpio_get {
4463 	char name[32];
4464 } __ec_align1;
4465 
4466 struct ec_response_gpio_get {
4467 	uint8_t val;
4468 } __ec_align1;
4469 
4470 /* Version 1 of input params and response */
4471 struct ec_params_gpio_get_v1 {
4472 	uint8_t subcmd;
4473 	union {
4474 		struct __ec_align1 {
4475 			char name[32];
4476 		} get_value_by_name;
4477 		struct __ec_align1 {
4478 			uint8_t index;
4479 		} get_info;
4480 	};
4481 } __ec_align1;
4482 
4483 struct ec_response_gpio_get_v1 {
4484 	union {
4485 		struct __ec_align1 {
4486 			uint8_t val;
4487 		} get_value_by_name, get_count;
4488 		struct __ec_todo_unpacked {
4489 			uint8_t val;
4490 			char name[32];
4491 			uint32_t flags;
4492 		} get_info;
4493 	};
4494 } __ec_todo_packed;
4495 
4496 enum gpio_get_subcmd {
4497 	EC_GPIO_GET_BY_NAME = 0,
4498 	EC_GPIO_GET_COUNT = 1,
4499 	EC_GPIO_GET_INFO = 2,
4500 };
4501 
4502 /*****************************************************************************/
4503 /* I2C commands. Only available when flash write protect is unlocked. */
4504 
4505 /*
4506  * CAUTION: These commands are deprecated, and are not supported anymore in EC
4507  * builds >= 8398.0.0 (see crosbug.com/p/23570).
4508  *
4509  * Use EC_CMD_I2C_PASSTHRU instead.
4510  */
4511 
4512 /* Read I2C bus */
4513 #define EC_CMD_I2C_READ 0x0094
4514 
4515 struct ec_params_i2c_read {
4516 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
4517 	uint8_t read_size; /* Either 8 or 16. */
4518 	uint8_t port;
4519 	uint8_t offset;
4520 } __ec_align_size1;
4521 
4522 struct ec_response_i2c_read {
4523 	uint16_t data;
4524 } __ec_align2;
4525 
4526 /* Write I2C bus */
4527 #define EC_CMD_I2C_WRITE 0x0095
4528 
4529 struct ec_params_i2c_write {
4530 	uint16_t data;
4531 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
4532 	uint8_t write_size; /* Either 8 or 16. */
4533 	uint8_t port;
4534 	uint8_t offset;
4535 } __ec_align_size1;
4536 
4537 /*****************************************************************************/
4538 /* Charge state commands. Only available when flash write protect unlocked. */
4539 
4540 /* Force charge state machine to stop charging the battery or force it to
4541  * discharge the battery.
4542  */
4543 #define EC_CMD_CHARGE_CONTROL 0x0096
4544 #define EC_VER_CHARGE_CONTROL 3
4545 
4546 enum ec_charge_control_mode {
4547 	CHARGE_CONTROL_NORMAL = 0,
4548 	CHARGE_CONTROL_IDLE,
4549 	CHARGE_CONTROL_DISCHARGE,
4550 	/* Add no more entry below. */
4551 	CHARGE_CONTROL_COUNT,
4552 };
4553 
4554 #define EC_CHARGE_MODE_TEXT                               \
4555 	{                                                 \
4556 		[CHARGE_CONTROL_NORMAL] = "NORMAL",       \
4557 		[CHARGE_CONTROL_IDLE] = "IDLE",           \
4558 		[CHARGE_CONTROL_DISCHARGE] = "DISCHARGE", \
4559 	}
4560 
4561 enum ec_charge_control_cmd {
4562 	EC_CHARGE_CONTROL_CMD_SET = 0,
4563 	EC_CHARGE_CONTROL_CMD_GET,
4564 };
4565 
4566 enum ec_charge_control_flag {
4567 	EC_CHARGE_CONTROL_FLAG_NO_IDLE = BIT(0),
4568 };
4569 
4570 struct ec_params_charge_control {
4571 	uint32_t mode; /* enum charge_control_mode */
4572 
4573 	/* Below are the fields added in V2. */
4574 	uint8_t cmd; /* enum ec_charge_control_cmd. */
4575 	uint8_t flags; /* enum ec_charge_control_flag (v3+) */
4576 	/*
4577 	 * Lower and upper thresholds for battery sustainer. This struct isn't
4578 	 * named to avoid tainting foreign projects' name spaces.
4579 	 *
4580 	 * If charge mode is explicitly set (e.g. DISCHARGE), battery sustainer
4581 	 * will be disabled. To disable battery sustainer, set mode=NORMAL,
4582 	 * lower=-1, upper=-1.
4583 	 */
4584 	struct {
4585 		int8_t lower; /* Display SoC in percentage. */
4586 		int8_t upper; /* Display SoC in percentage. */
4587 	} sustain_soc;
4588 } __ec_align4;
4589 
4590 /* Added in v2 */
4591 struct ec_response_charge_control {
4592 	uint32_t mode; /* enum charge_control_mode */
4593 	struct { /* Battery sustainer thresholds */
4594 		int8_t lower;
4595 		int8_t upper;
4596 	} sustain_soc;
4597 	uint8_t flags; /* enum ec_charge_control_flag (v3+) */
4598 	uint8_t reserved;
4599 } __ec_align4;
4600 
4601 /*****************************************************************************/
4602 
4603 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
4604 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
4605 
4606 /*
4607  * Read data from the saved snapshot. If the subcmd parameter is
4608  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
4609  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
4610  * end of the previous snapshot.
4611  *
4612  * The params are only looked at in version >= 1 of this command. Prior
4613  * versions will just default to CONSOLE_READ_NEXT behavior.
4614  *
4615  * Response is null-terminated string.  Empty string, if there is no more
4616  * remaining output.
4617  */
4618 #define EC_CMD_CONSOLE_READ 0x0098
4619 
4620 enum ec_console_read_subcmd {
4621 	CONSOLE_READ_NEXT = 0,
4622 	CONSOLE_READ_RECENT,
4623 };
4624 
4625 struct ec_params_console_read_v1 {
4626 	uint8_t subcmd; /* enum ec_console_read_subcmd */
4627 } __ec_align1;
4628 
4629 /* Print directly to EC console from host. */
4630 #define EC_CMD_CONSOLE_PRINT 0x00AC
4631 
4632 /*****************************************************************************/
4633 
4634 /*
4635  * Cut off battery power immediately or after the host has shut down.
4636  *
4637  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
4638  *	  EC_RES_SUCCESS if the command was successful.
4639  *	  EC_RES_ERROR if the cut off command failed.
4640  */
4641 #define EC_CMD_BATTERY_CUT_OFF 0x0099
4642 
4643 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0)
4644 
4645 struct ec_params_battery_cutoff {
4646 	uint8_t flags;
4647 } __ec_align1;
4648 
4649 /*****************************************************************************/
4650 /* USB port mux control. */
4651 
4652 /*
4653  * Switch USB mux or return to automatic switching.
4654  */
4655 #define EC_CMD_USB_MUX 0x009A
4656 
4657 struct ec_params_usb_mux {
4658 	uint8_t mux;
4659 } __ec_align1;
4660 
4661 /*****************************************************************************/
4662 /* LDOs / FETs control. */
4663 
4664 enum ec_ldo_state {
4665 	EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
4666 	EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
4667 };
4668 
4669 /*
4670  * Switch on/off a LDO.
4671  */
4672 #define EC_CMD_LDO_SET 0x009B
4673 
4674 struct ec_params_ldo_set {
4675 	uint8_t index;
4676 	uint8_t state;
4677 } __ec_align1;
4678 
4679 /*
4680  * Get LDO state.
4681  */
4682 #define EC_CMD_LDO_GET 0x009C
4683 
4684 struct ec_params_ldo_get {
4685 	uint8_t index;
4686 } __ec_align1;
4687 
4688 struct ec_response_ldo_get {
4689 	uint8_t state;
4690 } __ec_align1;
4691 
4692 /*****************************************************************************/
4693 /* Power info. */
4694 
4695 /*
4696  * Get power info.
4697  *
4698  * Note: v0 of this command is deprecated
4699  */
4700 #define EC_CMD_POWER_INFO 0x009D
4701 
4702 /*
4703  * v1 of EC_CMD_POWER_INFO
4704  */
4705 enum system_power_source {
4706 	/*
4707 	 * Haven't established which power source is used yet,
4708 	 * or no presence signals are available
4709 	 */
4710 	POWER_SOURCE_UNKNOWN = 0,
4711 	/* System is running on battery alone */
4712 	POWER_SOURCE_BATTERY = 1,
4713 	/* System is running on A/C alone */
4714 	POWER_SOURCE_AC = 2,
4715 	/* System is running on A/C and battery */
4716 	POWER_SOURCE_AC_BATTERY = 3,
4717 };
4718 
4719 struct ec_response_power_info_v1 {
4720 	/* enum system_power_source */
4721 	uint8_t system_power_source;
4722 	/* Battery state-of-charge, 0-100, 0 if not present */
4723 	uint8_t battery_soc;
4724 	/* AC Adapter 100% rating, Watts */
4725 	uint8_t ac_adapter_100pct;
4726 	/* AC Adapter 10ms rating, Watts */
4727 	uint8_t ac_adapter_10ms;
4728 	/* Battery 1C rating, derated */
4729 	uint8_t battery_1cd;
4730 	/* Rest of Platform average, Watts */
4731 	uint8_t rop_avg;
4732 	/* Rest of Platform peak, Watts */
4733 	uint8_t rop_peak;
4734 	/* Nominal charger efficiency, % */
4735 	uint8_t nominal_charger_eff;
4736 	/* Rest of Platform VR Average Efficiency, % */
4737 	uint8_t rop_avg_eff;
4738 	/* Rest of Platform VR Peak Efficiency, % */
4739 	uint8_t rop_peak_eff;
4740 	/* SoC VR Efficiency at Average level, % */
4741 	uint8_t soc_avg_eff;
4742 	/* SoC VR Efficiency at Peak level, % */
4743 	uint8_t soc_peak_eff;
4744 	/* Intel-specific items */
4745 	struct {
4746 		/* Battery's level of DBPT support: 0, 2 */
4747 		uint8_t batt_dbpt_support_level;
4748 		/*
4749 		 * Maximum peak power from battery (10ms), Watts
4750 		 * If DBPT is not supported, this is 0
4751 		 */
4752 		uint8_t batt_dbpt_max_peak_power;
4753 		/*
4754 		 * Sustained peak power from battery, Watts
4755 		 * If DBPT is not supported, this is 0
4756 		 */
4757 		uint8_t batt_dbpt_sus_peak_power;
4758 	} intel;
4759 } __ec_align1;
4760 
4761 /*****************************************************************************/
4762 /* I2C passthru command */
4763 
4764 #define EC_CMD_I2C_PASSTHRU 0x009E
4765 
4766 /* Read data; if not present, message is a write */
4767 #define EC_I2C_FLAG_READ BIT(15)
4768 
4769 /* Mask for address */
4770 #define EC_I2C_ADDR_MASK 0x3ff
4771 
4772 #define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */
4773 #define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */
4774 
4775 /* Any error */
4776 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
4777 
4778 struct ec_params_i2c_passthru_msg {
4779 	uint16_t addr_flags; /* I2C peripheral address and flags */
4780 	uint16_t len; /* Number of bytes to read or write */
4781 } __ec_align2;
4782 
4783 struct ec_params_i2c_passthru {
4784 	uint8_t port; /* I2C port number */
4785 	uint8_t num_msgs; /* Number of messages */
4786 	struct ec_params_i2c_passthru_msg msg[];
4787 	/* Data to write for all messages is concatenated here */
4788 } __ec_align2;
4789 
4790 struct ec_response_i2c_passthru {
4791 	uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
4792 	uint8_t num_msgs; /* Number of messages processed */
4793 	uint8_t data[]; /* Data read by messages concatenated here */
4794 } __ec_align1;
4795 
4796 /*****************************************************************************/
4797 /* AP hang detect */
4798 #define EC_CMD_HANG_DETECT 0x009F
4799 
4800 #define EC_HANG_DETECT_MIN_TIMEOUT 5
4801 
4802 /* EC hang detect commands */
4803 enum ec_hang_detect_cmds {
4804 	/* Reload AP hang detect timer. */
4805 	EC_HANG_DETECT_CMD_RELOAD = 0x0,
4806 
4807 	/* Stop AP hang detect timer. */
4808 	EC_HANG_DETECT_CMD_CANCEL = 0x1,
4809 
4810 	/* Configure watchdog with given reboot timeout and
4811 	 * cancel currently running AP hand detect timer.
4812 	 */
4813 	EC_HANG_DETECT_CMD_SET_TIMEOUT = 0x2,
4814 
4815 	/* Get last hang status - whether the AP boot was clear or not */
4816 	EC_HANG_DETECT_CMD_GET_STATUS = 0x3,
4817 
4818 	/* Clear last hang status. Called when AP is rebooting/shutting down
4819 	 * gracefully.
4820 	 */
4821 	EC_HANG_DETECT_CMD_CLEAR_STATUS = 0x4
4822 };
4823 
4824 struct ec_params_hang_detect {
4825 	uint16_t command; /* enum ec_hang_detect_cmds */
4826 	/* Timeout in seconds before generating reboot */
4827 	uint16_t reboot_timeout_sec;
4828 } __ec_align2;
4829 
4830 /* Status codes that describe whether AP has boot normally or the hang has been
4831  * detected and EC has reset AP
4832  */
4833 enum ec_hang_detect_status {
4834 	EC_HANG_DETECT_AP_BOOT_NORMAL = 0x0,
4835 	EC_HANG_DETECT_AP_BOOT_EC_WDT = 0x1,
4836 	EC_HANG_DETECT_AP_BOOT_COUNT,
4837 };
4838 struct ec_response_hang_detect {
4839 	uint8_t status; /* enum ec_hang_detect_status */
4840 } __ec_align1;
4841 /*****************************************************************************/
4842 /* Commands for battery charging */
4843 
4844 /*
4845  * This is the single catch-all host command to exchange data regarding the
4846  * charge state machine (v2 and up).
4847  */
4848 #define EC_CMD_CHARGE_STATE 0x00A0
4849 
4850 /* Subcommands for this host command */
4851 enum charge_state_command {
4852 	CHARGE_STATE_CMD_GET_STATE,
4853 	CHARGE_STATE_CMD_GET_PARAM,
4854 	CHARGE_STATE_CMD_SET_PARAM,
4855 	CHARGE_STATE_NUM_CMDS,
4856 };
4857 
4858 /*
4859  * Known param numbers are defined here. Ranges are reserved for board-specific
4860  * params, which are handled by the particular implementations.
4861  */
4862 enum charge_state_params {
4863 	/* charger voltage limit */
4864 	CS_PARAM_CHG_VOLTAGE,
4865 
4866 	/* charger current limit */
4867 	CS_PARAM_CHG_CURRENT,
4868 
4869 	/* charger input current limit */
4870 	CS_PARAM_CHG_INPUT_CURRENT,
4871 
4872 	/* charger-specific status */
4873 	CS_PARAM_CHG_STATUS,
4874 
4875 	/* charger-specific options */
4876 	CS_PARAM_CHG_OPTION,
4877 
4878 	/*
4879 	 * Check if power is limited due to low battery and / or a
4880 	 * weak external charger. READ ONLY.
4881 	 */
4882 	CS_PARAM_LIMIT_POWER,
4883 
4884 	/* How many so far? */
4885 	CS_NUM_BASE_PARAMS,
4886 
4887 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4888 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4889 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4890 
4891 	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4892 	CS_PARAM_DEBUG_MIN = 0x20000,
4893 	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4894 	CS_PARAM_DEBUG_MANUAL_MODE,
4895 	CS_PARAM_DEBUG_SEEMS_DEAD,
4896 	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4897 	CS_PARAM_DEBUG_BATT_REMOVED, /* Deprecated */
4898 	CS_PARAM_DEBUG_MANUAL_CURRENT,
4899 	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4900 	CS_PARAM_DEBUG_MAX = 0x2ffff,
4901 
4902 	/* Other custom param ranges go here... */
4903 };
4904 
4905 struct ec_params_charge_state {
4906 	uint8_t cmd; /* enum charge_state_command */
4907 	union {
4908 		/* get_state has no args */
4909 
4910 		struct __ec_todo_unpacked {
4911 			uint32_t param; /* enum charge_state_param */
4912 		} get_param;
4913 
4914 		struct __ec_todo_unpacked {
4915 			uint32_t param; /* param to set */
4916 			uint32_t value; /* value to set */
4917 		} set_param;
4918 	} __ec_todo_packed;
4919 	uint8_t chgnum; /* Version 1 supports chgnum */
4920 } __ec_todo_packed;
4921 
4922 struct ec_response_charge_state {
4923 	union {
4924 		struct __ec_align4 {
4925 			int ac;
4926 			int chg_voltage;
4927 			int chg_current;
4928 			int chg_input_current;
4929 			int batt_state_of_charge;
4930 		} get_state;
4931 
4932 		struct __ec_align4 {
4933 			uint32_t value;
4934 		} get_param;
4935 
4936 		/* set_param returns no args */
4937 	};
4938 } __ec_align4;
4939 
4940 /*
4941  * Set maximum battery charging current.
4942  */
4943 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4944 #define EC_VER_CHARGE_CURRENT_LIMIT 1
4945 
4946 struct ec_params_current_limit {
4947 	uint32_t limit; /* in mA */
4948 } __ec_align4;
4949 
4950 struct ec_params_current_limit_v1 {
4951 	uint32_t limit; /* in mA */
4952 	/*
4953 	 * Battery state of charge is the minimum charge percentage at which
4954 	 * the battery charge current limit will apply.
4955 	 * When not set, the limit will apply regardless of state of charge.
4956 	 */
4957 	uint8_t battery_soc; /* battery state of charge, 0-100 */
4958 } __ec_align4;
4959 
4960 /*
4961  * Set maximum external voltage / current.
4962  */
4963 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4964 
4965 /* Command v0 is used only on Spring and is obsolete + unsupported */
4966 struct ec_params_external_power_limit_v1 {
4967 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4968 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4969 } __ec_align2;
4970 
4971 #define EC_POWER_LIMIT_NONE 0xffff
4972 
4973 /*
4974  * Set maximum voltage & current of a dedicated charge port
4975  */
4976 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4977 
4978 struct ec_params_dedicated_charger_limit {
4979 	uint16_t current_lim; /* in mA */
4980 	uint16_t voltage_lim; /* in mV */
4981 } __ec_align2;
4982 
4983 /*
4984  * Get and set charging splashscreen variables
4985  */
4986 #define EC_CMD_CHARGESPLASH 0x00A5
4987 
4988 enum ec_chargesplash_cmd {
4989 	/* Get the current state variables */
4990 	EC_CHARGESPLASH_GET_STATE = 0,
4991 
4992 	/* Indicate initialization of the display loop */
4993 	EC_CHARGESPLASH_DISPLAY_READY,
4994 
4995 	/* Manually put the EC into the requested state */
4996 	EC_CHARGESPLASH_REQUEST,
4997 
4998 	/* Reset all state variables */
4999 	EC_CHARGESPLASH_RESET,
5000 
5001 	/* Manually trigger a lockout */
5002 	EC_CHARGESPLASH_LOCKOUT,
5003 };
5004 
5005 struct __ec_align1 ec_params_chargesplash {
5006 	/* enum ec_chargesplash_cmd */
5007 	uint8_t cmd;
5008 };
5009 
5010 struct __ec_align1 ec_response_chargesplash {
5011 	uint8_t requested;
5012 	uint8_t display_initialized;
5013 	uint8_t locked_out;
5014 };
5015 
5016 /*****************************************************************************/
5017 /* Hibernate/Deep Sleep Commands */
5018 
5019 /* Set the delay before going into hibernation. */
5020 #define EC_CMD_HIBERNATION_DELAY 0x00A8
5021 
5022 struct ec_params_hibernation_delay {
5023 	/*
5024 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
5025 	 * current settings without changing them.
5026 	 */
5027 	uint32_t seconds;
5028 } __ec_align4;
5029 
5030 struct ec_response_hibernation_delay {
5031 	/*
5032 	 * The current time in seconds in which the system has been in the G3
5033 	 * state.  This value is reset if the EC transitions out of G3.
5034 	 */
5035 	uint32_t time_g3;
5036 
5037 	/*
5038 	 * The current time remaining in seconds until the EC should hibernate.
5039 	 * This value is also reset if the EC transitions out of G3.
5040 	 */
5041 	uint32_t time_remaining;
5042 
5043 	/*
5044 	 * The current time in seconds that the EC should wait in G3 before
5045 	 * hibernating.
