1 /*
2 * Copyright © 2021 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "aco_builder.h"
8 #include "aco_ir.h"
9
10 #include <algorithm>
11 #include <array>
12 #include <bitset>
13 #include <vector>
14
15 namespace aco {
16 namespace {
17
18 constexpr const size_t max_reg_cnt = 512;
19 constexpr const size_t max_sgpr_cnt = 128;
20 constexpr const size_t min_vgpr = 256;
21 constexpr const size_t max_vgpr_cnt = 256;
22
23 struct Idx {
operator ==aco::__anon5ca5ac130111::Idx24 bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
operator !=aco::__anon5ca5ac130111::Idx25 bool operator!=(const Idx& other) const { return !operator==(other); }
26
foundaco::__anon5ca5ac130111::Idx27 bool found() const { return block != UINT32_MAX; }
28
29 uint32_t block;
30 uint32_t instr;
31 };
32
33 /** Indicates that a register was not yet written in the shader. */
34 Idx not_written_yet{UINT32_MAX, 0};
35
36 /** Indicates that an operand is constant or undefined, not written by any instruction. */
37 Idx const_or_undef{UINT32_MAX, 2};
38
39 /** Indicates that a register was overwritten by different instructions in previous blocks. */
40 Idx overwritten_untrackable{UINT32_MAX, 3};
41
42 /** Indicates that there isn't a clear single writer, for example due to subdword operations. */
43 Idx overwritten_unknown_instr{UINT32_MAX, 4};
44
45 struct pr_opt_ctx {
46 using Idx_array = std::array<Idx, max_reg_cnt>;
47
48 Program* program;
49 Block* current_block;
50 uint32_t current_instr_idx;
51 std::vector<uint16_t> uses;
52 std::unique_ptr<Idx_array[]> instr_idx_by_regs;
53
pr_opt_ctxaco::__anon5ca5ac130111::pr_opt_ctx54 pr_opt_ctx(Program* p)
55 : program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)),
56 instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]})
57 {}
58
reset_block_regsaco::__anon5ca5ac130111::pr_opt_ctx59 ALWAYS_INLINE void reset_block_regs(const Block::edge_vec& preds, const unsigned block_index,
60 const unsigned min_reg, const unsigned num_regs)
61 {
62 const unsigned num_preds = preds.size();
63 const unsigned first_pred = preds[0];
64
65 /* Copy information from the first predecessor. */
66 memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg],
67 num_regs * sizeof(Idx));
68
69 /* Mark overwritten if it doesn't match with other predecessors. */
70 const unsigned until_reg = min_reg + num_regs;
71 for (unsigned i = 1; i < num_preds; ++i) {
72 unsigned pred = preds[i];
73 for (unsigned reg = min_reg; reg < until_reg; ++reg) {
74 Idx& idx = instr_idx_by_regs[block_index][reg];
75 if (idx == overwritten_untrackable)
76 continue;
77
78 if (idx != instr_idx_by_regs[pred][reg])
79 idx = overwritten_untrackable;
80 }
81 }
82 }
83
reset_blockaco::__anon5ca5ac130111::pr_opt_ctx84 void reset_block(Block* block)
85 {
86 current_block = block;
87 current_instr_idx = 0;
88
89 if (block->linear_preds.empty()) {
90 std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
91 not_written_yet);
92 } else if (block->kind & block_kind_loop_header) {
93 /* Instructions inside the loop may overwrite registers of temporaries that are
94 * not live inside the loop, but we can't detect that because we haven't processed
95 * the blocks in the loop yet. As a workaround, mark all registers as untrackable.
96 * TODO: Consider improving this in the future.
97 */
98 std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
99 overwritten_untrackable);
100 } else {
101 reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt);
102 reset_block_regs(block->linear_preds, block->index, 251, 3);
103
104 if (!block->logical_preds.empty()) {
105 /* We assume that VGPRs are only read by blocks which have a logical predecessor,
106 * ie. any block that reads any VGPR has at least 1 logical predecessor.
107 */
108 reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt);
109 } else {
110 /* If a block has no logical predecessors, it is not part of the
111 * logical CFG and therefore it also won't have any logical successors.
112 * Such a block does not write any VGPRs ever.
113 */
114 assert(block->logical_succs.empty());
115 }
116 }
117 }
118
getaco::__anon5ca5ac130111::pr_opt_ctx119 Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
120 };
121
122 void
save_reg_writes(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)123 save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
124 {
125 for (const Definition& def : instr->definitions) {
126 assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
127 assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
128
129 unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
130 unsigned r = def.physReg().reg();
131 Idx idx{ctx.current_block->index, ctx.current_instr_idx};
132
133 if (def.regClass().is_subdword())
134 idx = overwritten_unknown_instr;
135
136 assert((r + dw_size) <= max_reg_cnt);
137 assert(def.size() == dw_size || def.regClass().is_subdword());
138 std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
139 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
140 }
141 if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
142 ctx.instr_idx_by_regs[ctx.current_block->index][instr->pseudo().scratch_sgpr] =
143 overwritten_unknown_instr;
144 }
145 }
146
147 Idx
last_writer_idx(pr_opt_ctx & ctx,PhysReg physReg,RegClass rc)148 last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
149 {
150 /* Verify that all of the operand's registers are written by the same instruction. */
151 assert(physReg.reg() < max_reg_cnt);
152 Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
153 unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
154 unsigned r = physReg.reg();
155 bool all_same =
156 std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
157 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
158 [instr_idx](Idx i) { return i == instr_idx; });
159
160 return all_same ? instr_idx : overwritten_untrackable;
161 }
162
163 Idx
last_writer_idx(pr_opt_ctx & ctx,const Operand & op)164 last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
165 {
166 if (op.isConstant() || op.isUndefined())
167 return const_or_undef;
168
169 return last_writer_idx(ctx, op.physReg(), op.regClass());
170 }
171
172 /**
173 * Check whether a register has been overwritten since the given location.
174 * This is an important part of checking whether certain optimizations are
175 * valid.
176 * Note that the decision is made based on registers and not on SSA IDs.
