1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fs_mgr.h"
18
19 #include <dirent.h>
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <libgen.h>
24 #include <selinux/selinux.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/mount.h>
30 #include <sys/stat.h>
31 #include <sys/statvfs.h>
32 #include <sys/swap.h>
33 #include <sys/types.h>
34 #include <sys/utsname.h>
35 #include <sys/wait.h>
36 #include <time.h>
37 #include <unistd.h>
38
39 #include <array>
40 #include <chrono>
41 #include <map>
42 #include <memory>
43 #include <string>
44 #include <string_view>
45 #include <thread>
46 #include <utility>
47 #include <vector>
48
49 #include <android-base/chrono_utils.h>
50 #include <android-base/file.h>
51 #include <android-base/properties.h>
52 #include <android-base/stringprintf.h>
53 #include <android-base/strings.h>
54 #include <android-base/unique_fd.h>
55 #include <cutils/android_filesystem_config.h>
56 #include <cutils/android_reboot.h>
57 #include <cutils/partition_utils.h>
58 #include <cutils/properties.h>
59 #include <ext4_utils/ext4.h>
60 #include <ext4_utils/ext4_sb.h>
61 #include <ext4_utils/ext4_utils.h>
62 #include <ext4_utils/wipe.h>
63 #include <fs_avb/fs_avb.h>
64 #include <fs_mgr/file_wait.h>
65 #include <fs_mgr_overlayfs.h>
66 #include <fscrypt/fscrypt.h>
67 #include <fstab/fstab.h>
68 #include <libdm/dm.h>
69 #include <libdm/loop_control.h>
70 #include <liblp/metadata_format.h>
71 #include <linux/fs.h>
72 #include <linux/loop.h>
73 #include <linux/magic.h>
74 #include <log/log_properties.h>
75 #include <logwrap/logwrap.h>
76
77 #include "blockdev.h"
78 #include "fs_mgr_priv.h"
79
80 #define E2FSCK_BIN "/system/bin/e2fsck"
81 #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs"
82 #define MKSWAP_BIN "/system/bin/mkswap"
83 #define TUNE2FS_BIN "/system/bin/tune2fs"
84 #define RESIZE2FS_BIN "/system/bin/resize2fs"
85
86 #define FSCK_LOG_FILE "/dev/fscklogs/log"
87
88 #define ZRAM_CONF_DEV "/sys/block/zram0/disksize"
89 #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams"
90 #define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev"
91
92 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
93 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
94
95 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
96
97 using android::base::Basename;
98 using android::base::GetBoolProperty;
99 using android::base::GetUintProperty;
100 using android::base::Realpath;
101 using android::base::SetProperty;
102 using android::base::StartsWith;
103 using android::base::StringPrintf;
104 using android::base::Timer;
105 using android::base::unique_fd;
106 using android::dm::DeviceMapper;
107 using android::dm::DmDeviceState;
108 using android::dm::DmTargetLinear;
109 using android::dm::LoopControl;
110
111 // Realistically, this file should be part of the android::fs_mgr namespace;
112 using namespace android::fs_mgr;
113
114 using namespace std::literals;
115
116 // record fs stat
117 enum FsStatFlags {
118 FS_STAT_IS_EXT4 = 0x0001,
119 FS_STAT_NEW_IMAGE_VERSION = 0x0002,
120 FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
121 FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
122 FS_STAT_QUOTA_ENABLED = 0x0010,
123 FS_STAT_RO_MOUNT_FAILED = 0x0040,
124 FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
125 FS_STAT_FULL_MOUNT_FAILED = 0x0100,
126 FS_STAT_FSCK_FAILED = 0x0200,
127 FS_STAT_FSCK_FS_FIXED = 0x0400,
128 FS_STAT_INVALID_MAGIC = 0x0800,
129 FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
130 FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
131 FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
132 FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
133 FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
134 FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
135 };
136
log_fs_stat(const std::string & blk_device,int fs_stat)137 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
138 std::string msg =
139 android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
140 android::base::unique_fd fd(TEMP_FAILURE_RETRY(
141 open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | O_APPEND | O_CREAT, 0664)));
142 if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
143 LWARNING << __FUNCTION__ << "() cannot log " << msg;
144 }
145 }
146
is_extfs(const std::string & fs_type)147 static bool is_extfs(const std::string& fs_type) {
148 return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
149 }
150
is_f2fs(const std::string & fs_type)151 static bool is_f2fs(const std::string& fs_type) {
152 return fs_type == "f2fs";
153 }
154
realpath(const std::string & blk_device)155 static std::string realpath(const std::string& blk_device) {
156 std::string real_path;
157 if (!Realpath(blk_device, &real_path)) {
158 real_path = blk_device;
159 }
160 return real_path;
161 }
162
should_force_check(int fs_stat)163 static bool should_force_check(int fs_stat) {
164 return fs_stat &
165 (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
166 FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
167 FS_STAT_FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
168 FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
169 }
170
umount_retry(const std::string & mount_point)171 static bool umount_retry(const std::string& mount_point) {
172 int retry_count = 5;
173 bool umounted = false;
174
175 while (retry_count-- > 0) {
176 umounted = umount(mount_point.c_str()) == 0;
177 if (umounted) {
178 LINFO << __FUNCTION__ << "(): unmount(" << mount_point << ") succeeded";
179 break;
180 }
181 PERROR << __FUNCTION__ << "(): umount(" << mount_point << ") failed";
182 if (retry_count) sleep(1);
183 }
184 return umounted;
185 }
186
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)187 static void check_fs(const std::string& blk_device, const std::string& fs_type,
188 const std::string& target, int* fs_stat) {
189 int status;
190 int ret;
191 long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
192 auto tmpmnt_opts = "errors=remount-ro"s;
193 const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
194 const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
195
196 if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try
197 return;
198 }
199
200 Timer t;
201 /* Check for the types of filesystems we know how to check */
202 if (is_extfs(fs_type)) {
203 /*
204 * First try to mount and unmount the filesystem. We do this because
205 * the kernel is more efficient than e2fsck in running the journal and
206 * processing orphaned inodes, and on at least one device with a
207 * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
208 * to do what the kernel does in about a second.
209 *
210 * After mounting and unmounting the filesystem, run e2fsck, and if an
211 * error is recorded in the filesystem superblock, e2fsck will do a full
212 * check. Otherwise, it does nothing. If the kernel cannot mount the
213 * filesytsem due to an error, e2fsck is still run to do a full check
214 * fix the filesystem.
215 */
216 if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed
217 errno = 0;
218 ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
219 tmpmnt_opts.c_str());
220 PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
221 << ")=" << ret;
222 if (ret) {
223 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
224 } else if (!umount_retry(target)) {
225 // boot may fail but continue and leave it to later stage for now.
226 PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
227 *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
228 }
229 }
230
231 /*
232 * Some system images do not have e2fsck for licensing reasons
233 * (e.g. recent SDK system images). Detect these and skip the check.
234 */
235 if (access(E2FSCK_BIN, X_OK)) {
236 LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
237 << " (executable not in system image)";
238 } else {
239 LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
240 if (should_force_check(*fs_stat)) {
241 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
242 &status, false, LOG_KLOG | LOG_FILE, false,
243 FSCK_LOG_FILE);
244 } else {
245 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
246 LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
247 }
248
249 if (ret < 0) {
250 /* No need to check for error in fork, we can't really handle it now */
251 LERROR << "Failed trying to run " << E2FSCK_BIN;
252 *fs_stat |= FS_STAT_FSCK_FAILED;
253 } else if (status != 0) {
254 LINFO << "e2fsck returned status 0x" << std::hex << status;
255 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
256 }
257 }
258 } else if (is_f2fs(fs_type)) {
259 const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", "-c", "10000", "--debug-cache",
260 blk_device.c_str()};
261 const char* f2fs_fsck_forced_argv[] = {
262 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
263
264 if (access(F2FS_FSCK_BIN, X_OK)) {
265 LINFO << "Not running " << F2FS_FSCK_BIN << " on " << realpath(blk_device)
266 << " (executable not in system image)";
267 } else {
268 if (should_force_check(*fs_stat)) {
269 LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache "
270 << realpath(blk_device);
271 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
272 &status, false, LOG_KLOG | LOG_FILE, false,
273 FSCK_LOG_FILE);
274 } else {
275 LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache "
276 << realpath(blk_device);
277 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status,
278 false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
279 }
280 if (ret < 0) {
281 /* No need to check for error in fork, we can't really handle it now */
282 LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
283 *fs_stat |= FS_STAT_FSCK_FAILED;
284 } else if (status != 0) {
285 LINFO << F2FS_FSCK_BIN << " returned status 0x" << std::hex << status;
286 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
287 }
288 }
289 }
290 android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
291 std::to_string(t.duration().count()));
292 return;
293 }
294
ext4_blocks_count(const struct ext4_super_block * es)295 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
296 return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
297 le32_to_cpu(es->s_blocks_count_lo);
298 }
299
ext4_r_blocks_count(const struct ext4_super_block * es)300 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
301 return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
302 le32_to_cpu(es->s_r_blocks_count_lo);
303 }
304
is_ext4_superblock_valid(const struct ext4_super_block * es)305 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
306 if (es->s_magic != EXT4_SUPER_MAGIC) return false;
307 if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
308 if (EXT4_INODES_PER_GROUP(es) == 0) return false;
309 return true;
310 }
311
312 // Read the primary superblock from an ext4 filesystem. On failure return
313 // false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,struct ext4_super_block * sb,int * fs_stat)314 static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
315 int* fs_stat) {
316 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
317
318 if (fd < 0) {
319 PERROR << "Failed to open '" << blk_device << "'";
320 return false;
321 }
322
323 if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
324 PERROR << "Can't read '" << blk_device << "' superblock";
325 return false;
326 }
327
328 if (!is_ext4_superblock_valid(sb)) {
329 LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
330 // not a valid fs, tune2fs, fsck, and mount will all fail.
331 *fs_stat |= FS_STAT_INVALID_MAGIC;
332 return false;
333 }
334 *fs_stat |= FS_STAT_IS_EXT4;
335 LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
336 if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4
337 *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
338 }
339 return true;
340 }
341
342 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)343 bool fs_mgr_is_ext4(const std::string& blk_device) {
344 android::base::ErrnoRestorer restore;
345 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
346 if (fd < 0) return false;
347 ext4_super_block sb;
348 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
349 if (!is_ext4_superblock_valid(&sb)) return false;
350 return true;
351 }
352
353 // Some system images do not have tune2fs for licensing reasons.