5046 	 */
5047 	uint32_t hibernate_delay;
5048 } __ec_align4;
5049 
5050 /* Inform the EC when entering a sleep state */
5051 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
5052 
5053 enum host_sleep_event {
5054 	HOST_SLEEP_EVENT_S3_SUSPEND = 1,
5055 	HOST_SLEEP_EVENT_S3_RESUME = 2,
5056 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
5057 	HOST_SLEEP_EVENT_S0IX_RESUME = 4,
5058 	/* S3 suspend with additional enabled wake sources */
5059 	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
5060 };
5061 
5062 struct ec_params_host_sleep_event {
5063 	uint8_t sleep_event;
5064 } __ec_align1;
5065 
5066 /*
5067  * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
5068  * transition failures
5069  */
5070 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
5071 
5072 /* Disable timeout detection for this sleep transition */
5073 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
5074 
5075 struct ec_params_host_sleep_event_v1 {
5076 	/* The type of sleep being entered or exited. */
5077 	uint8_t sleep_event;
5078 
5079 	/* Padding */
5080 	uint8_t reserved;
5081 	union {
5082 		/* Parameters that apply for suspend messages. */
5083 		struct {
5084 			/*
5085 			 * The timeout in milliseconds between when this message
5086 			 * is received and when the EC will declare sleep
5087 			 * transition failure if the sleep signal is not
5088 			 * asserted.
5089 			 */
5090 			uint16_t sleep_timeout_ms;
5091 		} suspend_params;
5092 
5093 		/* No parameters for non-suspend messages. */
5094 	};
5095 } __ec_align2;
5096 
5097 /* A timeout occurred when this bit is set */
5098 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
5099 
5100 /*
5101  * The mask defining which bits correspond to the number of sleep transitions,
5102  * as well as the maximum number of suspend line transitions that will be
5103  * reported back to the host.
5104  */
5105 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
5106 
5107 struct ec_response_host_sleep_event_v1 {
5108 	union {
5109 		/* Response fields that apply for resume messages. */
5110 		struct {
5111 			/*
5112 			 * The number of sleep power signal transitions that
5113 			 * occurred since the suspend message. The high bit
5114 			 * indicates a timeout occurred.
5115 			 */
5116 			uint32_t sleep_transitions;
5117 		} resume_response;
5118 
5119 		/* No response fields for non-resume messages. */
5120 	};
5121 } __ec_align4;
5122 
5123 /*****************************************************************************/
5124 /* Device events */
5125 #define EC_CMD_DEVICE_EVENT 0x00AA
5126 
5127 enum ec_device_event {
5128 	EC_DEVICE_EVENT_TRACKPAD,
5129 	EC_DEVICE_EVENT_DSP,
5130 	EC_DEVICE_EVENT_WIFI,
5131 	EC_DEVICE_EVENT_WLC,
5132 };
5133 
5134 enum ec_device_event_param {
5135 	/* Get and clear pending device events */
5136 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
5137 	/* Get device event mask */
5138 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
5139 	/* Set device event mask */
5140 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
5141 };
5142 
5143 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
5144 
5145 struct ec_params_device_event {
5146 	uint32_t event_mask;
5147 	uint8_t param;
5148 } __ec_align_size1;
5149 
5150 struct ec_response_device_event {
5151 	uint32_t event_mask;
5152 } __ec_align4;
5153 
5154 /*****************************************************************************/
5155 /* Get s0ix counter */
5156 #define EC_CMD_GET_S0IX_COUNTER 0x00AB
5157 
5158 /* Flag use to reset the counter */
5159 #define EC_S0IX_COUNTER_RESET 0x1
5160 
5161 struct ec_params_s0ix_cnt {
5162 	/* If EC_S0IX_COUNTER_RESET then reset otherwise get the counter */
5163 	uint32_t flags;
5164 } __ec_align4;
5165 
5166 struct ec_response_s0ix_cnt {
5167 	/* Value of the s0ix_counter */
5168 	uint32_t s0ix_counter;
5169 } __ec_align4;
5170 
5171 /*****************************************************************************/
5172 /* Smart battery pass-through */
5173 
5174 /* Get / Set 16-bit smart battery registers  - OBSOLETE */
5175 #define EC_CMD_SB_READ_WORD 0x00B0
5176 #define EC_CMD_SB_WRITE_WORD 0x00B1
5177 
5178 /* Get / Set string smart battery parameters
5179  * formatted as SMBUS "block". - OBSOLETE
5180  */
5181 #define EC_CMD_SB_READ_BLOCK 0x00B2
5182 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
5183 
5184 /*****************************************************************************/
5185 /* Battery vendor parameters
5186  *
5187  * Get or set vendor-specific parameters in the battery. Implementations may
5188  * differ between boards or batteries. On a set operation, the response
5189  * contains the actual value set, which may be rounded or clipped from the
5190  * requested value.
5191  */
5192 
5193 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
5194 
5195 enum ec_battery_vendor_param_mode {
5196 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
5197 	BATTERY_VENDOR_PARAM_MODE_SET,
5198 };
5199 
5200 struct ec_params_battery_vendor_param {
5201 	uint32_t param;
5202 	uint32_t value;
5203 	uint8_t mode;
5204 } __ec_align_size1;
5205 
5206 struct ec_response_battery_vendor_param {
5207 	uint32_t value;
5208 } __ec_align4;
5209 
5210 /*****************************************************************************/
5211 /*
5212  * Smart Battery Firmware Update Command - OBSOLETE
5213  */
5214 #define EC_CMD_SB_FW_UPDATE 0x00B5
5215 
5216 /*
5217  * Entering Verified Boot Mode Command
5218  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
5219  * Valid Modes are: normal, developer, and recovery.
5220  *
5221  * EC no longer needs to know what mode vboot has entered,
5222  * so this command is deprecated.  (See chromium:1014379.)
5223  */
5224 #define EC_CMD_ENTERING_MODE 0x00B6
5225 
5226 struct ec_params_entering_mode {
5227 	int vboot_mode;
5228 } __ec_align4;
5229 
5230 #define VBOOT_MODE_NORMAL 0
5231 #define VBOOT_MODE_DEVELOPER 1
5232 #define VBOOT_MODE_RECOVERY 2
5233 
5234 /*****************************************************************************/
5235 /*
5236  * I2C passthru protection command: Protects I2C tunnels against access on
5237  * certain addresses (board-specific).
5238  */
5239 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
5240 
5241 enum ec_i2c_passthru_protect_subcmd {
5242 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0,
5243 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 1,
5244 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE_TCPCS = 2,
5245 };
5246 
5247 struct ec_params_i2c_passthru_protect {
5248 	uint8_t subcmd;
5249 	uint8_t port; /* I2C port number */
5250 } __ec_align1;
5251 
5252 struct ec_response_i2c_passthru_protect {
5253 	uint8_t status; /* Status flags (0: unlocked, 1: locked) */
5254 } __ec_align1;
5255 
5256 /*****************************************************************************/
5257 /*
5258  * HDMI CEC commands
5259  *
5260  * These commands are for sending and receiving message via HDMI CEC
5261  */
5262 
5263 #define EC_CEC_MAX_PORTS 16
5264 
5265 #define MAX_CEC_MSG_LEN 16
5266 
5267 /*
5268  * Helper macros for packing/unpacking cec_events.
5269  * bits[27:0] : bitmask of events from enum mkbp_cec_event
5270  * bits[31:28]: port number
5271  */
5272 #define EC_MKBP_EVENT_CEC_PACK(events, port) \
5273 	(((events) & GENMASK(27, 0)) | (((port) & 0xf) << 28))
5274 #define EC_MKBP_EVENT_CEC_GET_EVENTS(event) ((event) & GENMASK(27, 0))
5275 #define EC_MKBP_EVENT_CEC_GET_PORT(event) (((event) >> 28) & 0xf)
5276 
5277 /* CEC message from the AP to be written on the CEC bus */
5278 #define EC_CMD_CEC_WRITE_MSG 0x00B8
5279 
5280 /**
5281  * struct ec_params_cec_write - Message to write to the CEC bus
5282  * @msg: message content to write to the CEC bus
5283  */
5284 struct ec_params_cec_write {
5285 	uint8_t msg[MAX_CEC_MSG_LEN];
5286 } __ec_align1;
5287 
5288 /**
5289  * struct ec_params_cec_write_v1 - Message to write to the CEC bus
5290  * @port: CEC port to write the message on
5291  * @msg_len: length of msg in bytes
5292  * @msg: message content to write to the CEC bus
5293  */
5294 struct ec_params_cec_write_v1 {
5295 	uint8_t port;
5296 	uint8_t msg_len;
5297 	uint8_t msg[MAX_CEC_MSG_LEN];
5298 } __ec_align1;
5299 
5300 /* CEC message read from a CEC bus reported back to the AP */
5301 #define EC_CMD_CEC_READ_MSG 0x00B9
5302 
5303 /**
5304  * struct ec_params_cec_read - Read a message from the CEC bus
5305  * @port: CEC port to read a message on
5306  */
5307 struct ec_params_cec_read {
5308 	uint8_t port;
5309 } __ec_align1;
5310 
5311 /**
5312  * struct ec_response_cec_read - Message read from the CEC bus
5313  * @msg_len: length of msg in bytes
5314  * @msg: message content read from the CEC bus
5315  */
5316 struct ec_response_cec_read {
5317 	uint8_t msg_len;
5318 	uint8_t msg[MAX_CEC_MSG_LEN];
5319 } __ec_align1;
5320 
5321 /* Set various CEC parameters */
5322 #define EC_CMD_CEC_SET 0x00BA
5323 
5324 /**
5325  * struct ec_params_cec_set - CEC parameters set
5326  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
5327  * @port: CEC port to set the parameter on
5328  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
5329  *	or 1 to enable CEC functionality, in case cmd is
5330  *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
5331  *	address between 0 and 15 or 0xff to unregister
5332  */
5333 struct ec_params_cec_set {
5334 	uint8_t cmd : 4; /* enum cec_command */
5335 	uint8_t port : 4;
5336 	uint8_t val;
5337 } __ec_align1;
5338 
5339 /* Read various CEC parameters */
5340 #define EC_CMD_CEC_GET 0x00BB
5341 
5342 /**
5343  * struct ec_params_cec_get - CEC parameters get
5344  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
5345  * @port: CEC port to get the parameter on
5346  */
5347 struct ec_params_cec_get {
5348 	uint8_t cmd : 4; /* enum cec_command */
5349 	uint8_t port : 4;
5350 } __ec_align1;
5351 
5352 /**
5353  * struct ec_response_cec_get - CEC parameters get response
5354  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
5355  *	disabled or 1 if CEC functionality is enabled,
5356  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
5357  *	configured logical address between 0 and 15 or 0xff if unregistered
5358  */
5359 struct ec_response_cec_get {
5360 	uint8_t val;
5361 } __ec_align1;
5362 
5363 /* Get the number of CEC ports */
5364 #define EC_CMD_CEC_PORT_COUNT 0x00C1
5365 
5366 /**
5367  * struct ec_response_cec_port_count - CEC port count response
5368  * @port_count: number of CEC ports
5369  */
5370 struct ec_response_cec_port_count {
5371 	uint8_t port_count;
5372 } __ec_align1;
5373 
5374 /* CEC parameters command */
5375 enum cec_command {
5376 	/* CEC reading, writing and events enable */
5377 	CEC_CMD_ENABLE,
5378 	/* CEC logical address  */
5379 	CEC_CMD_LOGICAL_ADDRESS,
5380 };
5381 
5382 /* Events from CEC to AP */
5383 enum mkbp_cec_event {
5384 	/* Outgoing message was acknowledged by a follower */
5385 	EC_MKBP_CEC_SEND_OK = BIT(0),
5386 	/* Outgoing message was not acknowledged */
5387 	EC_MKBP_CEC_SEND_FAILED = BIT(1),
5388 	/* Incoming message can be read out by AP */
5389 	EC_MKBP_CEC_HAVE_DATA = BIT(2),
5390 };
5391 
5392 /*****************************************************************************/
5393 
5394 /* Commands for audio codec. */
5395 #define EC_CMD_EC_CODEC 0x00BC
5396 
5397 enum ec_codec_subcmd {
5398 	EC_CODEC_GET_CAPABILITIES = 0x0,
5399 	EC_CODEC_GET_SHM_ADDR = 0x1,
5400 	EC_CODEC_SET_SHM_ADDR = 0x2,
5401 	EC_CODEC_SUBCMD_COUNT,
5402 };
5403 
5404 enum ec_codec_cap {
5405 	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
5406 	EC_CODEC_CAP_WOV_LANG_SHM = 1,
5407 	EC_CODEC_CAP_LAST = 32,
5408 };
5409 
5410 enum ec_codec_shm_id {
5411 	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
5412 	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
5413 	EC_CODEC_SHM_ID_LAST,
5414 };
5415 
5416 enum ec_codec_shm_type {
5417 	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
5418 	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
5419 };
5420 
5421 struct __ec_align1 ec_param_ec_codec_get_shm_addr {
5422 	uint8_t shm_id;
5423 	uint8_t reserved[3];
5424 };
5425 
5426 struct __ec_align4 ec_param_ec_codec_set_shm_addr {
5427 	uint64_t phys_addr;
5428 	uint32_t len;
5429 	uint8_t shm_id;
5430 	uint8_t reserved[3];
5431 };
5432 
5433 struct __ec_align4 ec_param_ec_codec {
5434 	uint8_t cmd; /* enum ec_codec_subcmd */
5435 	uint8_t reserved[3];
5436 
5437 	union {
5438 		struct ec_param_ec_codec_get_shm_addr get_shm_addr_param;
5439 		struct ec_param_ec_codec_set_shm_addr set_shm_addr_param;
5440 	};
5441 };
5442 
5443 struct __ec_align4 ec_response_ec_codec_get_capabilities {
5444 	uint32_t capabilities;
5445 };
5446 
5447 struct __ec_align4 ec_response_ec_codec_get_shm_addr {
5448 	uint64_t phys_addr;
5449 	uint32_t len;
5450 	uint8_t type;
5451 	uint8_t reserved[3];
5452 };
5453 
5454 /*****************************************************************************/
5455 
5456 /* Commands for DMIC on audio codec. */
5457 #define EC_CMD_EC_CODEC_DMIC 0x00BD
5458 
5459 enum ec_codec_dmic_subcmd {
5460 	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
5461 	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
5462 	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
5463 	EC_CODEC_DMIC_SUBCMD_COUNT,
5464 };
5465 
5466 enum ec_codec_dmic_channel {
5467 	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
5468 	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
5469 	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
5470 	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
5471 	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
5472 	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
5473 	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
5474 	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
5475 	EC_CODEC_DMIC_CHANNEL_COUNT,
5476 };
5477 
5478 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
5479 	uint8_t channel; /* enum ec_codec_dmic_channel */
5480 	uint8_t gain;
5481 	uint8_t reserved[2];
5482 };
5483 
5484 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
5485 	uint8_t channel; /* enum ec_codec_dmic_channel */
5486 	uint8_t reserved[3];
5487 };
5488 
5489 struct __ec_align4 ec_param_ec_codec_dmic {
5490 	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
5491 	uint8_t reserved[3];
5492 
5493 	union {
5494 		struct ec_param_ec_codec_dmic_set_gain_idx set_gain_idx_param;
5495 		struct ec_param_ec_codec_dmic_get_gain_idx get_gain_idx_param;
5496 	};
5497 };
5498 
5499 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
5500 	uint8_t max_gain;
5501 };
5502 
5503 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
5504 	uint8_t gain;
5505 };
5506 
5507 /*****************************************************************************/
5508 
5509 /* Commands for I2S RX on audio codec. */
5510 
5511 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
5512 
5513 enum ec_codec_i2s_rx_subcmd {
5514 	EC_CODEC_I2S_RX_ENABLE = 0x0,
5515 	EC_CODEC_I2S_RX_DISABLE = 0x1,
5516 	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
5517 	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
5518 	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
5519 	EC_CODEC_I2S_RX_RESET = 0x5,
5520 	EC_CODEC_I2S_RX_SUBCMD_COUNT,
5521 };
5522 
5523 enum ec_codec_i2s_rx_sample_depth {
5524 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
5525 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
5526 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
5527 };
5528 
5529 enum ec_codec_i2s_rx_daifmt {
5530 	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
5531 	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
5532 	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
5533 	EC_CODEC_I2S_RX_DAIFMT_COUNT,
5534 };
5535 
5536 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
5537 	uint8_t depth;
5538 	uint8_t reserved[3];
5539 };
5540 
5541 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
5542 	uint8_t left;
5543 	uint8_t right;
5544 	uint8_t reserved[2];
5545 };
5546 
5547 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
5548 	uint8_t daifmt;
5549 	uint8_t reserved[3];
5550 };
5551 
5552 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
5553 	uint32_t bclk;
5554 };
5555 
5556 struct __ec_align4 ec_param_ec_codec_i2s_rx {
5557 	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
5558 	uint8_t reserved[3];
5559 
5560 	union {
5561 		struct ec_param_ec_codec_i2s_rx_set_sample_depth
5562 			set_sample_depth_param;
5563 		struct ec_param_ec_codec_i2s_rx_set_daifmt set_daifmt_param;
5564 		struct ec_param_ec_codec_i2s_rx_set_bclk set_bclk_param;
5565 	};
5566 };
5567 
5568 /*****************************************************************************/
5569 /* Commands for WoV on audio codec. */
5570 
5571 #define EC_CMD_EC_CODEC_WOV 0x00BF
5572 
5573 enum ec_codec_wov_subcmd {
5574 	EC_CODEC_WOV_SET_LANG = 0x0,
5575 	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
5576 	EC_CODEC_WOV_GET_LANG = 0x2,
5577 	EC_CODEC_WOV_ENABLE = 0x3,
5578 	EC_CODEC_WOV_DISABLE = 0x4,
5579 	EC_CODEC_WOV_READ_AUDIO = 0x5,
5580 	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
5581 	EC_CODEC_WOV_SUBCMD_COUNT,
5582 };
5583 
5584 /*
5585  * @hash is SHA256 of the whole language model.
5586  * @total_len indicates the length of whole language model.
5587  * @offset is the cursor from the beginning of the model.
5588  * @buf is the packet buffer.
5589  * @len denotes how many bytes in the buf.
5590  */
5591 struct __ec_align4 ec_param_ec_codec_wov_set_lang {
5592 	uint8_t hash[32];
5593 	uint32_t total_len;
5594 	uint32_t offset;
5595 	uint8_t buf[128];
5596 	uint32_t len;
5597 };
5598 
5599 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
5600 	uint8_t hash[32];
5601 	uint32_t total_len;
5602 };
5603 
5604 struct __ec_align4 ec_param_ec_codec_wov {
5605 	uint8_t cmd; /* enum ec_codec_wov_subcmd */
5606 	uint8_t reserved[3];
5607 
5608 	union {
5609 		struct ec_param_ec_codec_wov_set_lang set_lang_param;
5610 		struct ec_param_ec_codec_wov_set_lang_shm set_lang_shm_param;
5611 	};
5612 };
5613 
5614 struct __ec_align4 ec_response_ec_codec_wov_get_lang {
5615 	uint8_t hash[32];
5616 };
5617 
5618 struct __ec_align4 ec_response_ec_codec_wov_read_audio {
5619 	uint8_t buf[128];
5620 	uint32_t len;
5621 };
5622 
5623 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
5624 	uint32_t offset;
5625 	uint32_t len;
5626 };
5627 
5628 /*****************************************************************************/
5629 /* Commands for PoE PSE controller */
5630 
5631 #define EC_CMD_PSE 0x00C0
5632 
5633 enum ec_pse_subcmd {
5634 	EC_PSE_STATUS = 0x0,
5635 	EC_PSE_ENABLE = 0x1,
5636 	EC_PSE_DISABLE = 0x2,
5637 	EC_PSE_SUBCMD_COUNT,
5638 };
5639 
5640 struct __ec_align1 ec_params_pse {
5641 	uint8_t cmd; /* enum ec_pse_subcmd */
5642 	uint8_t port; /* PSE port */
5643 };
5644 
5645 enum ec_pse_status {
5646 	EC_PSE_STATUS_DISABLED = 0x0,
5647 	EC_PSE_STATUS_ENABLED = 0x1,
5648 	EC_PSE_STATUS_POWERED = 0x2,
5649 };
5650 
5651 struct __ec_align1 ec_response_pse_status {
5652 	uint8_t status; /* enum ec_pse_status */
5653 };
5654 
5655 /*****************************************************************************/
5656 /* System commands */
5657 
5658 /*
5659  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
5660  * necessarily reboot the EC.  Rename to "image" or something similar?
5661  */
5662 #define EC_CMD_REBOOT_EC 0x00D2
5663 
5664 /* Command */
5665 enum ec_reboot_cmd {
5666 	EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
5667 	EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
5668 	EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */
5669 	/* (command 3 was jump to RW-B) */
5670 	EC_REBOOT_COLD = 4, /* Cold-reboot */
5671 	EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
5672 	EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */
5673 	/*
5674 	 * DEPRECATED: Hibernate EC and clears AP_IDLE flag.
5675 	 * Use EC_REBOOT_HIBERNATE and EC_REBOOT_FLAG_CLEAR_AP_IDLE, instead.
