• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <linux/ioctl.h>
23 #include <memory.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/capability.h>
29 #include <sys/epoll.h>
30 #include <sys/inotify.h>
31 #include <sys/ioctl.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35 
36 #include <android_companion_virtualdevice_flags.h>
37 
38 #define LOG_TAG "EventHub"
39 
40 // #define LOG_NDEBUG 0
41 #include <android-base/file.h>
42 #include <android-base/stringprintf.h>
43 #include <android-base/strings.h>
44 #include <cutils/properties.h>
45 #include <ftl/enum.h>
46 #include <input/InputEventLabels.h>
47 #include <input/KeyCharacterMap.h>
48 #include <input/KeyLayoutMap.h>
49 #include <input/PrintTools.h>
50 #include <input/VirtualKeyMap.h>
51 #include <openssl/sha.h>
52 #include <statslog.h>
53 #include <utils/Errors.h>
54 #include <utils/Log.h>
55 #include <utils/Timers.h>
56 
57 #include <filesystem>
58 #include <optional>
59 #include <regex>
60 #include <utility>
61 
62 #include "EventHub.h"
63 
64 #include "KeyCodeClassifications.h"
65 
66 #define INDENT "  "
67 #define INDENT2 "    "
68 #define INDENT3 "      "
69 
70 using android::base::StringPrintf;
71 
72 namespace android {
73 
74 namespace vd_flags = android::companion::virtualdevice::flags;
75 
76 using namespace ftl::flag_operators;
77 
78 static const char* DEVICE_INPUT_PATH = "/dev/input";
79 // v4l2 devices go directly into /dev
80 static const char* DEVICE_PATH = "/dev";
81 
82 static constexpr size_t OBFUSCATED_LENGTH = 8;
83 
84 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
85 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
86 
87 static constexpr size_t EVENT_BUFFER_SIZE = 256;
88 
89 // Mapping for input battery class node IDs lookup.
90 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
91 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
92         {{"capacity", InputBatteryClass::CAPACITY},
93          {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
94          {"status", InputBatteryClass::STATUS}};
95 
96 // Mapping for input battery class node names lookup.
97 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
98 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
99         {{InputBatteryClass::CAPACITY, "capacity"},
100          {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
101          {InputBatteryClass::STATUS, "status"}};
102 
103 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
104 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
105         {{"Unknown", BATTERY_STATUS_UNKNOWN},
106          {"Charging", BATTERY_STATUS_CHARGING},
107          {"Discharging", BATTERY_STATUS_DISCHARGING},
108          {"Not charging", BATTERY_STATUS_NOT_CHARGING},
109          {"Full", BATTERY_STATUS_FULL}};
110 
111 // Mapping taken from
112 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
113 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
114                                                                        {"Low", 10},
115                                                                        {"Normal", 55},
116                                                                        {"High", 70},
117                                                                        {"Full", 100},
118                                                                        {"Unknown", 50}};
119 
120 // Mapping for input led class node names lookup.
121 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
122 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
123         {{"red", InputLightClass::RED},
124          {"green", InputLightClass::GREEN},
125          {"blue", InputLightClass::BLUE},
126          {"global", InputLightClass::GLOBAL},
127          {"brightness", InputLightClass::BRIGHTNESS},
128          {"multi_index", InputLightClass::MULTI_INDEX},
129          {"multi_intensity", InputLightClass::MULTI_INTENSITY},
130          {"max_brightness", InputLightClass::MAX_BRIGHTNESS},
131          {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT},
132          {"mic_mute", InputLightClass::KEYBOARD_MIC_MUTE},
133          {"mute", InputLightClass::KEYBOARD_VOLUME_MUTE}};
134 
135 // Mapping for input multicolor led class node names.
136 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
137 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
138         {{InputLightClass::BRIGHTNESS, "brightness"},
139          {InputLightClass::MULTI_INDEX, "multi_index"},
140          {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
141 
142 // Mapping for light color name and the light color
143 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
144                                                                   {"green", LightColor::GREEN},
145                                                                   {"blue", LightColor::BLUE}};
146 
147 // Mapping for country code to Layout info.
148 // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf.
149 const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS =
150         {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}},             // NOT_SUPPORTED
151          {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}},      // ARABIC
152          {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}},        // BELGIAN
153          {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_BILINGUAL
154          {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_FRENCH
155          {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}},           // CZECH_REPUBLIC
156          {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}},           // DANISH
157          {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}},           // FINNISH
158          {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}},        // FRENCH
159          {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}},           // GERMAN
160          {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}},          // GREEK
161          {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}},          // HEBREW
162          {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}},          // HUNGARY
163          {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}},  // INTERNATIONAL (ISO)
164          {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}},          // ITALIAN
165          {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}},          // JAPAN
166          {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}},          // KOREAN
167          {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}},      // LATIN_AMERICA
168          {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}},          // DUTCH
169          {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}},          // NORWEGIAN
170          {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}},          // PERSIAN
171          {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}},          // POLAND
172          {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}},          // PORTUGUESE
173          {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}},          // RUSSIA
174          {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}},          // SLOVAKIA
175          {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}},       // SPANISH
176          {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}},          // SWEDISH
177          {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}},       // SWISS_FRENCH
178          {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWISS_GERMAN
179          {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWITZERLAND
180          {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}},       // TAIWAN
181          {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q
182          {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}},       // UK
183          {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}},       // US
184          {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}},            // YUGOSLAVIA
185          {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F
186 
sha1(const std::string & in)187 static std::string sha1(const std::string& in) {
188     SHA_CTX ctx;
189     SHA1_Init(&ctx);
190     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
191     u_char digest[SHA_DIGEST_LENGTH];
192     SHA1_Final(digest, &ctx);
193 
194     std::string out;
195     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
196         out += StringPrintf("%02x", digest[i]);
197     }
198     return out;
199 }
200 
201 /**
202  * Return true if name matches "v4l-touch*"
203  */
isV4lTouchNode(std::string name)204 static bool isV4lTouchNode(std::string name) {
205     return name.find("v4l-touch") != std::string::npos;
206 }
207 
208 /**
209  * Returns true if V4L devices should be scanned.