354 // Detect these and skip running it.
tune2fs_available(void)355 static bool tune2fs_available(void) {
356 return access(TUNE2FS_BIN, X_OK) == 0;
357 }
358
run_command(const char * argv[],int argc)359 static bool run_command(const char* argv[], int argc) {
360 int ret;
361
362 ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
363 return ret == 0;
364 }
365
366 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)367 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
368 const struct ext4_super_block* sb, int* fs_stat) {
369 bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
370 bool want_quota = entry.fs_mgr_flags.quota;
371 // Enable projid support by default
372 bool want_projid = true;
373 if (has_quota == want_quota) {
374 return;
375 }
376
377 if (!tune2fs_available()) {
378 LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
379 << " because " TUNE2FS_BIN " is missing";
380 return;
381 }
382
383 const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
384
385 if (want_quota) {
386 LINFO << "Enabling quotas on " << blk_device;
387 argv[1] = "-Oquota";
388 // Once usr/grp unneeded, make just prjquota to save overhead
389 if (want_projid)
390 argv[2] = "-Qusrquota,grpquota,prjquota";
391 else
392 argv[2] = "-Qusrquota,grpquota";
393 *fs_stat |= FS_STAT_QUOTA_ENABLED;
394 } else {
395 LINFO << "Disabling quotas on " << blk_device;
396 argv[1] = "-O^quota";
397 argv[2] = "-Q^usrquota,^grpquota,^prjquota";
398 }
399
400 if (!run_command(argv, ARRAY_SIZE(argv))) {
401 LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
402 << " quotas on " << blk_device;
403 *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
404 }
405 }
406
407 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)408 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
409 const struct ext4_super_block* sb, int* fs_stat) {
410 if (entry.reserved_size == 0) {
411 return;
412 }
413
414 // The size to reserve is given in the fstab, but we won't reserve more
415 // than 2% of the filesystem.
416 const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
417 uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
418
419 if (reserved_blocks > max_reserved_blocks) {
420 LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
421 << "capping to " << max_reserved_blocks;
422 reserved_blocks = max_reserved_blocks;
423 }
424
425 if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
426 return;
427 }
428
429 if (!tune2fs_available()) {
430 LERROR << "Unable to set the number of reserved blocks on " << blk_device
431 << " because " TUNE2FS_BIN " is missing";
432 return;
433 }
434
435 LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
436
437 auto reserved_blocks_str = std::to_string(reserved_blocks);
438 auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
439 const char* argv[] = {
440 TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
441 blk_device.c_str()};
442 if (!run_command(argv, ARRAY_SIZE(argv))) {
443 LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
444 << blk_device;
445 *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
446 }
447 }
448
449 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)450 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
451 const struct ext4_super_block* sb, int* fs_stat) {
452 if (!entry.fs_mgr_flags.file_encryption) {
453 return; // Nothing needs done.
454 }
455 std::vector<std::string> features_needed;
456 if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
457 features_needed.emplace_back("encrypt");
458 }
459 android::fscrypt::EncryptionOptions options;
460 if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
461 LERROR << "Unable to parse encryption options on " << blk_device << ": "
462 << entry.encryption_options;
463 return;
464 }
465 if ((options.flags &
466 (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
467 // We can only use this policy on ext4 if the "stable_inodes" feature
468 // is set on the filesystem, otherwise shrinking will break encrypted files.
469 if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
470 features_needed.emplace_back("stable_inodes");
471 }
472 }
473 if (features_needed.size() == 0) {
474 return;
475 }
476 if (!tune2fs_available()) {
477 LERROR << "Unable to enable ext4 encryption on " << blk_device
478 << " because " TUNE2FS_BIN " is missing";
479 return;
480 }
481
482 auto flags = android::base::Join(features_needed, ',');
483 auto flag_arg = "-O"s + flags;
484 const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
485
486 LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
487 if (!run_command(argv, ARRAY_SIZE(argv))) {
488 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
489 << "ext4 flags " << flags << " on " << blk_device;
490 *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
491 }
492 }
493
494 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)495 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
496 const struct ext4_super_block* sb, int* fs_stat) {
497 bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
498 bool want_verity = entry.fs_mgr_flags.fs_verity;
499
500 if (has_verity || !want_verity) {
501 return;
502 }
503
504 std::string verity_support;
505 if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
506 LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
507 return;
508 }
509
510 if (!(android::base::Trim(verity_support) == "supported")) {
511 LERROR << "Current ext4 verity not supported by kernel";
512 return;
513 }
514
515 if (!tune2fs_available()) {
516 LERROR << "Unable to enable ext4 verity on " << blk_device
517 << " because " TUNE2FS_BIN " is missing";
518 return;
519 }
520
521 LINFO << "Enabling ext4 verity on " << blk_device;
522
523 const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
524 if (!run_command(argv, ARRAY_SIZE(argv))) {
525 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
526 << "ext4 verity on " << blk_device;
527 *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
528 }
529 }
530
531 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)532 static void tune_casefold(const std::string& blk_device, const FstabEntry& entry,
533 const struct ext4_super_block* sb, int* fs_stat) {
534 bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
535 bool wants_casefold =
536 android::base::GetBoolProperty("external_storage.casefold.enabled", false);
537
538 if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return;
539
540 std::string casefold_support;
541 if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
542 LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
543 return;
544 }
545
546 if (!(android::base::Trim(casefold_support) == "supported")) {
547 LERROR << "Current ext4 casefolding not supported by kernel";
548 return;
549 }
550
551 if (!tune2fs_available()) {
552 LERROR << "Unable to enable ext4 casefold on " << blk_device
553 << " because " TUNE2FS_BIN " is missing";
554 return;
555 }
556
557 LINFO << "Enabling ext4 casefold on " << blk_device;
558
559 const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
560 if (!run_command(argv, ARRAY_SIZE(argv))) {
561 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
562 << "ext4 casefold on " << blk_device;
563 *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
564 }
565 }
566
resize2fs_available(void)567 static bool resize2fs_available(void) {
568 return access(RESIZE2FS_BIN, X_OK) == 0;
569 }
570
571 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)572 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
573 const struct ext4_super_block* sb, int* fs_stat) {
574 bool has_meta_csum =
575 (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
576 bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
577
578 if (has_meta_csum || !want_meta_csum) return;
579
580 if (!tune2fs_available()) {
581 LERROR << "Unable to enable metadata_csum on " << blk_device
582 << " because " TUNE2FS_BIN " is missing";
583 return;
584 }
585 if (!resize2fs_available()) {
586 LERROR << "Unable to enable metadata_csum on " << blk_device
587 << " because " RESIZE2FS_BIN " is missing";
588 return;
589 }
590
591 LINFO << "Enabling ext4 metadata_csum on " << blk_device;
592
593 // Must give `-T now` to prevent last_fsck_time from growing too large,
594 // otherwise, tune2fs won't enable metadata_csum.
595 const char* tune2fs_args[] = {TUNE2FS_BIN, "-O", "metadata_csum,64bit,extent",
596 "-T", "now", blk_device.c_str()};
597 const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
598
599 if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
600 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
601 << "ext4 metadata_csum on " << blk_device;
602 *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
603 } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
604 LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
605 << "ext4 metadata_csum on " << blk_device;
606 *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
607 }
608 }
609
610 // Read the primary superblock from an f2fs filesystem. On failure return
611 // false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
612 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)613 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
614 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
615 __le32 sb1, sb2;
616
617 if (fd < 0) {
618 PERROR << "Failed to open '" << blk_device << "'";
619 return false;
620 }
621
622 if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
623 PERROR << "Can't read '" << blk_device << "' superblock1";
624 return false;
625 }
626 // F2FS only supports block_size=page_size case. So, it is safe to call
627 // `getpagesize()` and use that as size of super block.
628 if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), getpagesize() + F2FS_SUPER_OFFSET)) !=
629 sizeof(sb2)) {
630 PERROR << "Can't read '" << blk_device << "' superblock2";
631 return false;
632 }
633
634 if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
635 LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
636 *fs_stat |= FS_STAT_INVALID_MAGIC;
637 return false;
638 }
639 return true;
640 }
641
642 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)643 bool fs_mgr_is_f2fs(const std::string& blk_device) {
644 android::base::ErrnoRestorer restore;
645 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
646 if (fd < 0) return false;
647 __le32 sb;
648 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
649 return false;
650 }
651 if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
652 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), getpagesize() + F2FS_SUPER_OFFSET)) !=
653 sizeof(sb)) {
654 return false;
655 }
656 return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
657 }
658
SetReadAheadSize(const std::string & entry_block_device,off64_t size_kb)659 static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) {
660 std::string block_device;
661 if (!Realpath(entry_block_device, &block_device)) {
662 PERROR << "Failed to realpath " << entry_block_device;
663 return;
664 }
665
666 static constexpr std::string_view kDevBlockPrefix("/dev/block/");
667 if (!android::base::StartsWith(block_device, kDevBlockPrefix)) {
668 LWARNING << block_device << " is not a block device";
669 return;
670 }
671
672 DeviceMapper& dm = DeviceMapper::Instance();
673 while (true) {
674 std::string block_name = block_device;
675 if (android::base::StartsWith(block_device, kDevBlockPrefix)) {
676 block_name = block_device.substr(kDevBlockPrefix.length());
677 }
678 std::string sys_partition =
679 android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str());
680 struct stat info;
681 if (lstat(sys_partition.c_str(), &info) == 0) {
682 // it has a partition like "sda12".