5676 	 */
5677 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7,
5678 	EC_REBOOT_COLD_AP_OFF = 8, /* Cold-reboot and don't boot AP */
5679 	EC_REBOOT_NO_OP = 9, /* Do nothing but apply the flags. */
5680 };
5681 
5682 /* Flags for ec_params_reboot_ec.reboot_flags */
5683 #define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */
5684 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */
5685 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */
5686 #define EC_REBOOT_FLAG_CLEAR_AP_IDLE BIT(3) /* Clear AP_IDLE flag */
5687 
5688 struct ec_params_reboot_ec {
5689 	uint8_t cmd; /* enum ec_reboot_cmd */
5690 	uint8_t flags; /* See EC_REBOOT_FLAG_* */
5691 } __ec_align1;
5692 
5693 /*
5694  * Get information on last EC panic.
5695  *
5696  * Returns variable-length platform-dependent panic information.  See panic.h
5697  * for details.
5698  */
5699 #define EC_CMD_GET_PANIC_INFO 0x00D3
5700 
5701 struct ec_params_get_panic_info_v1 {
5702 	/* Do not modify PANIC_DATA_FLAG_OLD_HOSTCMD when reading panic info */
5703 	uint8_t preserve_old_hostcmd_flag;
5704 } __ec_align1;
5705 
5706 /*****************************************************************************/
5707 /*
5708  * Special commands
5709  *
5710  * These do not follow the normal rules for commands.  See each command for
5711  * details.
5712  */
5713 
5714 /*
5715  * Reboot NOW
5716  *
5717  * This command will work even when the EC LPC interface is busy, because the
5718  * reboot command is processed at interrupt level.  Note that when the EC
5719  * reboots, the host will reboot too, so there is no response to this command.
5720  *
5721  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
5722  */
5723 #define EC_CMD_REBOOT 0x00D1 /* Think "die" */
5724 
5725 /*
5726  * Resend last response (not supported on LPC).
5727  *
5728  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
5729  * there was no previous command, or the previous command's response was too
5730  * big to save.
5731  */
5732 #define EC_CMD_RESEND_RESPONSE 0x00DB
5733 
5734 /*
5735  * This header byte on a command indicate version 0. Any header byte less
5736  * than this means that we are talking to an old EC which doesn't support
5737  * versioning. In that case, we assume version 0.
5738  *
5739  * Header bytes greater than this indicate a later version. For example,
5740  * EC_CMD_VERSION0 + 1 means we are using version 1.
5741  *
5742  * The old EC interface must not use commands 0xdc or higher.
5743  */
5744 #define EC_CMD_VERSION0 0x00DC
5745 
5746 /*
5747  * Memory Dump Commands
5748  *
5749  * Since the HOSTCMD response size is limited, depending on the
5750  * protocol, retrieving a memory dump is split into 3 commands.
5751  *
5752  * 1. EC_CMD_MEMORY_DUMP_GET_METADATA returns the number of memory dump entries,
5753  *    and the total dump size.
5754  * 2. EC_CMD_MEMORY_DUMP_GET_ENTRY_INFO returns the address and size for a given
5755  *    memory dump entry index.
5756  * 3. EC_CMD_MEMORY_DUMP_READ_MEMORY returns the actual memory at a given
5757  *    address. The address and size must be within the bounds of the given
5758  *    memory dump entry index. Each response is limited to the max response size
5759  *    of the host protocol, so this may need to be called repeatedly to retrieve
5760  *    the entire memory dump entry.
5761  *
5762  * Memory entries may overlap and may be out of order.
5763  * The host should check for overlaps to optimize transfer rate.
5764  */
5765 #define EC_CMD_MEMORY_DUMP_GET_METADATA 0x00DD
5766 struct ec_response_memory_dump_get_metadata {
5767 	uint16_t memory_dump_entry_count;
5768 	uint32_t memory_dump_total_size;
5769 } __ec_align4;
5770 
5771 #define EC_CMD_MEMORY_DUMP_GET_ENTRY_INFO 0x00DE
5772 struct ec_params_memory_dump_get_entry_info {
5773 	uint16_t memory_dump_entry_index;
5774 } __ec_align4;
5775 
5776 struct ec_response_memory_dump_get_entry_info {
5777 	uint32_t address;
5778 	uint32_t size;
5779 } __ec_align4;
5780 
5781 #define EC_CMD_MEMORY_DUMP_READ_MEMORY 0x00DF
5782 
5783 struct ec_params_memory_dump_read_memory {
5784 	uint16_t memory_dump_entry_index;
5785 	uint32_t address;
5786 	uint32_t size;
5787 } __ec_align4;
5788 
5789 /*
5790  * EC_CMD_MEMORY_DUMP_READ_MEMORY response buffer is written directly into
5791  * host_cmd_handler_args.response and host_cmd_handler_args.response_size.
5792  */
5793 
5794 /*****************************************************************************/
5795 /*
5796  * PD commands
5797  *
5798  * These commands are for PD MCU communication.
5799  */
5800 
5801 /* EC to PD MCU exchange status command */
5802 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
5803 #define EC_VER_PD_EXCHANGE_STATUS 2
5804 
5805 enum pd_charge_state {
5806 	/* Don't change charge state */
5807 	PD_CHARGE_NO_CHANGE = 0,
5808 
5809 	/* No charging allowed */
5810 	PD_CHARGE_NONE,
5811 
5812 	/* 5V charging only */
5813 	PD_CHARGE_5V,
5814 
5815 	/* Charge at max voltage */
5816 	PD_CHARGE_MAX,
5817 };
5818 
5819 /* Status of EC being sent to PD */
5820 #define EC_STATUS_HIBERNATING BIT(0)
5821 
5822 struct ec_params_pd_status {
5823 	/* EC status */
5824 	uint8_t status;
5825 
5826 	/* battery state of charge */
5827 	int8_t batt_soc;
5828 
5829 	/* charging state (from enum pd_charge_state) */
5830 	uint8_t charge_state;
5831 } __ec_align1;
5832 
5833 /* Status of PD being sent back to EC */
5834 #define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */
5835 #define PD_STATUS_IN_RW BIT(1) /* Running RW image */
5836 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
5837 #define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */
5838 #define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */
5839 #define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */
5840 #define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */
5841 #define PD_STATUS_EC_INT_ACTIVE \
5842 	(PD_STATUS_TCPC_ALERT_0 | PD_STATUS_TCPC_ALERT_1 | PD_STATUS_HOST_EVENT)
5843 struct ec_response_pd_status {
5844 	/* input current limit */
5845 	uint32_t curr_lim_ma;
5846 
5847 	/* PD MCU status */
5848 	uint16_t status;
5849 
5850 	/* active charging port */
5851 	int8_t active_charge_port;
5852 } __ec_align_size1;
5853 
5854 /* AP to PD MCU host event status command, cleared on read */
5855 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
5856 
5857 /* PD MCU host event status bits */
5858 #define PD_EVENT_UPDATE_DEVICE BIT(0)
5859 #define PD_EVENT_POWER_CHANGE BIT(1)
5860 #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
5861 #define PD_EVENT_DATA_SWAP BIT(3)
5862 #define PD_EVENT_TYPEC BIT(4)
5863 #define PD_EVENT_PPM BIT(5)
5864 
5865 struct ec_response_host_event_status {
5866 	uint32_t status; /* PD MCU host event status */
5867 } __ec_align4;
5868 
5869 /*
5870  * Set USB type-C port role and muxes
5871  *
5872  * Deprecated in favor of TYPEC_STATUS and TYPEC_CONTROL commands.
5873  *
5874  * TODO(b/169771803): TCPMv2: Remove EC_CMD_USB_PD_CONTROL
5875  */
5876 #define EC_CMD_USB_PD_CONTROL 0x0101
5877 
5878 enum usb_pd_control_role {
5879 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
5880 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
5881 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
5882 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
5883 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
5884 	USB_PD_CTRL_ROLE_FREEZE = 5,
5885 	USB_PD_CTRL_ROLE_COUNT,
5886 };
5887 
5888 enum usb_pd_control_mux {
5889 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
5890 	USB_PD_CTRL_MUX_NONE = 1,
5891 	USB_PD_CTRL_MUX_USB = 2,
5892 	USB_PD_CTRL_MUX_DP = 3,
5893 	USB_PD_CTRL_MUX_DOCK = 4,
5894 	USB_PD_CTRL_MUX_AUTO = 5,
5895 	USB_PD_CTRL_MUX_COUNT,
5896 };
5897 
5898 enum usb_pd_control_swap {
5899 	USB_PD_CTRL_SWAP_NONE = 0,
5900 	USB_PD_CTRL_SWAP_DATA = 1,
5901 	USB_PD_CTRL_SWAP_POWER = 2,
5902 	USB_PD_CTRL_SWAP_VCONN = 3,
5903 	USB_PD_CTRL_SWAP_COUNT,
5904 };
5905 
5906 struct ec_params_usb_pd_control {
5907 	uint8_t port;
5908 	uint8_t role;
5909 	uint8_t mux;
5910 	uint8_t swap;
5911 } __ec_align1;
5912 
5913 #define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */
5914 #define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */
5915 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
5916 
5917 #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */
5918 #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */
5919 #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */
5920 #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */
5921 #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */
5922 #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */
5923 /* Partner unconstrained power */
5924 #define PD_CTRL_RESP_ROLE_UNCONSTRAINED BIT(6)
5925 
5926 struct ec_response_usb_pd_control {
5927 	uint8_t enabled;
5928 	uint8_t role;
5929 	uint8_t polarity;
5930 	uint8_t state;
5931 } __ec_align1;
5932 
5933 struct ec_response_usb_pd_control_v1 {
5934 	uint8_t enabled;
5935 	uint8_t role;
5936 	uint8_t polarity;
5937 	char state[32];
5938 } __ec_align1;
5939 
5940 /* Possible port partner connections based on CC line states */
5941 enum pd_cc_states {
5942 	PD_CC_NONE = 0, /* No port partner attached */
5943 
5944 	/* From DFP perspective */
5945 	PD_CC_UFP_NONE = 1, /* No UFP accessory connected */
5946 	PD_CC_UFP_AUDIO_ACC = 2, /* UFP Audio accessory connected */
5947 	PD_CC_UFP_DEBUG_ACC = 3, /* UFP Debug accessory connected */
5948 	PD_CC_UFP_ATTACHED = 4, /* Plain UFP attached */
5949 
5950 	/* From UFP perspective */
5951 	PD_CC_DFP_ATTACHED = 5, /* Plain DFP attached */
5952 	PD_CC_DFP_DEBUG_ACC = 6, /* DFP debug accessory connected */
5953 };
5954 
5955 /* Active/Passive Cable */
5956 #define USB_PD_CTRL_ACTIVE_CABLE BIT(0)
5957 /* Optical/Non-optical cable */
5958 #define USB_PD_CTRL_OPTICAL_CABLE BIT(1)
5959 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
5960 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER BIT(2)
5961 /* Active Link Uni-Direction */
5962 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR BIT(3)
5963 /* Retimer/Redriver cable */
5964 #define USB_PD_CTRL_RETIMER_CABLE BIT(4)
5965 
5966 struct ec_response_usb_pd_control_v2 {
5967 	uint8_t enabled;
5968 	uint8_t role;
5969 	uint8_t polarity;
5970 	char state[32];
5971 	uint8_t cc_state; /* enum pd_cc_states representing cc state */
5972 	uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
5973 	uint8_t reserved; /* Reserved for future use */
5974 	uint8_t control_flags; /* USB_PD_CTRL_*flags */
5975 	uint8_t cable_speed; /* TBT_SS_* cable speed */
5976 	uint8_t cable_gen; /* TBT_GEN3_* cable rounded support */
5977 } __ec_align1;
5978 
5979 #define EC_CMD_USB_PD_PORTS 0x0102
5980 
5981 /* Maximum number of PD ports on a device, num_ports will be <= this */
5982 #define EC_USB_PD_MAX_PORTS 8
5983 
5984 struct ec_response_usb_pd_ports {
5985 	uint8_t num_ports;
5986 } __ec_align1;
5987 
5988 #define EC_CMD_USB_PD_POWER_INFO 0x0103
5989 
5990 #define PD_POWER_CHARGING_PORT 0xff
5991 struct ec_params_usb_pd_power_info {
5992 	uint8_t port;
5993 } __ec_align1;
5994 
5995 enum usb_chg_type {
5996 	USB_CHG_TYPE_NONE,
5997 	USB_CHG_TYPE_PD,
5998 	USB_CHG_TYPE_C,
5999 	USB_CHG_TYPE_PROPRIETARY,
6000 	USB_CHG_TYPE_BC12_DCP,
6001 	USB_CHG_TYPE_BC12_CDP,
6002 	USB_CHG_TYPE_BC12_SDP,
6003 	USB_CHG_TYPE_OTHER,
6004 	USB_CHG_TYPE_VBUS,
6005 	USB_CHG_TYPE_UNKNOWN,
6006 	USB_CHG_TYPE_DEDICATED,
6007 };
6008 enum usb_power_roles {
6009 	USB_PD_PORT_POWER_DISCONNECTED,
6010 	USB_PD_PORT_POWER_SOURCE,
6011 	USB_PD_PORT_POWER_SINK,
6012 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
6013 };
6014 
6015 struct usb_chg_measures {
6016 	uint16_t voltage_max;
6017 	uint16_t voltage_now;
6018 	uint16_t current_max;
6019 	uint16_t current_lim;
6020 } __ec_align2;
6021 
6022 struct ec_response_usb_pd_power_info {
6023 	uint8_t role;
6024 	uint8_t type;
6025 	uint8_t dualrole;
6026 	uint8_t reserved1;
6027 	struct usb_chg_measures meas;
6028 	uint32_t max_power;
6029 } __ec_align4;
6030 
6031 /*
6032  * This command will return the number of USB PD charge port + the number
6033  * of dedicated port present.
6034  * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
6035  */
6036 #define EC_CMD_CHARGE_PORT_COUNT 0x0105
6037 struct ec_response_charge_port_count {
6038 	uint8_t port_count;
6039 } __ec_align1;
6040 
6041 /*
6042  * This command enable/disable dynamic PDO selection.
6043  */
6044 #define EC_CMD_USB_PD_DPS_CONTROL 0x0106
6045 
6046 struct ec_params_usb_pd_dps_control {
6047 	uint8_t enable;
6048 } __ec_align1;
6049 
6050 /* Write USB-PD device FW */
6051 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
6052 
6053 enum usb_pd_fw_update_cmds {
6054 	USB_PD_FW_REBOOT,
6055 	USB_PD_FW_FLASH_ERASE,
6056 	USB_PD_FW_FLASH_WRITE,
6057 	USB_PD_FW_ERASE_SIG,
6058 };
6059 
6060 struct ec_params_usb_pd_fw_update {
6061 	uint16_t dev_id;
6062 	uint8_t cmd;
6063 	uint8_t port;
6064 
6065 	/* Size to write in bytes */
6066 	uint32_t size;
6067 
6068 	/* Followed by data to write */
6069 } __ec_align4;
6070 
6071 /* Write USB-PD Accessory RW_HASH table entry */
6072 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
6073 /* RW hash is first 20 bytes of SHA-256 of RW section */
6074 #define PD_RW_HASH_SIZE 20
6075 struct ec_params_usb_pd_rw_hash_entry {
6076 	uint16_t dev_id;
6077 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
6078 
6079 	/*
6080 	 * Reserved for alignment of current_image
6081 	 * TODO(rspangler) but it's not aligned!
6082 	 * Should have been reserved[2].
6083 	 */
6084 	uint8_t reserved;
6085 
6086 	/* One of ec_image */
6087 	uint32_t current_image;
6088 } __ec_align1;
6089 
6090 /* Read USB-PD Accessory info */
6091 #define EC_CMD_USB_PD_DEV_INFO 0x0112
6092 
6093 struct ec_params_usb_pd_info_request {
6094 	uint8_t port;
6095 } __ec_align1;
6096 
6097 /* Read USB-PD Device discovery info */
6098 #define EC_CMD_USB_PD_DISCOVERY 0x0113
6099 struct ec_params_usb_pd_discovery_entry {
6100 	uint16_t vid; /* USB-IF VID */
6101 	uint16_t pid; /* USB-IF PID */
6102 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
6103 } __ec_align_size1;
6104 
6105 /* Override default charge behavior */
6106 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
6107 
6108 /* Negative port parameters have special meaning */
6109 enum usb_pd_override_ports {
6110 	/*
6111 	 * DONT_CHARGE is for all ports. Thus it's persistent across plug-in
6112 	 * or plug-out.
6113 	 */
6114 	OVERRIDE_DONT_CHARGE = -2,
6115 	OVERRIDE_OFF = -1,
6116 	/* [0, CONFIG_USB_PD_PORT_MAX_COUNT): Port# */
6117 };
6118 
6119 struct ec_params_charge_port_override {
6120 	int16_t override_port; /* Override port# */
6121 } __ec_align2;
6122 
6123 /*
6124  * Read (and delete) one entry of PD event log.
6125  * TODO(crbug.com/751742): Make this host command more generic to accommodate
6126  * future non-PD logs that use the same internal EC event_log.