177 */
178 bool
is_overwritten_since(pr_opt_ctx & ctx,PhysReg reg,RegClass rc,const Idx & since_idx,bool inclusive=false)179 is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx,
180 bool inclusive = false)
181 {
182 /* If we didn't find an instruction, assume that the register is overwritten. */
183 if (!since_idx.found())
184 return true;
185
186 /* TODO: We currently can't keep track of subdword registers. */
187 if (rc.is_subdword())
188 return true;
189
190 unsigned begin_reg = reg.reg();
191 unsigned end_reg = begin_reg + rc.size();
192 unsigned current_block_idx = ctx.current_block->index;
193
194 for (unsigned r = begin_reg; r < end_reg; ++r) {
195 Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
196 if (i == overwritten_untrackable && current_block_idx > since_idx.block)
197 return true;
198 else if (i == overwritten_untrackable || i == not_written_yet)
199 continue;
200 else if (i == overwritten_unknown_instr)
201 return true;
202
203 assert(i.found());
204
205 bool since_instr = inclusive ? i.instr >= since_idx.instr : i.instr > since_idx.instr;
206 if (i.block > since_idx.block || (i.block == since_idx.block && since_instr))
207 return true;
208 }
209
210 return false;
211 }
212
213 bool
is_overwritten_since(pr_opt_ctx & ctx,const Definition & def,const Idx & idx,bool inclusive=false)214 is_overwritten_since(pr_opt_ctx& ctx, const Definition& def, const Idx& idx, bool inclusive = false)
215 {
216 return is_overwritten_since(ctx, def.physReg(), def.regClass(), idx, inclusive);
217 }
218
219 bool
is_overwritten_since(pr_opt_ctx & ctx,const Operand & op,const Idx & idx,bool inclusive=false)220 is_overwritten_since(pr_opt_ctx& ctx, const Operand& op, const Idx& idx, bool inclusive = false)
221 {
222 if (op.isConstant())
223 return false;
224
225 return is_overwritten_since(ctx, op.physReg(), op.regClass(), idx, inclusive);
226 }
227
228 void
try_apply_branch_vcc(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)229 try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
230 {
231 /* We are looking for the following pattern:
232 *
233 * vcc = ... ; last_vcc_wr
234 * sX, scc = s_and_bXX vcc, exec ; op0_instr
235 * (...vcc and exec must not be overwritten inbetween...)
236 * s_cbranch_XX scc ; instr
237 *
238 * If possible, the above is optimized into:
239 *
240 * vcc = ... ; last_vcc_wr
241 * s_cbranch_XX vcc ; instr modified to use vcc
242 */
243
244 /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
245 if (ctx.program->gfx_level < GFX8)
246 return;
247
248 if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
249 instr->operands[0].physReg() != scc)
250 return;
251
252 Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
253 Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
254
255 /* We need to make sure:
256 * - the instructions that wrote the operand register and VCC are both found
257 * - the operand register used by the branch, and VCC were both written in the current block
258 * - EXEC hasn't been overwritten since the last VCC write
259 * - VCC hasn't been overwritten since the operand register was written
260 * (ie. the last VCC writer precedes the op0 writer)
261 */
262 if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
263 op0_instr_idx.block != ctx.current_block->index ||
264 last_vcc_wr_idx.block != ctx.current_block->index ||
265 is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
266 is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
267 return;
268
269 Instruction* op0_instr = ctx.get(op0_instr_idx);
270 Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
271
272 if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
273 op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
274 op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
275 !last_vcc_wr->isVOPC())
276 return;
277
278 assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
279
280 /* Reduce the uses of the SCC def */
281 ctx.uses[instr->operands[0].tempId()]--;
282 /* Use VCC instead of SCC in the branch */
283 instr->operands[0] = op0_instr->operands[0];
284 }
285
286 void
try_optimize_scc_nocompare(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)287 try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
288 {
289 /* We are looking for the following pattern:
290 *
291 * s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
292 * s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
293 * s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
294 *
295 * If possible, the above is optimized into:
296 *
297 * s_bfe_u32 s0, s3, 0x40018 ; original instruction
298 * s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
299 *
300 */
301
302 if (!instr->isSALU() && !instr->isBranch())
303 return;
304
305 if (instr->isSOPC() &&
306 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
307 instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
308 instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
309 (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
310 (instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
311 /* Make sure the constant is always in operand 1 */
312 if (instr->operands[0].isConstant())
313 std::swap(instr->operands[0], instr->operands[1]);
314
315 /* Find the writer instruction of Operand 0. */
316 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
317 if (!wr_idx.found())
318 return;
319
320 Instruction* wr_instr = ctx.get(wr_idx);
321 if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
322 wr_instr->definitions[1].physReg() != scc)
323 return;
324
325 /* Look for instructions which set SCC := (D != 0) */
326 switch (wr_instr->opcode) {
327 case aco_opcode::s_bfe_i32:
328 case aco_opcode::s_bfe_i64:
329 case aco_opcode::s_bfe_u32:
330 case aco_opcode::s_bfe_u64:
331 case aco_opcode::s_and_b32:
332 case aco_opcode::s_and_b64:
333 case aco_opcode::s_andn2_b32:
334 case aco_opcode::s_andn2_b64:
335 case aco_opcode::s_or_b32:
336 case aco_opcode::s_or_b64:
337 case aco_opcode::s_orn2_b32:
338 case aco_opcode::s_orn2_b64:
339 case aco_opcode::s_xor_b32:
340 case aco_opcode::s_xor_b64:
341 case aco_opcode::s_not_b32:
342 case aco_opcode::s_not_b64:
343 case aco_opcode::s_nor_b32:
344 case aco_opcode::s_nor_b64:
345 case aco_opcode::s_xnor_b32:
346 case aco_opcode::s_xnor_b64:
347 case aco_opcode::s_nand_b32:
348 case aco_opcode::s_nand_b64:
349 case aco_opcode::s_lshl_b32:
350 case aco_opcode::s_lshl_b64:
351 case aco_opcode::s_lshr_b32:
352 case aco_opcode::s_lshr_b64:
353 case aco_opcode::s_ashr_i32:
354 case aco_opcode::s_ashr_i64:
355 case aco_opcode::s_abs_i32:
356 case aco_opcode::s_absdiff_i32: break;
357 default: return;
358 }
359
360 /* Check whether both SCC and Operand 0 are written by the same instruction. */
361 Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
362 if (wr_idx != sccwr_idx) {
363 /* Check whether the current instruction is the only user of its first operand. */
364 if (ctx.uses[wr_instr->definitions[1].tempId()] ||
365 ctx.uses[wr_instr->definitions[0].tempId()] > 1)
366 return;
367
368 /* Check whether the operands of the writer are overwritten. */
369 for (const Operand& op : wr_instr->operands) {
370 if (is_overwritten_since(ctx, op, wr_idx))
371 return;
372 }
373
374 aco_opcode pulled_opcode = wr_instr->opcode;
375 if (instr->opcode == aco_opcode::s_cmp_eq_u32 ||
376 instr->opcode == aco_opcode::s_cmp_eq_i32 ||
377 instr->opcode == aco_opcode::s_cmp_eq_u64) {
378 /* When s_cmp_eq is used, it effectively inverts the SCC def.