210  *
211  * The system property ro.input.video_enabled can be used to control whether
212  * EventHub scans and opens V4L devices. As V4L does not support multiple
213  * clients, EventHub effectively blocks access to these devices when it opens
214  * them.
215  *
216  * Setting this to "false" would prevent any video devices from being discovered and
217  * associated with input devices.
218  *
219  * This property can be used as follows:
220  * 1. To turn off features that are dependent on video device presence.
221  * 2. During testing and development, to allow other clients to read video devices
222  * directly from /dev.
223  */
isV4lScanningEnabled()224 static bool isV4lScanningEnabled() {
225     return property_get_bool("ro.input.video_enabled", /*default_value=*/true);
226 }
227 
processEventTimestamp(const struct input_event & event)228 static nsecs_t processEventTimestamp(const struct input_event& event) {
229     // Use the time specified in the event instead of the current time
230     // so that downstream code can get more accurate estimates of
231     // event dispatch latency from the time the event is enqueued onto
232     // the evdev client buffer.
233     //
234     // The event's timestamp fortuitously uses the same monotonic clock
235     // time base as the rest of Android. The kernel event device driver
236     // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
237     // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
238     // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
239     // system call that also queries ktime_get_ts().
240 
241     const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) +
242             microseconds_to_nanoseconds(event.input_event_usec);
243     return inputEventTime;
244 }
245 
246 /**
247  * Returns the sysfs root path of the input device.
248  */
getSysfsRootForEvdevDevicePath(const char * devicePath)249 static std::optional<std::filesystem::path> getSysfsRootForEvdevDevicePath(const char* devicePath) {
250     std::error_code errorCode;
251 
252     // Stat the device path to get the major and minor number of the character file
253     struct stat statbuf;
254     if (stat(devicePath, &statbuf) == -1) {
255         ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
256         return std::nullopt;
257     }
258 
259     unsigned int major_num = major(statbuf.st_rdev);
260     unsigned int minor_num = minor(statbuf.st_rdev);
261 
262     // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
263     auto sysfsPath = std::filesystem::path("/sys/dev/char/");
264     sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
265     sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
266 
267     // Make sure nothing went wrong in call to canonical()
268     if (errorCode) {
269         ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
270               errorCode.message().c_str());
271         return std::nullopt;
272     }
273 
274     // Continue to go up a directory until we reach a directory named "input"
275     while (sysfsPath != "/" && sysfsPath.filename() != "input") {
276         sysfsPath = sysfsPath.parent_path();
277     }
278 
279     // Then go up one more and you will be at the sysfs root of the device
280     sysfsPath = sysfsPath.parent_path();
281 
282     // Make sure we didn't reach root path and that directory actually exists
283     if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
284         if (errorCode) {
285             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
286                   errorCode.message().c_str());
287         }
288 
289         // Not found
290         return std::nullopt;
291     }
292 
293     return sysfsPath;
294 }
295 
296 /**
297  * Returns the list of files under a specified path.
298  */
allFilesInPath(const std::filesystem::path & path)299 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
300     std::vector<std::filesystem::path> nodes;
301     std::error_code errorCode;
302     auto iter = std::filesystem::directory_iterator(path, errorCode);
303     while (!errorCode && iter != std::filesystem::directory_iterator()) {
304         nodes.push_back(iter->path());
305         iter++;
306     }
307     return nodes;
308 }
309 
310 /**
311  * Returns the list of files under a specified directory in a sysfs path.
312  * Example:
313  * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
314  * in the sysfs path.
315  */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)316 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
317                                                          SysfsClass clazz) {
318     std::string nodeStr = ftl::enum_string(clazz);
319     std::for_each(nodeStr.begin(), nodeStr.end(),
320                   [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
321     std::vector<std::filesystem::path> nodes;
322     for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
323         nodes = allFilesInPath(path / nodeStr);
324     }
325     return nodes;
326 }
327 
getColorIndexArray(std::filesystem::path path)328 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
329         std::filesystem::path path) {
330     std::string indexStr;
331     if (!base::ReadFileToString(path, &indexStr)) {
332         return std::nullopt;
333     }
334 
335     // Parse the multi color LED index file, refer to kernel docs
336     // leds/leds-class-multicolor.html
337     std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
338     std::smatch results;
339     std::array<LightColor, COLOR_NUM> colors;
340     if (!std::regex_match(indexStr, results, indexPattern)) {
341         return std::nullopt;
342     }
343 
344     for (size_t i = 1; i < results.size(); i++) {
345         const auto it = LIGHT_COLORS.find(results[i].str());
346         if (it != LIGHT_COLORS.end()) {
347             // intensities.emplace(it->second, 0);
348             colors[i - 1] = it->second;
349         }
350     }
351     return colors;
352 }
353 
loadConfiguration(const InputDeviceIdentifier & ident)354 static base::Result<std::shared_ptr<PropertyMap>> loadConfiguration(
355         const InputDeviceIdentifier& ident) {
356     std::string configurationFile =
357             getInputDeviceConfigurationFilePathByDeviceIdentifier(ident,
358                                                                   InputDeviceConfigurationFileType::
359                                                                           CONFIGURATION);
360     if (configurationFile.empty()) {
361         ALOGD("No input device configuration file found for device '%s'.", ident.name.c_str());
362         return base::Result<std::shared_ptr<PropertyMap>>(nullptr);
363     }
364     base::Result<std::shared_ptr<PropertyMap>> propertyMap =
365             PropertyMap::load(configurationFile.c_str());
366 
367     return propertyMap;
368 }
369 
370 /**
371  * Read country code information exposed through the sysfs path and convert it to Layout info.