6127  */
6128 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
6129 
6130 struct ec_response_pd_log {
6131 	uint32_t timestamp; /* relative timestamp in milliseconds */
6132 	uint8_t type; /* event type : see PD_EVENT_xx below */
6133 	uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */
6134 	uint16_t data; /* type-defined data payload */
6135 	uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
6136 } __ec_align4;
6137 
6138 /* The timestamp is the microsecond counter shifted to get about a ms. */
6139 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
6140 
6141 #define PD_LOG_SIZE_MASK 0x1f
6142 #define PD_LOG_PORT_MASK 0xe0
6143 #define PD_LOG_PORT_SHIFT 5
6144 #define PD_LOG_PORT_SIZE(port, size) \
6145 	(((port) << PD_LOG_PORT_SHIFT) | ((size) & PD_LOG_SIZE_MASK))
6146 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
6147 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
6148 
6149 /* PD event log : entry types */
6150 /* PD MCU events */
6151 #define PD_EVENT_MCU_BASE 0x00
6152 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE + 0)
6153 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE + 1)
6154 /* Reserved for custom board event */
6155 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE + 2)
6156 /* PD generic accessory events */
6157 #define PD_EVENT_ACC_BASE 0x20
6158 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE + 0)
6159 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE + 1)
6160 /* PD power supply events */
6161 #define PD_EVENT_PS_BASE 0x40
6162 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE + 0)
6163 /* PD video dongles events */
6164 #define PD_EVENT_VIDEO_BASE 0x60
6165 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE + 0)
6166 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE + 1)
6167 /* Returned in the "type" field, when there is no entry available */
6168 #define PD_EVENT_NO_ENTRY 0xff
6169 
6170 /*
6171  * PD_EVENT_MCU_CHARGE event definition :
6172  * the payload is "struct usb_chg_measures"
6173  * the data field contains the port state flags as defined below :
6174  */
6175 /* Port partner is a dual role device */
6176 #define CHARGE_FLAGS_DUAL_ROLE BIT(15)
6177 /* Port is the pending override port */
6178 #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14)
6179 /* Port is the override port */
6180 #define CHARGE_FLAGS_OVERRIDE BIT(13)
6181 /* Charger type */
6182 #define CHARGE_FLAGS_TYPE_SHIFT 3
6183 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT)
6184 /* Power delivery role */
6185 #define CHARGE_FLAGS_ROLE_MASK (7 << 0)
6186 
6187 /*
6188  * PD_EVENT_PS_FAULT data field flags definition :
6189  */
6190 #define PS_FAULT_OCP 1
6191 #define PS_FAULT_FAST_OCP 2
6192 #define PS_FAULT_OVP 3
6193 #define PS_FAULT_DISCH 4
6194 
6195 /*
6196  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
6197  */
6198 struct mcdp_version {
6199 	uint8_t major;
6200 	uint8_t minor;
6201 	uint16_t build;
6202 } __ec_align4;
6203 
6204 struct mcdp_info {
6205 	uint8_t family[2];
6206 	uint8_t chipid[2];
6207 	struct mcdp_version irom;
6208 	struct mcdp_version fw;
6209 } __ec_align4;
6210 
6211 /* struct mcdp_info field decoding */
6212 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
6213 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
6214 
6215 /* Get/Set USB-PD Alternate mode info */
6216 #define EC_CMD_USB_PD_GET_AMODE 0x0116
6217 struct ec_params_usb_pd_get_mode_request {
6218 	uint16_t svid_idx; /* SVID index to get */
6219 	uint8_t port; /* port */
6220 } __ec_align_size1;
6221 
6222 #define VDO_MAX_SIZE 7
6223 /* Max number of VDM data objects without VDM header */
6224 #define VDO_MAX_OBJECTS (VDO_MAX_SIZE - 1)
6225 
6226 struct ec_params_usb_pd_get_mode_response {
6227 	uint16_t svid; /* SVID */
6228 	uint16_t opos; /* Object Position */
6229 	uint32_t vdo[VDO_MAX_OBJECTS]; /* Mode VDOs */
6230 } __ec_align4;
6231 
6232 #define EC_CMD_USB_PD_SET_AMODE 0x0117
6233 
6234 enum pd_mode_cmd {
6235 	PD_EXIT_MODE = 0,
6236 	PD_ENTER_MODE = 1,
6237 	/* Not a command.  Do NOT remove. */
6238 	PD_MODE_CMD_COUNT,
6239 };
6240 
6241 struct ec_params_usb_pd_set_mode_request {
6242 	uint32_t cmd; /* enum pd_mode_cmd */
6243 	uint16_t svid; /* SVID to set */
6244 	uint8_t opos; /* Object Position */
6245 	uint8_t port; /* port */
6246 } __ec_align4;
6247 
6248 /* Ask the PD MCU to record a log of a requested type */
6249 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
6250 
6251 struct ec_params_pd_write_log_entry {
6252 	uint8_t type; /* event type : see PD_EVENT_xx above */
6253 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
6254 } __ec_align1;
6255 
6256 /* Control USB-PD chip */
6257 #define EC_CMD_PD_CONTROL 0x0119
6258 
6259 enum ec_pd_control_cmd {
6260 	PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */
6261 	PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */
6262 	PD_RESET, /* Force reset the PD chip */
6263 	PD_CONTROL_DISABLE, /* Disable further calls to this command */
6264 	PD_CHIP_ON, /* Power on the PD chip */
6265 };
6266 
6267 struct ec_params_pd_control {
6268 	uint8_t chip; /* chip id */
6269 	uint8_t subcmd;
6270 } __ec_align1;
6271 
6272 /* Get info about USB-C SS muxes */
6273 #define EC_CMD_USB_PD_MUX_INFO 0x011A
6274 
6275 struct ec_params_usb_pd_mux_info {
6276 	uint8_t port; /* USB-C port number */
6277 } __ec_align1;
6278 
6279 /* Flags representing mux state */
6280 #define USB_PD_MUX_NONE 0 /* Open switch */
6281 #define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */
6282 #define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */
6283 #define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */
6284 #define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */
6285 #define USB_PD_MUX_HPD_IRQ_DEASSERTED 0 /* HPD IRQ is deasserted */
6286 #define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */
6287 #define USB_PD_MUX_HPD_LVL_DEASSERTED 0 /* HPD level is deasserted */
6288 #define USB_PD_MUX_SAFE_MODE BIT(5) /* DP is in safe mode */
6289 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
6290 #define USB_PD_MUX_USB4_ENABLED BIT(7) /* USB4 enabled */
6291 
6292 /* USB-C Dock connected */
6293 #define USB_PD_MUX_DOCK (USB_PD_MUX_USB_ENABLED | USB_PD_MUX_DP_ENABLED)
6294 
6295 struct ec_response_usb_pd_mux_info {
6296 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
6297 } __ec_align1;
6298 
6299 #define EC_CMD_PD_CHIP_INFO 0x011B
6300 
6301 struct ec_params_pd_chip_info {
6302 	uint8_t port; /* USB-C port number */
6303 	/*
6304 	 * Fetch the live chip info or hard-coded + cached chip info
6305 	 * 0: hardcoded value for VID/PID, cached value for FW version
6306 	 * 1: live chip value for VID/PID/FW Version
6307 	 */
6308 	uint8_t live;
6309 } __ec_align1;
6310 
6311 struct ec_response_pd_chip_info {
6312 	uint16_t vendor_id;
6313 	uint16_t product_id;
6314 	uint16_t device_id;
6315 	union {
6316 		uint8_t fw_version_string[8];
6317 		uint64_t fw_version_number;
6318 	} __ec_align2;
6319 } __ec_align2;
6320 
6321 struct ec_response_pd_chip_info_v1 {
6322 	uint16_t vendor_id;
6323 	uint16_t product_id;
6324 	uint16_t device_id;
6325 	union {
6326 		uint8_t fw_version_string[8];
6327 		uint64_t fw_version_number;
6328 	} __ec_align2;
6329 	union {
6330 		uint8_t min_req_fw_version_string[8];
6331 		uint64_t min_req_fw_version_number;
6332 	} __ec_align2;
6333 } __ec_align2;
6334 
6335 /** Indicates the chip should NOT receive a firmware update, if set. This is
6336  *  useful when multiple ports are serviced by a single chip, to avoid
6337  *  performing redundant updates. The host command implementation shall ensure
6338  *  only one port out of each physical chip has FW updates active.
6339  */
6340 #define USB_PD_CHIP_INFO_FWUP_FLAG_NO_UPDATE BIT(0)
6341 
6342 /** Maximum length of a project name embedded in a PDC FW image. This length
6343  *  does NOT include a NUL-terminator.
6344  */
6345 #define USB_PD_CHIP_INFO_PROJECT_NAME_LEN 12
6346 struct ec_response_pd_chip_info_v2 {
6347 	uint16_t vendor_id;
6348 	uint16_t product_id;
6349 	uint16_t device_id;
6350 	union {
6351 		uint8_t fw_version_string[8];
6352 		uint64_t fw_version_number;
6353 	} __ec_align2;
6354 	union {
6355 		uint8_t min_req_fw_version_string[8];
6356 		uint64_t min_req_fw_version_number;
6357 	} __ec_align2;
6358 	/** Flag to control the FW update process for this chip. */
6359 	uint16_t fw_update_flags;
6360 	/** Project name string associated with the chip's FW. Add an extra
6361 	 *  byte for a NUL-terminator.
6362 	 */
6363 	char fw_name_str[USB_PD_CHIP_INFO_PROJECT_NAME_LEN + 1];
6364 } __ec_align2;
6365 
6366 /* Run RW signature verification and get status */
6367 #define EC_CMD_RWSIG_CHECK_STATUS 0x011C
6368 
6369 struct ec_response_rwsig_check_status {
6370 	uint32_t status;
6371 } __ec_align4;
6372 
6373 /* For controlling RWSIG task */
6374 #define EC_CMD_RWSIG_ACTION 0x011D
6375 
6376 enum rwsig_action {
6377 	RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */
6378 	RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */
6379 };
6380 
6381 struct ec_params_rwsig_action {
6382 	uint32_t action;
6383 } __ec_align4;
6384 
6385 /* Run verification on a slot */
6386 #define EC_CMD_EFS_VERIFY 0x011E
6387 
6388 struct ec_params_efs_verify {
6389 	uint8_t region; /* enum ec_flash_region */
6390 } __ec_align1;
6391 
6392 /*
6393  * Retrieve info from Cros Board Info store. Response is based on the data
6394  * type. Integers return a uint32. Strings return a string, using the response
6395  * size to determine how big it is.
6396  */
6397 #define EC_CMD_GET_CROS_BOARD_INFO 0x011F
6398 /*
6399  * Write info into Cros Board Info on EEPROM. Write fails if the board has
6400  * hardware write-protect enabled.
6401  */
6402 #define EC_CMD_SET_CROS_BOARD_INFO 0x0120
6403 
6404 enum cbi_data_tag {
6405 	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
6406 	CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */
6407 	CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */
6408 	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
6409 	CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */
6410 	CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */
6411 	CBI_TAG_FW_CONFIG = 6, /* uint32_t bit field */
6412 	CBI_TAG_PCB_SUPPLIER = 7, /* uint32_t or smaller */
6413 	/* Second Source Factory Cache */
6414 	CBI_TAG_SSFC = 8, /* uint32_t bit field */
6415 	CBI_TAG_REWORK_ID = 9, /* uint64_t or smaller */
6416 	CBI_TAG_FACTORY_CALIBRATION_DATA = 10, /* uint32_t bit field */
6417 
6418 	/*
6419 	 * A uint32_t field reserved for controlling common features at runtime.
6420 	 * It shouldn't be used at board-level. See union ec_common_control for
6421 	 * the bit definitions.
6422 	 */
6423 	CBI_TAG_COMMON_CONTROL = 11,
6424 
6425 	/* struct board_batt_params */
6426 	CBI_TAG_BATTERY_CONFIG = 12,
6427 	/* CBI_TAG_BATTERY_CONFIG_1 ~ 15 will use 13 ~ 27. */
6428 	CBI_TAG_BATTERY_CONFIG_15 = 27,
6429 
6430 	/* Last entry */
6431 	CBI_TAG_COUNT,
6432 };
6433 
6434 union ec_common_control {
6435 	struct {
6436 		uint32_t ucsi_enabled : 1;
6437 	};
6438 	uint32_t raw_value;
6439 };
6440 
6441 /*
6442  * Flags to control read operation
6443  *
6444  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
6445  *          write was successful without reboot.
6446  */
6447 #define CBI_GET_RELOAD BIT(0)
6448 
6449 struct ec_params_get_cbi {
6450 	uint32_t tag; /* enum cbi_data_tag */
6451 	uint32_t flag; /* CBI_GET_* */
6452 } __ec_align4;
6453 
6454 /*
6455  * Flags to control write behavior.
6456  *
6457  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
6458  *          useful when writing multiple fields in a row.
6459  * INIT:    Need to be set when creating a new CBI from scratch. All fields
6460  *          will be initialized to zero first.
6461  */
6462 #define CBI_SET_NO_SYNC BIT(0)
6463 #define CBI_SET_INIT BIT(1)
6464 
6465 struct ec_params_set_cbi {
6466 	uint32_t tag; /* enum cbi_data_tag */
6467 	uint32_t flag; /* CBI_SET_* */
6468 	uint32_t size; /* Data size */
6469 	uint8_t data[]; /* For string and raw data */
6470 } __ec_align1;
6471 
6472 /*
6473  * Retrieve binary from CrOS Board Info primary memory source.
6474  */
6475 #define EC_CMD_CBI_BIN_READ 0x0504
6476 /*
6477  * Write binary into CrOS Board Info temporary buffer and then commit it to
6478  * permanent storage once complete. Write fails if the board has hardware
6479  * write-protect enabled.
6480  */
6481 #define EC_CMD_CBI_BIN_WRITE 0x0505
6482 
6483 /*
6484  * CBI binary read/write flags
6485  * The default write behavior is to always append any data to the buffer.
6486  * If 'CLEAR' flag is set, buffer is cleared then data is appended.
6487  * If 'WRITE' flag is set, data is appended then buffer is written to memory.
6488  */
6489 #define EC_CBI_BIN_BUFFER_CLEAR BIT(0)
6490 #define EC_CBI_BIN_BUFFER_WRITE BIT(1)
6491 
6492 struct ec_params_get_cbi_bin {
6493 	uint32_t offset; /* Data offset */
6494 	uint32_t size; /* Data size */
6495 } __ec_align4;
6496 
6497 struct ec_params_set_cbi_bin {
6498 	uint32_t offset; /* Data offset */
6499 	uint32_t size; /* Data size */
6500 	uint8_t flags; /* bit field for EC_CBI_BIN_COMMIT_FLAG_* */
6501 	uint8_t data[]; /* For string and raw data */
6502 } __ec_align1;
6503 
6504 /*
6505  * Information about resets of the AP by the EC and the EC's own uptime.
6506  */
6507 #define EC_CMD_GET_UPTIME_INFO 0x0121
6508 
6509 /* EC reset causes */
6510 #define EC_RESET_FLAG_OTHER BIT(0) /* Other known reason */
6511 #define EC_RESET_FLAG_RESET_PIN BIT(1) /* Reset pin asserted */
6512 #define EC_RESET_FLAG_BROWNOUT BIT(2) /* Brownout */
6513 #define EC_RESET_FLAG_POWER_ON BIT(3) /* Power-on reset */
6514 #define EC_RESET_FLAG_WATCHDOG BIT(4) /* Watchdog timer reset */
6515 #define EC_RESET_FLAG_SOFT BIT(5) /* Soft reset trigger by core */
6516 #define EC_RESET_FLAG_HIBERNATE BIT(6) /* Wake from hibernate */
6517 #define EC_RESET_FLAG_RTC_ALARM BIT(7) /* RTC alarm wake */
6518 #define EC_RESET_FLAG_WAKE_PIN BIT(8) /* Wake pin triggered wake */
6519 #define EC_RESET_FLAG_LOW_BATTERY BIT(9) /* Low battery triggered wake */
6520 #define EC_RESET_FLAG_SYSJUMP BIT(10) /* Jumped directly to this image */
6521 #define EC_RESET_FLAG_HARD BIT(11) /* Hard reset from software */
6522 #define EC_RESET_FLAG_AP_OFF BIT(12) /* Do not power on AP */
6523 /* Some reset flags preserved from previous boot */
6524 #define EC_RESET_FLAG_PRESERVED BIT(13)
6525 #define EC_RESET_FLAG_USB_RESUME BIT(14) /* USB resume triggered wake */
6526 #define EC_RESET_FLAG_RDD BIT(15) /* USB Type-C debug cable */
6527 #define EC_RESET_FLAG_RBOX BIT(16) /* Fixed Reset Functionality */
6528 #define EC_RESET_FLAG_SECURITY BIT(17) /* Security threat */
6529 /* AP experienced a watchdog reset */
6530 #define EC_RESET_FLAG_AP_WATCHDOG BIT(18)
6531 /* Do not select RW in EFS. This enables PD in RO for Chromebox. */
6532 #define EC_RESET_FLAG_STAY_IN_RO BIT(19)
6533 #define EC_RESET_FLAG_EFS BIT(20) /* Jumped to this image by EFS */
6534 #define EC_RESET_FLAG_AP_IDLE BIT(21) /* Leave alone AP */
6535 #define EC_RESET_FLAG_INITIAL_PWR BIT(22) /* EC had power, then was reset */
6536 
6537 /*
6538  * Reason codes used by the AP after a shutdown to figure out why it was reset
6539  * by the EC.  These are sent in EC commands.  Therefore, to maintain protocol
6540  * compatibility:
6541  * - New entries must be inserted prior to the _COUNT field
6542  * - If an existing entry is no longer in service, it must be replaced with a
6543  *   RESERVED entry instead.
6544  * - The semantic meaning of an entry should not change.
6545  * - Do not exceed 2^15 - 1 for reset reasons or 2^16 - 1 for shutdown reasons.
6546  */
6547 enum chipset_shutdown_reason {
6548 	/*
6549 	 * Beginning of reset reasons.
6550 	 */
6551 	CHIPSET_RESET_BEGIN = 0,
6552 	CHIPSET_RESET_UNKNOWN = CHIPSET_RESET_BEGIN,
6553 	/* Custom reason defined by a board.c or baseboard.c file */
6554 	CHIPSET_RESET_BOARD_CUSTOM,
6555 	/* Believe that the AP has hung */
6556 	CHIPSET_RESET_HANG_REBOOT,
6557 	/* Reset by EC console command */
6558 	CHIPSET_RESET_CONSOLE_CMD,
6559 	/* Reset by EC host command */
6560 	CHIPSET_RESET_HOST_CMD,
6561 	/* Keyboard module reset key combination */
6562 	CHIPSET_RESET_KB_SYSRESET,
6563 	/* Keyboard module warm reboot */
6564 	CHIPSET_RESET_KB_WARM_REBOOT,
6565 	/* Debug module warm reboot */
6566 	CHIPSET_RESET_DBG_WARM_REBOOT,
6567 	/* I cannot self-terminate.  You must lower me into the steel. */
6568 	CHIPSET_RESET_AP_REQ,
6569 	/* Reset as side-effect of startup sequence */
6570 	CHIPSET_RESET_INIT,
6571 	/* EC detected an AP watchdog event. */
6572 	CHIPSET_RESET_AP_WATCHDOG,
6573 
6574 	CHIPSET_RESET_COUNT, /* End of reset reasons. */
6575 
6576 	/*
6577 	 * Beginning of shutdown reasons.
6578 	 */
6579 	CHIPSET_SHUTDOWN_BEGIN = BIT(15),
6580 	CHIPSET_SHUTDOWN_POWERFAIL = CHIPSET_SHUTDOWN_BEGIN,
6581 	/* Forcing a shutdown as part of EC initialization */
6582 	CHIPSET_SHUTDOWN_INIT,
6583 	/* Custom reason on a per-board basis. */
6584 	CHIPSET_SHUTDOWN_BOARD_CUSTOM,
6585 	/* This is a reason to inhibit startup, not cause shut down. */
6586 	CHIPSET_SHUTDOWN_BATTERY_INHIBIT,
6587 	/* A power_wait_signal is being asserted */
6588 	CHIPSET_SHUTDOWN_WAIT,
6589 	/* Critical battery level. */
6590 	CHIPSET_SHUTDOWN_BATTERY_CRIT,
6591 	/* Because you told me to. */
6592 	CHIPSET_SHUTDOWN_CONSOLE_CMD,
6593 	/* Forcing a shutdown to effect entry to G3. */
6594 	CHIPSET_SHUTDOWN_G3,
6595 	/* Force shutdown due to over-temperature. */
6596 	CHIPSET_SHUTDOWN_THERMAL,
6597 	/* Force a chipset shutdown from the power button through EC */
6598 	CHIPSET_SHUTDOWN_BUTTON,
6599 
6600 	CHIPSET_SHUTDOWN_COUNT, /* End of shutdown reasons. */
6601 };
6602 
6603 struct ec_response_uptime_info {
6604 	/*
6605 	 * Number of milliseconds since the last EC boot. Sysjump resets
6606 	 * typically do not restart the EC's time_since_boot epoch.
6607 	 *
6608 	 * WARNING: The EC's sense of time is much less accurate than the AP's
6609 	 * sense of time, in both phase and frequency.  This timebase is similar
6610 	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
6611 	 */
6612 	uint32_t time_since_ec_boot_ms;
6613 
6614 	/*
6615 	 * Number of times the AP was reset by the EC since the last EC boot.
6616 	 * Note that the AP may be held in reset by the EC during the initial
6617 	 * boot sequence, such that the very first AP boot may count as more
6618 	 * than one here.
6619 	 */
6620 	uint32_t ap_resets_since_ec_boot;
6621 
6622 	/*
6623 	 * The set of flags which describe the EC's most recent reset.
6624 	 * See EC_RESET_FLAG_* for details.
6625 	 */
6626 	uint32_t ec_reset_flags;
6627 
6628 	/* Empty log entries have both the cause and timestamp set to zero. */
6629 	struct ap_reset_log_entry {
6630 		/* See enum chipset_{reset,shutdown}_reason for details. */
6631 		uint16_t reset_cause;
6632 
6633 		/* Reserved for protocol growth. */
6634 		uint16_t reserved;
6635 
6636 		/*
6637 		 * The time of the reset's assertion, in milliseconds since the
6638 		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
6639 		 * Set to zero if the log entry is empty.
6640 		 */
6641 		uint32_t reset_time_ms;
6642 	} recent_ap_reset[4];
6643 } __ec_align4;
6644 
6645 /*
6646  * Add entropy to the device secret (stored in the rollback region).
6647  *
6648  * Depending on the chip, the operation may take a long time (e.g. to erase
6649  * flash), so the commands are asynchronous.
6650  */
6651 #define EC_CMD_ADD_ENTROPY 0x0122
6652 
6653 enum add_entropy_action {
6654 	/* Add entropy to the current secret. */
6655 	ADD_ENTROPY_ASYNC = 0,
6656 	/*
6657 	 * Add entropy, and also make sure that the previous secret is erased.
6658 	 * (this can be implemented by adding entropy multiple times until
6659 	 * all rolback blocks have been overwritten).
6660 	 */
6661 	ADD_ENTROPY_RESET_ASYNC = 1,
6662 	/* Read back result from the previous operation. */
6663 	ADD_ENTROPY_GET_RESULT = 2,
6664 };
6665 
6666 struct ec_params_rollback_add_entropy {
6667 	uint8_t action;
6668 } __ec_align1;
6669 
6670 /*
6671  * Perform a single read of a given ADC channel.
6672  */
6673 #define EC_CMD_ADC_READ 0x0123
6674 
6675 struct ec_params_adc_read {
6676 	uint8_t adc_channel;
6677 } __ec_align1;
6678 
6679 struct ec_response_adc_read {
6680 	int32_t adc_value;
6681 } __ec_align4;
6682 
6683 /*
6684  * Read back rollback info
6685  */
6686 #define EC_CMD_ROLLBACK_INFO 0x0124
6687 
6688 struct ec_response_rollback_info {
6689 	int32_t id; /* Incrementing number to indicate which region to use. */
6690 	int32_t rollback_min_version;
6691 	int32_t rw_rollback_version;
6692 } __ec_align4;
6693 
6694 /* Issue AP reset */
6695 #define EC_CMD_AP_RESET 0x0125
6696 
6697 /*****************************************************************************/
6698 /* Locate peripheral chips
6699  *
6700  * Return values:
6701  * EC_RES_UNAVAILABLE: The chip type is supported but not found on system.