379 * However, we can't simply invert the opcodes here because that
380 * would change the meaning of the program.
381 */
382 return;
383 }
384
385 Definition scc_def = instr->definitions[0];
386 ctx.uses[wr_instr->definitions[0].tempId()]--;
387
388 /* Copy the writer instruction, but use SCC from the current instr.
389 * This means that the original instruction will be eliminated.
390 */
391 if (wr_instr->format == Format::SOP2) {
392 instr.reset(create_instruction(pulled_opcode, Format::SOP2, 2, 2));
393 instr->operands[1] = wr_instr->operands[1];
394 } else if (wr_instr->format == Format::SOP1) {
395 instr.reset(create_instruction(pulled_opcode, Format::SOP1, 1, 2));
396 }
397 instr->definitions[0] = wr_instr->definitions[0];
398 instr->definitions[1] = scc_def;
399 instr->operands[0] = wr_instr->operands[0];
400 return;
401 }
402
403 /* Use the SCC def from wr_instr */
404 ctx.uses[instr->operands[0].tempId()]--;
405 instr->operands[0] = Operand(wr_instr->definitions[1].getTemp());
406 instr->operands[0].setFixed(scc);
407 ctx.uses[instr->operands[0].tempId()]++;
408
409 /* Set the opcode and operand to 32-bit */
410 instr->operands[1] = Operand::zero();
411 instr->opcode =
412 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
413 instr->opcode == aco_opcode::s_cmp_eq_u64)
414 ? aco_opcode::s_cmp_eq_u32
415 : aco_opcode::s_cmp_lg_u32;
416 } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
417 instr->operands[0].physReg() == scc) ||
418 instr->opcode == aco_opcode::s_cselect_b32 ||
419 instr->opcode == aco_opcode::s_cselect_b64) {
420
421 /* For cselect, operand 2 is the SCC condition */
422 unsigned scc_op_idx = 0;
423 if (instr->opcode == aco_opcode::s_cselect_b32 ||
424 instr->opcode == aco_opcode::s_cselect_b64) {
425 scc_op_idx = 2;
426 }
427
428 Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
429 if (!wr_idx.found())
430 return;
431
432 Instruction* wr_instr = ctx.get(wr_idx);
433
434 /* Check if we found the pattern above. */
435 if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
436 wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
437 return;
438 if (wr_instr->operands[0].physReg() != scc)
439 return;
440 if (!wr_instr->operands[1].constantEquals(0))
441 return;
442
443 /* The optimization can be unsafe when there are other users. */
444 if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
445 return;
446
447 if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
448 /* Flip the meaning of the instruction to correctly use the SCC. */
449 if (instr->format == Format::PSEUDO_BRANCH)
450 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
451 : aco_opcode::p_cbranch_z;
452 else if (instr->opcode == aco_opcode::s_cselect_b32 ||
453 instr->opcode == aco_opcode::s_cselect_b64)
454 std::swap(instr->operands[0], instr->operands[1]);
455 else
456 unreachable(
457 "scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
458 }
459
460 /* Use the SCC def from the original instruction, not the comparison */
461 ctx.uses[instr->operands[scc_op_idx].tempId()]--;
462 instr->operands[scc_op_idx] = wr_instr->operands[0];
463 }
464 }
465
466 static bool
is_scc_copy(const Instruction * instr)467 is_scc_copy(const Instruction* instr)
468 {
469 return instr->opcode == aco_opcode::p_parallelcopy && instr->operands.size() == 1 &&
470 instr->operands[0].isTemp() && instr->operands[0].physReg().reg() == scc;
471 }
472
473 void
save_scc_copy_producer(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)474 save_scc_copy_producer(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
475 {
476 if (!is_scc_copy(instr.get()))
477 return;
478
479 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
480 if (wr_idx.found() && wr_idx.block == ctx.current_block->index)
481 instr->pass_flags = wr_idx.instr;
482 else
483 instr->pass_flags = UINT32_MAX;
484 }
485
486 void
try_eliminate_scc_copy(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)487 try_eliminate_scc_copy(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
488 {
489 /* Try to eliminate an SCC copy by duplicating the instruction that produced the SCC. */
490
491 if (instr->opcode != aco_opcode::p_parallelcopy || instr->definitions.size() != 1 ||
492 instr->definitions[0].physReg().reg() != scc)
493 return;
494
495 /* Find the instruction that copied SCC into an SGPR. */
496 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
497 if (!wr_idx.found())
498 return;
499
500 const Instruction* wr_instr = ctx.get(wr_idx);
501 if (!is_scc_copy(wr_instr) || wr_instr->pass_flags == UINT32_MAX)
502 return;
503
504 Idx producer_idx = {wr_idx.block, wr_instr->pass_flags};
505 Instruction* producer_instr = ctx.get(producer_idx);
506
507 if (!producer_instr || !producer_instr->isSALU())
508 return;
509
510 /* Verify that the operands of the producer instruction haven't been overwritten. */
511 for (const Operand& op : producer_instr->operands) {
512 if (is_overwritten_since(ctx, op, producer_idx, true))
513 return;
514 }
515
516 /* Verify that the definitions (except SCC) of the producer haven't been overwritten. */
517 for (const Definition& def : producer_instr->definitions) {
518 if (def.physReg().reg() == scc)
519 continue;
520 if (is_overwritten_since(ctx, def, producer_idx))
521 return;
522 }
523
524 /* Duplicate the original producer of the SCC */
525 Definition scc_def = instr->definitions[0];
526 instr.reset(create_instruction(producer_instr->opcode, producer_instr->format,
527 producer_instr->operands.size(),
528 producer_instr->definitions.size()));
529 instr->salu().imm = producer_instr->salu().imm;
530
531 /* The copy is no longer needed. */
532 if (--ctx.uses[wr_instr->definitions[0].tempId()] == 0)
533 ctx.uses[wr_instr->operands[0].tempId()]--;
534
535 /* Copy the operands of the original producer. */
536 for (unsigned i = 0; i < producer_instr->operands.size(); ++i) {
537 instr->operands[i] = producer_instr->operands[i];
538 if (producer_instr->operands[i].isTemp() && !is_dead(ctx.uses, producer_instr))
539 ctx.uses[producer_instr->operands[i].tempId()]++;
540 }
541
542 /* Copy the definitions of the original producer,
543 * but mark them as non-temp to keep SSA quasi-intact.
