• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_KERNELS_SPARSE_XENT_OP_H_
17 #define TENSORFLOW_CORE_KERNELS_SPARSE_XENT_OP_H_
18 // Functor definition for SparseXentOp, must be compilable by nvcc.
19 
20 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
21 #include "tensorflow/core/framework/bounds_check.h"
22 #include "tensorflow/core/framework/op_kernel.h"
23 #include "tensorflow/core/framework/tensor_types.h"
24 #include "tensorflow/core/platform/macros.h"
25 #include "tensorflow/core/platform/types.h"
26 
27 namespace tensorflow {
28 
29 namespace sparse_xent_helpers {
30 
31 template <typename T>
To32BitConst(typename TTypes<T>::Vec in)32 typename TTypes<const T, 1>::Tensor32Bit To32BitConst(
33     typename TTypes<T>::Vec in) {
34   return To32Bit(typename TTypes<T>::ConstVec(in.data(), in.dimensions()));
35 }
36 
37 template <typename T>
To32BitConst(typename TTypes<T>::Matrix in)38 typename TTypes<const T, 2>::Tensor32Bit To32BitConst(
39     typename TTypes<T>::Matrix in) {
40   return To32Bit(typename TTypes<T>::ConstMatrix(in.data(), in.dimensions()));
41 }
42 
43 }  // namespace sparse_xent_helpers
44 
45 namespace generator {
46 
47 // Generator for calculation of the sparse Xent loss.
48 // This generator takes the logits, the sum of the exponentiated
49 // logits, and the label indices.  For each minibatch entry, ignoring
50 // the batch index b, it calculates:
51 //
52 //   loss[j] = (log(sum_exp_logits) - logits[j]) * 1{ j == label }
53 //
54 // for j = 0 .. num_classes.  This value must be summed over all j for
55 // the final loss.
56 template <typename T, typename Index>
57 class SparseXentLossGenerator {
58  public:
SparseXentLossGenerator(typename TTypes<const T,2>::Tensor32Bit logits,typename TTypes<const T,1>::Tensor32Bit sum_exp_logits,typename TTypes<const Index,1>::Tensor32Bit labels,const Index max_depth)59   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SparseXentLossGenerator(
60       typename TTypes<const T, 2>::Tensor32Bit logits,
61       typename TTypes<const T, 1>::Tensor32Bit sum_exp_logits,
62       typename TTypes<const Index, 1>::Tensor32Bit labels,
63       const Index max_depth)
64       : logits_(logits),
65         sum_exp_logits_(sum_exp_logits),
66         labels_(labels),
67         max_depth_(max_depth) {}
68 
69   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T
operator()70   operator()(const Eigen::array<int, 2>& coords) const {
71     const int batch = coords[0];
72     const int depth = coords[1];
73     const Index label = tensorflow::internal::SubtleMustCopy(labels_(batch));
74     if (!FastBoundsCheck(label, max_depth_)) {
75       return Eigen::NumTraits<T>::quiet_NaN();
76     }
77     return TF_PREDICT_FALSE(label == depth)
78                ? (Eigen::numext::log(sum_exp_logits_(batch)) - logits_(coords))
79                : T(0.0);
80   };
81 
82  private:
83   typename TTypes<const T, 2>::Tensor32Bit logits_;
84   typename TTypes<const T, 1>::Tensor32Bit sum_exp_logits_;
85   typename TTypes<const Index, 1>::Tensor32Bit labels_;
86   const Index max_depth_;
87 };
88 
89 // Generator for calculation of the sparse Xent gradient.
90 // This generator takes the exponentiated logits, their sums, and the label
91 // indices. For each minibatch entry, ignoring the batch index b, it calculates:
92 //
93 //   exp_logits[j] / sum_exp_logits - 1{ j == label }
94 //
95 // for j = 0 .. num_classes.
96 template <typename T, typename Index>
97 class SparseXentGradGenerator {
98  public:
SparseXentGradGenerator(typename TTypes<const T,2>::Tensor32Bit exp_logits,typename TTypes<const T,1>::Tensor32Bit sum_exp_logits,typename TTypes<const Index,1>::Tensor32Bit labels,const Index max_depth)99   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SparseXentGradGenerator(
100       typename TTypes<const T, 2>::Tensor32Bit exp_logits,
101       typename TTypes<const T, 1>::Tensor32Bit sum_exp_logits,
102       typename TTypes<const Index, 1>::Tensor32Bit labels,
103       const Index max_depth)
104       : exp_logits_(exp_logits),
105         sum_exp_logits_(sum_exp_logits),
106         labels_(labels),
107         max_depth_(max_depth) {}
108 
109   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T
operator()110   operator()(const Eigen::array<int, 2>& coords) const {
111     const int batch = coords[0];
112     const int depth = coords[1];
113     const Index label = tensorflow::internal::SubtleMustCopy(labels_(batch));
114     if (!FastBoundsCheck(label, max_depth_)) {
115       return Eigen::NumTraits<T>::quiet_NaN();
116     }
117     T subtract = TF_PREDICT_FALSE(depth == label) ? T(1.0) : T(0.0);
118     return exp_logits_(coords) / sum_exp_logits_(batch) - subtract;
119   };
120 
121  private:
122   typename TTypes<const T, 2>::Tensor32Bit exp_logits_;
123   typename TTypes<const T, 1>::Tensor32Bit sum_exp_logits_;
124   typename TTypes<const Index, 1>::Tensor32Bit labels_;
125   const Index max_depth_;
126 };
127 
128 }  // namespace generator
129 
130 namespace functor {
131 
132 template <typename Device, typename T>
133 struct RowMaxReduction {
134   // Computes the maximum across the rows of logits
135   //
136   // logits: batch_size, num_classes.