6702  * EC_RES_INVALID_PARAM: The chip type was unrecognized.
6703  * EC_RES_OVERFLOW: The index number exceeded the number of chip instances.
6704  */
6705 #define EC_CMD_LOCATE_CHIP 0x0126
6706 
6707 enum ec_chip_type {
6708 	EC_CHIP_TYPE_CBI_EEPROM = 0,
6709 	EC_CHIP_TYPE_TCPC = 1,
6710 	EC_CHIP_TYPE_PDC = 2,
6711 	EC_CHIP_TYPE_COUNT,
6712 	EC_CHIP_TYPE_MAX = 0xFF,
6713 };
6714 
6715 enum ec_bus_type {
6716 	EC_BUS_TYPE_I2C = 0,
6717 	EC_BUS_TYPE_EMBEDDED = 1,
6718 	EC_BUS_TYPE_COUNT,
6719 	EC_BUS_TYPE_MAX = 0xFF,
6720 };
6721 
6722 struct ec_i2c_info {
6723 	uint16_t port; /* Physical port for device */
6724 	uint16_t addr_flags; /* 7-bit (or 10-bit) address */
6725 };
6726 
6727 struct ec_params_locate_chip {
6728 	uint8_t type; /* enum ec_chip_type */
6729 	uint8_t index; /* Specifies one instance of chip type */
6730 	/* Used for type specific parameters in future */
6731 	union {
6732 		uint16_t reserved;
6733 	};
6734 } __ec_align2;
6735 
6736 struct ec_response_locate_chip {
6737 	uint8_t bus_type; /* enum ec_bus_type */
6738 	uint8_t reserved; /* Aligning the following union to 2 bytes */
6739 	union {
6740 		struct ec_i2c_info i2c_info;
6741 	};
6742 } __ec_align2;
6743 
6744 /*
6745  * Reboot AP on G3
6746  *
6747  * This command is used for validation purpose, where the AP needs to be
6748  * returned back to S0 state from G3 state without using the servo to trigger
6749  * wake events.
6750  * - With command version 0:
6751  * AP reboots immediately from G3
6752  * command usage: ectool reboot_ap_on_g3 && shutdown -h now
6753  * - With command version 1:
6754  * AP reboots after the user specified delay
6755  * command usage: ectool reboot_ap_on_g3 [<delay>] && shutdown -h now
6756  */
6757 #define EC_CMD_REBOOT_AP_ON_G3 0x0127
6758 
6759 struct ec_params_reboot_ap_on_g3_v1 {
6760 	/* configurable delay in seconds in G3 state */
6761 	uint32_t reboot_ap_at_g3_delay;
6762 } __ec_align4;
6763 
6764 /*****************************************************************************/
6765 /* Get PD port capabilities
6766  *
6767  * Returns the following static *capabilities* of the given port:
6768  * 1) Power role: source, sink, or dual. It is not anticipated that
6769  *    future CrOS devices would ever be only a source, so the options are
6770  *    sink or dual.
6771  * 2) Try-power role: source, sink, or none (practically speaking, I don't
6772  *    believe any CrOS device would support Try.SNK, so this would be source
6773  *    or none).
6774  * 3) Data role: dfp, ufp, or dual. This will probably only be DFP or dual
6775  *    for CrOS devices.
6776  */
6777 #define EC_CMD_GET_PD_PORT_CAPS 0x0128
6778 
6779 enum ec_pd_power_role_caps {
6780 	EC_PD_POWER_ROLE_SOURCE = 0,
6781 	EC_PD_POWER_ROLE_SINK = 1,
6782 	EC_PD_POWER_ROLE_DUAL = 2,
6783 };
6784 
6785 enum ec_pd_try_power_role_caps {
6786 	EC_PD_TRY_POWER_ROLE_NONE = 0,
6787 	EC_PD_TRY_POWER_ROLE_SINK = 1,
6788 	EC_PD_TRY_POWER_ROLE_SOURCE = 2,
6789 };
6790 
6791 enum ec_pd_data_role_caps {
6792 	EC_PD_DATA_ROLE_DFP = 0,
6793 	EC_PD_DATA_ROLE_UFP = 1,
6794 	EC_PD_DATA_ROLE_DUAL = 2,
6795 };
6796 
6797 /* From: power_manager/power_supply_properties.proto */
6798 enum ec_pd_port_location {
6799 	/* The location of the port is unknown, or there's only one port. */
6800 	EC_PD_PORT_LOCATION_UNKNOWN = 0,
6801 
6802 	/*
6803 	 * Various positions on the device. The first word describes the side of
6804 	 * the device where the port is located while the second clarifies the
6805 	 * position. For example, LEFT_BACK means the farthest-back port on the
6806 	 * left side, while BACK_LEFT means the leftmost port on the back of the
6807 	 * device.
6808 	 */
6809 	EC_PD_PORT_LOCATION_LEFT = 1,
6810 	EC_PD_PORT_LOCATION_RIGHT = 2,
6811 	EC_PD_PORT_LOCATION_BACK = 3,
6812 	EC_PD_PORT_LOCATION_FRONT = 4,
6813 	EC_PD_PORT_LOCATION_LEFT_FRONT = 5,
6814 	EC_PD_PORT_LOCATION_LEFT_BACK = 6,
6815 	EC_PD_PORT_LOCATION_RIGHT_FRONT = 7,
6816 	EC_PD_PORT_LOCATION_RIGHT_BACK = 8,
6817 	EC_PD_PORT_LOCATION_BACK_LEFT = 9,
6818 	EC_PD_PORT_LOCATION_BACK_RIGHT = 10,
6819 };
6820 
6821 struct ec_params_get_pd_port_caps {
6822 	uint8_t port; /* Which port to interrogate */
6823 } __ec_align1;
6824 
6825 struct ec_response_get_pd_port_caps {
6826 	uint8_t pd_power_role_cap; /* enum ec_pd_power_role_caps */
6827 	uint8_t pd_try_power_role_cap; /* enum ec_pd_try_power_role_caps */
6828 	uint8_t pd_data_role_cap; /* enum ec_pd_data_role_caps */
6829 	uint8_t pd_port_location; /* enum ec_pd_port_location */
6830 } __ec_align1;
6831 
6832 /*****************************************************************************/
6833 /*
6834  * Button press simulation
6835  *
6836  * This command is used to simulate a button press.
6837  * Supported commands are vup(volume up) vdown(volume down) & rec(recovery)
6838  * Time duration for which button needs to be pressed is an optional parameter.
6839  *
6840  * NOTE: This is only available on unlocked devices for testing purposes only.
6841  */
6842 #define EC_CMD_BUTTON 0x0129
6843 
6844 struct ec_params_button {
6845 	/* Button mask aligned to enum keyboard_button_type */
6846 	uint32_t btn_mask;
6847 
6848 	/* Duration in milliseconds button needs to be pressed */
6849 	uint32_t press_ms;
6850 } __ec_align1;
6851 
6852 enum keyboard_button_type {
6853 	KEYBOARD_BUTTON_POWER = 0,
6854 	KEYBOARD_BUTTON_VOLUME_DOWN = 1,
6855 	KEYBOARD_BUTTON_VOLUME_UP = 2,
6856 	KEYBOARD_BUTTON_RECOVERY = 3,
6857 	KEYBOARD_BUTTON_CAPSENSE_1 = 4,
6858 	KEYBOARD_BUTTON_CAPSENSE_2 = 5,
6859 	KEYBOARD_BUTTON_CAPSENSE_3 = 6,
6860 	KEYBOARD_BUTTON_CAPSENSE_4 = 7,
6861 	KEYBOARD_BUTTON_CAPSENSE_5 = 8,
6862 	KEYBOARD_BUTTON_CAPSENSE_6 = 9,
6863 	KEYBOARD_BUTTON_CAPSENSE_7 = 10,
6864 	KEYBOARD_BUTTON_CAPSENSE_8 = 11,
6865 
6866 	KEYBOARD_BUTTON_COUNT,
6867 };
6868 
6869 /*****************************************************************************/
6870 /*
6871  *  "Get the Keyboard Config". An EC implementing this command is expected to be
6872  *  vivaldi capable, i.e. can send action codes for the top row keys.
6873  *  Additionally, capability to send function codes for the same keys is
6874  *  optional and acceptable.
6875  *
6876  *  Note: If the top row can generate both function and action codes by
6877  *  using a dedicated Fn key, it does not matter whether the key sends
6878  *  "function" or "action" codes by default. In both cases, the response
6879  *  for this command will look the same.
6880  */
6881 #define EC_CMD_GET_KEYBD_CONFIG 0x012A
6882 
6883 /* Possible values for the top row keys */
6884 enum action_key {
6885 	TK_ABSENT = 0,
6886 	TK_BACK = 1,
6887 	TK_FORWARD = 2,
6888 	TK_REFRESH = 3,
6889 	TK_FULLSCREEN = 4,
6890 	TK_OVERVIEW = 5,
6891 	TK_BRIGHTNESS_DOWN = 6,
6892 	TK_BRIGHTNESS_UP = 7,
6893 	TK_VOL_MUTE = 8,
6894 	TK_VOL_DOWN = 9,
6895 	TK_VOL_UP = 10,
6896 	TK_SNAPSHOT = 11,
6897 	TK_PRIVACY_SCRN_TOGGLE = 12,
6898 	TK_KBD_BKLIGHT_DOWN = 13,
6899 	TK_KBD_BKLIGHT_UP = 14,
6900 	TK_PLAY_PAUSE = 15,
6901 	TK_NEXT_TRACK = 16,
6902 	TK_PREV_TRACK = 17,
6903 	TK_KBD_BKLIGHT_TOGGLE = 18,
6904 	TK_MICMUTE = 19,
6905 	TK_MENU = 20,
6906 	TK_DICTATE = 21,
6907 	TK_ACCESSIBILITY = 22,
6908 	TK_DONOTDISTURB = 23,
6909 
6910 	TK_COUNT
6911 };
6912 
6913 /*
6914  * Max & Min number of top row keys, excluding Esc and Screenlock keys.
6915  * If this needs to change, please create a new version of the command.
6916  */
6917 #define MAX_TOP_ROW_KEYS 15
6918 #define MIN_TOP_ROW_KEYS 10
6919 
6920 /*
6921  * Is the keyboard capable of sending function keys *in addition to*
6922  * action keys. This is possible for e.g. if the keyboard has a
6923  * dedicated Fn key.
6924  */
6925 #define KEYBD_CAP_FUNCTION_KEYS BIT(0)
6926 /*
6927  * Whether the keyboard has a dedicated numeric keyboard.
6928  */
6929 #define KEYBD_CAP_NUMERIC_KEYPAD BIT(1)
6930 /*
6931  * Whether the keyboard has a screenlock key.
6932  */
6933 #define KEYBD_CAP_SCRNLOCK_KEY BIT(2)
6934 
6935 /*
6936  * Whether the keyboard has an assistant key.
6937  */
6938 #define KEYBD_CAP_ASSISTANT_KEY BIT(3)
6939 
6940 struct ec_response_keybd_config {
6941 	/*
6942 	 *  Number of top row keys, excluding Esc and Screenlock.
6943 	 *  If this is 0, all Vivaldi keyboard code is disabled.
6944 	 *  (i.e. does not expose any tables to the kernel).
6945 	 */
6946 	uint8_t num_top_row_keys;
6947 
6948 	/*
6949 	 *  The action keys in the top row, in order from left to right.
6950 	 *  The values are filled from enum action_key. Esc and Screenlock
6951 	 *  keys are not considered part of top row keys.
6952 	 */
6953 	uint8_t action_keys[MAX_TOP_ROW_KEYS];
6954 
6955 	/* Capability flags */
6956 	uint8_t capabilities;
6957 
6958 } __ec_align1;
6959 
6960 /*
6961  * Configure smart discharge
6962  */
6963 #define EC_CMD_SMART_DISCHARGE 0x012B
6964 
6965 #define EC_SMART_DISCHARGE_FLAGS_SET BIT(0)
6966 
6967 /* Discharge rates when the system is in cutoff or hibernation. */
6968 struct discharge_rate {
6969 	uint16_t cutoff; /* Discharge rate (uA) in cutoff */
6970 	uint16_t hibern; /* Discharge rate (uA) in hibernation */
6971 };
6972 
6973 struct smart_discharge_zone {
6974 	/* When the capacity (mAh) goes below this, EC cuts off the battery. */
6975 	int cutoff;
6976 	/* When the capacity (mAh) is below this, EC stays up. */
6977 	int stayup;
6978 };
6979 
6980 struct ec_params_smart_discharge {
6981 	uint8_t flags; /* EC_SMART_DISCHARGE_FLAGS_* */
6982 	/*
6983 	 * Desired hours for the battery to survive before reaching 0%. Set to
6984 	 * zero to disable smart discharging. That is, the system hibernates as
6985 	 * soon as the G3 idle timer expires.
6986 	 */
6987 	uint16_t hours_to_zero;
6988 	/* Set both to zero to keep the current rates. */
6989 	struct discharge_rate drate;
6990 };
6991 
6992 struct ec_response_smart_discharge {
6993 	uint16_t hours_to_zero;
6994 	struct discharge_rate drate;
6995 	struct smart_discharge_zone dzone;
6996 };
6997 
6998 /*****************************************************************************/
6999 /* Voltage regulator controls */
7000 
7001 /*
7002  * Get basic info of voltage regulator for given index.
7003  *
7004  * Returns the regulator name and supported voltage list in mV.
7005  */
7006 #define EC_CMD_REGULATOR_GET_INFO 0x012C
7007 
7008 /* Maximum length of regulator name */
7009 #define EC_REGULATOR_NAME_MAX_LEN 16
7010 
7011 /* Maximum length of the supported voltage list. */
7012 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
7013 
7014 struct ec_params_regulator_get_info {
7015 	uint32_t index;
7016 } __ec_align4;
7017 
7018 struct ec_response_regulator_get_info {
7019 	char name[EC_REGULATOR_NAME_MAX_LEN];
7020 	uint16_t num_voltages;
7021 	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
7022 } __ec_align2;
7023 
7024 /*
7025  * Configure the regulator as enabled / disabled.
7026  */
7027 #define EC_CMD_REGULATOR_ENABLE 0x012D
7028 
7029 struct ec_params_regulator_enable {
7030 	uint32_t index;
7031 	uint8_t enable;
7032 } __ec_align4;
7033 
7034 /*
7035  * Query if the regulator is enabled.
7036  *
7037  * Returns 1 if the regulator is enabled, 0 if not.
7038  */
7039 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
7040 
7041 struct ec_params_regulator_is_enabled {
7042 	uint32_t index;
7043 } __ec_align4;
7044 
7045 struct ec_response_regulator_is_enabled {
7046 	uint8_t enabled;
7047 } __ec_align1;
7048 
7049 /*
7050  * Set voltage for the voltage regulator within the range specified.
7051  *
7052  * The driver should select the voltage in range closest to min_mv.
7053  *
7054  * Also note that this might be called before the regulator is enabled, and the
7055  * setting should be in effect after the regulator is enabled.
7056  */
7057 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
7058 
7059 struct ec_params_regulator_set_voltage {
7060 	uint32_t index;
7061 	uint32_t min_mv;
7062 	uint32_t max_mv;
7063 } __ec_align4;
7064 
7065 /*
7066  * Get the currently configured voltage for the voltage regulator.
7067  *
7068  * Note that this might be called before the regulator is enabled, and this
7069  * should return the configured output voltage if the regulator is enabled.
7070  */
7071 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
7072 
7073 struct ec_params_regulator_get_voltage {
7074 	uint32_t index;
7075 } __ec_align4;
7076 
7077 struct ec_response_regulator_get_voltage {
7078 	uint32_t voltage_mv;
7079 } __ec_align4;
7080 
7081 /*
7082  * Gather all discovery information for the given port and partner type.
7083  *
7084  * Note that if discovery has not yet completed, only the currently completed
7085  * responses will be filled in.   If the discovery data structures are changed
7086  * in the process of the command running, BUSY will be returned.
7087  *
7088  * VDO field sizes are set to the maximum possible number of VDOs a VDM may
7089  * contain, while the number of SVIDs here is selected to fit within the PROTO2
7090  * maximum parameter size.
7091  */
7092 #define EC_CMD_TYPEC_DISCOVERY 0x0131
7093 
7094 enum typec_partner_type {
7095 	TYPEC_PARTNER_SOP = 0,
7096 	TYPEC_PARTNER_SOP_PRIME = 1,
7097 	TYPEC_PARTNER_SOP_PRIME_PRIME = 2,
7098 };
7099 
7100 struct ec_params_typec_discovery {
7101 	uint8_t port;
7102 	uint8_t partner_type; /* enum typec_partner_type */
7103 } __ec_align1;
7104 
7105 struct svid_mode_info {
7106 	uint16_t svid;
7107 	uint16_t mode_count; /* Number of modes partner sent */
7108 	uint32_t mode_vdo[VDO_MAX_OBJECTS];
7109 };
7110 
7111 struct ec_response_typec_discovery {
7112 	uint8_t identity_count; /* Number of identity VDOs partner sent */
7113 	uint8_t svid_count; /* Number of SVIDs partner sent */
7114 	uint16_t reserved;
7115 	uint32_t discovery_vdo[VDO_MAX_OBJECTS];
7116 	struct svid_mode_info svids[0];
7117 } __ec_align1;
7118 
7119 /* USB Type-C commands for AP-controlled device policy. */
7120 #define EC_CMD_TYPEC_CONTROL 0x0132
7121 
7122 enum typec_control_command {
7123 	TYPEC_CONTROL_COMMAND_EXIT_MODES,
7124 	TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
7125 	TYPEC_CONTROL_COMMAND_ENTER_MODE,
7126 	TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY,
7127 	TYPEC_CONTROL_COMMAND_USB_MUX_SET,
7128 	TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE,
7129 	TYPEC_CONTROL_COMMAND_SEND_VDM_REQ,
7130 };
7131 
7132 /* Modes (USB or alternate) that a type-C port may enter. */
7133 enum typec_mode {
7134 	TYPEC_MODE_DP,
7135 	TYPEC_MODE_TBT,
7136 	TYPEC_MODE_USB4,
7137 };
7138 
7139 /* Replies the AP may specify to the TBT EnterMode command as a UFP */
7140 enum typec_tbt_ufp_reply {
7141 	TYPEC_TBT_UFP_REPLY_NAK,
7142 	TYPEC_TBT_UFP_REPLY_ACK,
7143 };
7144 
7145 #define TYPEC_USB_MUX_SET_ALL_CHIPS 0xFF
7146 
7147 struct typec_usb_mux_set {
7148 	/* Index of the mux to set in the chain */
7149 	uint8_t mux_index;
7150 
7151 	/* USB_PD_MUX_*-encoded USB mux state to set */
7152 	uint8_t mux_flags;
7153 } __ec_align1;
7154 
7155 struct typec_vdm_req {
7156 	/* VDM data, including VDM header */
7157 	uint32_t vdm_data[VDO_MAX_SIZE];
7158 	/* Number of 32-bit fields filled in */
7159 	uint8_t vdm_data_objects;
7160 	/* Partner to address - see enum typec_partner_type */
7161 	uint8_t partner_type;
7162 } __ec_align1;
7163 
7164 struct ec_params_typec_control {
7165 	uint8_t port;
7166 	uint8_t command; /* enum typec_control_command */
7167 	uint16_t reserved;
7168 
7169 	/*
7170 	 * This section will be interpreted based on |command|. Define a
7171 	 * placeholder structure to avoid having to increase the size and bump
7172 	 * the command version when adding new sub-commands.
7173 	 */
7174 	union {
7175 		/* Used for CLEAR_EVENTS */
7176 		uint32_t clear_events_mask;
7177 		/* Used for ENTER_MODE - enum typec_mode */
7178 		uint8_t mode_to_enter;
7179 		/* Used for TBT_UFP_REPLY - enum typec_tbt_ufp_reply */
7180 		uint8_t tbt_ufp_reply;
7181 		/* Used for USB_MUX_SET */
7182 		struct typec_usb_mux_set mux_params;
7183 		/* Used for BIST_SHARE_MODE */
7184 		uint8_t bist_share_mode;
7185 		/* Used for VMD_REQ */
7186 		struct typec_vdm_req vdm_req_params;
7187 		uint8_t placeholder[128];
7188 	};
7189 } __ec_align1;
7190 
7191 /*
7192  * Gather all status information for a port.
7193  *
7194  * Note: this covers many of the return fields from the deprecated
7195  * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
7196  * discovery data.  The "enum pd_cc_states" is defined with the deprecated
7197  * EC_CMD_USB_PD_CONTROL command.
7198  *
7199  * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
7200  */
7201 #define EC_CMD_TYPEC_STATUS 0x0133
7202 
7203 /*
7204  * Power role.
7205  *
7206  * Note this is also used for PD header creation, and values align to those in
7207  * the Power Delivery Specification Revision 3.0 (See
7208  * 6.2.1.1.4 Port Power Role).