683 block_name += "/..";
684 }
685 std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb",
686 block_name.c_str());
687 std::string size = android::base::StringPrintf("%llu", (long long)size_kb);
688 android::base::WriteStringToFile(size, sys_ra.c_str());
689 LINFO << "Set readahead_kb: " << size << " on " << sys_ra;
690
691 auto parent = dm.GetParentBlockDeviceByPath(block_device);
692 if (!parent) {
693 return;
694 }
695 block_device = *parent;
696 }
697 }
698
699 //
700 // Mechanism to allow fsck to be triggered by setting ro.preventative_fsck
701 // Introduced to address b/305658663
702 // If the property value is not equal to the flag file contents, trigger
703 // fsck and store the property value in the flag file
704 // If we want to trigger again, simply change the property value
705 //
check_if_preventative_fsck_needed(const FstabEntry & entry)706 static bool check_if_preventative_fsck_needed(const FstabEntry& entry) {
707 const char* flag_file = "/metadata/vold/preventative_fsck";
708 if (entry.mount_point != "/data") return false;
709
710 // Don't error check - both default to empty string, which is OK
711 std::string prop = android::base::GetProperty("ro.preventative_fsck", "");
712 std::string flag;
713 android::base::ReadFileToString(flag_file, &flag);
714 if (prop == flag) return false;
715 // fsck is run immediately, so assume it runs or there is some deeper problem
716 if (!android::base::WriteStringToFile(prop, flag_file))
717 PERROR << "Failed to write file " << flag_file;
718 LINFO << "Run preventative fsck on /data";
719 return true;
720 }
721
722 //
723 // Prepare the filesystem on the given block device to be mounted.
724 //
725 // If the "check" option was given in the fstab record, or it seems that the
726 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
727 //
728 // If needed, we'll also enable (or disable) filesystem features as specified by
729 // the fstab record.
730 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry,const std::string & alt_mount_point="")731 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry,
732 const std::string& alt_mount_point = "") {
733 auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
734 // We need this because sometimes we have legacy symlinks that are
735 // lingering around and need cleaning up.
736 struct stat info;
737 if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
738 unlink(mount_point.c_str());
739 }
740 mkdir(mount_point.c_str(), 0755);
741
742 // Don't need to return error, since it's a salt
743 if (entry.readahead_size_kb != -1) {
744 SetReadAheadSize(blk_device, entry.readahead_size_kb);
745 }
746
747 int fs_stat = 0;
748
749 if (is_extfs(entry.fs_type)) {
750 struct ext4_super_block sb;
751
752 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
753 if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
754 (sb.s_state & EXT4_VALID_FS) == 0) {
755 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
756 << "state flags: 0x" << std::hex << sb.s_state << ", "
757 << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
758 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
759 }
760
761 // Note: quotas should be enabled before running fsck.
762 tune_quota(blk_device, entry, &sb, &fs_stat);
763 } else {
764 return fs_stat;
765 }
766 } else if (is_f2fs(entry.fs_type)) {
767 if (!read_f2fs_superblock(blk_device, &fs_stat)) {
768 return fs_stat;
769 }
770 }
771
772 if (check_if_preventative_fsck_needed(entry) || entry.fs_mgr_flags.check ||
773 (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
774 check_fs(blk_device, entry.fs_type, mount_point, &fs_stat);
775 }
776
777 if (is_extfs(entry.fs_type) &&
778 (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
779 entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
780 struct ext4_super_block sb;
781
782 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
783 tune_reserved_size(blk_device, entry, &sb, &fs_stat);
784 tune_encrypt(blk_device, entry, &sb, &fs_stat);
785 tune_verity(blk_device, entry, &sb, &fs_stat);
786 tune_casefold(blk_device, entry, &sb, &fs_stat);
787 tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
788 }
789 }
790
791 return fs_stat;
792 }
793
794 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)795 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
796 unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
797 if (fd < 0) {
798 return false;
799 }
800
801 int ON = readonly;
802 return ioctl(fd, BLKROSET, &ON) == 0;
803 }
804
805 // Orange state means the device is unlocked, see the following link for details.
806 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()807 bool fs_mgr_is_device_unlocked() {
808 std::string verified_boot_state;
809 if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
810 return verified_boot_state == "orange";
811 }
812 return false;
813 }
814
815 // __mount(): wrapper around the mount() system call which also
816 // sets the underlying block device to read-only if the mount is read-only.
817 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry,bool read_only=false)818 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry,
819 bool read_only = false) {
820 errno = 0;
821 unsigned long mountflags = entry.flags;
822 if (read_only) {
823 mountflags |= MS_RDONLY;
824 }
825 int ret = 0;
826 int save_errno = 0;
827 int gc_allowance = 0;
828 std::string opts;
829 std::string checkpoint_opts;
830 bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0;
831 bool try_f2fs_fallback = false;
832 Timer t;
833
834 do {
835 if (save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)) {
836 PINFO << "Kernel does not support " << checkpoint_opts << ", trying without.";
837 try_f2fs_gc_allowance = false;
838 // Attempt without gc allowance before dropping.
839 try_f2fs_fallback = !try_f2fs_fallback;
840 }
841 if (try_f2fs_gc_allowance) {
842 checkpoint_opts = entry.fs_checkpoint_opts + ":" + std::to_string(gc_allowance) + "%";
843 } else if (try_f2fs_fallback) {
844 checkpoint_opts = entry.fs_checkpoint_opts;
845 } else {
846 checkpoint_opts = "";
847 }
848 opts = entry.fs_options + checkpoint_opts;
849 if (save_errno == EAGAIN) {
850 PINFO << "Retrying mount (source=" << source << ",target=" << target
851 << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret
852 << "(" << save_errno << ")";
853 }
854
855 // Let's get the raw dm target, if it's a symlink, since some existing applications
856 // rely on /proc/mounts to find the userdata's dm target path. Don't break that assumption.
857 std::string real_source;
858 if (!android::base::Realpath(source, &real_source)) {
859 real_source = source;
860 }
861
862 // Clear errno prior to calling `mount`, to avoid clobbering with any errno that
863 // may have been set from prior calls (e.g. realpath).
864 errno = 0;
865 ret = mount(real_source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
866 opts.c_str());
867 save_errno = errno;
868 if (try_f2fs_gc_allowance) gc_allowance += 10;
869 } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) ||
870 (ret && save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)));
871 const char* target_missing = "";
872 const char* source_missing = "";
873 if (save_errno == ENOENT) {
874 if (access(target.c_str(), F_OK)) {
875 target_missing = "(missing)";
876 } else if (access(source.c_str(), F_OK)) {
877 source_missing = "(missing)";
878 }
879 errno = save_errno;
880 }
881 PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
882 << target_missing << ",type=" << entry.fs_type << ")=" << ret;
883 if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
884 fs_mgr_set_blk_ro(source);
885 }
886 if (ret == 0) {
887 android::base::SetProperty("ro.boottime.init.mount." + Basename(target),
888 std::to_string(t.duration().count()));
889 }
890 errno = save_errno;
891 return ret;
892 }
893
fs_match(const std::string & in1,const std::string & in2)894 static bool fs_match(const std::string& in1, const std::string& in2) {
895 if (in1.empty() || in2.empty()) {
896 return false;
897 }
898
899 auto in1_end = in1.size() - 1;
900 while (in1_end > 0 && in1[in1_end] == '/') {
901 in1_end--;
902 }
903
904 auto in2_end = in2.size() - 1;
905 while (in2_end > 0 && in2[in2_end] == '/') {
906 in2_end--;
907 }
908
909 if (in1_end != in2_end) {
910 return false;
911 }
912
913 for (size_t i = 0; i <= in1_end; ++i) {
914 if (in1[i] != in2[i]) {
915 return false;
916 }
917 }
918
919 return true;
920 }
921
should_use_metadata_encryption(const FstabEntry & entry)922 static bool should_use_metadata_encryption(const FstabEntry& entry) {
923 return !entry.metadata_key_dir.empty() && entry.fs_mgr_flags.file_encryption;
924 }
925
926 // Tries to mount any of the consecutive fstab entries that match
927 // the mountpoint of the one given by fstab[start_idx].
928 //
929 // end_idx: On return, will be the last entry that was looked at.
930 // attempted_idx: On return, will indicate which fstab entry
931 // succeeded. In case of failure, it will be the start_idx.
932 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(Fstab & fstab,int start_idx,bool interrupted,int * end_idx,int * attempted_idx)933 static bool mount_with_alternatives(Fstab& fstab, int start_idx, bool interrupted, int* end_idx,
934 int* attempted_idx) {
935 unsigned long i;
936 int mount_errno = 0;
937 bool mounted = false;
938
939 // Hunt down an fstab entry for the same mount point that might succeed.
940 for (i = start_idx;
941 // We required that fstab entries for the same mountpoint be consecutive.
942 i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
943 // Don't try to mount/encrypt the same mount point again.
944 // Deal with alternate entries for the same point which are required to be all following
945 // each other.
946 if (mounted) {
947 LINFO << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
948 << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
949 << fstab[*attempted_idx].fs_type;
950 continue;
951 }
952
953 if (interrupted) {
954 LINFO << __FUNCTION__ << "(): skipping fstab mountpoint=" << fstab[i].mount_point
955 << " rec[" << i << "].fs_type=" << fstab[i].fs_type
956 << " (previously interrupted during encryption step)";
957 continue;
958 }
959
960 // fstab[start_idx].blk_device is already updated to /dev/dm-<N> by
961 // AVB related functions. Copy it from start_idx to the current index i.
962 if ((i != start_idx) && fstab[i].fs_mgr_flags.logical &&
963 fstab[start_idx].fs_mgr_flags.logical &&
964 (fstab[i].logical_partition_name == fstab[start_idx].logical_partition_name)) {
965 fstab[i].blk_device = fstab[start_idx].blk_device;
966 }
967
968 int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
969 if (fs_stat & FS_STAT_INVALID_MAGIC) {
970 LERROR << __FUNCTION__
971 << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
972 << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
973 << "].fs_type=" << fstab[i].fs_type;
974 mount_errno = EINVAL; // continue bootup for metadata encryption
975 continue;
976 }
977
978 int retry_count = 2;
979 const auto read_only = should_use_metadata_encryption(fstab[i]);
980 if (read_only) {
981 LOG(INFO) << "Mount point " << fstab[i].blk_device << " @ " << fstab[i].mount_point
982 << " uses metadata encryption, which means we need to unmount it later and "
983 "call encryptFstab/encrypt_inplace. To avoid file operations before "
984 "encryption, we will mount it as read-only first";
985 }
986 while (retry_count-- > 0) {
987 if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i], read_only)) {
988 *attempted_idx = i;
989 mounted = true;
990 if (i != start_idx) {
991 LINFO << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
992 << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
993 << " instead of " << fstab[start_idx].fs_type;
994 }
995 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
996 mount_errno = 0;
997 break;
998 } else {
999 if (retry_count <= 0) break; // run check_fs only once
1000 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1001 // back up the first errno for crypto decisions.