372  */
readLayoutConfiguration(const std::filesystem::path & sysfsRootPath)373 static std::optional<RawLayoutInfo> readLayoutConfiguration(
374         const std::filesystem::path& sysfsRootPath) {
375     // Check the sysfs root path
376     int32_t hidCountryCode = -1;
377     std::string str;
378     if (base::ReadFileToString(sysfsRootPath / "country", &str)) {
379         hidCountryCode = std::stoi(str, nullptr, 16);
380         // Update this condition if new supported country codes are added to HID spec.
381         if (hidCountryCode > 35 || hidCountryCode < 0) {
382             ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d",
383                   sysfsRootPath.c_str(), hidCountryCode);
384         }
385     }
386     const auto it = LAYOUT_INFOS.find(hidCountryCode);
387     if (it != LAYOUT_INFOS.end()) {
388         return it->second;
389     }
390 
391     return std::nullopt;
392 }
393 
394 /**
395  * Read information about batteries exposed through the sysfs path.
396  */
readBatteryConfiguration(const std::filesystem::path & sysfsRootPath)397 static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration(
398         const std::filesystem::path& sysfsRootPath) {
399     std::unordered_map<int32_t, RawBatteryInfo> batteryInfos;
400     int32_t nextBatteryId = 0;
401     // Check if device has any battery.
402     const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
403     for (const auto& nodePath : paths) {
404         RawBatteryInfo info;
405         info.id = ++nextBatteryId;
406         info.path = nodePath;
407         info.name = nodePath.filename();
408 
409         // Scan the path for all the files
410         // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
411         const auto& files = allFilesInPath(nodePath);
412         for (const auto& file : files) {
413             const auto it = BATTERY_CLASSES.find(file.filename().string());
414             if (it != BATTERY_CLASSES.end()) {
415                 info.flags |= it->second;
416             }
417         }
418         batteryInfos.insert_or_assign(info.id, info);
419         ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
420     }
421     return batteryInfos;
422 }
423 
424 /**
425  *  Read information about lights exposed through the sysfs path.
426  */
readLightsConfiguration(const std::filesystem::path & sysfsRootPath,const std::shared_ptr<PropertyMap> & config)427 static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration(
428         const std::filesystem::path& sysfsRootPath, const std::shared_ptr<PropertyMap>& config) {
429     std::unordered_map<int32_t, RawLightInfo> lightInfos;
430     int32_t nextLightId = 0;
431     // Check if device has any lights.  If the Input Device Configuration file specifies any lights,
432     // use those in addition to searching the device node itself for lights.
433     std::vector<std::filesystem::path> paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
434 
435     if (config) {
436         auto additionalLights = config->getString("device.additionalSysfsLedsNode");
437         if (additionalLights) {
438             ALOGI("IDC specifies additional path for lights at '%s'",
439                   additionalLights.value().c_str());
440             paths.push_back(std::filesystem::path(additionalLights.value()));
441         }
442     }
443 
444     for (const auto& nodePath : paths) {
445         RawLightInfo info;
446         info.id = ++nextLightId;
447         info.path = nodePath;
448         info.name = nodePath.filename();
449         info.maxBrightness = std::nullopt;
450 
451         // Light name should follow the naming pattern <name>:<color>:<function>
452         // Refer kernel docs /leds/leds-class.html for valid supported LED names.
453         std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)");
454         std::smatch results;
455 
456         if (std::regex_match(info.name, results, indexPattern)) {
457             // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo
458             // we only care about sections <color> and <function> which will be at index 2 and 3.
459             for (int i = 2; i <= 3; i++) {
460                 const auto it = LIGHT_CLASSES.find(results.str(i));
461                 if (it != LIGHT_CLASSES.end()) {
462                     info.flags |= it->second;
463                 }
464             }
465 
466             // Set name of the raw light to <function> which represents playerIDs for LEDs that
467             // turn on/off based on the current player ID (Refer to PeripheralController.cpp for
468             // player ID logic)
469             info.name = results.str(3);
470         }
471         // Scan the path for all the files
472         // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
473         const auto& files = allFilesInPath(nodePath);
474         for (const auto& file : files) {
475             const auto it = LIGHT_CLASSES.find(file.filename().string());
476             if (it != LIGHT_CLASSES.end()) {
477                 info.flags |= it->second;
478                 // If the node has maximum brightness, read it
479                 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
480                     std::string str;
481                     if (base::ReadFileToString(file, &str)) {
482                         info.maxBrightness = std::stoi(str);
483                     }
484                 }
485             }
486         }
487         lightInfos.insert_or_assign(info.id, info);
488         ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
489     }
490     return lightInfos;
491 }
492 
493 // --- Global Functions ---
494 
getAbsAxisUsage(int32_t axis,ftl::Flags<InputDeviceClass> deviceClasses)495 ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis,
496                                              ftl::Flags<InputDeviceClass> deviceClasses) {
497     // Touch devices get dibs on touch-related axes.