7209  */
7210 enum pd_power_role {
7211 	PD_ROLE_SINK = 0,
7212 	PD_ROLE_SOURCE = 1,
7213 };
7214 
7215 /*
7216  * Data role.
7217  *
7218  * Note this is also used for PD header creation, and the first two values
7219  * align to those in the Power Delivery Specification Revision 3.0 (See
7220  * 6.2.1.1.6 Port Data Role).
7221  */
7222 enum pd_data_role {
7223 	PD_ROLE_UFP = 0,
7224 	PD_ROLE_DFP = 1,
7225 	PD_ROLE_DISCONNECTED = 2,
7226 };
7227 
7228 enum pd_vconn_role {
7229 	PD_ROLE_VCONN_OFF = 0,
7230 	PD_ROLE_VCONN_SRC = 1,
7231 };
7232 
7233 /*
7234  * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
7235  * regardless of whether a debug accessory is connected.
7236  */
7237 enum tcpc_cc_polarity {
7238 	/*
7239 	 * _CCx: is used to indicate the polarity while not connected to
7240 	 * a Debug Accessory.  Only one CC line will assert a resistor and
7241 	 * the other will be open.
7242 	 */
7243 	POLARITY_CC1 = 0,
7244 	POLARITY_CC2 = 1,
7245 
7246 	/*
7247 	 * _CCx_DTS is used to indicate the polarity while connected to a
7248 	 * SRC Debug Accessory.  Assert resistors on both lines.
7249 	 */
7250 	POLARITY_CC1_DTS = 2,
7251 	POLARITY_CC2_DTS = 3,
7252 
7253 	/*
7254 	 * The current TCPC code relies on these specific POLARITY values.
7255 	 * Adding in a check to verify if the list grows for any reason
7256 	 * that this will give a hint that other places need to be
7257 	 * adjusted.
7258 	 */
7259 	POLARITY_COUNT,
7260 };
7261 
7262 #define MODE_DP_PIN_A BIT(0)
7263 #define MODE_DP_PIN_B BIT(1)
7264 #define MODE_DP_PIN_C BIT(2)
7265 #define MODE_DP_PIN_D BIT(3)
7266 #define MODE_DP_PIN_E BIT(4)
7267 #define MODE_DP_PIN_F BIT(5)
7268 #define MODE_DP_PIN_ALL GENMASK(5, 0)
7269 
7270 #define PD_STATUS_EVENT_SOP_DISC_DONE BIT(0)
7271 #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE BIT(1)
7272 #define PD_STATUS_EVENT_HARD_RESET BIT(2)
7273 #define PD_STATUS_EVENT_DISCONNECTED BIT(3)
7274 #define PD_STATUS_EVENT_MUX_0_SET_DONE BIT(4)
7275 #define PD_STATUS_EVENT_MUX_1_SET_DONE BIT(5)
7276 #define PD_STATUS_EVENT_VDM_REQ_REPLY BIT(6)
7277 #define PD_STATUS_EVENT_VDM_REQ_FAILED BIT(7)
7278 #define PD_STATUS_EVENT_VDM_ATTENTION BIT(8)
7279 #define PD_STATUS_EVENT_COUNT 9
7280 
7281 /*
7282  * Encode and decode for BCD revision response
7283  *
7284  * Note: the major revision set is written assuming that the value given is the
7285  * Specification Revision from the PD header, which currently only maps to PD
7286  * 1.0-3.0 with the major revision being one greater than the binary value.
7287  */
7288 #define PD_STATUS_REV_SET_MAJOR(r) ((r + 1) << 12)
7289 #define PD_STATUS_REV_GET_MAJOR(r) ((r >> 12) & 0xF)
7290 #define PD_STATUS_REV_GET_MINOR(r) ((r >> 8) & 0xF)
7291 
7292 /*
7293  * Encode revision from partner RMDO
7294  *
7295  * Unlike the specification revision given in the PD header, specification and
7296  * version information returned in the revision message data object (RMDO) is
7297  * not offset.
7298  */
7299 #define PD_STATUS_RMDO_REV_SET_MAJOR(r) (r << 12)
7300 #define PD_STATUS_RMDO_REV_SET_MINOR(r) (r << 8)
7301 #define PD_STATUS_RMDO_VER_SET_MAJOR(r) (r << 4)
7302 #define PD_STATUS_RMDO_VER_SET_MINOR(r) (r)
7303 
7304 /*
7305  * Decode helpers for Source and Sink Capability PDOs
7306  *
7307  * Note: The Power Delivery Specification should be considered the ultimate
7308  * source of truth on the decoding of these PDOs
7309  */
7310 #define PDO_TYPE_FIXED (0 << 30)
7311 #define PDO_TYPE_BATTERY (1 << 30)
7312 #define PDO_TYPE_VARIABLE (2 << 30)
7313 #define PDO_TYPE_AUGMENTED (3 << 30)
7314 #define PDO_TYPE_MASK (3 << 30)
7315 
7316 /*
7317  * From Table 6-9 and Table 6-14 PD Rev 3.0 Ver 2.0
7318  *
7319  * <31:30> : Fixed Supply
7320  * <29>    : Dual-Role Power
7321  * <28>    : SNK/SRC dependent
7322  * <27>    : Unconstrained Power
7323  * <26>    : USB Communications Capable
7324  * <25>    : Dual-Role Data
7325  * <24:20> : SNK/SRC dependent
7326  * <19:10> : Voltage in 50mV Units
7327  * <9:0>   : Maximum Current in 10mA units
7328  */
7329 #define PDO_FIXED_DUAL_ROLE BIT(29)
7330 #define PDO_FIXED_UNCONSTRAINED BIT(27)
7331 #define PDO_FIXED_COMM_CAP BIT(26)
7332 #define PDO_FIXED_DATA_SWAP BIT(25)
7333 #define PDO_FIXED_FRS_CURR_MASK GENMASK(24, 23) /* Sink Cap only */
7334 #define PDO_FIXED_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50)
7335 #define PDO_FIXED_CURRENT(p) ((p & 0x3FF) * 10)
7336 
7337 /*
7338  * From Table 6-12 and Table 6-16 PD Rev 3.0 Ver 2.0
7339  *
7340  * <31:30> : Battery
7341  * <29:20> : Maximum Voltage in 50mV units
7342  * <19:10> : Minimum Voltage in 50mV units
7343  * <9:0>   : Maximum Allowable Power in 250mW units
7344  */
7345 #define PDO_BATT_MAX_VOLTAGE(p) ((p >> 20 & 0x3FF) * 50)
7346 #define PDO_BATT_MIN_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50)
7347 #define PDO_BATT_MAX_POWER(p) ((p & 0x3FF) * 250)
7348 
7349 /*
7350  * From Table 6-11 and Table 6-15 PD Rev 3.0 Ver 2.0
7351  *
7352  * <31:30> : Variable Supply (non-Battery)
7353  * <29:20> : Maximum Voltage in 50mV units
7354  * <19:10> : Minimum Voltage in 50mV units
7355  * <9:0>   : Operational Current in 10mA units
7356  */
7357 #define PDO_VAR_MAX_VOLTAGE(p) ((p >> 20 & 0x3FF) * 50)
7358 #define PDO_VAR_MIN_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50)
7359 #define PDO_VAR_MAX_CURRENT(p) ((p & 0x3FF) * 10)
7360 
7361 /*
7362  * From Table 6-13 and Table 6-17 PD Rev 3.0 Ver 2.0
7363  *
7364  * Note this type is reserved in PD 2.0, and only one type of APDO is
7365  * supported as of the cited version.
7366  *
7367  * <31:30> : Augmented Power Data Object
7368  * <29:28> : Programmable Power Supply
7369  * <27>    : PPS Power Limited
7370  * <26:25> : Reserved
7371  * <24:17> : Maximum Voltage in 100mV increments
7372  * <16>    : Reserved
7373  * <15:8>  : Minimum Voltage in 100mV increments
7374  * <7>     : Reserved
7375  * <6:0>   : Maximum Current in 50mA increments
7376  */
7377 #define PDO_AUG_MAX_VOLTAGE(p) ((p >> 17 & 0xFF) * 100)
7378 #define PDO_AUG_MIN_VOLTAGE(p) ((p >> 8 & 0xFF) * 100)
7379 #define PDO_AUG_MAX_CURRENT(p) ((p & 0x7F) * 50)
7380 
7381 struct ec_params_typec_status {
7382 	uint8_t port;
7383 } __ec_align1;
7384 
7385 /*
7386  * ec_response_typec_status is deprecated. Use ec_response_typec_status_v1.
7387  * If you need to support old ECs who speak only v0, use
7388  * ec_response_typec_status_v0 instead. They're binary-compatible.
7389  */
7390 struct ec_response_typec_status /* DEPRECATED */ {
7391 	uint8_t pd_enabled; /* PD communication enabled - bool */
7392 	uint8_t dev_connected; /* Device connected - bool */
7393 	uint8_t sop_connected; /* Device is SOP PD capable - bool */
7394 	uint8_t source_cap_count; /* Number of Source Cap PDOs */
7395 
7396 	uint8_t power_role; /* enum pd_power_role */
7397 	uint8_t data_role; /* enum pd_data_role */
7398 	uint8_t vconn_role; /* enum pd_vconn_role */
7399 	uint8_t sink_cap_count; /* Number of Sink Cap PDOs */
7400 
7401 	uint8_t polarity; /* enum tcpc_cc_polarity */
7402 	uint8_t cc_state; /* enum pd_cc_states */
7403 	uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */
7404 	uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */
7405 
7406 	char tc_state[32]; /* TC state name */
7407 
7408 	uint32_t events; /* PD_STATUS_EVENT bitmask */
7409 
7410 	/*
7411 	 * BCD PD revisions for partners
7412 	 *
7413 	 * The format has the PD major revision in the upper nibble, and the PD
7414 	 * minor revision in the next nibble. The following two nibbles hold the
7415 	 * major and minor specification version. If a partner does not support
7416 	 * the Revision message, only the major revision will be given.
7417 	 * ex. PD Revision 3.2 Version 1.9 would map to 0x3219
7418 	 *
7419 	 * PD revision/version will be 0 if no PD device is connected.
7420 	 */
7421 	uint16_t sop_revision;
7422 	uint16_t sop_prime_revision;
7423 
7424 	uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */
7425 
7426 	uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */
7427 } __ec_align1;
7428 
7429 struct cros_ec_typec_status {
7430 	uint8_t pd_enabled; /* PD communication enabled - bool */
7431 	uint8_t dev_connected; /* Device connected - bool */
7432 	uint8_t sop_connected; /* Device is SOP PD capable - bool */
7433 	uint8_t source_cap_count; /* Number of Source Cap PDOs */
7434 
7435 	uint8_t power_role; /* enum pd_power_role */
7436 	uint8_t data_role; /* enum pd_data_role */
7437 	uint8_t vconn_role; /* enum pd_vconn_role */
7438 	uint8_t sink_cap_count; /* Number of Sink Cap PDOs */
7439 
7440 	uint8_t polarity; /* enum tcpc_cc_polarity */
7441 	uint8_t cc_state; /* enum pd_cc_states */
7442 	uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */
7443 	uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */
7444 
7445 	char tc_state[32]; /* TC state name */
7446 
7447 	uint32_t events; /* PD_STATUS_EVENT bitmask */
7448 
7449 	/*
7450 	 * BCD PD revisions for partners
7451 	 *
7452 	 * The format has the PD major revision in the upper nibble, and the PD
7453 	 * minor revision in the next nibble. The following two nibbles hold the
7454 	 * major and minor specification version. If a partner does not support
7455 	 * the Revision message, only the major revision will be given.
7456 	 * ex. PD Revision 3.2 Version 1.9 would map to 0x3219
7457 	 *
7458 	 * PD revision/version will be 0 if no PD device is connected.
7459 	 */
7460 	uint16_t sop_revision;
7461 	uint16_t sop_prime_revision;
7462 } __ec_align1;
7463 
7464 struct ec_response_typec_status_v0 {
7465 	struct cros_ec_typec_status typec_status;
7466 	uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */
7467 	uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */
7468 } __ec_align1;
7469 
7470 struct ec_response_typec_status_v1 {
7471 	struct cros_ec_typec_status typec_status;
7472 	uint32_t source_cap_pdos[11]; /* Max 11 PDOs can be present */
7473 	uint32_t sink_cap_pdos[11]; /* Max 11 PDOs can be present */
7474 } __ec_align1;
7475 
7476 /**
7477  * Get the number of peripheral charge ports
7478  */
7479 #define EC_CMD_PCHG_COUNT 0x0134
7480 
7481 #define EC_PCHG_MAX_PORTS 8
7482 
7483 struct ec_response_pchg_count {
7484 	uint8_t port_count;
7485 } __ec_align1;
7486 
7487 /**
7488  * Get the status of a peripheral charge port
7489  */
7490 #define EC_CMD_PCHG 0x0135
7491 
7492 /* For v1 and v2 */
7493 struct ec_params_pchg {
7494 	uint8_t port;
7495 } __ec_align1;
7496 
7497 struct ec_params_pchg_v3 {
7498 	uint8_t port;
7499 	/* Below are new in v3. */
7500 	uint8_t reserved1;
7501 	uint8_t reserved2;
7502 	uint8_t reserved3;
7503 	/* Errors acked by the host (thus to be cleared) */
7504 	uint32_t error;
7505 } __ec_align1;
7506 
7507 /* For v1 */
7508 struct ec_response_pchg {
7509 	uint32_t error; /* enum pchg_error */
7510 	uint8_t state; /* enum pchg_state state */
7511 	uint8_t battery_percentage;
7512 	uint8_t unused0;
7513 	uint8_t unused1;
7514 	/* Fields added in version 1 */
7515 	uint32_t fw_version;
7516 	uint32_t dropped_event_count;
7517 } __ec_align4;
7518 
7519 /* For v2 and v3 */
7520 struct ec_response_pchg_v2 {
7521 	uint32_t error; /* enum pchg_error */
7522 	uint8_t state; /* enum pchg_state state */
7523 	uint8_t battery_percentage;
7524 	uint8_t unused0;
7525 	uint8_t unused1;
7526 	/* Fields added in version 1 */
7527 	uint32_t fw_version;
7528 	uint32_t dropped_event_count;
7529 	/* Fields added in version 2 */
7530 	uint32_t dropped_host_event_count;
7531 } __ec_align4;
7532 
7533 enum pchg_state {
7534 	/* Charger is reset and not initialized. */
7535 	PCHG_STATE_RESET = 0,
7536 	/* Charger is initialized or disabled. */
7537 	PCHG_STATE_INITIALIZED,
7538 	/* Charger is enabled and ready to detect a device. */
7539 	PCHG_STATE_ENABLED,
7540 	/* Device is in proximity. */
7541 	PCHG_STATE_DETECTED,
7542 	/* Device is being charged. */
7543 	PCHG_STATE_CHARGING,
7544 	/* Device is fully charged. It implies DETECTED (& not charging). */
7545 	PCHG_STATE_FULL,
7546 	/* In download (a.k.a. firmware update) mode */
7547 	PCHG_STATE_DOWNLOAD,
7548 	/* In download mode. Ready for receiving data. */
7549 	PCHG_STATE_DOWNLOADING,
7550 	/* Device is ready for data communication. */
7551 	PCHG_STATE_CONNECTED,
7552 	/* Charger is in Built-In Self Test mode. */
7553 	PCHG_STATE_BIST,
7554 	/* Put no more entry below */
7555 	PCHG_STATE_COUNT,
7556 };
7557 
7558 /* clang-format off */
7559 #define EC_PCHG_STATE_TEXT                                \
7560 	{                                                 \
7561 		[PCHG_STATE_RESET] = "RESET",             \
7562 		[PCHG_STATE_INITIALIZED] = "INITIALIZED", \
7563 		[PCHG_STATE_ENABLED] = "ENABLED",         \
7564 		[PCHG_STATE_DETECTED] = "DETECTED",       \
7565 		[PCHG_STATE_CHARGING] = "CHARGING",       \
7566 		[PCHG_STATE_FULL] = "FULL",               \
7567 		[PCHG_STATE_DOWNLOAD] = "DOWNLOAD",       \
7568 		[PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
7569 		[PCHG_STATE_CONNECTED] = "CONNECTED",     \
7570 		[PCHG_STATE_BIST] = "BIST",               \
7571 	}
7572 /* clang-format on */
7573 
7574 /**
7575  * Update firmware of peripheral chip
7576  */
7577 #define EC_CMD_PCHG_UPDATE 0x0136
7578 
7579 /* Port number is encoded in bit[28:31]. */
7580 #define EC_MKBP_PCHG_PORT_SHIFT 28
7581 /* Utility macros for converting MKBP event <-> port number. */
7582 #define EC_MKBP_PCHG_EVENT_TO_PORT(e) (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
7583 #define EC_MKBP_PCHG_PORT_TO_EVENT(p) ((p) << EC_MKBP_PCHG_PORT_SHIFT)
7584 /* Utility macro for extracting event bits. */
7585 #define EC_MKBP_PCHG_EVENT_MASK(e) \
7586 	((e) & GENMASK(EC_MKBP_PCHG_PORT_SHIFT - 1, 0))
7587 
7588 #define EC_MKBP_PCHG_UPDATE_OPENED BIT(0)
7589 #define EC_MKBP_PCHG_WRITE_COMPLETE BIT(1)
7590 #define EC_MKBP_PCHG_UPDATE_CLOSED BIT(2)
7591 #define EC_MKBP_PCHG_UPDATE_ERROR BIT(3)
7592 #define EC_MKBP_PCHG_DEVICE_EVENT BIT(4)
7593 
7594 enum ec_pchg_update_cmd {
7595 	/* Reset chip to normal mode. */
7596 	EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
7597 	/* Reset and put a chip in update (a.k.a. download) mode. */
7598 	EC_PCHG_UPDATE_CMD_OPEN,
7599 	/* Write a block of data containing FW image. */
7600 	EC_PCHG_UPDATE_CMD_WRITE,
7601 	/* Close update session. */
7602 	EC_PCHG_UPDATE_CMD_CLOSE,
7603 	/* Reset chip (without mode change). */
7604 	EC_PCHG_UPDATE_CMD_RESET,
7605 	/* Enable pass-through mode. */
7606 	EC_PCHG_UPDATE_CMD_ENABLE_PASSTHRU,
7607 	/* End of commands */
7608 	EC_PCHG_UPDATE_CMD_COUNT,
7609 };
7610 
7611 struct ec_params_pchg_update {
7612 	/* PCHG port number */
7613 	uint8_t port;
7614 	/* enum ec_pchg_update_cmd */
7615 	uint8_t cmd;
7616 	/* Padding */
7617 	uint8_t reserved0;
7618 	uint8_t reserved1;
7619 	/* Version of new firmware */
7620 	uint32_t version;
7621 	/* CRC32 of new firmware */
7622 	uint32_t crc32;
7623 	/* Address in chip memory where <data> is written to */
7624 	uint32_t addr;
7625 	/* Size of <data> */
7626 	uint32_t size;
7627 	/* Partial data of new firmware */
7628 	uint8_t data[];
7629 } __ec_align4;
7630 
7631 BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT <
7632 	     BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd) * 8));
7633 
7634 struct ec_response_pchg_update {
7635 	/* Block size */
7636 	uint32_t block_size;
7637 } __ec_align4;
7638 
7639 #define EC_CMD_DISPLAY_SOC 0x0137
7640 
7641 struct ec_response_display_soc {
7642 	/* Display charge in 10ths of a % (1000=100.0%) */
7643 	int16_t display_soc;
7644 	/* Full factor in 10ths of a % (1000=100.0%) */
7645 	int16_t full_factor;
7646 	/* Shutdown SoC in 10ths of a % (1000=100.0%) */
7647 	int16_t shutdown_soc;
7648 } __ec_align2;
7649 
7650 #define EC_CMD_SET_BASE_STATE 0x0138
7651 
7652 struct ec_params_set_base_state {
7653 	uint8_t cmd; /* enum ec_set_base_state_cmd */
7654 } __ec_align1;
7655 
7656 enum ec_set_base_state_cmd {
7657 	EC_SET_BASE_STATE_DETACH = 0,
7658 	EC_SET_BASE_STATE_ATTACH,
7659 	EC_SET_BASE_STATE_RESET,
7660 };
7661 
7662 #define EC_CMD_I2C_CONTROL 0x0139
7663 
7664 /* Subcommands for I2C control */
7665 
7666 enum ec_i2c_control_command {
7667 	EC_I2C_CONTROL_GET_SPEED,
7668 	EC_I2C_CONTROL_SET_SPEED,
7669 };
7670 
7671 #define EC_I2C_CONTROL_SPEED_UNKNOWN 0
7672 
7673 struct ec_params_i2c_control {
7674 	uint8_t port; /* I2C port number */
7675 	uint8_t cmd; /* enum ec_i2c_control_command */
7676 	union {
7677 		uint16_t speed_khz;
7678 	} cmd_params;
7679 } __ec_align_size1;
7680 
7681 struct ec_response_i2c_control {
7682 	union {
7683 		uint16_t speed_khz;
7684 	} cmd_response;
7685 } __ec_align_size1;
7686 
7687 #define EC_CMD_RGBKBD_SET_COLOR 0x013A
7688 #define EC_CMD_RGBKBD 0x013B
7689 
7690 #define EC_RGBKBD_MAX_KEY_COUNT 128
7691 #define EC_RGBKBD_MAX_RGB_COLOR 0xFFFFFF
7692 #define EC_RGBKBD_MAX_SCALE 0xFF
7693 
7694 enum rgbkbd_state {
7695 	/* RGB keyboard is reset and not initialized. */
7696 	RGBKBD_STATE_RESET = 0,
7697 	/* RGB keyboard is initialized but not enabled. */
7698 	RGBKBD_STATE_INITIALIZED,
7699 	/* RGB keyboard is disabled. */
7700 	RGBKBD_STATE_DISABLED,
7701 	/* RGB keyboard is enabled and ready to receive a command. */
7702 	RGBKBD_STATE_ENABLED,
7703 
7704 	/* Put no more entry below */
7705 	RGBKBD_STATE_COUNT,
7706 };
7707 
7708 enum ec_rgbkbd_subcmd {
7709 	EC_RGBKBD_SUBCMD_CLEAR = 1,
7710 	EC_RGBKBD_SUBCMD_DEMO = 2,
7711 	EC_RGBKBD_SUBCMD_SET_SCALE = 3,
7712 	EC_RGBKBD_SUBCMD_GET_CONFIG = 4,
7713 	EC_RGBKBD_SUBCMD_COUNT
7714 };
7715 
7716 enum ec_rgbkbd_demo {
7717 	EC_RGBKBD_DEMO_OFF = 0,
7718 	EC_RGBKBD_DEMO_FLOW = 1,
7719 	EC_RGBKBD_DEMO_DOT = 2,
7720 	EC_RGBKBD_DEMO_COUNT,
7721 };
7722 
7723 BUILD_ASSERT(EC_RGBKBD_DEMO_COUNT <= 255);
7724 
7725 enum ec_rgbkbd_type {
7726 	EC_RGBKBD_TYPE_UNKNOWN = 0,
7727 	EC_RGBKBD_TYPE_PER_KEY = 1, /* e.g. Vell */
7728 	EC_RGBKBD_TYPE_FOUR_ZONES_40_LEDS = 2, /* e.g. Taniks */
7729 	EC_RGBKBD_TYPE_FOUR_ZONES_12_LEDS = 3, /* e.g. Osiris */
7730 	EC_RGBKBD_TYPE_FOUR_ZONES_4_LEDS = 4, /* e.g. Mithrax */
7731 	EC_RGBKBD_TYPE_COUNT,
7732 };
7733 
7734 struct ec_rgbkbd_set_scale {
7735 	uint8_t key;
7736 	struct rgb_s scale;
7737 };
7738 
7739 struct ec_params_rgbkbd {
7740 	uint8_t subcmd; /* Sub-command (enum ec_rgbkbd_subcmd) */
7741 	union {
7742 		struct rgb_s color; /* EC_RGBKBD_SUBCMD_CLEAR */
7743 		uint8_t demo; /* EC_RGBKBD_SUBCMD_DEMO */
7744 		struct ec_rgbkbd_set_scale set_scale;
7745 	};
7746 } __ec_align1;
7747 
7748 struct ec_response_rgbkbd {
7749 	/*
7750 	 * RGBKBD type supported by the device.