1002 if (mount_errno == 0) {
1003 mount_errno = errno;
1004 }
1005 // retry after fsck
1006 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
1007 }
1008 }
1009 log_fs_stat(fstab[i].blk_device, fs_stat);
1010 }
1011
1012 /* Adjust i for the case where it was still withing the recs[] */
1013 if (i < fstab.size()) --i;
1014
1015 *end_idx = i;
1016 if (!mounted) {
1017 *attempted_idx = start_idx;
1018 errno = mount_errno;
1019 return false;
1020 }
1021 return true;
1022 }
1023
TranslateExtLabels(FstabEntry * entry)1024 static bool TranslateExtLabels(FstabEntry* entry) {
1025 if (!StartsWith(entry->blk_device, "LABEL=")) {
1026 return true;
1027 }
1028
1029 std::string label = entry->blk_device.substr(6);
1030 if (label.size() > 16) {
1031 LERROR << "FS label is longer than allowed by filesystem";
1032 return false;
1033 }
1034
1035 auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
1036 if (!blockdir) {
1037 LERROR << "couldn't open /dev/block";
1038 return false;
1039 }
1040
1041 struct dirent* ent;
1042 while ((ent = readdir(blockdir.get()))) {
1043 if (ent->d_type != DT_BLK)
1044 continue;
1045
1046 unique_fd fd(TEMP_FAILURE_RETRY(
1047 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
1048 if (fd < 0) {
1049 LERROR << "Cannot open block device /dev/block/" << ent->d_name;
1050 return false;
1051 }
1052
1053 ext4_super_block super_block;
1054 if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
1055 TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
1056 sizeof(super_block)) {
1057 // Probably a loopback device or something else without a readable superblock.
1058 continue;
1059 }
1060
1061 if (super_block.s_magic != EXT4_SUPER_MAGIC) {
1062 LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
1063 continue;
1064 }
1065
1066 if (label == super_block.s_volume_name) {
1067 std::string new_blk_device = "/dev/block/"s + ent->d_name;
1068
1069 LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
1070
1071 entry->blk_device = new_blk_device;
1072 return true;
1073 }
1074 }
1075
1076 return false;
1077 }
1078
1079 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)1080 static int handle_encryptable(const FstabEntry& entry) {
1081 if (should_use_metadata_encryption(entry)) {
1082 if (umount_retry(entry.mount_point)) {
1083 return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
1084 }
1085 PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
1086 return FS_MGR_MNTALL_FAIL;
1087 } else if (entry.fs_mgr_flags.file_encryption) {
1088 LINFO << entry.mount_point << " is file encrypted";
1089 return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
1090 } else {
1091 return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1092 }
1093 }
1094
set_type_property(int status)1095 static void set_type_property(int status) {
1096 switch (status) {
1097 case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED:
1098 case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED:
1099 case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION:
1100 SetProperty("ro.crypto.type", "file");
1101 break;
1102 }
1103 }
1104
call_vdc(const std::vector<std::string> & args,int * ret)1105 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1106 std::vector<char const*> argv;
1107 argv.emplace_back("/system/bin/vdc");
1108 for (auto& arg : args) {
1109 argv.emplace_back(arg.c_str());
1110 }
1111 LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1112 int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1113 if (err != 0) {
1114 LOG(ERROR) << "vdc call failed with error code: " << err;
1115 return false;
1116 }
1117 LOG(DEBUG) << "vdc finished successfully";
1118 if (ret != nullptr) {
1119 *ret = WEXITSTATUS(*ret);
1120 }
1121 return true;
1122 }
1123
fs_mgr_update_logical_partition(FstabEntry * entry)1124 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1125 // Logical partitions are specified with a named partition rather than a
1126 // block device, so if the block device is a path, then it has already
1127 // been updated.
1128 if (entry->blk_device[0] == '/') {
1129 return true;
1130 }
1131
1132 DeviceMapper& dm = DeviceMapper::Instance();
1133 std::string device_name;
1134 if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1135 return false;
1136 }
1137
1138 entry->blk_device = device_name;
1139 return true;
1140 }
1141
SupportsCheckpoint(FstabEntry * entry)1142 static bool SupportsCheckpoint(FstabEntry* entry) {
1143 return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1144 }
1145
1146 class CheckpointManager {
1147 public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false,bool needs_encrypt=false)1148 CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false,
1149 bool needs_encrypt = false)
1150 : needs_checkpoint_(needs_checkpoint),
1151 metadata_encrypted_(metadata_encrypted),
1152 needs_encrypt_(needs_encrypt) {}
1153
NeedsCheckpoint()1154 bool NeedsCheckpoint() {
1155 if (needs_checkpoint_ != UNKNOWN) {
1156 return needs_checkpoint_ == YES;
1157 }
1158 if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1159 LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1160 needs_checkpoint_ = NO;
1161 }
1162 return needs_checkpoint_ == YES;
1163 }
1164
Update(FstabEntry * entry,const std::string & block_device=std::string ())1165 bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1166 if (!SupportsCheckpoint(entry)) {
1167 return true;
1168 }
1169
1170 if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1171 call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1172 }
1173
1174 if (!NeedsCheckpoint()) {
1175 return true;
1176 }
1177
1178 if (!UpdateCheckpointPartition(entry, block_device)) {
1179 LERROR << "Could not set up checkpoint partition, skipping!";
1180 return false;
1181 }
1182
1183 return true;
1184 }
1185
Revert(FstabEntry * entry)1186 bool Revert(FstabEntry* entry) {
1187 if (!SupportsCheckpoint(entry)) {
1188 return true;
1189 }
1190
1191 if (device_map_.find(entry->blk_device) == device_map_.end()) {
1192 return true;
1193 }
1194
1195 std::string bow_device = entry->blk_device;
1196 entry->blk_device = device_map_[bow_device];
1197 device_map_.erase(bow_device);
1198
1199 DeviceMapper& dm = DeviceMapper::Instance();
1200 if (!dm.DeleteDevice("bow")) {
1201 PERROR << "Failed to remove bow device";
1202 }
1203
1204 return true;
1205 }
1206
1207 private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1208 bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1209 if (entry->fs_mgr_flags.checkpoint_fs) {
1210 if (is_f2fs(entry->fs_type)) {
1211 entry->fs_checkpoint_opts = ",checkpoint=disable";
1212 } else {
1213 LERROR << entry->fs_type << " does not implement checkpoints.";
1214 }
1215 } else if (entry->fs_mgr_flags.checkpoint_blk && !needs_encrypt_) {
1216 auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1217 if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1218 unique_fd fd(
1219 TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1220 if (fd < 0) {
1221 PERROR << "Cannot open device " << entry->blk_device;
1222 return false;
1223 }
1224
1225 uint64_t size = get_block_device_size(fd) / 512;
1226 if (!size) {
1227 PERROR << "Cannot get device size";
1228 return false;
1229 }
1230
1231 // dm-bow will not load if size is not a multiple of 4096
1232 // rounding down does not hurt, since ext4 will only use full blocks
1233 size &= ~7;
1234
1235 android::dm::DmTable table;
1236 auto bowTarget =
1237 std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1238
1239 // dm-bow uses the first block as a log record, and relocates the real first block
1240 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1241 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1242 // So if dm-bow's block size, which by default is the block size of the underlying
1243 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1244 // fail as it won't be data_unit_size aligned.
1245 // However, since it is possible there is an already shipping non
1246 // metadata-encrypted device with smaller blocks, we must not change this for
1247 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1248 // v2
1249 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1250 "ro.crypto.dm_default_key.options_format.version",
1251 (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2));
1252 if (options_format_version > 1) {
1253 bowTarget->SetBlockSize(4096);
1254 }
1255
1256 if (!table.AddTarget(std::move(bowTarget))) {
1257 LERROR << "Failed to add bow target";
1258 return false;
1259 }
1260
1261 DeviceMapper& dm = DeviceMapper::Instance();
1262 if (!dm.CreateDevice("bow", table)) {
1263 PERROR << "Failed to create bow device";
1264 return false;
1265 }
1266
1267 std::string name;
1268 if (!dm.GetDmDevicePathByName("bow", &name)) {
1269 PERROR << "Failed to get bow device name";
1270 return false;
1271 }
1272
1273 device_map_[name] = entry->blk_device;
1274 entry->blk_device = name;
1275 }
1276 }
1277 return true;
1278 }
1279
1280 enum { UNKNOWN = -1, NO = 0, YES = 1 };
1281 int needs_checkpoint_;
1282 bool metadata_encrypted_;
1283 bool needs_encrypt_;
1284 std::map<std::string, std::string> device_map_;
1285 };
1286
fs_mgr_find_bow_device(const std::string & block_device)1287 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1288 // handle symlink such as "/dev/block/mapper/userdata"
1289 std::string real_path;
1290 if (!android::base::Realpath(block_device, &real_path)) {
1291 real_path = block_device;
1292 }
1293
1294 struct stat st;
1295 if (stat(real_path.c_str(), &st) < 0) {
1296 PLOG(ERROR) << "stat failed: " << real_path;
1297 return std::string();
1298 }
1299 if (!S_ISBLK(st.st_mode)) {
1300 PLOG(ERROR) << real_path << " is not block device";
1301 return std::string();
1302 }
1303 std::string sys_dir = android::base::StringPrintf("/sys/dev/block/%u:%u", major(st.st_rdev),
1304 minor(st.st_rdev));
1305 for (;;) {
1306 std::string name;
1307 if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1308 PLOG(ERROR) << real_path << " is not dm device";
1309 return std::string();
1310 }
1311
1312 if (name == "bow\n") return sys_dir;
1313
1314 std::string slaves = sys_dir + "/slaves";
1315 std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1316 if (!directory) {
1317 PLOG(ERROR) << "Can't open slave directory " << slaves;
1318 return std::string();
1319 }
1320
1321 int count = 0;
1322 for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1323 if (entry->d_type != DT_LNK) continue;
1324
1325 if (count == 1) {
1326 LOG(ERROR) << "Too many slaves in " << slaves;
1327 return std::string();
1328 }
1329
1330 ++count;
1331 sys_dir = std::string("/sys/block/") + entry->d_name;
1332 }
1333
1334 if (count != 1) {
1335 LOG(ERROR) << "No slave in " << slaves;
1336 return std::string();
1337 }
1338 }
1339 }
1340
1341 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1342
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1343 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1344 DeviceMapper& dm = DeviceMapper::Instance();
1345 if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1346 // This will report failure for us. If we do fail to get the path,
1347 // we leave the device unwrapped.