544 */
545 for (unsigned i = 0; i < producer_instr->definitions.size(); ++i)
546 instr->definitions[i] = Definition(producer_instr->definitions[i].physReg(),
547 producer_instr->definitions[i].regClass());
548 instr->definitions.back() = scc_def; /* Keep temporary ID. */
549 }
550
551 void
try_combine_dpp(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)552 try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
553 {
554 /* We are looking for the following pattern:
555 *
556 * v_mov_dpp vA, vB, ... ; move instruction with DPP
557 * v_xxx vC, vA, ... ; current instr that uses the result from the move
558 *
559 * If possible, the above is optimized into:
560 *
561 * v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
562 *
563 */
564
565 if (!instr->isVALU() || instr->isDPP())
566 return;
567
568 for (unsigned i = 0; i < instr->operands.size(); i++) {
569 Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
570 if (!op_instr_idx.found())
571 continue;
572
573 /* is_overwritten_since only considers active lanes when the register could possibly
574 * have been overwritten from inactive lanes. Restrict this optimization to at most
575 * one block so that there is no possibility for clobbered inactive lanes.
576 */
577 if (ctx.current_block->index - op_instr_idx.block > 1)
578 continue;
579
580 const Instruction* mov = ctx.get(op_instr_idx);
581 if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
582 continue;
583
584 /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
585 * it's own operand before we use it.
586 */
587 if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
588 (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
589 continue;
590
591 /* Don't propagate DPP if the source register is overwritten since the move. */
592 if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx))
593 continue;
594
595 bool dpp8 = mov->isDPP8();
596
597 /* Fetch-inactive means exec is ignored, which allows us to combine across exec changes. */
598 if (!(dpp8 ? mov->dpp8().fetch_inactive : mov->dpp16().fetch_inactive) &&
599 is_overwritten_since(ctx, Operand(exec, ctx.program->lane_mask), op_instr_idx))
600 continue;
601
602 /* We won't eliminate the DPP mov if the operand is used twice */
603 bool op_used_twice = false;
604 for (unsigned j = 0; j < instr->operands.size(); j++)
605 op_used_twice |= i != j && instr->operands[i] == instr->operands[j];
606 if (op_used_twice)
607 continue;
608
609 bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i) &&
610 get_operand_size(instr, i) == 32;
611 bool mov_uses_mods = mov->valu().neg[0] || mov->valu().abs[0];
612 if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods)
613 continue;
614
615 if (i != 0) {
616 if (!can_swap_operands(instr, &instr->opcode, 0, i))
617 continue;
618 instr->valu().swapOperands(0, i);
619 }
620
621 if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8))
622 continue;
623
624 if (!dpp8) /* anything else doesn't make sense in SSA */
625 assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
626
627 if (--ctx.uses[mov->definitions[0].tempId()])
628 ctx.uses[mov->operands[0].tempId()]++;
629
630 convert_to_DPP(ctx.program->gfx_level, instr, dpp8);
631
632 instr->operands[0] = mov->operands[0];
633
634 if (dpp8) {
635 DPP8_instruction* dpp = &instr->dpp8();
636 dpp->lane_sel = mov->dpp8().lane_sel;
637 dpp->fetch_inactive = mov->dpp8().fetch_inactive;
638 if (mov_uses_mods)
639 instr->format = asVOP3(instr->format);
640 } else {
641 DPP16_instruction* dpp = &instr->dpp16();
642 dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
643 dpp->bound_ctrl = true;
644 dpp->fetch_inactive = mov->dpp16().fetch_inactive;
645 }
646 instr->valu().neg[0] ^= mov->valu().neg[0] && !instr->valu().abs[0];
647 instr->valu().abs[0] |= mov->valu().abs[0];
648 return;
649 }
650 }
651
652 unsigned
num_encoded_alu_operands(const aco_ptr<Instruction> & instr)653 num_encoded_alu_operands(const aco_ptr<Instruction>& instr)
654 {
655 if (instr->isSALU()) {
656 if (instr->isSOP2() || instr->isSOPC())
657 return 2;
658 else if (instr->isSOP1())
659 return 1;
660
661 return 0;
662 }
663
664 if (instr->isVALU()) {
665 if (instr->isVOP1())
666 return 1;
667 else if (instr->isVOPC() || instr->isVOP2())
668 return 2;
669 else if (instr->opcode == aco_opcode::v_writelane_b32_e64 ||
670 instr->opcode == aco_opcode::v_writelane_b32)
671 return 2; /* potentially VOP3, but reads VDST as SRC2 */
672 else if (instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG())
673 return instr->operands.size();
674 }
675
676 return 0;
677 }
678
679 void
try_reassign_split_vector(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)680 try_reassign_split_vector(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
681 {
682 /* Any unused split_vector definition can always use the same register
683 * as the operand. This avoids creating unnecessary copies.