137   // maximum: temporary tensor, dims: batch_size, 1
ComputeRowMaxReduction138   static inline void Compute(OpKernelContext* ctx,
139                              typename TTypes<T>::ConstMatrix logits,
140                              typename TTypes<T>::Vec maximum) {
141     Eigen::IndexList<Eigen::type2index<1> > along_row;
142     Device d = ctx->eigen_device<Device>();
143     To32Bit(maximum).device(d) = To32Bit(logits).maximum(along_row);
144   }
145 };
146 
147 // Functor used by SparseXentOp to do the computations.
148 template <typename Device, typename T, typename Index>
149 struct SparseXentFunctor {
150   // Computes Cross Entropy loss and backprop.
151   //
152   // logits: batch_size, num_classes.
153   // labels: num_classes.
154   // scratch: temporary tensor, dims: batch_size, 1
155   // loss: output tensor for the loss, dims: batch_size.
156   // backprop: output tensor for the backprop, dims: batch_size, num_classes.
157   void operator()(OpKernelContext* ctx, typename TTypes<T>::ConstMatrix logits,
158                   typename TTypes<Index>::ConstVec labels,
159                   typename TTypes<T>::Vec scratch, typename TTypes<T>::Vec loss,
160                   typename TTypes<T>::Matrix backprop);
161 };
162 
163 // Eigen code implementing SparseXentFunctor::operator().
164 // This code works for both CPU and GPU and is used by the functor
165 // specializations for both device types.
166 template <typename Device, typename T, typename Index>
167 struct SparseXentEigenImpl {
ComputeSparseXentEigenImpl168   static void Compute(OpKernelContext* ctx,
169                       typename TTypes<T>::ConstMatrix logits,
170                       typename TTypes<Index>::ConstVec labels,
171                       typename TTypes<T>::Vec scratch,
172                       typename TTypes<T>::Vec loss,
173                       typename TTypes<T>::Matrix backprop) {
174     // NOTE(touts): This duplicates some of the computations in softmax_op
175     // because we need the intermediate (logits -max(logits)) values to
176     // avoid a log(exp()) in the computation of the loss.
177 
178     const int kBatchDim = 0;
179     const int kClassDim = 1;
180 
181     const int batch_size = logits.dimension(kBatchDim);
182     const int num_classes = logits.dimension(kClassDim);
183 
184 // These arrays are used to reduce along the class dimension, and broadcast
185 // the resulting value to all classes.
186     Eigen::IndexList<Eigen::type2index<kClassDim> > along_class;
187     Eigen::IndexList<int, Eigen::type2index<1> > batch_by_one;
188     batch_by_one.set(0, batch_size);
189     Eigen::IndexList<int> batch_only;
190     batch_only.set(0, batch_size);
191     Eigen::IndexList<Eigen::type2index<1>, int> one_by_class;
192     one_by_class.set(1, num_classes);
193 
194     // scratch = max_logits along classes.
195     RowMaxReduction<Device, T>::Compute(ctx, logits, scratch);
196 
197     Device d = ctx->eigen_device<Device>();
198     // backprop = logits - max_logits.
199     To32Bit(backprop).device(d) =
200         To32Bit(logits) -
201         To32Bit(scratch).reshape(batch_by_one).broadcast(one_by_class);
202 
203     // scratch = sum(exp(logits - max_logits)) along classes.
204     To32Bit(scratch).device(d) = To32Bit(backprop).exp().sum(along_class);
205 
206     //  sum(-labels *
207     //     ((logits - max_logits) - log(sum(exp(logits - max_logits)))))
208     //  along classes
209     generator::SparseXentLossGenerator<T, Index> sparse_xent_loss_gen(
210         sparse_xent_helpers::To32BitConst<T>(backprop),
211         sparse_xent_helpers::To32BitConst<T>(scratch), To32Bit(labels),
212         backprop.dimension(1) /* max_depth */);
213     To32Bit(loss).device(d) =
214         To32Bit(backprop).generate(sparse_xent_loss_gen).sum(along_class);
215 
216     // backprop: prob - labels, where
217     //   prob = exp(logits - max_logits) / sum(exp(logits - max_logits))
218     To32Bit(backprop).device(d) = To32Bit(backprop).exp();
219     generator::SparseXentGradGenerator<T, Index> sparse_xent_grad_gen(
220         sparse_xent_helpers::To32BitConst<T>(backprop),
221         sparse_xent_helpers::To32BitConst<T>(scratch), To32Bit(labels),
222         backprop.dimension(1) /* max_depth */);
223     To32Bit(backprop).device(d) =
224         To32Bit(backprop).generate(sparse_xent_grad_gen);
225   }
226 };
227 
228 }  // namespace functor
229 
230 }  // namespace tensorflow
231 
232 #endif  // TENSORFLOW_CORE_KERNELS_SPARSE_XENT_OP_H_
233