7751 	 */
7752 
7753 	uint8_t rgbkbd_type; /* enum ec_rgbkbd_type */
7754 } __ec_align1;
7755 
7756 struct ec_params_rgbkbd_set_color {
7757 	/* Specifies the starting key ID whose color is being changed. */
7758 	uint8_t start_key;
7759 	/* Specifies # of elements in <color>. */
7760 	uint8_t length;
7761 	/* RGB color data array of length up to MAX_KEY_COUNT. */
7762 	struct rgb_s color[];
7763 } __ec_align1;
7764 
7765 /*
7766  * Gather the response to the most recent VDM REQ from the AP, as well
7767  * as popping the oldest VDM:Attention from the DPM queue
7768  */
7769 #define EC_CMD_TYPEC_VDM_RESPONSE 0x013C
7770 
7771 struct ec_params_typec_vdm_response {
7772 	uint8_t port;
7773 } __ec_align1;
7774 
7775 struct ec_response_typec_vdm_response {
7776 	/* Number of 32-bit fields filled in */
7777 	uint8_t vdm_data_objects;
7778 	/* Partner to address - see enum typec_partner_type */
7779 	uint8_t partner_type;
7780 	/* enum ec_status describing VDM response */
7781 	uint16_t vdm_response_err;
7782 	/* VDM data, including VDM header */
7783 	uint32_t vdm_response[VDO_MAX_SIZE];
7784 	/* Number of 32-bit Attention fields filled in */
7785 	uint8_t vdm_attention_objects;
7786 	/* Number of remaining messages to consume */
7787 	uint8_t vdm_attention_left;
7788 	/* Reserved */
7789 	uint16_t reserved1;
7790 	/* VDM:Attention contents */
7791 	uint32_t vdm_attention[2];
7792 } __ec_align1;
7793 
7794 /*
7795  * Get an active battery config from the EC.
7796  */
7797 #define EC_CMD_BATTERY_CONFIG 0x013D
7798 
7799 /* Version of struct batt_conf_header and its internals. */
7800 #define EC_BATTERY_CONFIG_STRUCT_VERSION 0x00
7801 
7802 /* Number of writes needed to invoke battery cutoff command */
7803 #define SHIP_MODE_WRITES 2
7804 
7805 struct ship_mode_info {
7806 	uint8_t reg_addr;
7807 	uint8_t reserved;
7808 	uint16_t reg_data[SHIP_MODE_WRITES];
7809 } __packed __aligned(2);
7810 
7811 struct sleep_mode_info {
7812 	uint8_t reg_addr;
7813 	uint8_t reserved;
7814 	uint16_t reg_data;
7815 } __packed __aligned(2);
7816 
7817 struct fet_info {
7818 	uint8_t reg_addr;
7819 	uint8_t reserved;
7820 	uint16_t reg_mask;
7821 	uint16_t disconnect_val;
7822 	uint16_t cfet_mask; /* CHG FET status mask */
7823 	uint16_t cfet_off_val;
7824 } __packed __aligned(2);
7825 
7826 enum fuel_gauge_flags {
7827 	/*
7828 	 * Write Block Support. If enabled, we use a i2c write block command
7829 	 * instead of a 16-bit write. The effective difference is the i2c
7830 	 * transaction will prefix the length (2).
7831 	 */
7832 	FUEL_GAUGE_FLAG_WRITE_BLOCK = BIT(0),
7833 	/* Sleep command support. fuel_gauge_info.sleep_mode must be defined. */
7834 	FUEL_GAUGE_FLAG_SLEEP_MODE = BIT(1),
7835 	/*
7836 	 * Manufacturer access command support. If enabled, FET status is read
7837 	 * from the OperationStatus (0x54) register using the
7838 	 * ManufacturerBlockAccess (0x44).
7839 	 */
7840 	FUEL_GAUGE_FLAG_MFGACC = BIT(2),
7841 	/*
7842 	 * SMB block protocol support in manufacturer access command. If
7843 	 * enabled, FET status is read from the OperationStatus (0x54) register
7844 	 * using the ManufacturerBlockAccess (0x44).
7845 	 */
7846 	FUEL_GAUGE_FLAG_MFGACC_SMB_BLOCK = BIT(3),
7847 };
7848 
7849 struct fuel_gauge_info {
7850 	uint32_t flags;
7851 	uint32_t board_flags;
7852 	struct ship_mode_info ship_mode;
7853 	struct sleep_mode_info sleep_mode;
7854 	struct fet_info fet;
7855 } __packed __aligned(4);
7856 
7857 /* Battery constants */
7858 struct battery_info {
7859 	/* Operation voltage in mV */
7860 	uint16_t voltage_max;
7861 	uint16_t voltage_normal;
7862 	uint16_t voltage_min;
7863 	/* (TODO(chromium:756700): add desired_charging_current */
7864 	/**
7865 	 * Pre-charge to fast charge threshold in mV,
7866 	 * default to voltage_min if not specified.
7867 	 * This option is only available on isl923x and rt946x.
7868 	 */
7869 	uint16_t precharge_voltage;
7870 	/* Pre-charge current in mA */
7871 	uint16_t precharge_current;
7872 	/* Working temperature ranges in degrees C */
7873 	int8_t start_charging_min_c;
7874 	int8_t start_charging_max_c;
7875 	int8_t charging_min_c;
7876 	int8_t charging_max_c;
7877 	int8_t discharging_min_c;
7878 	int8_t discharging_max_c;
7879 	/* Used only if CONFIG_BATTERY_VENDOR_PARAM is defined. */
7880 	uint8_t vendor_param_start;
7881 	uint8_t reserved;
7882 } __packed __aligned(2);
7883 
7884 /*
7885  * The 'config' of a battery.
7886  */
7887 struct board_batt_params {
7888 	struct fuel_gauge_info fuel_gauge;
7889 	struct battery_info batt_info;
7890 } __packed __aligned(4);
7891 
7892 /*
7893  * The SBS defines a string object as a block of chars, 32 byte maximum, where
7894  * the first byte indicates the number of chars in the block (excluding the
7895  * first byte).
7896  *
7897  * Thus, the actual string length (i.e. the value strlen returns) is limited to
7898  * 31 (=SBS_MAX_STR_SIZE).
7899  *
7900  * SBS_MAX_STR_OBJ_SIZE can be used as the size of a buffer for an SBS string
7901  * object but also as a buffer for a c-lang string because the null terminating
7902  * char also takes one byte.
7903  */
7904 #define SBS_MAX_STR_SIZE 31
7905 #define SBS_MAX_STR_OBJ_SIZE (SBS_MAX_STR_SIZE + 1)
7906 
7907 /*
7908  * Header describing a battery config stored in CBI. Only struct_version has
7909  * size and position independent of struct_version. The rest varies as
7910  * struct_version changes.
7911  *
7912  * Version 0
7913  * Layout:
7914  *  +-------------+
7915  *  | header      |
7916  *  +-------------+
7917  *  |             | ^
7918  *  | manuf_name  | | manuf_name_size
7919  *  |             | v
7920  *  +-------------+
7921  *  | device_name | ^
7922  *  |             | | device_name_size
7923  *  |             | v
7924  *  +-------------+
7925  *  | config      | ^
7926  *  |             | |
7927  *  |             | | cbi data size
7928  *  |             | |    - (header_size+manuf_name_size+device_name_size)
7929  *  |             | |
7930  *  |             | v
7931  *  +-------------+
7932  * Note:
7933  * - manuf_name and device_name are not null-terminated.
7934  * - The config isn't aligned. It should be copied to struct board_batt_params
7935  *   before its contents are accessed.
7936  */
7937 struct batt_conf_header {
7938 	/* Version independent field. It's always here as a uint8_t. */
7939 	uint8_t struct_version;
7940 	/* Version 0 members */
7941 	uint8_t manuf_name_size;
7942 	uint8_t device_name_size;
7943 	uint8_t reserved;
7944 	/* manuf_name, device_name, board_batt_params follow after this. */
7945 } __packed;
7946 
7947 #define BATT_CONF_MAX_SIZE                                            \
7948 	(sizeof(struct batt_conf_header) + SBS_MAX_STR_OBJ_SIZE * 2 + \
7949 	 sizeof(struct board_batt_params))
7950 
7951 /*
7952  * Record the current AP firmware state. This is used to help testing, such as
7953  * with FAFT (Fully-Automated Firmware Test), which likes to know which firmware
7954  * screen is currently displayed.
7955  */
7956 
7957 #define EC_CMD_AP_FW_STATE 0x013E
7958 
7959 struct ec_params_ap_fw_state {
7960 	/*
7961 	 * Value which indicates the state. This is not decoded by the EC, so
7962 	 * its meaning is entirely outside this code base.
7963 	 */
7964 	uint32_t state;
7965 } __ec_align1;
7966 
7967 /*
7968  * UCSI OPM-PPM commands
7969  *
7970  * These commands are used for communication between OPM and PPM.
7971  * Only UCSI3.0 is tested.
7972  */
7973 
7974 #define EC_CMD_UCSI_PPM_SET 0x0140
7975 
7976 /* The data size is stored in the host command protocol header. */
7977 struct ec_params_ucsi_ppm_set {
7978 	uint16_t offset;
7979 	uint8_t data[];
7980 } __ec_align2;
7981 
7982 #define EC_CMD_UCSI_PPM_GET 0x0141
7983 
7984 /* For 'GET' sub-commands, data will be returned as a raw payload. */
7985 struct ec_params_ucsi_ppm_get {
7986 	uint16_t offset;
7987 	uint8_t size;
7988 } __ec_align2;
7989 
7990 #define EC_CMD_SET_ALARM_SLP_S0_DBG 0x0142
7991 
7992 /* RTC params and response structures */
7993 struct ec_params_set_alarm_slp_s0_dbg {
7994 	uint32_t time;
7995 } __ec_align2;
7996 
7997 /*****************************************************************************/
7998 /* The command range 0x200-0x2FF is reserved for Rotor. */
7999 
8000 /*****************************************************************************/
8001 /*
8002  * Reserve a range of host commands for the CR51 firmware.
8003  */
8004 #define EC_CMD_CR51_BASE 0x0300
8005 #define EC_CMD_CR51_LAST 0x03FF
8006 
8007 /*****************************************************************************/
8008 /* Fingerprint MCU commands: range 0x0400-0x040x */
8009 
8010 /*
8011  * Fingerprint SPI sensor passthru command
8012  *
8013  * This command was used for prototyping and it's now deprecated.
8014  */
8015 #define EC_CMD_FP_PASSTHRU 0x0400
8016 
8017 #define EC_FP_FLAG_NOT_COMPLETE 0x1
8018 
8019 struct ec_params_fp_passthru {
8020 	uint16_t len; /* Number of bytes to write then read */
8021 	uint16_t flags; /* EC_FP_FLAG_xxx */
8022 	uint8_t data[]; /* Data to send */
8023 } __ec_align2;
8024 
8025 /* Configure the Fingerprint MCU behavior */
8026 #define EC_CMD_FP_MODE 0x0402
8027 
8028 /* Put the sensor in its lowest power mode */
8029 #define FP_MODE_DEEPSLEEP BIT(0)
8030 /* Wait to see a finger on the sensor */
8031 #define FP_MODE_FINGER_DOWN BIT(1)
8032 /* Poll until the finger has left the sensor */
8033 #define FP_MODE_FINGER_UP BIT(2)
8034 /* Capture the current finger image */
8035 #define FP_MODE_CAPTURE BIT(3)
8036 /* Finger enrollment session on-going */
8037 #define FP_MODE_ENROLL_SESSION BIT(4)
8038 /* Enroll the current finger image */
8039 #define FP_MODE_ENROLL_IMAGE BIT(5)
8040 /* Try to match the current finger image */
8041 #define FP_MODE_MATCH BIT(6)
8042 /* Reset and re-initialize the sensor. */
8043 #define FP_MODE_RESET_SENSOR BIT(7)
8044 /* Sensor maintenance for dead pixels. */
8045 #define FP_MODE_SENSOR_MAINTENANCE BIT(8)
8046 /* special value: don't change anything just read back current mode */
8047 #define FP_MODE_DONT_CHANGE BIT(31)
8048 
8049 #define FP_VALID_MODES                                                       \
8050 	(FP_MODE_DEEPSLEEP | FP_MODE_FINGER_DOWN | FP_MODE_FINGER_UP |       \
8051 	 FP_MODE_CAPTURE | FP_MODE_ENROLL_SESSION | FP_MODE_ENROLL_IMAGE |   \
8052 	 FP_MODE_MATCH | FP_MODE_RESET_SENSOR | FP_MODE_SENSOR_MAINTENANCE | \
8053 	 FP_MODE_DONT_CHANGE)
8054 
8055 /* Capture types defined in bits [30..28] */
8056 #define FP_MODE_CAPTURE_TYPE_SHIFT 28
8057 #define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
8058 /**
8059  * enum fp_capture_type - Specifies the "mode" when capturing images.
8060  *
8061  * @FP_CAPTURE_VENDOR_FORMAT: Capture 1-3 images and choose the best quality
8062  * image (produces 'frame_size' bytes)
8063  * @FP_CAPTURE_SIMPLE_IMAGE: Simple raw image capture (produces width x height x
8064  * bpp bits)
8065  * @FP_CAPTURE_PATTERN0: Self test pattern (e.g. checkerboard)
8066  * @FP_CAPTURE_PATTERN1: Self test pattern (e.g. inverted checkerboard)
8067  * @FP_CAPTURE_QUALITY_TEST: Capture for Quality test with fixed contrast
8068  * @FP_CAPTURE_RESET_TEST: Capture for pixel reset value test
8069  * @FP_CAPTURE_TYPE_MAX: End of enum
8070  *
8071  * @note This enum must remain ordered, if you add new values you must ensure
8072  * that FP_CAPTURE_TYPE_MAX is still the last one.
8073  */
8074 enum fp_capture_type {
8075 	FP_CAPTURE_VENDOR_FORMAT = 0,
8076 	FP_CAPTURE_SIMPLE_IMAGE = 1,
8077 	FP_CAPTURE_PATTERN0 = 2,
8078 	FP_CAPTURE_PATTERN1 = 3,
8079 	FP_CAPTURE_QUALITY_TEST = 4,
8080 	FP_CAPTURE_RESET_TEST = 5,
8081 	FP_CAPTURE_TYPE_MAX,
8082 };
8083 /* Extracts the capture type from the sensor 'mode' word */
8084 #define FP_CAPTURE_TYPE(mode) \
8085 	(((mode) & FP_MODE_CAPTURE_TYPE_MASK) >> FP_MODE_CAPTURE_TYPE_SHIFT)
8086 
8087 struct ec_params_fp_mode {
8088 	uint32_t mode; /* as defined by FP_MODE_ constants */
8089 } __ec_align4;
8090 
8091 struct ec_response_fp_mode {
8092 	uint32_t mode; /* as defined by FP_MODE_ constants */
8093 } __ec_align4;
8094 
8095 /* Retrieve Fingerprint sensor information */
8096 #define EC_CMD_FP_INFO 0x0403
8097 
8098 /* Number of dead pixels detected on the last maintenance */
8099 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
8100 /* Unknown number of dead pixels detected on the last maintenance */
8101 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
8102 /* No interrupt from the sensor */
8103 #define FP_ERROR_NO_IRQ BIT(12)
8104 /* SPI communication error */
8105 #define FP_ERROR_SPI_COMM BIT(13)
8106 /* Invalid sensor Hardware ID */
8107 #define FP_ERROR_BAD_HWID BIT(14)
8108 /* Sensor initialization failed */
8109 #define FP_ERROR_INIT_FAIL BIT(15)
8110 
8111 struct ec_response_fp_info_v0 {
8112 	/* Sensor identification */
8113 	uint32_t vendor_id;
8114 	uint32_t product_id;
8115 	uint32_t model_id;
8116 	uint32_t version;
8117 	/* Image frame characteristics */
8118 	uint32_t frame_size;
8119 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
8120 	uint16_t width;
8121 	uint16_t height;
8122 	uint16_t bpp;
8123 	uint16_t errors; /* see FP_ERROR_ flags above */
8124 } __ec_align4;
8125 
8126 struct ec_response_fp_info {
8127 	/* Sensor identification */
8128 	uint32_t vendor_id;
8129 	uint32_t product_id;
8130 	uint32_t model_id;
8131 	uint32_t version;
8132 	/* Image frame characteristics */
8133 	uint32_t frame_size;
8134 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
8135 	uint16_t width;
8136 	uint16_t height;
8137 	uint16_t bpp;
8138 	uint16_t errors; /* see FP_ERROR_ flags above */
8139 	/* Template/finger current information */
8140 	uint32_t template_size; /* max template size in bytes */
8141 	uint16_t template_max; /* maximum number of fingers/templates */
8142 	uint16_t template_valid; /* number of valid fingers/templates */
8143 	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
8144 	uint32_t template_version; /* version of the template format */
8145 } __ec_align4;
8146 
8147 /* Get the last captured finger frame or a template content */
8148 #define EC_CMD_FP_FRAME 0x0404
8149 
8150 /* constants defining the 'offset' field which also contains the frame index */
8151 #define FP_FRAME_INDEX_SHIFT 28
8152 /* Frame buffer where the captured image is stored */
8153 #define FP_FRAME_INDEX_RAW_IMAGE 0
8154 /* First frame buffer holding a template */
8155 #define FP_FRAME_INDEX_TEMPLATE 1
8156 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
8157 #define FP_FRAME_OFFSET_MASK 0x0FFFFFFF
8158 
8159 /* Version of the format of the encrypted templates. */
8160 #define FP_TEMPLATE_FORMAT_VERSION 4
8161 
8162 /* Constants for encryption parameters */
8163 #define FP_CONTEXT_NONCE_BYTES 12
8164 #define FP_CONTEXT_USERID_BYTES 32
8165 #define FP_CONTEXT_USERID_WORDS (FP_CONTEXT_USERID_BYTES / sizeof(uint32_t))
8166 #define FP_CONTEXT_TAG_BYTES 16
8167 #define FP_CONTEXT_ENCRYPTION_SALT_BYTES 16
8168 #define FP_CONTEXT_TPM_BYTES 32
8169 
8170 /* Constants for positive match parameters. */
8171 #define FP_POSITIVE_MATCH_SALT_BYTES 16
8172 
8173 struct ec_fp_template_encryption_metadata {
8174 	/*
8175 	 * Version of the structure format (N=3).