498     if (deviceClasses.test(InputDeviceClass::TOUCH)) {
499         switch (axis) {
500             case ABS_X:
501             case ABS_Y:
502             case ABS_PRESSURE:
503             case ABS_TOOL_WIDTH:
504             case ABS_DISTANCE:
505             case ABS_TILT_X:
506             case ABS_TILT_Y:
507             case ABS_MT_SLOT:
508             case ABS_MT_TOUCH_MAJOR:
509             case ABS_MT_TOUCH_MINOR:
510             case ABS_MT_WIDTH_MAJOR:
511             case ABS_MT_WIDTH_MINOR:
512             case ABS_MT_ORIENTATION:
513             case ABS_MT_POSITION_X:
514             case ABS_MT_POSITION_Y:
515             case ABS_MT_TOOL_TYPE:
516             case ABS_MT_BLOB_ID:
517             case ABS_MT_TRACKING_ID:
518             case ABS_MT_PRESSURE:
519             case ABS_MT_DISTANCE:
520                 return InputDeviceClass::TOUCH;
521         }
522     }
523 
524     if (deviceClasses.test(InputDeviceClass::SENSOR)) {
525         switch (axis) {
526             case ABS_X:
527             case ABS_Y:
528             case ABS_Z:
529             case ABS_RX:
530             case ABS_RY:
531             case ABS_RZ:
532                 return InputDeviceClass::SENSOR;
533         }
534     }
535 
536     // External stylus gets the pressure axis
537     if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
538         if (axis == ABS_PRESSURE) {
539             return InputDeviceClass::EXTERNAL_STYLUS;
540         }
541     }
542 
543     // Joystick devices get the rest.
544     return deviceClasses & InputDeviceClass::JOYSTICK;
545 }
546 
547 // --- RawAbsoluteAxisInfo ---
548 
operator <<(std::ostream & out,const std::optional<RawAbsoluteAxisInfo> & info)549 std::ostream& operator<<(std::ostream& out, const std::optional<RawAbsoluteAxisInfo>& info) {
550     if (info) {
551         out << "min=" << info->minValue << ", max=" << info->maxValue << ", flat=" << info->flat
552             << ", fuzz=" << info->fuzz << ", resolution=" << info->resolution;
553     } else {
554         out << "unknown range";
555     }
556     return out;
557 }
558 
559 // --- EventHub::Device ---
560 
Device(int fd,int32_t id,std::string path,InputDeviceIdentifier identifier,std::shared_ptr<PropertyMap> config)561 EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier,
562                          std::shared_ptr<PropertyMap> config)
563       : fd(fd),
564         id(id),
565         path(std::move(path)),
566         identifier(std::move(identifier)),
567         classes(0),
568         configuration(std::move(config)),
569         virtualKeyMap(nullptr),
570         ffEffectPlaying(false),
571         ffEffectId(-1),
572         controllerNumber(0),
573         enabled(true),
574         isVirtual(fd < 0),
575         currentFrameDropped(false) {}
576 
~Device()577 EventHub::Device::~Device() {
578     close();
579 }
580 
close()581 void EventHub::Device::close() {
582     if (fd >= 0) {
583         ::close(fd);
584         fd = -1;
585     }
586 }
587 
enable()588 status_t EventHub::Device::enable() {
589     fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
590     if (fd < 0) {
591         ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
592         return -errno;
593     }
594     enabled = true;
595     return OK;
596 }
597 
disable()598 status_t EventHub::Device::disable() {
599     close();
600     enabled = false;
601     return OK;
602 }
603 
hasValidFd() const604 bool EventHub::Device::hasValidFd() const {
605     return !isVirtual && enabled;
606 }
607 
getKeyCharacterMap() const608 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
609     return keyMap.keyCharacterMap;
610 }
611 
612 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)613 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
614     if (!hasValidFd()) {
615         return BAD_VALUE;
616     }
617     if ((_IOC_SIZE(ioctlCode) == 0)) {
618         ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
619     }
620 
621     typename BitArray<N>::Buffer buffer;
622     status_t ret = ioctl(fd, ioctlCode, buffer.data());
623     bitArray.loadFromBuffer(buffer);
624     return ret;
625 }
626 
configureFd()627 void EventHub::Device::configureFd() {
628     // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
629     if (classes.test(InputDeviceClass::KEYBOARD)) {
630         // Disable kernel key repeat since we handle it ourselves
631         unsigned int repeatRate[] = {0, 0};
632         if (ioctl(fd, EVIOCSREP, repeatRate)) {
633             ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
634         }
635     }
636 
637     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
638     // associated with input events.  This is important because the input system
639     // uses the timestamps extensively and assumes they were recorded using the monotonic
640     // clock.
641     int clockId = CLOCK_MONOTONIC;
642     if (classes.test(InputDeviceClass::SENSOR)) {
643         // Each new sensor event should use the same time base as
644         // SystemClock.elapsedRealtimeNanos().
645         clockId = CLOCK_BOOTTIME;
646     }
647     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
648     ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
649 
650     // Query the initial state of keys and switches, which is tracked by EventHub.