1348 dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1349 return;
1350 }
1351
1352 unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1353 if (fd < 0) {
1354 PLOG(ERROR) << "open failed: " << entry->blk_device;
1355 return;
1356 }
1357
1358 auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1359 uint64_t sectors = get_block_device_size(fd) / 512;
1360
1361 android::dm::DmTable table;
1362 table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1363
1364 std::string dm_path;
1365 if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1366 LOG(ERROR) << "Failed to create userdata wrapper device";
1367 return;
1368 }
1369 entry->blk_device = dm_path;
1370 }
1371
1372 // When using Virtual A/B, partitions can be backed by /data and mapped with
1373 // device-mapper in first-stage init. This can happen when merging an OTA or
1374 // when using adb remount to house "scratch". In this case, /data cannot be
1375 // mounted directly off the userdata block device, and e2fsck will refuse to
1376 // scan it, because the kernel reports the block device as in-use.
1377 //
1378 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1379 // if the underlying block device already has dependencies. Note that we make
1380 // an exception for metadata-encrypted devices, since dm-default-key is already
1381 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1382 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1383 const auto& block_device =
1384 actual_block_device.empty() ? entry->blk_device : actual_block_device;
1385 if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1386 android::base::StartsWith(block_device, "/dev/block/dm-")) {
1387 return;
1388 }
1389
1390 struct stat st;
1391 if (stat(block_device.c_str(), &st) < 0) {
1392 PLOG(ERROR) << "stat failed: " << block_device;
1393 return;
1394 }
1395
1396 std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1397 major(st.st_rdev), minor(st.st_rdev));
1398 std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1399 if (!dir) {
1400 PLOG(ERROR) << "opendir failed: " << path;
1401 return;
1402 }
1403
1404 struct dirent* d;
1405 bool has_holders = false;
1406 while ((d = readdir(dir.get())) != nullptr) {
1407 if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1408 has_holders = true;
1409 break;
1410 }
1411 }
1412
1413 if (has_holders) {
1414 WrapUserdata(entry, st.st_rdev, block_device);
1415 }
1416 }
1417
IsMountPointMounted(const std::string & mount_point)1418 static bool IsMountPointMounted(const std::string& mount_point) {
1419 // Check if this is already mounted.
1420 Fstab fstab;
1421 if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1422 return false;
1423 }
1424 return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1425 }
1426
fs_mgr_metadata_encryption_in_progress_file_name(const FstabEntry & entry)1427 std::string fs_mgr_metadata_encryption_in_progress_file_name(const FstabEntry& entry) {
1428 return entry.metadata_key_dir + "/in_progress";
1429 }
1430
WasMetadataEncryptionInterrupted(const FstabEntry & entry)1431 bool WasMetadataEncryptionInterrupted(const FstabEntry& entry) {
1432 if (!should_use_metadata_encryption(entry)) return false;
1433 return access(fs_mgr_metadata_encryption_in_progress_file_name(entry).c_str(), R_OK) == 0;
1434 }
1435
LocateFormattableEntry(FstabEntry * const begin,FstabEntry * const end)1436 static FstabEntry* LocateFormattableEntry(FstabEntry* const begin, FstabEntry* const end) {
1437 if (begin == end) {
1438 return nullptr;
1439 }
1440 const bool dev_option_enabled =
1441 android::base::GetBoolProperty("ro.product.build.16k_page.enabled", false);
1442 FstabEntry* f2fs_entry = nullptr;
1443 for (auto iter = begin; iter != end && iter->blk_device == begin->blk_device; iter++) {
1444 if (iter->fs_mgr_flags.formattable) {
1445 if (getpagesize() != 4096 && is_f2fs(iter->fs_type) && dev_option_enabled) {
1446 f2fs_entry = iter;
1447 continue;
1448 }
1449 if (f2fs_entry) {
1450 LOG(INFO) << "Skipping F2FS format for block device " << iter->blk_device << " @ "
1451 << iter->mount_point
1452 << " in non-4K mode for dev option enabled devices, "
1453 "as these devices need to toggle between 4K/16K mode, and F2FS does "
1454 "not support page_size != block_size configuration.";
1455 }
1456 return iter;
1457 }
1458 }
1459 if (f2fs_entry) {
1460 LOG(INFO) << "Using F2FS for " << f2fs_entry->blk_device << " @ " << f2fs_entry->mount_point
1461 << " even though we are in non-4K mode. Device might require a data wipe after "
1462 "going back to 4K mode, as F2FS does not support page_size != block_size";
1463 }
1464 return f2fs_entry;
1465 }
1466
1467 // When multiple fstab records share the same mount_point, it will try to mount each
1468 // one in turn, and ignore any duplicates after a first successful mount.
1469 // Returns -1 on error, and FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1470 int fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1471 int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1472 int error_count = 0;
1473 CheckpointManager checkpoint_manager;
1474 AvbUniquePtr avb_handle(nullptr);
1475 bool wiped = false;
1476 bool userdata_mounted = false;
1477
1478 if (fstab->empty()) {
1479 return FS_MGR_MNTALL_FAIL;
1480 }
1481
1482 bool scratch_can_be_mounted = true;
1483
1484 // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1485 // where top_idx is 0. It will give SIGABRT
1486 for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1487 auto& current_entry = (*fstab)[i];
1488
1489 // If a filesystem should have been mounted in the first stage, we
1490 // ignore it here. With one exception, if the filesystem is
1491 // formattable, then it can only be formatted in the second stage,
1492 // so we allow it to mount here.
1493 if (current_entry.fs_mgr_flags.first_stage_mount &&
1494 (!current_entry.fs_mgr_flags.formattable ||
1495 IsMountPointMounted(current_entry.mount_point))) {
1496 continue;
1497 }
1498
1499 // Don't mount entries that are managed by vold or not for the mount mode.
1500 if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1501 ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1502 ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1503 continue;
1504 }
1505
1506 // Skip swap and raw partition entries such as boot, recovery, etc.
1507 if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1508 current_entry.fs_type == "mtd") {
1509 continue;
1510 }
1511
1512 // Skip mounting the root partition, as it will already have been mounted.
1513 if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1514 if ((current_entry.flags & MS_RDONLY) != 0) {
1515 fs_mgr_set_blk_ro(current_entry.blk_device);
1516 }
1517 continue;
1518 }
1519
1520 // Terrible hack to make it possible to remount /data.
1521 // TODO: refactor fs_mgr_mount_all and get rid of this.
1522 if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1523 continue;
1524 }
1525
1526 // Translate LABEL= file system labels into block devices.
1527 if (is_extfs(current_entry.fs_type)) {
1528 if (!TranslateExtLabels(¤t_entry)) {
1529 LERROR << "Could not translate label to block device";
1530 continue;
1531 }
1532 }
1533
1534 if (current_entry.fs_mgr_flags.logical) {
1535 if (!fs_mgr_update_logical_partition(¤t_entry)) {
1536 LERROR << "Could not set up logical partition, skipping!";
1537 continue;
1538 }
1539 }
1540
1541 WrapUserdataIfNeeded(¤t_entry);
1542
1543 if (!checkpoint_manager.Update(¤t_entry)) {
1544 continue;
1545 }
1546
1547 if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1548 LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1549 continue;
1550 }
1551
1552 if (current_entry.fs_mgr_flags.avb) {
1553 if (!avb_handle) {
1554 avb_handle = AvbHandle::Open();
1555 if (!avb_handle) {
1556 LERROR << "Failed to open AvbHandle";
1557 set_type_property(encryptable);
1558 return FS_MGR_MNTALL_FAIL;
1559 }
1560 }
1561 if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) ==
1562 AvbHashtreeResult::kFail) {
1563 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1564 << ", skipping!";
1565 // Skips mounting the device.
1566 continue;
1567 }
1568 } else if (!current_entry.avb_keys.empty()) {
1569 if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) {
1570 LERROR << "Failed to set up AVB on standalone partition: "
1571 << current_entry.mount_point << ", skipping!";
1572 // Skips mounting the device.
1573 continue;
1574 }
1575 }
1576
1577 int last_idx_inspected = -1;
1578 const int top_idx = i;
1579 int attempted_idx = -1;
1580
1581 bool encryption_interrupted = WasMetadataEncryptionInterrupted(current_entry);
1582 bool mret = mount_with_alternatives(*fstab, i, encryption_interrupted, &last_idx_inspected,
1583 &attempted_idx);
1584 auto& attempted_entry = (*fstab)[attempted_idx];
1585 i = last_idx_inspected;
1586 int mount_errno = errno;
1587
1588 // Handle success and deal with encryptability.
1589 if (mret) {
1590 int status = handle_encryptable(attempted_entry);
1591
1592 if (status == FS_MGR_MNTALL_FAIL) {
1593 // Fatal error - no point continuing.
1594 return status;
1595 }
1596
1597 if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1598 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1599 // Log and continue
1600 LERROR << "Only one encryptable/encrypted partition supported";
1601 }
1602 encryptable = status;
1603 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1604 fs_mgr_set_blk_ro(attempted_entry.blk_device, false);
1605 if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1606 attempted_entry.mount_point, wiped ? "true" : "false",
1607 attempted_entry.fs_type,
1608 attempted_entry.fs_mgr_flags.is_zoned ? "true" : "false",
1609 std::to_string(attempted_entry.length),
1610 android::base::Join(attempted_entry.user_devices, ' '),
1611 android::base::Join(attempted_entry.device_aliased, ' ')},
1612 nullptr)) {
1613 LERROR << "Encryption failed";
1614 set_type_property(encryptable);
1615 return FS_MGR_MNTALL_FAIL;
1616 }
1617 }
1618 }
1619
1620 if (current_entry.mount_point == "/data") {
1621 userdata_mounted = true;
1622 }
1623
1624 MountOverlayfs(attempted_entry, &scratch_can_be_mounted);
1625
1626 // Success! Go get the next one.