684 */
685 if (instr->opcode == aco_opcode::p_split_vector) {
686 Operand& op = instr->operands[0];
687 if (!op.isTemp() || op.isKill())
688 return;
689
690 PhysReg reg = op.physReg();
691 for (Definition& def : instr->definitions) {
692 if (def.getTemp().type() == op.getTemp().type() && def.isKill())
693 def.setFixed(reg);
694
695 reg = reg.advance(def.bytes());
696 }
697
698 return;
699 }
700
701 /* We are looking for the following pattern:
702 *
703 * sA, sB = p_split_vector s[X:Y]
704 * ... X and Y not overwritten here ...
705 * use sA or sB <--- current instruction
706 *
707 * If possible, we propagate the registers from the p_split_vector
708 * operand into the current instruction and the above is optimized into:
709 *
710 * use sX or sY
711 *
712 * Thereby, we might violate register assignment rules.
713 * This optimization exists because it's too difficult to solve it
714 * in RA, and should be removed after we solved this in RA.
715 */
716
717 if (!instr->isVALU() && !instr->isSALU())
718 return;
719
720 for (unsigned i = 0; i < num_encoded_alu_operands(instr); i++) {
721 /* Find the instruction that writes the current operand. */
722 const Operand& op = instr->operands[i];
723 Idx op_instr_idx = last_writer_idx(ctx, op);
724 if (!op_instr_idx.found())
725 continue;
726
727 /* Check if the operand is written by p_split_vector. */
728 Instruction* split_vec = ctx.get(op_instr_idx);
729 if (split_vec->opcode != aco_opcode::p_split_vector &&
730 split_vec->opcode != aco_opcode::p_extract_vector)
731 continue;
732
733 Operand& split_op = split_vec->operands[0];
734
735 /* Don't do anything if the p_split_vector operand is not a temporary
736 * or is killed by the p_split_vector.
737 * In this case the definitions likely already reuse the same registers as the operand.
738 */
739 if (!split_op.isTemp() || split_op.isKill())
740 continue;
741
742 /* Only propagate operands of the same type */
743 if (split_op.getTemp().type() != op.getTemp().type())
744 continue;
745
746 /* Check if the p_split_vector operand's registers are overwritten. */
747 if (is_overwritten_since(ctx, split_op, op_instr_idx))
748 continue;
749
750 PhysReg reg = split_op.physReg();
751 if (split_vec->opcode == aco_opcode::p_extract_vector) {
752 reg =
753 reg.advance(split_vec->definitions[0].bytes() * split_vec->operands[1].constantValue());
754 }
755 for (Definition& def : split_vec->definitions) {
756 if (def.getTemp() != op.getTemp()) {
757 reg = reg.advance(def.bytes());
758 continue;
759 }
760
761 /* Don't propagate misaligned SGPRs.
762 * Note: No ALU instruction can take a variable larger than 64bit.
763 */
764 if (op.regClass() == s2 && reg.reg() % 2 != 0)
765 break;
766
767 /* Sub dword operands might need updates to SDWA/opsel,
768 * but we only track full register writes at the moment.
769 */
770 assert(op.physReg().byte() == reg.byte());
771
772 /* If there is only one use (left), recolor the split_vector definition */
773 if (ctx.uses[op.tempId()] == 1)
774 def.setFixed(reg);
775 else
776 ctx.uses[op.tempId()]--;
777
778 /* Use the p_split_vector operand register directly.
779 *
780 * Note: this might violate register assignment rules to some extend
781 * in case the definition does not get recolored, eventually.
782 */
783 instr->operands[i].setFixed(reg);
784 break;
785 }
786 }
787 }
788
789 void
try_convert_fma_to_vop2(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)790 try_convert_fma_to_vop2(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
791 {
792 /* We convert v_fma_f32 with inline constant to fmamk/fmaak.
793 * This is only benefical if it allows more VOPD.
794 */
795 if (ctx.program->gfx_level < GFX11 || ctx.program->wave_size != 32 ||
796 instr->opcode != aco_opcode::v_fma_f32 || instr->usesModifiers())
797 return;
798
799 int constant_idx = -1;
800 int vgpr_idx = -1;
801 for (int i = 0; i < 3; i++) {
802 const Operand& op = instr->operands[i];
803 if (op.isConstant() && !op.isLiteral())
804 constant_idx = i;
805 else if (op.isOfType(RegType::vgpr))
806 vgpr_idx = i;
807 else
808 return;
809 }
810
811 if (constant_idx < 0 || vgpr_idx < 0)
812 return;
813
814 std::swap(instr->operands[constant_idx], instr->operands[2]);
815 if (constant_idx == 0 || vgpr_idx == 0)
816 std::swap(instr->operands[0], instr->operands[1]);
817 instr->operands[2] = Operand::literal32(instr->operands[2].constantValue());
818 instr->opcode = constant_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
819 instr->format = Format::VOP2;
820 }
821
822 bool
instr_overwrites(Instruction * instr,PhysReg reg,unsigned size)823 instr_overwrites(Instruction* instr, PhysReg reg, unsigned size)
824 {
825 for (Definition def : instr->definitions) {
826 if (def.physReg() + def.size() > reg && reg + size > def.physReg())
827 return true;
828 }
829 if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
830 PhysReg scratch_reg = instr->pseudo().scratch_sgpr;
831 if (scratch_reg >= reg && reg + size > scratch_reg)
832 return true;
833 }
834 return false;
835 }
836
837 bool
try_insert_saveexec_out_of_loop(pr_opt_ctx & ctx,Block * block,Definition saved_exec,unsigned saveexec_pos)838 try_insert_saveexec_out_of_loop(pr_opt_ctx& ctx, Block* block, Definition saved_exec,
839 unsigned saveexec_pos)
840 {
841 /* This pattern can be created by try_optimize_branching_sequence:
842 * BB1: // loop-header
843 * ... // nothing that clobbers s[0:1] or writes exec
844 * s[0:1] = p_parallelcopy exec // we will move this
845 * exec = v_cmpx_...
