1 /*
2 * Copyright 2018 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #[cfg(not(feature = "std"))]
18 use alloc::{vec, vec::Vec};
19 use core::cmp::max;
20 use core::convert::Infallible;
21 use core::fmt::{Debug, Display};
22 use core::iter::{DoubleEndedIterator, ExactSizeIterator};
23 use core::marker::PhantomData;
24 use core::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Sub, SubAssign};
25 use core::ptr::write_bytes;
26
27 use crate::endian_scalar::emplace_scalar;
28 use crate::primitives::*;
29 use crate::push::{Push, PushAlignment};
30 use crate::read_scalar;
31 use crate::table::Table;
32 use crate::vector::Vector;
33 use crate::vtable::{field_index_to_field_offset, VTable};
34 use crate::vtable_writer::VTableWriter;
35
36 /// Trait to implement custom allocation strategies for [`FlatBufferBuilder`].
37 ///
38 /// An implementation can be used with [`FlatBufferBuilder::new_in`], enabling a custom allocation
39 /// strategy for the [`FlatBufferBuilder`].
40 ///
41 /// # Safety
42 ///
43 /// The implementation of the allocator must match the defined behavior as described by the
44 /// comments.
45 pub unsafe trait Allocator: DerefMut<Target = [u8]> {
46 /// A type describing allocation failures
47 type Error: Display + Debug;
48 /// Grows the buffer, with the old contents being moved to the end.
49 ///
50 /// NOTE: While not unsound, an implementation that doesn't grow the
51 /// internal buffer will get stuck in an infinite loop.
grow_downwards(&mut self) -> Result<(), Self::Error>52 fn grow_downwards(&mut self) -> Result<(), Self::Error>;
53
54 /// Returns the size of the internal buffer in bytes.
len(&self) -> usize55 fn len(&self) -> usize;
56 }
57
58 /// Default [`FlatBufferBuilder`] allocator backed by a [`Vec<u8>`].
59 #[derive(Default)]
60 pub struct DefaultAllocator(Vec<u8>);
61
62 impl DefaultAllocator {
63 /// Builds the allocator from an existing buffer.
from_vec(buffer: Vec<u8>) -> Self64 pub fn from_vec(buffer: Vec<u8>) -> Self {
65 Self(buffer)
66 }
67 }
68
69 impl Deref for DefaultAllocator {
70 type Target = [u8];
71
deref(&self) -> &Self::Target72 fn deref(&self) -> &Self::Target {
73 &self.0
74 }
75 }
76
77 impl DerefMut for DefaultAllocator {
deref_mut(&mut self) -> &mut Self::Target78 fn deref_mut(&mut self) -> &mut Self::Target {
79 &mut self.0
80 }
81 }
82
83 // SAFETY: The methods are implemented as described by the documentation.
84 unsafe impl Allocator for DefaultAllocator {
85 type Error = Infallible;
grow_downwards(&mut self) -> Result<(), Self::Error>86 fn grow_downwards(&mut self) -> Result<(), Self::Error> {
87 let old_len = self.0.len();
88 let new_len = max(1, old_len * 2);
89
90 self.0.resize(new_len, 0);
91
92 if new_len == 1 {
93 return Ok(());
94 }
95
96 // calculate the midpoint, and safely copy the old end data to the new
97 // end position:
98 let middle = new_len / 2;
99 {
100 let (left, right) = &mut self.0[..].split_at_mut(middle);
101 right.copy_from_slice(left);
102 }
103 // finally, zero out the old end data.
104 {
105 let ptr = self.0[..middle].as_mut_ptr();
106 // Safety:
107 // ptr is byte aligned and of length middle
108 unsafe {
109 write_bytes(ptr, 0, middle);
110 }
111 }
112 Ok(())
113 }
114
len(&self) -> usize115 fn len(&self) -> usize {
116 self.0.len()
117 }
118 }
119
120 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
121 struct FieldLoc {
122 off: UOffsetT,
123 id: VOffsetT,
124 }
125
126 /// FlatBufferBuilder builds a FlatBuffer through manipulating its internal
127 /// state. It has an owned `Vec<u8>` that grows as needed (up to the hardcoded
128 /// limit of 2GiB, which is set by the FlatBuffers format).