651     readDeviceState();
652 }
653 
readDeviceState()654 void EventHub::Device::readDeviceState() {
655     if (readDeviceBitMask(EVIOCGKEY(0), keyState) < 0) {
656         ALOGD("Unable to query the global key state for %s: %s", path.c_str(), strerror(errno));
657     }
658     if (readDeviceBitMask(EVIOCGSW(0), swState) < 0) {
659         ALOGD("Unable to query the global switch state for %s: %s", path.c_str(), strerror(errno));
660     }
661 
662     // Read absolute axis info and values for all available axes for the device.
663     populateAbsoluteAxisStates();
664 }
665 
populateAbsoluteAxisStates()666 void EventHub::Device::populateAbsoluteAxisStates() {
667     absState.clear();
668 
669     for (int axis = 0; axis <= ABS_MAX; axis++) {
670         if (!absBitmask.test(axis)) {
671             continue;
672         }
673         struct input_absinfo info {};
674         if (ioctl(fd, EVIOCGABS(axis), &info)) {
675             ALOGE("Error reading absolute controller %d for device %s fd %d: %s", axis,
676                   identifier.name.c_str(), fd, strerror(errno));
677             continue;
678         }
679         auto& [axisInfo, value] = absState[axis];
680         axisInfo.minValue = info.minimum;
681         axisInfo.maxValue = info.maximum;
682         axisInfo.flat = info.flat;
683         axisInfo.fuzz = info.fuzz;
684         axisInfo.resolution = info.resolution;
685         value = info.value;
686     }
687 }
688 
hasKeycodeLocked(int keycode) const689 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
690     if (hasKeycodeInternalLocked(keycode)) {
691         return true;
692     }
693     if (!keyMap.haveKeyCharacterMap()) {
694         return false;
695     }
696     for (auto& fromKey : getKeyCharacterMap()->findKeyCodesMappedToKeyCode(keycode)) {
697         if (hasKeycodeInternalLocked(fromKey)) {
698             return true;
699         }
700     }
701     return false;
702 }
703 
hasKeycodeInternalLocked(int keycode) const704 bool EventHub::Device::hasKeycodeInternalLocked(int keycode) const {
705     if (!keyMap.haveKeyLayout()) {
706         return false;
707     }
708 
709     std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode);
710     const size_t N = scanCodes.size();
711     for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
712         int32_t sc = scanCodes[i];
713         if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
714             return true;
715         }
716     }
717 
718     std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode);
719     if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) {
720         return true;
721     }
722     return false;
723 }
724 
loadVirtualKeyMapLocked()725 bool EventHub::Device::loadVirtualKeyMapLocked() {
726     // The virtual key map is supplied by the kernel as a system board property file.
727     std::string propPath = "/sys/board_properties/virtualkeys.";
728     propPath += identifier.getCanonicalName();
729     if (access(propPath.c_str(), R_OK)) {
730         return false;
731     }
732     virtualKeyMap = VirtualKeyMap::load(propPath);
733     return virtualKeyMap != nullptr;
734 }
735 
loadKeyMapLocked()736 status_t EventHub::Device::loadKeyMapLocked() {
737     return keyMap.load(identifier, configuration.get());
738 }
739 
isExternalDeviceLocked()740 bool EventHub::Device::isExternalDeviceLocked() {
741     if (configuration) {
742         std::optional<bool> isInternal = configuration->getBool("device.internal");
743         if (isInternal.has_value()) {
744             return !isInternal.value();
745         }
746     }
747     return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
748 }
749 
deviceHasMicLocked()750 bool EventHub::Device::deviceHasMicLocked() {
751     if (configuration) {
752         std::optional<bool> hasMic = configuration->getBool("audio.mic");
753         if (hasMic.has_value()) {
754             return hasMic.value();
755         }
756     }
757     return false;
758 }
759 
setLedStateLocked(int32_t led,bool on)760 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
761     int32_t sc;
762     if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
763         struct input_event ev;
764         ev.input_event_sec = 0;
765         ev.input_event_usec = 0;
766         ev.type = EV_LED;
767         ev.code = sc;
768         ev.value = on ? 1 : 0;
769 
770         ssize_t nWrite;
771         do {
772             nWrite = write(fd, &ev, sizeof(struct input_event));
773         } while (nWrite == -1 && errno == EINTR);
774     }
775 }
776 
setLedForControllerLocked()777 void EventHub::Device::setLedForControllerLocked() {
778     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
779         setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
780     }
781 }
782 
mapLed(int32_t led,int32_t * outScanCode) const783 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
784     if (!keyMap.haveKeyLayout()) {
785         return NAME_NOT_FOUND;
786     }
787 
788     std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led);
789     if (scanCode.has_value()) {
790         if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) {
791             *outScanCode = *scanCode;
792             return NO_ERROR;
793         }
794     }
795     return NAME_NOT_FOUND;
796 }
797 
trackInputEvent(const struct input_event & event)798 void EventHub::Device::trackInputEvent(const struct input_event& event) {
799     switch (event.type) {
800         case EV_KEY: {
801             LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
802                                         !keyState.set(static_cast<size_t>(event.code),
803                                                       event.value != 0),
804                                 "%s: device '%s' received invalid EV_KEY event code: %s value: %d",
805                                 __func__, identifier.name.c_str(),
806                                 InputEventLookup::getLinuxEvdevLabel(EV_KEY, event.code, 1)
807                                         .code.c_str(),
808                                 event.value);
809             break;
810         }
811         case EV_SW: {
812             LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
813                                         !swState.set(static_cast<size_t>(event.code),
814                                                      event.value != 0),
815                                 "%s: device '%s' received invalid EV_SW event code: %s value: %d",
816                                 __func__, identifier.name.c_str(),
817                                 InputEventLookup::getLinuxEvdevLabel(EV_SW, event.code, 1)
818                                         .code.c_str(),
819                                 event.value);
820             break;
821         }
822         case EV_ABS: {
823             if (currentFrameDropped) {
824                 break;
825             }
826             auto it = absState.find(event.code);
827             LOG_ALWAYS_FATAL_IF(it == absState.end(),
828                                 "%s: device '%s' received invalid EV_ABS event code: %s value: %d",
829                                 __func__, identifier.name.c_str(),
830                                 InputEventLookup::getLinuxEvdevLabel(EV_ABS, event.code, 0)
831                                         .code.c_str(),
832                                 event.value);
833             it->second.value = event.value;
834             break;
835         }
836         case EV_SYN: {
837             switch (event.code) {
838                 case SYN_REPORT:
839                     if (currentFrameDropped) {
840                         // To recover after a SYN_DROPPED, we need to query the state of the device
841                         // to synchronize our device state with the kernel's to account for the
842                         // dropped events on receiving the next SYN_REPORT.