846 * p_branch_z exec BB3, BB2
847 * BB2:
848 * ...
849 * p_branch BB3
850 * BB3:
851 * exec = p_parallelcopy s[0:1] // exec and s[0:1] contain the same mask
852 * ... // nothing that clobbers s[0:1] or writes exec
853 * p_branch_nz scc BB1, BB4
854 * BB4:
855 * ...
856 *
857 * If we know that that exec copy in the loop header is only needed in the
858 * first iteration, it can be inserted into the preheader by adding a phi:
859 *
860 * BB1: // loop-header
861 * s[0:1] = p_linear_phi exec, s[0:1]
862 *
863 * will be lowered to a parallelcopy at the loop preheader.
864 */
865 if (block->linear_preds.size() != 2)
866 return false;
867
868 /* Check if exec is written, or the copy's dst overwritten in the loop header. */
869 for (unsigned i = 0; i < saveexec_pos; i++) {
870 if (!block->instructions[i])
871 continue;
872 if (block->instructions[i]->writes_exec())
873 return false;
874 if (instr_overwrites(block->instructions[i].get(), saved_exec.physReg(), saved_exec.size()))
875 return false;
876 }
877
878 /* The register(s) must already contain the same value as exec in the continue block. */
879 Block* cont = &ctx.program->blocks[block->linear_preds[1]];
880 do {
881 for (int i = cont->instructions.size() - 1; i >= 0; i--) {
882 Instruction* instr = cont->instructions[i].get();
883 if (instr->opcode == aco_opcode::p_parallelcopy && instr->definitions.size() == 1 &&
884 instr->definitions[0].physReg() == exec &&
885 instr->operands[0].physReg() == saved_exec.physReg()) {
886
887 /* Insert after existing phis at the loop header because
888 * the first phi might contain a valid scratch reg if needed.
889 */
890 auto it = std::find_if(block->instructions.begin(), block->instructions.end(),
891 [](aco_ptr<Instruction>& phi) { return phi && !is_phi(phi); });
892
893 Instruction* phi = create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, 2, 1);
894 phi->definitions[0] = saved_exec;
895 phi->operands[0] = Operand(exec, ctx.program->lane_mask);
896 phi->operands[1] = instr->operands[0];
897 block->instructions.emplace(it, phi);
898 return true;
899 }
900
901 if (instr->writes_exec())
902 return false;
903 if (instr_overwrites(instr, saved_exec.physReg(), saved_exec.size()))
904 return false;
905 }
906 } while (cont->linear_preds.size() == 1 && (cont = &ctx.program->blocks[cont->linear_preds[0]]));
907
908 return false;
909 }
910
911 void
fixup_reg_writes(pr_opt_ctx & ctx,unsigned start)912 fixup_reg_writes(pr_opt_ctx& ctx, unsigned start)
913 {
914 const unsigned current_idx = ctx.current_instr_idx;
915 for (unsigned i = start; i < current_idx; i++) {
916 ctx.current_instr_idx = i;
917 if (ctx.current_block->instructions[i])
918 save_reg_writes(ctx, ctx.current_block->instructions[i]);
919 }
920
921 ctx.current_instr_idx = current_idx;
922 }
923
924 bool
try_optimize_branching_sequence(pr_opt_ctx & ctx,aco_ptr<Instruction> & exec_copy)925 try_optimize_branching_sequence(pr_opt_ctx& ctx, aco_ptr<Instruction>& exec_copy)
926 {
927 /* Try to optimize the branching sequence at the end of a block.
928 *
929 * We are looking for blocks that look like this:
930 *
931 * BB:
932 * ... instructions ...
933 * s[N:M] = <exec_val instruction>
934 * ... other instructions that don't depend on exec ...
935 * p_logical_end
936 * exec = <exec_copy instruction> s[N:M]
937 * p_cbranch exec
938 *
939 * The main motivation is to eliminate exec_copy.
940 * Depending on the context, we try to do the following:
941 *
942 * 1. Reassign exec_val to write exec directly
943 * 2. If possible, eliminate exec_copy
944 * 3. When exec_copy also saves the old exec mask, insert a
945 * new copy instruction before exec_val
946 * 4. Reassign any instruction that used s[N:M] to use exec
947 *
948 * This is beneficial for the following reasons:
949 *
950 * - Fewer instructions in the block when exec_copy can be eliminated
951 * - As a result, when exec_val is VOPC this also improves the stalls
952 * due to SALU waiting for VALU. This works best when we can also
953 * remove the branching instruction, in which case the stall
954 * is entirely eliminated.
955 * - When exec_copy can't be removed, the reassignment may still be
956 * very slightly beneficial to latency.