129 #[derive(Clone, Debug, Eq, PartialEq)]
130 pub struct FlatBufferBuilder<'fbb, A: Allocator = DefaultAllocator> {
131 allocator: A,
132 head: ReverseIndex,
133
134 field_locs: Vec<FieldLoc>,
135 written_vtable_revpos: Vec<UOffsetT>,
136
137 nested: bool,
138 finished: bool,
139
140 min_align: usize,
141 force_defaults: bool,
142 strings_pool: Vec<WIPOffset<&'fbb str>>,
143
144 _phantom: PhantomData<&'fbb ()>,
145 }
146
147 impl<'fbb> FlatBufferBuilder<'fbb, DefaultAllocator> {
148 /// Create a FlatBufferBuilder that is ready for writing.
new() -> Self149 pub fn new() -> Self {
150 Self::with_capacity(0)
151 }
152 #[deprecated(note = "replaced with `with_capacity`", since = "0.8.5")]
new_with_capacity(size: usize) -> Self153 pub fn new_with_capacity(size: usize) -> Self {
154 Self::with_capacity(size)
155 }
156 /// Create a FlatBufferBuilder that is ready for writing, with a
157 /// ready-to-use capacity of the provided size.
158 ///
159 /// The maximum valid value is `FLATBUFFERS_MAX_BUFFER_SIZE`.
with_capacity(size: usize) -> Self160 pub fn with_capacity(size: usize) -> Self {
161 Self::from_vec(vec![0; size])
162 }
163 /// Create a FlatBufferBuilder that is ready for writing, reusing
164 /// an existing vector.
from_vec(buffer: Vec<u8>) -> Self165 pub fn from_vec(buffer: Vec<u8>) -> Self {
166 // we need to check the size here because we create the backing buffer
167 // directly, bypassing the typical way of using grow_allocator:
168 assert!(
169 buffer.len() <= FLATBUFFERS_MAX_BUFFER_SIZE,
170 "cannot initialize buffer bigger than 2 gigabytes"
171 );
172 let allocator = DefaultAllocator::from_vec(buffer);
173 Self::new_in(allocator)
174 }
175
176 /// Destroy the FlatBufferBuilder, returning its internal byte vector
177 /// and the index into it that represents the start of valid data.
collapse(self) -> (Vec<u8>, usize)178 pub fn collapse(self) -> (Vec<u8>, usize) {
179 let index = self.head.to_forward_index(&self.allocator);
180 (self.allocator.0, index)
181 }
182 }
183
184 impl<'fbb, A: Allocator> FlatBufferBuilder<'fbb, A> {
185 /// Create a [`FlatBufferBuilder`] that is ready for writing with a custom [`Allocator`].
new_in(allocator: A) -> Self186 pub fn new_in(allocator: A) -> Self {
187 let head = ReverseIndex::end();
188 FlatBufferBuilder {
189 allocator,
190 head,
191
192 field_locs: Vec::new(),
193 written_vtable_revpos: Vec::new(),
194
195 nested: false,
196 finished: false,
197
198 min_align: 0,
199 force_defaults: false,
200 strings_pool: Vec::new(),
201
202 _phantom: PhantomData,
203 }
204 }
205
206 /// Destroy the [`FlatBufferBuilder`], returning its [`Allocator`] and the index
207 /// into it that represents the start of valid data.
collapse_in(self) -> (A, usize)208 pub fn collapse_in(self) -> (A, usize) {
209 let index = self.head.to_forward_index(&self.allocator);
210 (self.allocator, index)
211 }
212
213 /// Reset the FlatBufferBuilder internal state. Use this method after a
214 /// call to a `finish` function in order to re-use a FlatBufferBuilder.
215 ///
216 /// This function is the only way to reset the `finished` state and start
217 /// again.
218 ///
219 /// If you are using a FlatBufferBuilder repeatedly, make sure to use this
220 /// function, because it re-uses the FlatBufferBuilder's existing
221 /// heap-allocated `Vec<u8>` internal buffer. This offers significant speed
222 /// improvements as compared to creating a new FlatBufferBuilder for every
223 /// new object.
reset(&mut self)224 pub fn reset(&mut self) {
225 // memset only the part of the buffer that could be dirty:
226 self.allocator[self.head.range_to_end()]
227 .iter_mut()
228 .for_each(|x| *x = 0);
229
230 self.head = ReverseIndex::end();
231 self.written_vtable_revpos.clear();
232
233 self.nested = false;
234 self.finished = false;
235
236 self.min_align = 0;
237 self.strings_pool.clear();
238 }
239
240 /// Push a Push'able value onto the front of the in-progress data.
241 ///
242 /// This function uses traits to provide a unified API for writing
243 /// scalars, tables, vectors, and WIPOffsets.
244 #[inline]
push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output>245 pub fn push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output> {
246 let sz = P::size();
247 self.align(sz, P::alignment());
248 self.make_space(sz);
249 {
250 let (dst, rest) = self.allocator[self.head.range_to_end()].split_at_mut(sz);
251 // Safety:
252 // Called make_space above
253 unsafe { x.push(dst, rest.len()) };
254 }
255 WIPOffset::new(self.used_space() as UOffsetT)
256 }
257
258 /// Push a Push'able value onto the front of the in-progress data, and
259 /// store a reference to it in the in-progress vtable. If the value matches
260 /// the default, then this is a no-op.