1627 continue;
1628 }
1629 auto formattable_entry =
1630 LocateFormattableEntry(fstab->data() + top_idx, fstab->data() + fstab->size());
1631 // Mounting failed, understand why and retry.
1632 wiped = partition_wiped(current_entry.blk_device.c_str());
1633 if (mount_errno != EBUSY && mount_errno != EACCES &&
1634 current_entry.fs_mgr_flags.formattable && (wiped || encryption_interrupted)) {
1635 // current_entry and attempted_entry point at the same partition, but sometimes
1636 // at two different lines in the fstab. Use current_entry for formatting
1637 // as that is the preferred one.
1638 if (wiped)
1639 LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1640 << " is wiped and " << current_entry.mount_point << " "
1641 << current_entry.fs_type << " is formattable. Format it.";
1642 if (encryption_interrupted)
1643 LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1644 << " was interrupted during encryption and " << current_entry.mount_point
1645 << " " << current_entry.fs_type << " is formattable. Format it.";
1646
1647 checkpoint_manager.Revert(¤t_entry);
1648
1649 // EncryptInplace will be used when vdc gives an error or needs to format partitions
1650 // other than /data
1651 if (should_use_metadata_encryption(current_entry) &&
1652 current_entry.mount_point == "/data") {
1653
1654 // vdc->Format requires "ro.crypto.type" to set an encryption flag
1655 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1656 set_type_property(encryptable);
1657
1658 if (!call_vdc({"cryptfs", "encryptFstab", formattable_entry->blk_device,
1659 formattable_entry->mount_point, "true" /* shouldFormat */,
1660 formattable_entry->fs_type,
1661 formattable_entry->fs_mgr_flags.is_zoned ? "true" : "false",
1662 std::to_string(formattable_entry->length),
1663 android::base::Join(formattable_entry->user_devices, ' '),
1664 android::base::Join(formattable_entry->device_aliased, ' ')},
1665 nullptr)) {
1666 LERROR << "Encryption failed";
1667 } else {
1668 userdata_mounted = true;
1669 continue;
1670 }
1671 }
1672
1673 if (fs_mgr_do_format(*formattable_entry) == 0) {
1674 // Let's replay the mount actions.
1675 i = top_idx - 1;
1676 continue;
1677 } else {
1678 LERROR << __FUNCTION__ << "(): Format failed. "
1679 << "Suggest recovery...";
1680 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1681 continue;
1682 }
1683 }
1684
1685 // mount(2) returned an error, handle the encryptable/formattable case.
1686 if (mount_errno != EBUSY && mount_errno != EACCES && !encryption_interrupted &&
1687 should_use_metadata_encryption(attempted_entry)) {
1688 if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1689 attempted_entry.mount_point,
1690 current_entry.fs_mgr_flags.is_zoned ? "true" : "false",
1691 android::base::Join(current_entry.user_devices, ' ')},
1692 nullptr)) {
1693 ++error_count;
1694 } else if (current_entry.mount_point == "/data") {
1695 userdata_mounted = true;
1696 }
1697 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1698 continue;
1699 } else {
1700 // fs_options might be null so we cannot use PERROR << directly.
1701 // Use StringPrintf to output "(null)" instead.
1702 if (attempted_entry.fs_mgr_flags.no_fail) {
1703 PERROR << android::base::StringPrintf(
1704 "Ignoring failure to mount an un-encryptable, interrupted, or wiped "
1705 "partition on %s at %s options: %s",
1706 attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1707 attempted_entry.fs_options.c_str());
1708 } else {
1709 PERROR << android::base::StringPrintf(
1710 "Failed to mount an un-encryptable, interrupted, or wiped partition "
1711 "on %s at %s options: %s",
1712 attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1713 attempted_entry.fs_options.c_str());
1714 ++error_count;
1715 }
1716 continue;
1717 }
1718 }
1719 if (userdata_mounted) {
1720 Fstab mounted_fstab;
1721 if (!ReadFstabFromFile("/proc/mounts", &mounted_fstab)) {
1722 LOG(ERROR) << "Could't load fstab from /proc/mounts , unable to set ro.fstype.data . "
1723 "init.rc actions depending on this prop would not run, boot might fail.";
1724 } else {
1725 for (const auto& entry : mounted_fstab) {
1726 if (entry.mount_point == "/data") {
1727 android::base::SetProperty("ro.fstype.data", entry.fs_type);
1728 }
1729 }
1730 }
1731 }
1732
1733 set_type_property(encryptable);
1734
1735 if (error_count) {
1736 return FS_MGR_MNTALL_FAIL;
1737 } else {
1738 return encryptable;
1739 }
1740 }
1741
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1742 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1743 AvbUniquePtr avb_handle(nullptr);
1744 int ret = FsMgrUmountStatus::SUCCESS;
1745 for (auto& current_entry : *fstab) {
1746 if (!IsMountPointMounted(current_entry.mount_point)) {
1747 continue;
1748 }
1749
1750 if (umount(current_entry.mount_point.c_str()) == -1) {
1751 PERROR << "Failed to umount " << current_entry.mount_point;
1752 ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1753 continue;
1754 }
1755
1756 if (current_entry.fs_mgr_flags.logical) {
1757 if (!fs_mgr_update_logical_partition(¤t_entry)) {
1758 LERROR << "Could not get logical partition blk_device, skipping!";
1759 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1760 continue;
1761 }
1762 }
1763
1764 if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1765 if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) {
1766 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1767 ret |= FsMgrUmountStatus::ERROR_VERITY;
1768 continue;
1769 }
1770 }
1771 }
1772 return ret;
1773 }
1774
1775 // wrapper to __mount() and expects a fully prepared fstab_rec,
1776 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & alt_mount_point)1777 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {
1778 // First check the filesystem if requested.
1779 if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1780 LERROR << "Skipping mounting '" << entry.blk_device << "'";
1781 }
1782
1783 auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
1784
1785 // Run fsck if needed
1786 int ret = prepare_fs_for_mount(entry.blk_device, entry, mount_point);
1787 // Wiped case doesn't require to try __mount below.
1788 if (ret & FS_STAT_INVALID_MAGIC) {
1789 return FS_MGR_DOMNT_FAILED;
1790 }
1791
1792 ret = __mount(entry.blk_device, mount_point, entry);
1793 if (ret) {
1794 ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1795 }
1796
1797 return ret;
1798 }
1799
1800 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1801 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,int needs_checkpoint,bool needs_encrypt)1802 int fs_mgr_do_mount(Fstab* fstab, const std::string& n_name, const std::string& n_blk_device,
1803 int needs_checkpoint, bool needs_encrypt) {
1804 int mount_errors = 0;
1805 int first_mount_errno = 0;
1806 std::string mount_point;
1807 CheckpointManager checkpoint_manager(needs_checkpoint, true, needs_encrypt);
1808 AvbUniquePtr avb_handle(nullptr);
1809
1810 if (!fstab) {
1811 return FS_MGR_DOMNT_FAILED;
1812 }
1813
1814 for (auto& fstab_entry : *fstab) {
1815 if (!fs_match(fstab_entry.mount_point, n_name)) {
1816 continue;
1817 }
1818
1819 // We found our match.
1820 // If this swap or a raw partition, report an error.
1821 if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1822 fstab_entry.fs_type == "mtd") {
1823 LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1824 << n_blk_device;
1825 return FS_MGR_DOMNT_FAILED;
1826 }
1827
1828 if (fstab_entry.fs_mgr_flags.logical) {
1829 if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1830 LERROR << "Could not set up logical partition, skipping!";
1831 continue;
1832 }
1833 }
1834
1835 WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1836
1837 if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1838 LERROR << "Could not set up checkpoint partition, skipping!";
1839 continue;
1840 }
1841
1842 // First check the filesystem if requested.
1843 if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1844 LERROR << "Skipping mounting '" << n_blk_device << "'";
1845 continue;
1846 }
1847
1848 // Now mount it where requested */
1849 mount_point = fstab_entry.mount_point;
1850
1851 int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point);
1852
1853 if (fstab_entry.fs_mgr_flags.avb) {
1854 if (!avb_handle) {
1855 avb_handle = AvbHandle::Open();
1856 if (!avb_handle) {
1857 LERROR << "Failed to open AvbHandle";
1858 return FS_MGR_DOMNT_FAILED;
1859 }
1860 }
1861 if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1862 AvbHashtreeResult::kFail) {
1863 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1864 << ", skipping!";
1865 // Skips mounting the device.
1866 continue;
1867 }
1868 } else if (!fstab_entry.avb_keys.empty()) {
1869 if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1870 LERROR << "Failed to set up AVB on standalone partition: "
1871 << fstab_entry.mount_point << ", skipping!";
1872 // Skips mounting the device.
1873 continue;
1874 }
1875 }
1876
1877 int retry_count = 2;
1878 while (retry_count-- > 0) {
1879 if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1880 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1881 log_fs_stat(fstab_entry.blk_device, fs_stat);
1882 return FS_MGR_DOMNT_SUCCESS;
1883 } else {
1884 if (retry_count <= 0) break; // run check_fs only once
1885 if (!first_mount_errno) first_mount_errno = errno;
1886 mount_errors++;
1887 PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point
1888 << " with fstype " << fstab_entry.fs_type;
1889 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1890 // try again after fsck
1891 check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat);
1892 }
1893 }
1894 log_fs_stat(fstab_entry.blk_device, fs_stat);
1895 }
1896
1897 // Reach here means the mount attempt fails.
1898 if (mount_errors) {
1899 PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
1900 if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
1901 } else {
1902 // We didn't find a match, say so and return an error.