957 */
958
959 if (!exec_copy->writes_exec())
960 return false;
961
962 const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64
963 : aco_opcode::s_and_saveexec_b32;
964
965 const aco_opcode s_and =
966 ctx.program->lane_mask == s2 ? aco_opcode::s_and_b64 : aco_opcode::s_and_b32;
967
968 const aco_opcode s_andn2 =
969 ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_b64 : aco_opcode::s_andn2_b32;
970
971 if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy &&
972 (exec_copy->opcode != s_and || exec_copy->operands[1].physReg() != exec) &&
973 (exec_copy->opcode != s_andn2 || exec_copy->operands[0].physReg() != exec))
974 return false;
975
976 const bool negate = exec_copy->opcode == s_andn2;
977 const Operand& exec_copy_op = exec_copy->operands[negate];
978
979 /* The SCC def of s_and/s_and_saveexec must be unused. */
980 if (exec_copy->opcode != aco_opcode::p_parallelcopy && !exec_copy->definitions[1].isKill())
981 return false;
982
983 Idx exec_val_idx = last_writer_idx(ctx, exec_copy_op);
984 if (!exec_val_idx.found() || exec_val_idx.block != ctx.current_block->index)
985 return false;
986
987 if (is_overwritten_since(ctx, exec, ctx.program->lane_mask, exec_val_idx)) {
988 // TODO: in case nothing needs the previous exec mask, just remove it
989 return false;
990 }
991
992 Instruction* exec_val = ctx.get(exec_val_idx);
993
994 /* Only allow SALU with multiple definitions. */
995 if (!exec_val->isSALU() && exec_val->definitions.size() > 1)
996 return false;
997
998 const bool vcmpx_exec_only = ctx.program->gfx_level >= GFX10;
999
1000 if (negate && !exec_val->isVOPC())
1001 return false;
1002
1003 /* Check if a suitable v_cmpx opcode exists. */
1004 const aco_opcode v_cmpx_op =
1005 exec_val->isVOPC()
1006 ? (negate ? get_vcmpx(get_vcmp_inverse(exec_val->opcode)) : get_vcmpx(exec_val->opcode))
1007 : aco_opcode::num_opcodes;
1008 const bool vopc = v_cmpx_op != aco_opcode::num_opcodes;
1009
1010 /* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */
1011 if (vopc && exec_val->isDPP())
1012 return false;
1013
1014 /* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */
1015 bool save_original_exec =
1016 exec_copy->opcode == and_saveexec && !exec_copy->definitions[0].isKill();
1017
1018 const Definition exec_wr_def = exec_val->definitions[0];
1019 const Definition exec_copy_def = exec_copy->definitions[0];
1020
1021 /* If we need to negate, the instruction has to be otherwise unused. */
1022 if (negate && ctx.uses[exec_copy_op.tempId()] != 1)
1023 return false;
1024
1025 /* The copy can be removed when it kills its operand.
1026 * v_cmpx also writes the original destination pre GFX10.
1027 */
1028 const bool can_remove_copy = exec_copy_op.isKill() || (vopc && !vcmpx_exec_only);
1029
1030 /* Always allow reassigning when the value is written by (usable) VOPC.
1031 * Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes.
1032 * Additionally, when value is copied as-is, also allow SALU and parallelcopies.
1033 */
1034 const bool can_reassign =
1035 vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy &&
1036 (exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy ||
1037 exec_val->opcode == aco_opcode::p_create_vector));
1038
1039 /* The reassignment is not worth it when both the original exec needs to be copied
1040 * and the new exec copy can't be removed. In this case we'd end up with more instructions.
1041 */
1042 if (!can_reassign || (save_original_exec && !can_remove_copy))
1043 return false;
1044
1045 /* Ensure that nothing needs a previous exec between exec_val_idx and the current exec write. */
1046 for (unsigned i = exec_val_idx.instr + 1; i < ctx.current_instr_idx; i++) {
1047 Instruction* instr = ctx.current_block->instructions[i].get();
1048 if (instr && needs_exec_mask(instr))
1049 return false;
1050
1051 /* If the successor has phis, copies might have to be inserted at p_logical_end. */
1052 if (instr && instr->opcode == aco_opcode::p_logical_end &&
1053 ctx.current_block->logical_succs.size() == 1)
1054 return false;
1055 }
1056
1057 /* When exec_val and exec_copy are non-adjacent, check whether there are any
1058 * instructions inbetween (besides p_logical_end) which may inhibit the optimization.
1059 */
1060 if (save_original_exec) {
1061 if (is_overwritten_since(ctx, exec_copy_def, exec_val_idx))
1062 return false;
1063
1064 unsigned prev_wr_idx = ctx.current_instr_idx;
1065 if (exec_copy_op.physReg() == exec_copy_def.physReg()) {
1066 /* We'd overwrite the saved original exec */
1067 if (vopc && !vcmpx_exec_only)
1068 return false;
1069
1070 /* Other instructions can use exec directly, so only check exec_val instr */
1071 prev_wr_idx = exec_val_idx.instr + 1;
1072 }
1073 /* Make sure that nothing else needs these registers in-between. */
1074 for (unsigned i = exec_val_idx.instr; i < prev_wr_idx; i++) {
1075 if (ctx.current_block->instructions[i]) {
1076 for (const Operand op : ctx.current_block->instructions[i]->operands) {
1077 if (op.physReg() + op.size() > exec_copy_def.physReg() &&
1078 exec_copy_def.physReg() + exec_copy_def.size() > op.physReg())
1079 return false;
1080 }
1081 }
1082 }
1083 }
1084
1085 /* Reassign the instruction to write exec directly. */
1086 if (vopc) {
1087 /* Add one extra definition for exec and copy the VOP3-specific fields if present. */
1088 if (!vcmpx_exec_only) {
1089 if (exec_val->isSDWA()) {
1090 /* This might work but it needs testing and more code to copy the instruction. */
1091 return false;
1092 } else {
1093 Instruction* tmp =
1094 create_instruction(v_cmpx_op, exec_val->format, exec_val->operands.size(),
1095 exec_val->definitions.size() + 1);
1096 std::copy(exec_val->operands.cbegin(), exec_val->operands.cend(),
1097 tmp->operands.begin());
1098 std::copy(exec_val->definitions.cbegin(), exec_val->definitions.cend(),
1099 tmp->definitions.begin());
1100
1101 VALU_instruction& src = exec_val->valu();
1102 VALU_instruction& dst = tmp->valu();
1103 dst.opsel = src.opsel;
1104 dst.omod = src.omod;
1105 dst.clamp = src.clamp;
1106 dst.neg = src.neg;
1107 dst.abs = src.abs;
1108
1109 ctx.current_block->instructions[exec_val_idx.instr].reset(tmp);
1110 exec_val = ctx.get(exec_val_idx);
1111 }
1112 }
1113
1114 /* Set v_cmpx opcode. */
1115 exec_val->opcode = v_cmpx_op;
1116 exec_val->definitions.back() = Definition(exec, ctx.program->lane_mask);
1117
1118 /* Change instruction from VOP3 to plain VOPC when possible. */
1119 if (vcmpx_exec_only && !exec_val->usesModifiers() &&
1120 (exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr)))
1121 exec_val->format = Format::VOPC;
1122 } else {
1123 exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask);
1124 }
1125 for (unsigned i = 0; i < ctx.program->lane_mask.size(); i++)
1126 ctx.instr_idx_by_regs[ctx.current_block->index][exec + i] =
1127 ctx.instr_idx_by_regs[ctx.current_block->index][exec_copy_op.physReg() + i];
1128
1129 /* If there are other instructions (besides p_logical_end) between
1130 * writing the value and copying it to exec, reassign uses
1131 * of the old definition.