261 #[inline]
push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X)262 pub fn push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X) {
263 self.assert_nested("push_slot");
264 if x != default || self.force_defaults {
265 self.push_slot_always(slotoff, x);
266 }
267 }
268
269 /// Push a Push'able value onto the front of the in-progress data, and
270 /// store a reference to it in the in-progress vtable.
271 #[inline]
push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X)272 pub fn push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X) {
273 self.assert_nested("push_slot_always");
274 let off = self.push(x);
275 self.track_field(slotoff, off.value());
276 }
277
278 /// Retrieve the number of vtables that have been serialized into the
279 /// FlatBuffer. This is primarily used to check vtable deduplication.
280 #[inline]
num_written_vtables(&self) -> usize281 pub fn num_written_vtables(&self) -> usize {
282 self.written_vtable_revpos.len()
283 }
284
285 /// Start a Table write.
286 ///
287 /// Asserts that the builder is not in a nested state.
288 ///
289 /// Users probably want to use `push_slot` to add values after calling this.
290 #[inline]
start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset>291 pub fn start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset> {
292 self.assert_not_nested(
293 "start_table can not be called when a table or vector is under construction",
294 );
295 self.nested = true;
296
297 WIPOffset::new(self.used_space() as UOffsetT)
298 }
299
300 /// End a Table write.
301 ///
302 /// Asserts that the builder is in a nested state.
303 #[inline]
end_table( &mut self, off: WIPOffset<TableUnfinishedWIPOffset>, ) -> WIPOffset<TableFinishedWIPOffset>304 pub fn end_table(
305 &mut self,
306 off: WIPOffset<TableUnfinishedWIPOffset>,
307 ) -> WIPOffset<TableFinishedWIPOffset> {
308 self.assert_nested("end_table");
309
310 let o = self.write_vtable(off);
311
312 self.nested = false;
313 self.field_locs.clear();
314
315 WIPOffset::new(o.value())
316 }
317
318 /// Start a Vector write.
319 ///
320 /// Asserts that the builder is not in a nested state.
321 ///
322 /// Most users will prefer to call `create_vector`.
323 /// Speed optimizing users who choose to create vectors manually using this
324 /// function will want to use `push` to add values.
325 #[inline]
start_vector<T: Push>(&mut self, num_items: usize)326 pub fn start_vector<T: Push>(&mut self, num_items: usize) {
327 self.assert_not_nested(
328 "start_vector can not be called when a table or vector is under construction",
329 );
330 self.nested = true;
331 self.align(num_items * T::size(), T::alignment().max_of(SIZE_UOFFSET));
332 }
333
334 /// End a Vector write.
335 ///
336 /// Note that the `num_elems` parameter is the number of written items, not
337 /// the byte count.
338 ///
339 /// Asserts that the builder is in a nested state.
340 #[inline]
end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>>341 pub fn end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>> {
342 self.assert_nested("end_vector");
343 self.nested = false;
344 let o = self.push::<UOffsetT>(num_elems as UOffsetT);
345 WIPOffset::new(o.value())
346 }
347
348 #[inline]
create_shared_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str>349 pub fn create_shared_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
350 self.assert_not_nested(
351 "create_shared_string can not be called when a table or vector is under construction",
352 );
353
354 // Saves a ref to allocator since rust doesnt like us refrencing it
355 // in the binary_search_by code.
356 let buf = &self.allocator;
357
358 let found = self.strings_pool.binary_search_by(|offset| {
359 let ptr = offset.value() as usize;
360 // Gets The pointer to the size of the string
361 let str_memory = &buf[buf.len() - ptr..];
362 // Gets the size of the written string from buffer
363 let size =
364 u32::from_le_bytes([str_memory[0], str_memory[1], str_memory[2], str_memory[3]])
365 as usize;
366 // Size of the string size
367 let string_size: usize = 4;
368 // Fetches actual string bytes from index of string after string size
369 // to the size of string plus string size
370 let iter = str_memory[string_size..size + string_size].iter();
371 // Compares bytes of fetched string and current writable string
372 iter.cloned().cmp(s.bytes())
373 });
374
375 match found {
376 Ok(index) => self.strings_pool[index],
377 Err(index) => {
378 let address = WIPOffset::new(self.create_byte_string(s.as_bytes()).value());
379 self.strings_pool.insert(index, address);
380 address
381 }
382 }
383 }
384
385 /// Create a utf8 string.
386 ///
387 /// The wire format represents this as a zero-terminated byte vector.