1903 LERROR << "Cannot find mount point " << n_name << " in fstab";
1904 }
1905 return FS_MGR_DOMNT_FAILED;
1906 }
1907
ConfigureIoScheduler(const std::string & device_path)1908 static bool ConfigureIoScheduler(const std::string& device_path) {
1909 if (!StartsWith(device_path, "/dev/")) {
1910 LERROR << __func__ << ": invalid argument " << device_path;
1911 return false;
1912 }
1913
1914 const std::string iosched_path =
1915 StringPrintf("/sys/block/%s/queue/scheduler", Basename(device_path).c_str());
1916 unique_fd iosched_fd(open(iosched_path.c_str(), O_RDWR | O_CLOEXEC));
1917 if (iosched_fd.get() == -1) {
1918 PERROR << __func__ << ": failed to open " << iosched_path;
1919 return false;
1920 }
1921
1922 // Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support
1923 // 'noop' and 'none'. Kernels v5.0 and later only support 'none'.
1924 static constexpr const std::array<std::string_view, 2> kNoScheduler = {"none", "noop"};
1925
1926 for (const std::string_view& scheduler : kNoScheduler) {
1927 int ret = write(iosched_fd.get(), scheduler.data(), scheduler.size());
1928 if (ret > 0) {
1929 return true;
1930 }
1931 }
1932
1933 PERROR << __func__ << ": failed to write to " << iosched_path;
1934 return false;
1935 }
1936
InstallZramDevice(const std::string & device)1937 static bool InstallZramDevice(const std::string& device) {
1938 if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
1939 PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
1940 return false;
1941 }
1942 LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
1943 return true;
1944 }
1945
1946 /*
1947 * Zram backing device can be created as long as /data has at least `size`
1948 * free space, though we may want to leave some extra space for the remaining
1949 * boot process and other system activities.
1950 */
ZramBackingDeviceSizeAvailable(off64_t size)1951 static bool ZramBackingDeviceSizeAvailable(off64_t size) {
1952 constexpr const char* data_path = "/data";
1953 uint64_t min_free_mb =
1954 android::base::GetUintProperty<uint64_t>("ro.zram_backing_device_min_free_mb", 0);
1955
1956 // No min_free property. Skip the available size check.
1957 if (min_free_mb == 0) return true;
1958
1959 struct statvfs vst;
1960 if (statvfs(data_path, &vst) < 0) {
1961 PERROR << "Cannot check available space: " << data_path;
1962 return false;
1963 }
1964
1965 uint64_t size_free = static_cast<uint64_t>(vst.f_bfree) * vst.f_frsize;
1966 uint64_t size_required = size + (min_free_mb * 1024 * 1024);
1967 if (size_required > size_free) {
1968 PERROR << "Free space is not enough for zram backing device: " << size_required << " > "
1969 << size_free;
1970 return false;
1971 }
1972 return true;
1973 }
1974
PrepareZramBackingDevice(off64_t size)1975 static bool PrepareZramBackingDevice(off64_t size) {
1976
1977 constexpr const char* file_path = "/data/per_boot/zram_swap";
1978 if (size == 0) return true;
1979
1980 // Check available space
1981 if (!ZramBackingDeviceSizeAvailable(size)) {
1982 PERROR << "No space for target path: " << file_path;
1983 return false;
1984 }
1985 // Prepare target path
1986 unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
1987 if (target_fd.get() == -1) {
1988 PERROR << "Cannot open target path: " << file_path;
1989 return false;
1990 }
1991 if (fallocate(target_fd.get(), 0, 0, size) < 0) {
1992 PERROR << "Cannot truncate target path: " << file_path;
1993 unlink(file_path);
1994 return false;
1995 }
1996
1997 // Allocate loop device and attach it to file_path.
1998 LoopControl loop_control;
1999 std::string loop_device;
2000 if (!loop_control.Attach(target_fd.get(), 5s, &loop_device)) {
2001 return false;
2002 }
2003
2004 ConfigureIoScheduler(loop_device);
2005
2006 if (auto ret = ConfigureQueueDepth(loop_device, "/"); !ret.ok()) {
2007 LOG(DEBUG) << "Failed to config queue depth: " << ret.error().message();
2008 }
2009
2010 // set block size & direct IO
2011 unique_fd loop_fd(TEMP_FAILURE_RETRY(open(loop_device.c_str(), O_RDWR | O_CLOEXEC)));
2012 if (loop_fd.get() == -1) {
2013 PERROR << "Cannot open " << loop_device;
2014 return false;
2015 }
2016 if (!LoopControl::SetAutoClearStatus(loop_fd.get())) {
2017 PERROR << "Failed set LO_FLAGS_AUTOCLEAR for " << loop_device;
2018 }
2019 if (!LoopControl::EnableDirectIo(loop_fd.get())) {
2020 return false;
2021 }
2022
2023 return InstallZramDevice(loop_device);
2024 }
2025
2026 // Check whether it is in recovery mode or not.
2027 //
2028 // This is a copy from util.h in libinit.
2029 //
2030 // You need to check ALL relevant executables calling this function has access to
2031 // "/system/bin/recovery" (including SELinux permissions and UNIX permissions).
IsRecovery()2032 static bool IsRecovery() {
2033 return access("/system/bin/recovery", F_OK) == 0;
2034 }
2035
2036 // Decides whether swapon_all should skip setting up zram.
2037 //
2038 // swapon_all is deprecated to setup zram after mmd is launched. swapon_all command should skip
2039 // setting up zram if mmd is enabled by AConfig flag and mmd is configured to set up zram.
ShouldSkipZramSetup()2040 static bool ShouldSkipZramSetup() {
2041 if (IsRecovery()) {
2042 // swapon_all continue to support zram setup in recovery mode after mmd launch.
2043 return false;
2044 }
2045
2046 // Since AConfig does not support to load the status from init, we use the system property
2047 // "mmd.enabled_aconfig" copied from AConfig by `mmd --set-property` command to check whether
2048 // mmd is enabled or not.
2049 //
2050 // aconfig_prop can have either of:
2051 //
2052 // * "true": mmd is enabled by AConfig
2053 // * "false": mmd is disabled by AConfig
2054 // * "": swapon_all is executed before `mmd --set-property`
2055 //
2056 // During mmd being launched, we request OEMs, who decided to use mmd to set up zram, to execute
2057 // swapon_all after "mmd.enabled_aconfig" system property is initialized. Init can wait the
2058 // "mmd.enabled_aconfig" initialization by `property:mmd.enabled_aconfig=*` trigger.
2059 //
2060 // After mmd is launched, we deprecate swapon_all command for setting up zram but recommend to
2061 // use `mmd --setup-zram`. It means that the system should call swapon_all with fstab with no
2062 // zram entry or the system should never call swapon_all.
2063 //
2064 // As a transition, OEMs can use the deprecated swapon_all to set up zram for several versions
2065 // after mmd is launched. swapon_all command will show warning logs during the transition
2066 // period.
2067 const std::string aconfig_prop = android::base::GetProperty("mmd.enabled_aconfig", "");
2068 const bool is_zram_managed_by_mmd = android::base::GetBoolProperty("mmd.zram.enabled", false);
2069 if (aconfig_prop == "true" && is_zram_managed_by_mmd) {
2070 // Skip zram setup since zram is managed by mmd.
2071 //
2072 // We expect swapon_all is not called when mmd is enabled by AConfig flag.
2073 // TODO: b/394484720 - Make this log as warning after mmd is launched.
2074 LINFO << "Skip setting up zram because mmd sets up zram instead.";
2075 return true;
2076 }
2077
2078 if (aconfig_prop == "false") {
2079 // It is expected to swapon_all command to set up zram before mmd is launched.
2080 LOG(DEBUG) << "mmd is not launched yet. swapon_all setup zram.";
2081 } else if (is_zram_managed_by_mmd) {
2082 // This branch is for aconfig_prop == ""
2083
2084 // On the system which uses mmd to setup zram, swapon_all must be executed after
2085 // mmd.enabled_aconfig is initialized.
2086 LERROR << "swapon_all must be called after mmd.enabled_aconfig system "
2087 "property is initialized";
2088 // Since we don't know whether mmd is enabled on the system or not, we fall back to enable
2089 // zram from swapon_all conservatively. Both swapon_all and `mmd --setup-zram` command
2090 // trying to set up zram does not break the system but just either ends up failing.
2091 } else {
2092 // We show the warning log for swapon_all deprecation on both aconfig_prop is "true" and ""
2093 // cases.
2094 // If mmd is enabled, swapon_all is already deprecated.
2095 // If aconfig_prop is "", we don't know whether mmd is launched or not. But we show the
2096 // deprecation warning log conservatively.
2097 LWARNING << "mmd is recommended to set up zram over swapon_all command with "
2098 "fstab entry.";
2099 }
2100
2101 return false;
2102 }
2103
fs_mgr_swapon_all(const Fstab & fstab)2104 bool fs_mgr_swapon_all(const Fstab& fstab) {
2105 bool ret = true;
2106 for (const auto& entry : fstab) {
2107 // Skip non-swap entries.
2108 if (entry.fs_type != "swap") {
2109 continue;
2110 }
2111
2112 if (entry.zram_size > 0) {
2113 if (ShouldSkipZramSetup()) {
2114 continue;
2115 }
2116
2117 if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) {
2118 LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'";
2119 }
2120 // A zram_size was specified, so we need to configure the
2121 // device. There is no point in having multiple zram devices
2122 // on a system (all the memory comes from the same pool) so
2123 // we can assume the device number is 0.
2124 if (entry.max_comp_streams >= 0) {
2125 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2126 fopen(ZRAM_CONF_MCS, "re"), fclose};
2127 if (zram_mcs_fp == nullptr) {
2128 LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2129 ret = false;
2130 continue;
2131 }
2132 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2133 }
2134
2135 auto zram_fp =
2136 std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2137 if (zram_fp == nullptr) {
2138 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2139 ret = false;
2140 continue;
2141 }
2142 fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2143 }
2144
2145 if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2146 LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2147 ret = false;
2148 continue;
2149 }
2150
2151 // Initialize the swap area.