843                         // Note we don't drop the SYN_REPORT at this point but it is used by the
844                         // InputDevice to reset and repopulate mapper state
845                         readDeviceState();
846                         currentFrameDropped = false;
847                     }
848                     break;
849                 case SYN_DROPPED:
850                     // When we receive SYN_DROPPED, all events in the current frame should be
851                     // dropped up to and including next SYN_REPORT
852                     currentFrameDropped = true;
853                     break;
854                 default:
855                     break;
856             }
857             break;
858         }
859         default:
860             break;
861     }
862 }
863 
864 /**
865  * Get the capabilities for the current process.
866  * Crashes the system if unable to create / check / destroy the capabilities object.
867  */
868 class Capabilities final {
869 public:
Capabilities()870     explicit Capabilities() {
871         mCaps = cap_get_proc();
872         LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
873     }
874 
875     /**
876      * Check whether the current process has a specific capability
877      * in the set of effective capabilities.
878      * Return CAP_SET if the process has the requested capability
879      * Return CAP_CLEAR otherwise.
880      */
checkEffectiveCapability(cap_value_t capability)881     cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
882         cap_flag_value_t value;
883         const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
884         LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
885         return value;
886     }
887 
~Capabilities()888     ~Capabilities() {
889         const int result = cap_free(mCaps);
890         LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
891     }
892 
893 private:
894     cap_t mCaps;
895 };
896 
ensureProcessCanBlockSuspend()897 static void ensureProcessCanBlockSuspend() {
898     Capabilities capabilities;
899     const bool canBlockSuspend =
900             capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
901     LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
902                         "Input must be able to block suspend to properly process events");
903 }
904 
905 // --- EventHub ---
906 
907 const int EventHub::EPOLL_MAX_EVENTS;
908 
EventHub(void)909 EventHub::EventHub(void)
910       : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
911         mNextDeviceId(1),
912         mControllerNumbers(),
913         mNeedToReopenDevices(false),
914         mNeedToScanDevices(true),
915         mPendingEventCount(0),
916         mPendingEventIndex(0),
917         mPendingINotify(false) {
918     ensureProcessCanBlockSuspend();
919 
920     mEpollFd = epoll_create1(EPOLL_CLOEXEC);
921     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
922 
923     mINotifyFd = inotify_init1(IN_CLOEXEC);
924     LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno));
925 
926     std::error_code errorCode;
927     bool isDeviceInotifyAdded = false;
928     if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
929         addDeviceInputInotify();
930     } else {
931         addDeviceInotify();
932         isDeviceInotifyAdded = true;
933         if (errorCode) {
934             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
935                   errorCode.message().c_str());
936         }
937     }
938 
939     if (isV4lScanningEnabled() && !isDeviceInotifyAdded) {
940         addDeviceInotify();
941     } else {
942         ALOGI("Video device scanning disabled");
943     }
944 
945     struct epoll_event eventItem = {};
946     eventItem.events = EPOLLIN | EPOLLWAKEUP;
947     eventItem.data.fd = mINotifyFd;
948     int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
949     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
950 
951     int wakeFds[2];
952     result = pipe2(wakeFds, O_CLOEXEC);
953     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
954 
955     mWakeReadPipeFd = wakeFds[0];
956     mWakeWritePipeFd = wakeFds[1];
957 
958     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
959     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
960                         errno);
961 
962     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
963     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
964                         errno);
965 
966     eventItem.data.fd = mWakeReadPipeFd;
967     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
968     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
969                         errno);
970 }
971 
~EventHub(void)972 EventHub::~EventHub(void) {
973     closeAllDevicesLocked();
974 
975     ::close(mEpollFd);
976     ::close(mINotifyFd);
977     ::close(mWakeReadPipeFd);
978     ::close(mWakeWritePipeFd);
979 }
980 
981 /**
982  * On devices that don't have any input devices (like some development boards), the /dev/input
983  * directory will be absent. However, the user may still plug in an input device at a later time.
984  * Add watch for contents of /dev/input only when /dev/input appears.