388 #[inline]
create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str>389 pub fn create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
390 self.assert_not_nested(
391 "create_string can not be called when a table or vector is under construction",
392 );
393 WIPOffset::new(self.create_byte_string(s.as_bytes()).value())
394 }
395
396 /// Create a zero-terminated byte vector.
397 #[inline]
create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]>398 pub fn create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]> {
399 self.assert_not_nested(
400 "create_byte_string can not be called when a table or vector is under construction",
401 );
402 self.align(data.len() + 1, PushAlignment::new(SIZE_UOFFSET));
403 self.push(0u8);
404 self.push_bytes_unprefixed(data);
405 self.push(data.len() as UOffsetT);
406 WIPOffset::new(self.used_space() as UOffsetT)
407 }
408
409 /// Create a vector of Push-able objects.
410 ///
411 /// Speed-sensitive users may wish to reduce memory usage by creating the
412 /// vector manually: use `start_vector`, `push`, and `end_vector`.
413 #[inline]
create_vector<'a: 'b, 'b, T: Push + 'b>( &'a mut self, items: &'b [T], ) -> WIPOffset<Vector<'fbb, T::Output>>414 pub fn create_vector<'a: 'b, 'b, T: Push + 'b>(
415 &'a mut self,
416 items: &'b [T],
417 ) -> WIPOffset<Vector<'fbb, T::Output>> {
418 let elem_size = T::size();
419 let slice_size = items.len() * elem_size;
420 self.align(slice_size, T::alignment().max_of(SIZE_UOFFSET));
421 self.ensure_capacity(slice_size + UOffsetT::size());
422
423 self.head -= slice_size;
424 let mut written_len = self.head.distance_to_end();
425
426 let buf = &mut self.allocator[self.head.range_to(self.head + slice_size)];
427 for (item, out) in items.iter().zip(buf.chunks_exact_mut(elem_size)) {
428 written_len -= elem_size;
429
430 // Safety:
431 // Called ensure_capacity and aligned to T above
432 unsafe { item.push(out, written_len) };
433 }
434
435 WIPOffset::new(self.push::<UOffsetT>(items.len() as UOffsetT).value())
436 }
437
438 /// Create a vector of Push-able objects.
439 ///
440 /// Speed-sensitive users may wish to reduce memory usage by creating the
441 /// vector manually: use `start_vector`, `push`, and `end_vector`.
442 #[inline]
create_vector_from_iter<T: Push>( &mut self, items: impl ExactSizeIterator<Item = T> + DoubleEndedIterator, ) -> WIPOffset<Vector<'fbb, T::Output>>443 pub fn create_vector_from_iter<T: Push>(
444 &mut self,
445 items: impl ExactSizeIterator<Item = T> + DoubleEndedIterator,
446 ) -> WIPOffset<Vector<'fbb, T::Output>> {
447 let elem_size = T::size();
448 self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
449 let mut actual = 0;
450 for item in items.rev() {
451 self.push(item);
452 actual += 1;
453 }
454 WIPOffset::new(self.push::<UOffsetT>(actual).value())
455 }
456
457 /// Set whether default values are stored.
458 ///
459 /// In order to save space, fields that are set to their default value
460 /// aren't stored in the buffer. Setting `force_defaults` to `true`
461 /// disables this optimization.
462 ///
463 /// By default, `force_defaults` is `false`.
464 #[inline]
force_defaults(&mut self, force_defaults: bool)465 pub fn force_defaults(&mut self, force_defaults: bool) {
466 self.force_defaults = force_defaults;
467 }
468
469 /// Get the byte slice for the data that has been written, regardless of
470 /// whether it has been finished.
471 #[inline]
unfinished_data(&self) -> &[u8]472 pub fn unfinished_data(&self) -> &[u8] {
473 &self.allocator[self.head.range_to_end()]
474 }
475 /// Get the byte slice for the data that has been written after a call to
476 /// one of the `finish` functions.
477 /// # Panics
478 /// Panics if the buffer is not finished.
479 #[inline]
finished_data(&self) -> &[u8]480 pub fn finished_data(&self) -> &[u8] {
481 self.assert_finished("finished_bytes cannot be called when the buffer is not yet finished");
482 &self.allocator[self.head.range_to_end()]
483 }
484 /// Returns a mutable view of a finished buffer and location of where the flatbuffer starts.
485 /// Note that modifying the flatbuffer data may corrupt it.
486 /// # Panics
487 /// Panics if the flatbuffer is not finished.
488 #[inline]
mut_finished_buffer(&mut self) -> (&mut [u8], usize)489 pub fn mut_finished_buffer(&mut self) -> (&mut [u8], usize) {
490 let index = self.head.to_forward_index(&self.allocator);
491 (&mut self.allocator[..], index)
492 }
493 /// Assert that a field is present in the just-finished Table.