8176 	 */
8177 	uint16_t struct_version;
8178 	/* Reserved bytes, set to 0. */
8179 	uint16_t reserved;
8180 	/*
8181 	 * The salt is *only* ever used for key derivation. The nonce is unique,
8182 	 * a different one is used for every message.
8183 	 */
8184 	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
8185 	uint8_t encryption_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES];
8186 	uint8_t tag[FP_CONTEXT_TAG_BYTES];
8187 };
8188 
8189 struct ec_params_fp_frame {
8190 	/*
8191 	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
8192 	 * in the high nibble, and the real offset within the frame in
8193 	 * FP_FRAME_OFFSET_MASK.
8194 	 */
8195 	uint32_t offset;
8196 	uint32_t size;
8197 } __ec_align4;
8198 
8199 /* Load a template into the MCU */
8200 #define EC_CMD_FP_TEMPLATE 0x0405
8201 
8202 /* Flag in the 'size' field indicating that the full template has been sent */
8203 #define FP_TEMPLATE_COMMIT 0x80000000
8204 
8205 struct ec_params_fp_template {
8206 	uint32_t offset;
8207 	uint32_t size;
8208 	uint8_t data[];
8209 } __ec_align4;
8210 
8211 /* Clear the current fingerprint user context and set a new one */
8212 #define EC_CMD_FP_CONTEXT 0x0406
8213 
8214 struct ec_params_fp_context {
8215 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
8216 } __ec_align4;
8217 
8218 enum fp_context_action {
8219 	FP_CONTEXT_ASYNC = 0,
8220 	FP_CONTEXT_GET_RESULT = 1,
8221 };
8222 
8223 /* Version 1 of the command is "asynchronous". */
8224 struct ec_params_fp_context_v1 {
8225 	uint8_t action; /**< enum fp_context_action */
8226 	uint8_t reserved[3]; /**< padding for alignment */
8227 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
8228 } __ec_align4;
8229 
8230 #define EC_CMD_FP_STATS 0x0407
8231 
8232 #define FPSTATS_CAPTURE_INV BIT(0)
8233 #define FPSTATS_MATCHING_INV BIT(1)
8234 
8235 struct ec_response_fp_stats {
8236 	uint32_t capture_time_us;
8237 	uint32_t matching_time_us;
8238 	uint32_t overall_time_us;
8239 	struct {
8240 		uint32_t lo;
8241 		uint32_t hi;
8242 	} overall_t0;
8243 	uint8_t timestamps_invalid;
8244 	int8_t template_matched;
8245 } __ec_align2;
8246 
8247 #define EC_CMD_FP_SEED 0x0408
8248 struct ec_params_fp_seed {
8249 	/*
8250 	 * Version of the structure format (N=3).
8251 	 */
8252 	uint16_t struct_version;
8253 	/* Reserved bytes, set to 0. */
8254 	uint16_t reserved;
8255 	/* Seed from the TPM. */
8256 	uint8_t seed[FP_CONTEXT_TPM_BYTES];
8257 } __ec_align4;
8258 
8259 #define EC_CMD_FP_ENC_STATUS 0x0409
8260 
8261 /* FP TPM seed has been set or not */
8262 #define FP_ENC_STATUS_SEED_SET BIT(0)
8263 /* FP using nonce context or not */
8264 #define FP_CONTEXT_STATUS_NONCE_CONTEXT_SET BIT(1)
8265 /* FP match had been processed or not */
8266 #define FP_CONTEXT_STATUS_MATCH_PROCESSED_SET BIT(2)
8267 /* FP auth_nonce had been set or not*/
8268 #define FP_CONTEXT_AUTH_NONCE_SET BIT(3)
8269 /* FP user_id had been set or not*/
8270 #define FP_CONTEXT_USER_ID_SET BIT(4)
8271 /* FP templates are unlocked for nonce context or not */
8272 #define FP_CONTEXT_TEMPLATE_UNLOCKED_SET BIT(5)
8273 
8274 struct ec_response_fp_encryption_status {
8275 	/* Used bits in encryption engine status */
8276 	uint32_t valid_flags;
8277 	/* Encryption engine status */
8278 	uint32_t status;
8279 } __ec_align4;
8280 
8281 #define EC_CMD_FP_READ_MATCH_SECRET 0x040A
8282 struct ec_params_fp_read_match_secret {
8283 	uint16_t fgr;
8284 } __ec_align4;
8285 
8286 /* The positive match secret has the length of the SHA256 digest. */
8287 #define FP_POSITIVE_MATCH_SECRET_BYTES 32
8288 struct ec_response_fp_read_match_secret {
8289 	uint8_t positive_match_secret[FP_POSITIVE_MATCH_SECRET_BYTES];
8290 } __ec_align4;
8291 
8292 #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN 32
8293 
8294 struct fp_elliptic_curve_public_key {
8295 	uint8_t x[FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN];
8296 	uint8_t y[FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN];
8297 } __ec_align4;
8298 
8299 #define FP_AES_KEY_ENC_METADATA_VERSION 1
8300 #define FP_AES_KEY_NONCE_BYTES 12
8301 #define FP_AES_KEY_ENCRYPTION_SALT_BYTES 16
8302 #define FP_AES_KEY_TAG_BYTES 16
8303 
8304 struct fp_auth_command_encryption_metadata {
8305 	/* Version of the structure format */
8306 	uint16_t struct_version;
8307 	/* Reserved bytes, set to 0. */
8308 	uint16_t reserved;
8309 	/*
8310 	 * The salt is *only* ever used for key derivation. The nonce is unique,
8311 	 * a different one is used for every message.
8312 	 */
8313 	uint8_t nonce[FP_AES_KEY_NONCE_BYTES];
8314 	uint8_t encryption_salt[FP_AES_KEY_ENCRYPTION_SALT_BYTES];
8315 	uint8_t tag[FP_AES_KEY_TAG_BYTES];
8316 } __ec_align4;
8317 
8318 #define FP_ELLIPTIC_CURVE_PRIVATE_KEY_LEN 32
8319 #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN 16
8320 
8321 struct fp_encrypted_private_key {
8322 	struct fp_auth_command_encryption_metadata info;
8323 	uint8_t data[FP_ELLIPTIC_CURVE_PRIVATE_KEY_LEN];
8324 } __ec_align4;
8325 
8326 #define EC_CMD_FP_ESTABLISH_PAIRING_KEY_KEYGEN 0x0410
8327 
8328 struct ec_response_fp_establish_pairing_key_keygen {
8329 	struct fp_elliptic_curve_public_key pubkey;
8330 	struct fp_encrypted_private_key encrypted_private_key;
8331 } __ec_align4;
8332 
8333 #define FP_PAIRING_KEY_LEN 32
8334 
8335 struct ec_fp_encrypted_pairing_key {
8336 	struct fp_auth_command_encryption_metadata info;
8337 	uint8_t data[FP_PAIRING_KEY_LEN];
8338 } __ec_align4;
8339 
8340 #define EC_CMD_FP_ESTABLISH_PAIRING_KEY_WRAP 0x0411
8341 
8342 struct ec_params_fp_establish_pairing_key_wrap {
8343 	struct fp_elliptic_curve_public_key peers_pubkey;
8344 	struct fp_encrypted_private_key encrypted_private_key;
8345 } __ec_align4;
8346 
8347 struct ec_response_fp_establish_pairing_key_wrap {
8348 	struct ec_fp_encrypted_pairing_key encrypted_pairing_key;
8349 } __ec_align4;
8350 
8351 #define EC_CMD_FP_LOAD_PAIRING_KEY 0x0412
8352 
8353 typedef struct ec_response_fp_establish_pairing_key_wrap
8354 	ec_params_fp_load_pairing_key;
8355 
8356 #define FP_CK_AUTH_NONCE_LEN 32
8357 
8358 #define EC_CMD_FP_GENERATE_NONCE 0x0413
8359 struct ec_response_fp_generate_nonce {
8360 	uint8_t nonce[FP_CK_AUTH_NONCE_LEN];
8361 } __ec_align4;
8362 
8363 #define FP_CONTEXT_USERID_LEN 32
8364 #define FP_CONTEXT_USERID_IV_LEN 16
8365 #define FP_CONTEXT_KEY_LEN 32
8366 
8367 #define EC_CMD_FP_NONCE_CONTEXT 0x0414
8368 struct ec_params_fp_nonce_context {
8369 	uint8_t gsc_nonce[FP_CK_AUTH_NONCE_LEN];
8370 	uint8_t enc_user_id[FP_CONTEXT_USERID_LEN];
8371 	uint8_t enc_user_id_iv[FP_CONTEXT_USERID_IV_LEN];
8372 } __ec_align4;
8373 
8374 #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN 16
8375 
8376 #define EC_CMD_FP_READ_MATCH_SECRET_WITH_PUBKEY 0x0415
8377 
8378 struct ec_params_fp_read_match_secret_with_pubkey {
8379 	uint16_t fgr;
8380 	uint16_t reserved;
8381 	struct fp_elliptic_curve_public_key pubkey;
8382 } __ec_align4;
8383 
8384 struct ec_response_fp_read_match_secret_with_pubkey {
8385 	struct fp_elliptic_curve_public_key pubkey;
8386 	uint8_t iv[FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN];
8387 	uint8_t enc_secret[FP_POSITIVE_MATCH_SECRET_BYTES];
8388 } __ec_align4;
8389 
8390 /* Unlock the fpsensor template with the current nonce context */
8391 #define EC_CMD_FP_UNLOCK_TEMPLATE 0x0417
8392 
8393 struct ec_params_fp_unlock_template {
8394 	uint16_t fgr_num;
8395 } __ec_align4;
8396 
8397 /*
8398  * Migrate a legacy FP template (here, legacy refers to being generated in a
8399  * raw user_id context instead of a nonce context) by wiping its match secret
8400  * salt and treating it as a newly-enrolled template.
8401  * The legacy FP template needs to be uploaded by FP_TEMPLATE command first
8402  * without committing, then this command will commit it.
8403  */
8404 #define EC_CMD_FP_MIGRATE_TEMPLATE_TO_NONCE_CONTEXT 0x0418
8405 
8406 struct ec_params_fp_migrate_template_to_nonce_context {
8407 	/* The context userid used to encrypt this template when it was created.
8408 	 */
8409 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
8410 };
8411 
8412 /*****************************************************************************/
8413 /* Touchpad MCU commands: range 0x0500-0x05FF */
8414 
8415 /* Perform touchpad self test */
8416 #define EC_CMD_TP_SELF_TEST 0x0500
8417 
8418 /* Get number of frame types, and the size of each type */
8419 #define EC_CMD_TP_FRAME_INFO 0x0501
8420 
8421 struct ec_response_tp_frame_info {
8422 	uint32_t n_frames;
8423 	uint32_t frame_sizes[0];
8424 } __ec_align4;
8425 
8426 /* Create a snapshot of current frame readings */
8427 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
8428 
8429 /* Read the frame */
8430 #define EC_CMD_TP_FRAME_GET 0x0503
8431 
8432 struct ec_params_tp_frame_get {
8433 	uint32_t frame_index;
8434 	uint32_t offset;
8435 	uint32_t size;
8436 } __ec_align4;
8437 
8438 /*****************************************************************************/
8439 /* EC-EC communication commands: range 0x0600-0x06FF */
8440 
8441 #define EC_COMM_TEXT_MAX 8
8442 
8443 /*
8444  * Get battery static information, i.e. information that never changes, or
8445  * very infrequently.
8446  */
8447 #define EC_CMD_BATTERY_GET_STATIC 0x0600
8448 
8449 /**
8450  * struct ec_params_battery_static_info - Battery static info parameters
8451  * @index: Battery index.
8452  */
8453 struct ec_params_battery_static_info {
8454 	uint8_t index;
8455 } __ec_align_size1;
8456 
8457 /**
8458  * struct ec_response_battery_static_info - Battery static info response
8459  * @design_capacity: Battery Design Capacity (mAh)
8460  * @design_voltage: Battery Design Voltage (mV)
8461  * @manufacturer: Battery Manufacturer String
8462  * @model: Battery Model Number String
8463  * @serial: Battery Serial Number String
8464  * @type: Battery Type String
8465  * @cycle_count: Battery Cycle Count
8466  */
8467 struct ec_response_battery_static_info {
8468 	uint16_t design_capacity;
8469 	uint16_t design_voltage;
8470 	char manufacturer[EC_COMM_TEXT_MAX];
8471 	char model[EC_COMM_TEXT_MAX];
8472 	char serial[EC_COMM_TEXT_MAX];
8473 	char type[EC_COMM_TEXT_MAX];
8474 	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
8475 	uint32_t cycle_count;
8476 } __ec_align4;
8477 
8478 /**
8479  * struct ec_response_battery_static_info_v1 - hostcmd v1 battery static info
8480  * Equivalent to struct ec_response_battery_static_info, but with longer
8481  * strings.
8482  * @design_capacity: battery design capacity (in mAh)
8483  * @design_voltage: battery design voltage (in mV)
8484  * @cycle_count: battery cycle count
8485  * @manufacturer_ext: battery manufacturer string
8486  * @model_ext: battery model string
8487  * @serial_ext: battery serial number string
8488  * @type_ext: battery type string
8489  */
8490 struct ec_response_battery_static_info_v1 {
8491 	uint16_t design_capacity;
8492 	uint16_t design_voltage;
8493 	uint32_t cycle_count;
8494 	char manufacturer_ext[12];
8495 	char model_ext[12];
8496 	char serial_ext[12];
8497 	char type_ext[12];
8498 } __ec_align4;
8499 
8500 /**
8501  * struct ec_response_battery_static_info_v2 - hostcmd v2 battery static info
8502  *
8503  * Equivalent to struct ec_response_battery_static_info, but with strings
8504  * further lengthened (relative to v1) to accommodate the maximum string length
8505  * permitted by the Smart Battery Data Specification revision 1.1 and fields
8506  * renamed to better match that specification.
8507  *
8508  * @design_capacity: battery design capacity (in mAh)
8509  * @design_voltage: battery design voltage (in mV)
8510  * @cycle_count: battery cycle count
8511  * @manufacturer: battery manufacturer string
8512  * @device_name: battery model string
8513  * @serial: battery serial number string
8514  * @chemistry: battery type string
8515  */
8516 struct ec_response_battery_static_info_v2 {
8517 	uint16_t design_capacity;
8518 	uint16_t design_voltage;
8519 	uint32_t cycle_count;
8520 	char manufacturer[SBS_MAX_STR_OBJ_SIZE];
8521 	char device_name[SBS_MAX_STR_OBJ_SIZE];
8522 	char serial[SBS_MAX_STR_OBJ_SIZE];
8523 	char chemistry[SBS_MAX_STR_OBJ_SIZE];
8524 } __ec_align4;
8525 
8526 /*
8527  * Get battery dynamic information, i.e. information that is likely to change
8528  * every time it is read.
8529  */
8530 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
8531 
8532 /**
8533  * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
8534  * @index: Battery index.
8535  */
8536 struct ec_params_battery_dynamic_info {
8537 	uint8_t index;
8538 } __ec_align_size1;
8539 
8540 /**
8541  * struct ec_response_battery_dynamic_info - Battery dynamic info response
8542  * @actual_voltage: Battery voltage (mV)
8543  * @actual_current: Battery current (mA); negative=discharging
8544  * @remaining_capacity: Remaining capacity (mAh)
8545  * @full_capacity: Capacity (mAh, might change occasionally)
8546  * @flags: Flags, see EC_BATT_FLAG_*
8547  * @desired_voltage: Charging voltage desired by battery (mV)
8548  * @desired_current: Charging current desired by battery (mA)
8549  */
8550 struct ec_response_battery_dynamic_info {
8551 	int16_t actual_voltage;
8552 	int16_t actual_current;
8553 	int16_t remaining_capacity;
8554 	int16_t full_capacity;
8555 	int16_t flags;
8556 	int16_t desired_voltage;
8557 	int16_t desired_current;
8558 } __ec_align2;
8559 
8560 /*
8561  * Control charger chip. Used to control charger chip on the peripheral.
8562  */
8563 #define EC_CMD_CHARGER_CONTROL 0x0602
8564 
8565 /**
8566  * struct ec_params_charger_control - Charger control parameters
8567  * @max_current: Charger current (mA). Positive to allow base to draw up to
8568  *     max_current and (possibly) charge battery, negative to request current
8569  *     from base (OTG).
8570  * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
8571  *     >= 0.
8572  * @allow_charging: Allow base battery charging (only makes sense if
8573  *     max_current > 0).
8574  */
8575 struct ec_params_charger_control {
8576 	int16_t max_current;
8577 	uint16_t otg_voltage;
8578 	uint8_t allow_charging;
8579 } __ec_align_size1;
8580 
8581 /* Get ACK from the USB-C SS muxes */
8582 #define EC_CMD_USB_PD_MUX_ACK 0x0603
8583 
8584 struct ec_params_usb_pd_mux_ack {
8585 	uint8_t port; /* USB-C port number */
8586 } __ec_align1;
8587 
8588 /* Get boot time */
8589 #define EC_CMD_GET_BOOT_TIME 0x0604
8590 
8591 enum boot_time_param {
8592 	ARAIL = 0,
8593 	RSMRST,
8594 	ESPIRST,
8595 	PLTRST_LOW,
8596 	PLTRST_HIGH,
8597 	EC_CUR_TIME,
8598 	RESET_CNT,
8599 };
8600 
8601 struct ec_response_get_boot_time {
8602 	uint64_t timestamp[RESET_CNT];
8603 	uint16_t cnt;
8604 } __ec_align4;
8605 
8606 /*****************************************************************************/
8607 /*
8608  * Reserve a range of host commands for board-specific, experimental, or
8609  * special purpose features. These can be (re)used without updating this file.
8610  *
8611  * CAUTION: Don't go nuts with this. Shipping products should document ALL
8612  * their EC commands for easier development, testing, debugging, and support.
8613  *
8614  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
8615  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
8616  *
8617  * In your experimental code, you may want to do something like this:
8618  *
8619  *   #define EC_CMD_MAGIC_FOO 0x0000
8620  *   #define EC_CMD_MAGIC_BAR 0x0001
8621  *   #define EC_CMD_MAGIC_HEY 0x0002
8622  *
8623  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
8624  *      EC_VER_MASK(0);
8625  *
8626  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
8627  *      EC_VER_MASK(0);
8628  *
8629  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
8630  *      EC_VER_MASK(0);
8631  */
8632 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
8633 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
8634 
8635 /*
8636  * Given the private host command offset, calculate the true private host
8637  * command value.
8638  */
8639 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
8640 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
8641 
8642 /*****************************************************************************/
8643 /*
8644  * Passthru commands
8645  *
8646  * Some platforms have sub-processors chained to each other.  For example.
8647  *
8648  *     AP <--> EC <--> PD MCU
8649  *
8650  * The top 2 bits of the command number are used to indicate which device the
8651  * command is intended for.  Device 0 is always the device receiving the
8652  * command; other device mapping is board-specific.
8653  *
8654  * When a device receives a command to be passed to a sub-processor, it passes
8655  * it on with the device number set back to 0.  This allows the sub-processor
8656  * to remain blissfully unaware of whether the command originated on the next
8657  * device up the chain, or was passed through from the AP.
8658  *
8659  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
8660  *     AP sends command 0x4002 to the EC
8661  *     EC sends command 0x0002 to the PD MCU
8662  *     EC forwards PD MCU response back to the AP
8663  */
8664 
8665 /* Offset and max command number for sub-device n */
8666 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
8667 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
8668 
8669 /*****************************************************************************/
8670 /*
8671  * Deprecated constants. These constants have been renamed for clarity. The
8672  * meaning and size has not changed. Programs that use the old names should
8673  * switch to the new names soon, as the old names may not be carried forward
8674  * forever.
8675  */
8676 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
8677 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
8678 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
8679 
8680 #endif /* !__ACPI__ */
8681 
8682 #ifdef __cplusplus
8683 }
8684 #endif
8685 
8686 #endif /* __CROS_EC_EC_COMMANDS_H */
8687