985  */
addDeviceInputInotify()986 void EventHub::addDeviceInputInotify() {
987     mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE);
988     LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s",
989                         DEVICE_INPUT_PATH, strerror(errno));
990 }
991 
addDeviceInotify()992 void EventHub::addDeviceInotify() {
993     mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
994     LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
995                         strerror(errno));
996 }
997 
getDeviceIdentifier(int32_t deviceId) const998 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
999     std::scoped_lock _l(mLock);
1000     Device* device = getDeviceLocked(deviceId);
1001     return device != nullptr ? device->identifier : InputDeviceIdentifier();
1002 }
1003 
getDeviceClasses(int32_t deviceId) const1004 ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
1005     std::scoped_lock _l(mLock);
1006     Device* device = getDeviceLocked(deviceId);
1007     return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0);
1008 }
1009 
getDeviceControllerNumber(int32_t deviceId) const1010 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
1011     std::scoped_lock _l(mLock);
1012     Device* device = getDeviceLocked(deviceId);
1013     return device != nullptr ? device->controllerNumber : 0;
1014 }
1015 
getConfiguration(int32_t deviceId) const1016 std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const {
1017     std::scoped_lock _l(mLock);
1018     Device* device = getDeviceLocked(deviceId);
1019     if (device == nullptr || device->configuration == nullptr) {
1020         return {};
1021     }
1022     return *device->configuration;
1023 }
1024 
getAbsoluteAxisInfo(int32_t deviceId,int axis) const1025 std::optional<RawAbsoluteAxisInfo> EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis) const {
1026     if (axis < 0 || axis > ABS_MAX) {
1027         return std::nullopt;
1028     }
1029     std::scoped_lock _l(mLock);
1030     const Device* device = getDeviceLocked(deviceId);
1031     if (device == nullptr) {
1032         ALOGE("Couldn't find device with ID %d, so returning null axis info for axis %s", deviceId,
1033               InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0).code.c_str());
1034         return std::nullopt;
1035     }
1036     // We can read the RawAbsoluteAxisInfo even if the device is disabled and doesn't have a valid
1037     // fd, because the info is populated once when the device is first opened, and it doesn't change
1038     // throughout the device lifecycle.
1039     auto it = device->absState.find(axis);
1040     if (it == device->absState.end()) {
1041         return std::nullopt;
1042     }
1043     return it->second.info;
1044 }
1045 
hasRelativeAxis(int32_t deviceId,int axis) const1046 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
1047     if (axis >= 0 && axis <= REL_MAX) {
1048         std::scoped_lock _l(mLock);
1049         Device* device = getDeviceLocked(deviceId);
1050         return device != nullptr ? device->relBitmask.test(axis) : false;
1051     }
1052     return false;
1053 }
1054 
hasInputProperty(int32_t deviceId,int property) const1055 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
1056     std::scoped_lock _l(mLock);
1057 
1058     Device* device = getDeviceLocked(deviceId);
1059     return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
1060             ? device->propBitmask.test(property)
1061             : false;
1062 }
1063 
hasMscEvent(int32_t deviceId,int mscEvent) const1064 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
1065     std::scoped_lock _l(mLock);
1066 
1067     Device* device = getDeviceLocked(deviceId);
1068     return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
1069             ? device->mscBitmask.test(mscEvent)
1070             : false;
1071 }
1072 
getScanCodeState(int32_t deviceId,int32_t scanCode) const1073 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
1074     if (scanCode < 0 || scanCode > KEY_MAX) {
1075         return AKEY_STATE_UNKNOWN;
1076     }
1077     std::scoped_lock _l(mLock);
1078     const Device* device = getDeviceLocked(deviceId);
1079     if (device == nullptr || !device->hasValidFd() || !device->keyBitmask.test(scanCode)) {
1080         return AKEY_STATE_UNKNOWN;
1081     }
1082     return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1083 }
1084 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const1085 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
1086     std::scoped_lock _l(mLock);
1087     const Device* device = getDeviceLocked(deviceId);
1088     if (device == nullptr || !device->hasValidFd() || !device->keyMap.haveKeyLayout()) {
1089         return AKEY_STATE_UNKNOWN;
1090     }
1091     const std::vector<int32_t> scanCodes =
1092             device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode);
1093     if (scanCodes.empty()) {
1094         return AKEY_STATE_UNKNOWN;
1095     }
1096     return std::any_of(scanCodes.begin(), scanCodes.end(),
1097                        [&device](const int32_t sc) {
1098                            return sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc);
1099                        })
1100             ? AKEY_STATE_DOWN
1101             : AKEY_STATE_UP;
1102 }
1103 
getKeyCodeForKeyLocation(int32_t deviceId,int32_t locationKeyCode) const1104 int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
1105     std::scoped_lock _l(mLock);
1106 
1107     Device* device = getDeviceLocked(deviceId);
1108     if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr ||
1109         device->keyMap.keyLayoutMap == nullptr) {
1110         return AKEYCODE_UNKNOWN;
1111     }
1112     std::vector<int32_t> scanCodes =
1113             device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode);
1114     if (scanCodes.empty()) {
1115         ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input"
1116               "device %d",
1117               locationKeyCode, deviceId);
1118         return AKEYCODE_UNKNOWN;
1119     }
1120     if (scanCodes.size() > 1) {
1121         ALOGW("Multiple scan codes map to the same key code %d, returning only the first match",
1122               locationKeyCode);
1123     }