494 ///
495 /// This is somewhat low-level and is mostly used by the generated code.
496 #[inline]
required( &self, tab_revloc: WIPOffset<TableFinishedWIPOffset>, slot_byte_loc: VOffsetT, assert_msg_name: &'static str, )497 pub fn required(
498 &self,
499 tab_revloc: WIPOffset<TableFinishedWIPOffset>,
500 slot_byte_loc: VOffsetT,
501 assert_msg_name: &'static str,
502 ) {
503 let idx = self.used_space() - tab_revloc.value() as usize;
504
505 // Safety:
506 // The value of TableFinishedWIPOffset is the offset from the end of the allocator
507 // to an SOffsetT pointing to a valid VTable
508 //
509 // `self.allocator.len() = self.used_space() + self.head`
510 // `self.allocator.len() - tab_revloc = self.used_space() - tab_revloc + self.head`
511 // `self.allocator.len() - tab_revloc = idx + self.head`
512 let tab = unsafe { Table::new(&self.allocator[self.head.range_to_end()], idx) };
513 let o = tab.vtable().get(slot_byte_loc) as usize;
514 assert!(o != 0, "missing required field {}", assert_msg_name);
515 }
516
517 /// Finalize the FlatBuffer by: aligning it, pushing an optional file
518 /// identifier on to it, pushing a size prefix on to it, and marking the
519 /// internal state of the FlatBufferBuilder as `finished`. Afterwards,
520 /// users can call `finished_data` to get the resulting data.
521 #[inline]
finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>)522 pub fn finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
523 self.finish_with_opts(root, file_identifier, true);
524 }
525
526 /// Finalize the FlatBuffer by: aligning it, pushing an optional file
527 /// identifier on to it, and marking the internal state of the
528 /// FlatBufferBuilder as `finished`. Afterwards, users can call
529 /// `finished_data` to get the resulting data.
530 #[inline]
finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>)531 pub fn finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
532 self.finish_with_opts(root, file_identifier, false);
533 }
534
535 /// Finalize the FlatBuffer by: aligning it and marking the internal state
536 /// of the FlatBufferBuilder as `finished`. Afterwards, users can call
537 /// `finished_data` to get the resulting data.
538 #[inline]
finish_minimal<T>(&mut self, root: WIPOffset<T>)539 pub fn finish_minimal<T>(&mut self, root: WIPOffset<T>) {
540 self.finish_with_opts(root, None, false);
541 }
542
543 #[inline]
used_space(&self) -> usize544 fn used_space(&self) -> usize {
545 self.head.distance_to_end()
546 }
547
548 #[inline]
track_field(&mut self, slot_off: VOffsetT, off: UOffsetT)549 fn track_field(&mut self, slot_off: VOffsetT, off: UOffsetT) {
550 let fl = FieldLoc { id: slot_off, off };
551 self.field_locs.push(fl);
552 }
553
554 /// Write the VTable, if it is new.
write_vtable( &mut self, table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>, ) -> WIPOffset<VTableWIPOffset>555 fn write_vtable(
556 &mut self,
557 table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>,
558 ) -> WIPOffset<VTableWIPOffset> {
559 self.assert_nested("write_vtable");
560
561 // Write the vtable offset, which is the start of any Table.
562 // We fill its value later.
563 let object_revloc_to_vtable: WIPOffset<VTableWIPOffset> =
564 WIPOffset::new(self.push::<UOffsetT>(0xF0F0_F0F0).value());
565
566 // Layout of the data this function will create when a new vtable is
567 // needed.
568 // --------------------------------------------------------------------
569 // vtable starts here
570 // | x, x -- vtable len (bytes) [u16]
571 // | x, x -- object inline len (bytes) [u16]
572 // | x, x -- zero, or num bytes from start of object to field #0 [u16]
573 // | ...
574 // | x, x -- zero, or num bytes from start of object to field #n-1 [u16]
575 // vtable ends here
576 // table starts here
577 // | x, x, x, x -- offset (negative direction) to the vtable [i32]
578 // | aka "vtableoffset"
579 // | -- table inline data begins here, we don't touch it --
580 // table ends here -- aka "table_start"
581 // --------------------------------------------------------------------
582 //
583 // Layout of the data this function will create when we re-use an
584 // existing vtable.
585 //
586 // We always serialize this particular vtable, then compare it to the
587 // other vtables we know about to see if there is a duplicate. If there
588 // is, then we erase the serialized vtable we just made.