2152 const char* mkswap_argv[2] = {
2153 MKSWAP_BIN,
2154 entry.blk_device.c_str(),
2155 };
2156 int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2157 LOG_KLOG, false, nullptr);
2158 if (err) {
2159 LERROR << "mkswap failed for " << entry.blk_device;
2160 ret = false;
2161 continue;
2162 }
2163
2164 /* If -1, then no priority was specified in fstab, so don't set
2165 * SWAP_FLAG_PREFER or encode the priority */
2166 int flags = 0;
2167 if (entry.swap_prio >= 0) {
2168 flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2169 flags |= SWAP_FLAG_PREFER;
2170 } else {
2171 flags = 0;
2172 }
2173 err = swapon(entry.blk_device.c_str(), flags);
2174 if (err) {
2175 LERROR << "swapon failed for " << entry.blk_device;
2176 ret = false;
2177 }
2178 }
2179
2180 return ret;
2181 }
2182
fs_mgr_is_verity_enabled(const FstabEntry & entry)2183 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2184 if (!entry.fs_mgr_flags.avb) {
2185 return false;
2186 }
2187
2188 DeviceMapper& dm = DeviceMapper::Instance();
2189
2190 std::string mount_point = GetVerityDeviceName(entry);
2191 if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2192 return false;
2193 }
2194
2195 std::vector<DeviceMapper::TargetInfo> table;
2196 if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2197 return false;
2198 }
2199
2200 auto status = table[0].data.c_str();
2201 if (*status == 'C' || *status == 'V') {
2202 return true;
2203 }
2204
2205 return false;
2206 }
2207
fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry & entry)2208 std::optional<HashtreeInfo> fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry& entry) {
2209 if (!entry.fs_mgr_flags.avb) {
2210 return {};
2211 }
2212 DeviceMapper& dm = DeviceMapper::Instance();
2213 std::string device = GetVerityDeviceName(entry);
2214
2215 std::vector<DeviceMapper::TargetInfo> table;
2216 if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2217 return {};
2218 }
2219 for (const auto& target : table) {
2220 if (strcmp(target.spec.target_type, "verity") != 0) {
2221 continue;
2222 }
2223
2224 // The format is stable for dm-verity version 0 & 1. And the data is expected to have
2225 // the fixed format:
2226 // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks>
2227 // <hash_start_block> <algorithm> <digest> <salt>
2228 // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
2229
2230 std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n");
2231 if (tokens[0] != "0" && tokens[0] != "1") {
2232 LOG(WARNING) << "Unrecognized device mapper version in " << target.data;
2233 }
2234
2235 // Hashtree algorithm & root digest are the 8th & 9th token in the output.
2236 return HashtreeInfo{
2237 .algorithm = android::base::Trim(tokens[7]),
2238 .root_digest = android::base::Trim(tokens[8]),
2239 .check_at_most_once = target.data.find("check_at_most_once") != std::string::npos};
2240 }
2241
2242 return {};
2243 }
2244
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2245 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2246 auto hashtree_info = fs_mgr_get_hashtree_info(entry);
2247 if (!hashtree_info) return false;
2248 return hashtree_info->check_at_most_once;
2249 }
2250
fs_mgr_get_super_partition_name(int slot)2251 std::string fs_mgr_get_super_partition_name(int slot) {
2252 // Devices upgrading to dynamic partitions are allowed to specify a super
2253 // partition name. This includes cuttlefish, which is a non-A/B device.
2254 std::string super_partition;
2255 if (fs_mgr_get_boot_config("force_super_partition", &super_partition)) {
2256 return super_partition;
2257 }
2258 if (fs_mgr_get_boot_config("super_partition", &super_partition)) {
2259 if (fs_mgr_get_slot_suffix().empty()) {
2260 return super_partition;
2261 }
2262 std::string suffix;
2263 if (slot == 0) {
2264 suffix = "_a";
2265 } else if (slot == 1) {
2266 suffix = "_b";
2267 } else if (slot == -1) {
2268 suffix = fs_mgr_get_slot_suffix();
2269 }
2270 return super_partition + suffix;
2271 }
2272 return LP_METADATA_DEFAULT_PARTITION_NAME;
2273 }
2274
fs_mgr_create_canonical_mount_point(const std::string & mount_point)2275 bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) {
2276 auto saved_errno = errno;
2277 auto ok = true;
2278 auto created_mount_point = !mkdir(mount_point.c_str(), 0755);
2279 std::string real_mount_point;
2280 if (!Realpath(mount_point, &real_mount_point)) {
2281 ok = false;
2282 PERROR << "failed to realpath(" << mount_point << ")";
2283 } else if (mount_point != real_mount_point) {
2284 ok = false;
2285 LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> "
2286 << real_mount_point;
2287 }
2288 if (!ok && created_mount_point) {
2289 rmdir(mount_point.c_str());
2290 }
2291 errno = saved_errno;
2292 return ok;
2293 }
2294
fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry & entry)2295 bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) {
2296 const auto overlayfs_check_result = android::fs_mgr::CheckOverlayfs();
2297 if (!overlayfs_check_result.supported) {
2298 LERROR << __FUNCTION__ << "(): kernel does not support overlayfs";
2299 return false;
2300 }
2301
2302 #if ALLOW_ADBD_DISABLE_VERITY == 0
2303 // Allowlist the mount point if user build.
2304 static const std::vector<std::string> kAllowedPaths = {
2305 "/odm", "/odm_dlkm", "/oem", "/product",
2306 "/system_dlkm", "/system_ext", "/vendor", "/vendor_dlkm",
2307 };
2308 static const std::vector<std::string> kAllowedPrefixes = {
2309 "/mnt/product/",
2310 "/mnt/vendor/",
2311 };
2312 if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(),
2313 [&entry](const auto& path) -> bool {
2314 return entry.mount_point == path ||
2315 StartsWith(entry.mount_point, path + "/");
2316 }) &&
2317 std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(),
2318 [&entry](const auto& prefix) -> bool {
2319 return entry.mount_point != prefix &&
2320 StartsWith(entry.mount_point, prefix);
2321 })) {
2322 LERROR << __FUNCTION__
2323 << "(): mount point is forbidden on user build: " << entry.mount_point;
2324 return false;
2325 }
2326 #endif // ALLOW_ADBD_DISABLE_VERITY == 0
2327
2328 if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) {
2329 return false;
2330 }
2331
2332 auto lowerdir = entry.lowerdir;
2333 if (entry.fs_mgr_flags.overlayfs_remove_missing_lowerdir) {
2334 bool removed_any = false;
2335 std::vector<std::string> lowerdirs;
2336 for (const auto& dir : android::base::Split(entry.lowerdir, ":")) {
2337 if (access(dir.c_str(), F_OK)) {
2338 PWARNING << __FUNCTION__ << "(): remove missing lowerdir '" << dir << "'";
2339 removed_any = true;
2340 } else {
2341 lowerdirs.push_back(dir);
2342 }
2343 }
2344 if (removed_any) {
2345 lowerdir = android::base::Join(lowerdirs, ":");
2346 }
2347 }
2348
2349 const auto options = "lowerdir=" + lowerdir + overlayfs_check_result.mount_flags;
2350
2351 // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't
2352 // confuse this with adb remount overlay, whose device name is "overlay".
2353 // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to
2354 // back the filesystem. However the device name would be shown in /proc/mounts.
2355 auto source = "overlay-" + entry.blk_device;
2356 auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," +
2357 options + ")=";
2358 auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME,
2359 options.c_str());
2360 if (ret) {
2361 PERROR << report << ret;
2362 return false;
2363 }
2364 LINFO << report << ret;
2365 return true;
2366 }
2367
fs_mgr_load_verity_state(int * mode)2368 bool fs_mgr_load_verity_state(int* mode) {
2369 // unless otherwise specified, use EIO mode.
2370 *mode = VERITY_MODE_EIO;
2371
2372 // The bootloader communicates verity mode via the kernel commandline
2373 std::string verity_mode;
2374 if (!fs_mgr_get_boot_config("veritymode", &verity_mode)) {
2375 return false;
2376 }
2377
2378 if (verity_mode == "enforcing") {
2379 *mode = VERITY_MODE_DEFAULT;
2380 } else if (verity_mode == "logging") {
2381 *mode = VERITY_MODE_LOGGING;
2382 }
2383
2384 return true;
2385 }
2386
fs_mgr_filesystem_available(const std::string & filesystem)2387 bool fs_mgr_filesystem_available(const std::string& filesystem) {
2388 std::string filesystems;
2389 if (!android::base::ReadFileToString("/proc/filesystems", &filesystems)) return false;
2390 return filesystems.find("\t" + filesystem + "\n") != std::string::npos;
2391 }
2392
fs_mgr_get_context(const std::string & mount_point)2393 std::string fs_mgr_get_context(const std::string& mount_point) {
2394 char* ctx = nullptr;
2395 if (getfilecon(mount_point.c_str(), &ctx) == -1) {
2396 PERROR << "getfilecon " << mount_point;
2397 return "";
2398 }
2399
2400 std::string context(ctx);
2401 free(ctx);
2402 return context;
2403 }
2404
fs_mgr_f2fs_ideal_block_size()2405 int fs_mgr_f2fs_ideal_block_size() {
2406 #if defined(__i386__) || defined(__x86_64__)
2407 return 4096;
2408 #else
2409 return getpagesize();
2410 #endif
2411 }
2412
2413 namespace android {
2414 namespace fs_mgr {
2415
CheckOverlayfs()2416 OverlayfsCheckResult CheckOverlayfs() {
2417 if (!fs_mgr_filesystem_available("overlay")) {
2418 return {.supported = false};
2419 }
2420
2421 struct utsname uts;
2422 if (uname(&uts) == -1) {
2423 return {.supported = false};
2424 }
2425 int major, minor;
2426 if (sscanf(uts.release, "%d.%d", &major, &minor) != 2) {
2427 return {.supported = false};
2428 }
2429
2430 if (!use_override_creds) {
2431 if (major > 5 || (major == 5 && minor >= 15)) {
2432 return {.supported = true, ",userxattr"};
2433 }
2434 return {.supported = true};
2435 }
2436
2437 // Overlayfs available in the kernel, and patched for override_creds?
2438 if (access("/sys/module/overlay/parameters/override_creds", F_OK) == 0) {
2439 auto mount_flags = ",override_creds=off"s;
2440 if (major > 5 || (major == 5 && minor >= 15)) {
2441 mount_flags += ",userxattr"s;
2442 }
2443 return {.supported = true, .mount_flags = mount_flags};
2444 }
2445 if (major < 4 || (major == 4 && minor <= 3)) {
2446 return {.supported = true};
2447 }
2448 return {.supported = false};
2449 }
2450
2451 } // namespace fs_mgr
2452 } // namespace android
2453