1132 */
1133 Temp exec_temp = exec_copy_op.getTemp();
1134 for (unsigned i = exec_val_idx.instr + 1; i < ctx.current_instr_idx; i++) {
1135 if (ctx.current_block->instructions[i]) {
1136 for (Operand& op : ctx.current_block->instructions[i]->operands) {
1137 if (op.isTemp() && op.getTemp() == exec_temp) {
1138 op = Operand(exec, op.regClass());
1139 ctx.uses[exec_temp.id()]--;
1140 }
1141 }
1142 }
1143 }
1144
1145 if (can_remove_copy) {
1146 /* Remove the copy. */
1147 exec_copy.reset();
1148 ctx.uses[exec_temp.id()]--;
1149 } else {
1150 /* Reassign the copy to write the register of the original value. */
1151 exec_copy.reset(create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
1152 exec_copy->definitions[0] = exec_wr_def;
1153 exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask);
1154 }
1155
1156 if (save_original_exec) {
1157 /* Insert a new instruction that saves the original exec before it is overwritten.
1158 * Do this last, because inserting in the instructions vector may invalidate the exec_val
1159 * reference.
1160 */
1161 if (ctx.current_block->kind & block_kind_loop_header) {
1162 if (try_insert_saveexec_out_of_loop(ctx, ctx.current_block, exec_copy_def,
1163 exec_val_idx.instr)) {
1164 /* We inserted something after the last phi, so fixup indices from the start. */
1165 fixup_reg_writes(ctx, 0);
1166 return true;
1167 }
1168 }
1169 Instruction* copy = create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1);
1170 copy->definitions[0] = exec_copy_def;
1171 copy->operands[0] = Operand(exec, ctx.program->lane_mask);
1172 auto it = std::next(ctx.current_block->instructions.begin(), exec_val_idx.instr);
1173 ctx.current_block->instructions.emplace(it, copy);
1174
1175 /* Fixup indices after inserting an instruction. */
1176 fixup_reg_writes(ctx, exec_val_idx.instr);
1177 return true;
1178 }
1179
1180 return true;
1181 }
1182
1183 void
try_skip_const_branch(pr_opt_ctx & ctx,aco_ptr<Instruction> & branch)1184 try_skip_const_branch(pr_opt_ctx& ctx, aco_ptr<Instruction>& branch)
1185 {
1186 if (branch->opcode != aco_opcode::p_cbranch_z || branch->operands[0].physReg() != exec)
1187 return;
1188 if (branch->branch().never_taken)
1189 return;
1190
1191 Idx exec_val_idx = last_writer_idx(ctx, branch->operands[0]);
1192 if (!exec_val_idx.found())
1193 return;
1194
1195 Instruction* exec_val = ctx.get(exec_val_idx);
1196 if ((exec_val->opcode == aco_opcode::p_parallelcopy && exec_val->operands.size() == 1) ||
1197 exec_val->opcode == aco_opcode::p_create_vector) {
1198 /* Remove the branch instruction when exec is constant non-zero. */
1199 bool is_const_val = std::any_of(exec_val->operands.begin(), exec_val->operands.end(),
1200 [](const Operand& op) -> bool
1201 { return op.isConstant() && op.constantValue(); });
1202 branch->branch().never_taken |= is_const_val;
1203 }
1204 }
1205
1206 void
process_instruction(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)1207 process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
1208 {
1209 /* Don't try to optimize instructions which are already dead. */
1210 if (!instr || is_dead(ctx.uses, instr.get())) {
1211 instr.reset();
1212 ctx.current_instr_idx++;
1213 return;
1214 }
1215 if (try_optimize_branching_sequence(ctx, instr))
1216 return;
1217
1218 try_apply_branch_vcc(ctx, instr);
1219
1220 try_optimize_scc_nocompare(ctx, instr);
1221
1222 try_combine_dpp(ctx, instr);
1223
1224 try_reassign_split_vector(ctx, instr);
1225
1226 try_convert_fma_to_vop2(ctx, instr);
1227
1228 try_eliminate_scc_copy(ctx, instr);
1229
1230 save_scc_copy_producer(ctx, instr);
1231
1232 save_reg_writes(ctx, instr);
1233
1234 ctx.current_instr_idx++;
1235 }
1236
1237 } // namespace
1238
1239 void
optimize_postRA(Program * program)1240 optimize_postRA(Program* program)
1241 {
1242 pr_opt_ctx ctx(program);
1243
1244 /* Forward pass
1245 * Goes through each instruction exactly once, and can transform
1246 * instructions or adjust the use counts of temps.
1247 */
1248 for (auto& block : program->blocks) {
1249 ctx.reset_block(&block);
1250
1251 while (ctx.current_instr_idx < block.instructions.size()) {
1252 aco_ptr<Instruction>& instr = block.instructions[ctx.current_instr_idx];
1253 process_instruction(ctx, instr);
1254 }
1255
1256 try_skip_const_branch(ctx, block.instructions.back());
1257 }
1258
1259 /* Cleanup pass
1260 * Gets rid of instructions which are manually deleted or
1261 * no longer have any uses.
1262 */
1263 for (auto& block : program->blocks) {
1264 std::vector<aco_ptr<Instruction>> instructions;
1265 instructions.reserve(block.instructions.size());
1266
1267 for (aco_ptr<Instruction>& instr : block.instructions) {
1268 if (!instr || is_dead(ctx.uses, instr.get()))
1269 continue;
1270
1271 instructions.emplace_back(std::move(instr));
1272 }
1273
1274 block.instructions = std::move(instructions);
1275 }
1276 }
1277
1278 } // namespace aco
1279