589 // We serialize it first so that we are able to do byte-by-byte
590 // comparisons with already-serialized vtables. This 1) saves
591 // bookkeeping space (we only keep revlocs to existing vtables), 2)
592 // allows us to convert to little-endian once, then do
593 // fast memcmp comparisons, and 3) by ensuring we are comparing real
594 // serialized vtables, we can be more assured that we are doing the
595 // comparisons correctly.
596 //
597 // --------------------------------------------------------------------
598 // table starts here
599 // | x, x, x, x -- offset (negative direction) to an existing vtable [i32]
600 // | aka "vtableoffset"
601 // | -- table inline data begins here, we don't touch it --
602 // table starts here: aka "table_start"
603 // --------------------------------------------------------------------
604
605 // fill the WIP vtable with zeros:
606 let vtable_byte_len = get_vtable_byte_len(&self.field_locs);
607 self.make_space(vtable_byte_len);
608
609 // compute the length of the table (not vtable!) in bytes:
610 let table_object_size = object_revloc_to_vtable.value() - table_tail_revloc.value();
611 debug_assert!(table_object_size < 0x10000); // vTable use 16bit offsets.
612
613 // Write the VTable (we may delete it afterwards, if it is a duplicate):
614 let vt_start_pos = self.head;
615 let vt_end_pos = self.head + vtable_byte_len;
616 {
617 // write the vtable header:
618 let vtfw =
619 &mut VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]);
620 vtfw.write_vtable_byte_length(vtable_byte_len as VOffsetT);
621 vtfw.write_object_inline_size(table_object_size as VOffsetT);
622
623 // serialize every FieldLoc to the vtable:
624 for &fl in self.field_locs.iter() {
625 let pos: VOffsetT = (object_revloc_to_vtable.value() - fl.off) as VOffsetT;
626 vtfw.write_field_offset(fl.id, pos);
627 }
628 }
629 let new_vt_bytes = &self.allocator[vt_start_pos.range_to(vt_end_pos)];
630 let found = self
631 .written_vtable_revpos
632 .binary_search_by(|old_vtable_revpos: &UOffsetT| {
633 let old_vtable_pos = self.allocator.len() - *old_vtable_revpos as usize;
634 // Safety:
635 // Already written vtables are valid by construction
636 let old_vtable = unsafe { VTable::init(&self.allocator, old_vtable_pos) };
637 new_vt_bytes.cmp(old_vtable.as_bytes())
638 });
639 let final_vtable_revpos = match found {
640 Ok(i) => {
641 // The new vtable is a duplicate so clear it.
642 VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]).clear();
643 self.head += vtable_byte_len;
644 self.written_vtable_revpos[i]
645 }
646 Err(i) => {
647 // This is a new vtable. Add it to the cache.
648 let new_vt_revpos = self.used_space() as UOffsetT;
649 self.written_vtable_revpos.insert(i, new_vt_revpos);
650 new_vt_revpos
651 }
652 };
653 // Write signed offset from table to its vtable.
654 let table_pos = self.allocator.len() - object_revloc_to_vtable.value() as usize;
655 if cfg!(debug_assertions) {
656 // Safety:
657 // Verified slice length
658 let tmp_soffset_to_vt = unsafe {
659 read_scalar::<UOffsetT>(&self.allocator[table_pos..table_pos + SIZE_UOFFSET])
660 };
661 assert_eq!(tmp_soffset_to_vt, 0xF0F0_F0F0);
662 }
663
664 let buf = &mut self.allocator[table_pos..table_pos + SIZE_SOFFSET];
665 // Safety:
666 // Verified length of buf above
667 unsafe {
668 emplace_scalar::<SOffsetT>(
669 buf,
670 final_vtable_revpos as SOffsetT - object_revloc_to_vtable.value() as SOffsetT,
671 );
672 }
673
674 self.field_locs.clear();
675
676 object_revloc_to_vtable
677 }
678
679 // Only call this when you know it is safe to double the size of the buffer.
680 #[inline]
grow_allocator(&mut self)681 fn grow_allocator(&mut self) {
682 let starting_active_size = self.used_space();
683 self.allocator
684 .grow_downwards()
685 .expect("Flatbuffer allocation failure");
686
687 let ending_active_size = self.used_space();
688 debug_assert_eq!(starting_active_size, ending_active_size);
689 }
690
691 // with or without a size prefix changes how we load the data, so finish*
692 // functions are split along those lines.
finish_with_opts<T>( &mut self, root: WIPOffset<T>, file_identifier: Option<&str>, size_prefixed: bool, )693 fn finish_with_opts<T>(
694 &mut self,
695 root: WIPOffset<T>,
696 file_identifier: Option<&str>,
697 size_prefixed: bool,
698 ) {
699 self.assert_not_finished("buffer cannot be finished when it is already finished");
700 self.assert_not_nested(
701 "buffer cannot be finished when a table or vector is under construction",
702 );
703 self.written_vtable_revpos.clear();
704
705 let to_align = {
706 // for the root offset:
707 let a = SIZE_UOFFSET;
708 // for the size prefix:
709 let b = if size_prefixed { SIZE_UOFFSET } else { 0 };
710 // for the file identifier (a string that is not zero-terminated):
711 let c = if file_identifier.is_some() {
712 FILE_IDENTIFIER_LENGTH
713 } else {
714 0
715 };
716 a + b + c
717 };
718
719 {
720 let ma = PushAlignment::new(self.min_align);
721 self.align(to_align, ma);
722 }
723
724 if let Some(ident) = file_identifier {
725 debug_assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
726 self.push_bytes_unprefixed(ident.as_bytes());
727 }
728
729 self.push(root);
730
731 if size_prefixed {
732 let sz = self.used_space() as UOffsetT;
733 self.push::<UOffsetT>(sz);
734 }
735 self.finished = true;
736 }
737
738 #[inline]
align(&mut self, len: usize, alignment: PushAlignment)739 fn align(&mut self, len: usize, alignment: PushAlignment) {
740 self.track_min_align(alignment.value());
741 let s = self.used_space() as usize;
742 self.make_space(padding_bytes(s + len, alignment.value()));
743 }
744
745 #[inline]
track_min_align(&mut self, alignment: usize)746 fn track_min_align(&mut self, alignment: usize) {
747 self.min_align = max(self.min_align, alignment);
748 }
749
750 #[inline]
push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT751 fn push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT {
752 let n = self.make_space(x.len());
753 self.allocator[n.range_to(n + x.len())].copy_from_slice(x);
754
755 n.to_forward_index(&self.allocator) as UOffsetT
756 }
757
758 #[inline]
make_space(&mut self, want: usize) -> ReverseIndex759 fn make_space(&mut self, want: usize) -> ReverseIndex {
760 self.ensure_capacity(want);
761 self.head -= want;
762 self.head
763 }
764
765 #[inline]
ensure_capacity(&mut self, want: usize) -> usize766 fn ensure_capacity(&mut self, want: usize) -> usize {
767 if self.unused_ready_space() >= want {
768 return want;
769 }
770 assert!(
771 want <= FLATBUFFERS_MAX_BUFFER_SIZE,
772 "cannot grow buffer beyond 2 gigabytes"
773 );
774
775 while self.unused_ready_space() < want {
776 self.grow_allocator();
777 }
778 want
779 }
780 #[inline]
unused_ready_space(&self) -> usize781 fn unused_ready_space(&self) -> usize {
782 self.allocator.len() - self.head.distance_to_end()
783 }
784 #[inline]
assert_nested(&self, fn_name: &'static str)785 fn assert_nested(&self, fn_name: &'static str) {
786 // we don't assert that self.field_locs.len() >0 because the vtable
787 // could be empty (e.g. for empty tables, or for all-default values).
788 debug_assert!(
789 self.nested,
790 "incorrect FlatBufferBuilder usage: {} must be called while in a nested state",
791 fn_name
792 );
793 }
794 #[inline]
assert_not_nested(&self, msg: &'static str)795 fn assert_not_nested(&self, msg: &'static str) {
796 debug_assert!(!self.nested, "{}", msg);
797 }
798 #[inline]
assert_finished(&self, msg: &'static str)799 fn assert_finished(&self, msg: &'static str) {
800 debug_assert!(self.finished, "{}", msg);
801 }
802 #[inline]
assert_not_finished(&self, msg: &'static str)803 fn assert_not_finished(&self, msg: &'static str) {
804 debug_assert!(!self.finished, "{}", msg);
805 }
806 }
807
808 /// Compute the length of the vtable needed to represent the provided FieldLocs.
809 /// If there are no FieldLocs, then provide the minimum number of bytes
810 /// required: enough to write the VTable header.
811 #[inline]
get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize812 fn get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize {
813 let max_voffset = field_locs.iter().map(|fl| fl.id).max();
814 match max_voffset {
815 None => field_index_to_field_offset(0) as usize,
816 Some(mv) => mv as usize + SIZE_VOFFSET,
817 }
818 }
819
820 #[inline]
padding_bytes(buf_size: usize, scalar_size: usize) -> usize821 fn padding_bytes(buf_size: usize, scalar_size: usize) -> usize {
822 // ((!buf_size) + 1) & (scalar_size - 1)
823 (!buf_size).wrapping_add(1) & (scalar_size.wrapping_sub(1))
824 }
825
826 impl<'fbb> Default for FlatBufferBuilder<'fbb> {
default() -> Self827 fn default() -> Self {
828 Self::with_capacity(0)
829 }
830 }
831
832 /// An index that indexes from the reverse of a slice.
833 ///
834 /// Note that while the internal representation is an index
835 /// from the end of a buffer, operations like `Add` and `Sub`
836 /// behave like a regular index:
837 ///
838 /// # Examples
839 ///
840 /// ```ignore
841 /// let buf = [0, 1, 2, 3, 4, 5];
842 /// let idx = ReverseIndex::end() - 2;
843 /// assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
844 /// assert_eq!(idx.to_forward_index(&buf), 4);
845 /// ```
846 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
847 struct ReverseIndex(usize);
848
849 impl ReverseIndex {
850 /// Returns an index set to the end.
851 ///
852 /// Note: Indexing this will result in an out of bounds error.
end() -> Self853 pub fn end() -> Self {
854 Self(0)
855 }
856
857 /// Returns a struct equivalent to the range `self..`
range_to_end(self) -> ReverseIndexRange858 pub fn range_to_end(self) -> ReverseIndexRange {
859 ReverseIndexRange(self, ReverseIndex::end())
860 }
861
862 /// Returns a struct equivalent to the range `self..end`
range_to(self, end: ReverseIndex) -> ReverseIndexRange863 pub fn range_to(self, end: ReverseIndex) -> ReverseIndexRange {
864 ReverseIndexRange(self, end)
865 }
866
867 /// Transforms this reverse index into a regular index for the given buffer.
to_forward_index<T>(self, buf: &[T]) -> usize868 pub fn to_forward_index<T>(self, buf: &[T]) -> usize {
869 buf.len() - self.0
870 }
871
872 /// Returns the number of elements until the end of the range.
distance_to_end(&self) -> usize873 pub fn distance_to_end(&self) -> usize {
874 self.0
875 }
876 }
877
878 impl Sub<usize> for ReverseIndex {
879 type Output = Self;
880
sub(self, rhs: usize) -> Self::Output881 fn sub(self, rhs: usize) -> Self::Output {
882 Self(self.0 + rhs)
883 }
884 }
885
886 impl SubAssign<usize> for ReverseIndex {
sub_assign(&mut self, rhs: usize)887 fn sub_assign(&mut self, rhs: usize) {
888 *self = *self - rhs;
889 }
890 }
891
892 impl Add<usize> for ReverseIndex {
893 type Output = Self;
894
add(self, rhs: usize) -> Self::Output895 fn add(self, rhs: usize) -> Self::Output {
896 Self(self.0 - rhs)
897 }
898 }
899
900 impl AddAssign<usize> for ReverseIndex {
add_assign(&mut self, rhs: usize)901 fn add_assign(&mut self, rhs: usize) {
902 *self = *self + rhs;
903 }
904 }
905 impl<T> Index<ReverseIndex> for [T] {
906 type Output = T;
907
index(&self, index: ReverseIndex) -> &Self::Output908 fn index(&self, index: ReverseIndex) -> &Self::Output {
909 let index = index.to_forward_index(self);
910 &self[index]
911 }
912 }
913
914 impl<T> IndexMut<ReverseIndex> for [T] {
index_mut(&mut self, index: ReverseIndex) -> &mut Self::Output915 fn index_mut(&mut self, index: ReverseIndex) -> &mut Self::Output {
916 let index = index.to_forward_index(self);
917 &mut self[index]
918 }
919 }
920
921 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
922 struct ReverseIndexRange(ReverseIndex, ReverseIndex);
923
924 impl<T> Index<ReverseIndexRange> for [T] {
925 type Output = [T];
926
index(&self, index: ReverseIndexRange) -> &Self::Output927 fn index(&self, index: ReverseIndexRange) -> &Self::Output {
928 let start = index.0.to_forward_index(self);
929 let end = index.1.to_forward_index(self);
930 &self[start..end]
931 }
932 }
933
934 impl<T> IndexMut<ReverseIndexRange> for [T] {
index_mut(&mut self, index: ReverseIndexRange) -> &mut Self::Output935 fn index_mut(&mut self, index: ReverseIndexRange) -> &mut Self::Output {
936 let start = index.0.to_forward_index(self);
937 let end = index.1.to_forward_index(self);
938 &mut self[start..end]
939 }
940 }
941
942 #[cfg(test)]
943 mod tests {
944 use super::*;
945
946 #[test]
reverse_index_test()947 fn reverse_index_test() {
948 let buf = [0, 1, 2, 3, 4, 5];
949 let idx = ReverseIndex::end() - 2;
950 assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
951 assert_eq!(&buf[idx.range_to(idx + 1)], &[4]);
952 assert_eq!(idx.to_forward_index(&buf), 4);
953 }
954 }
955