1124     int32_t outKeyCode;
1125     status_t mapKeyRes =
1126             device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode);
1127     switch (mapKeyRes) {
1128         case OK:
1129             break;
1130         case NAME_NOT_FOUND:
1131             // key character map doesn't re-map this scanCode, hence the keyCode remains the same
1132             outKeyCode = locationKeyCode;
1133             break;
1134         default:
1135             ALOGW("Failed to get key code for key location: Key character map returned error %s",
1136                   statusToString(mapKeyRes).c_str());
1137             outKeyCode = AKEYCODE_UNKNOWN;
1138             break;
1139     }
1140     // Remap if there is a Key remapping added to the KCM and return the remapped key
1141     return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode);
1142 }
1143 
getSwitchState(int32_t deviceId,int32_t sw) const1144 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
1145     if (sw < 0 || sw > SW_MAX) {
1146         return AKEY_STATE_UNKNOWN;
1147     }
1148     std::scoped_lock _l(mLock);
1149     const Device* device = getDeviceLocked(deviceId);
1150     if (device == nullptr || !device->hasValidFd() || !device->swBitmask.test(sw)) {
1151         return AKEY_STATE_UNKNOWN;
1152     }
1153     return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1154 }
1155 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis) const1156 std::optional<int32_t> EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis) const {
1157     if (axis < 0 || axis > ABS_MAX) {
1158         return std::nullopt;
1159     }
1160     std::scoped_lock _l(mLock);
1161     const Device* device = getDeviceLocked(deviceId);
1162     if (device == nullptr || !device->hasValidFd()) {
1163         return std::nullopt;
1164     }
1165     const auto it = device->absState.find(axis);
1166     if (it == device->absState.end()) {
1167         return std::nullopt;
1168     }
1169     return it->second.value;
1170 }
1171 
getMtSlotValues(int32_t deviceId,int32_t axis,size_t slotCount) const1172 base::Result<std::vector<int32_t>> EventHub::getMtSlotValues(int32_t deviceId, int32_t axis,
1173                                                              size_t slotCount) const {
1174     std::scoped_lock _l(mLock);
1175     const Device* device = getDeviceLocked(deviceId);
1176     if (device == nullptr || !device->hasValidFd() || !device->absBitmask.test(axis)) {
1177         return base::ResultError("device problem or axis not supported", NAME_NOT_FOUND);
1178     }
1179     std::vector<int32_t> outValues(slotCount + 1);
1180     outValues[0] = axis;
1181     const size_t bufferSize = outValues.size() * sizeof(int32_t);
1182     if (ioctl(device->fd, EVIOCGMTSLOTS(bufferSize), outValues.data()) != OK) {
1183         return base::ErrnoError();
1184     }
1185     return std::move(outValues);
1186 }
1187 
markSupportedKeyCodes(int32_t deviceId,const std::vector<int32_t> & keyCodes,uint8_t * outFlags) const1188 bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
1189                                      uint8_t* outFlags) const {
1190     std::scoped_lock _l(mLock);
1191 
1192     Device* device = getDeviceLocked(deviceId);
1193     if (device != nullptr && device->keyMap.haveKeyLayout()) {
1194         for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) {
1195             if (device->hasKeycodeLocked(keyCodes[codeIndex])) {
1196                 outFlags[codeIndex] = 1;
1197             }
1198         }
1199         return true;
1200     }
1201     return false;
1202 }
1203 
setKeyRemapping(int32_t deviceId,const std::map<int32_t,int32_t> & keyRemapping) const1204 void EventHub::setKeyRemapping(int32_t deviceId,
1205                                const std::map<int32_t, int32_t>& keyRemapping) const {
1206     std::scoped_lock _l(mLock);
1207     Device* device = getDeviceLocked(deviceId);
1208     if (device == nullptr) {
1209         return;
1210     }
1211     const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1212     if (kcm) {
1213         kcm->setKeyRemapping(keyRemapping);
1214     }
1215 }
1216 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const1217 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
1218                           int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
1219     std::scoped_lock _l(mLock);
1220     Device* device = getDeviceLocked(deviceId);
1221     status_t status = NAME_NOT_FOUND;
1222 
1223     if (device != nullptr) {
1224         // Check the key character map first.
1225         const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1226         if (kcm) {
1227             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
1228                 *outFlags = 0;
1229                 status = NO_ERROR;
1230             }
1231         }
1232 
1233         // Check the key layout next.
1234         if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
1235             if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
1236                 status = NO_ERROR;
1237             }
1238         }
1239 
1240         if (status == NO_ERROR) {
1241             if (kcm) {
1242                 // Remap keys based on user-defined key remappings and key behavior defined in the
1243                 // corresponding kcm file
1244                 *outKeycode = kcm->applyKeyRemapping(*outKeycode);
1245 
1246                 // Remap keys based on Key behavior defined in KCM file
1247                 std::tie(*outKeycode, *outMetaState) =
1248                         kcm->applyKeyBehavior(*outKeycode, metaState);
1249             } else {
1250                 *outMetaState = metaState;
1251             }
1252         }
1253     }
1254 
1255     if (status != NO_ERROR) {
1256         *outKeycode = 0;
1257         *outFlags = 0;
1258         *outMetaState = metaState;
1259     }
1260 
1261     return status;
1262 }
1263 
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const1264 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
1265     std::scoped_lock _l(mLock);
1266     Device* device = getDeviceLocked(deviceId);
1267 
1268     if (device == nullptr || !device->keyMap.haveKeyLayout()) {
1269         return NAME_NOT_FOUND;
1270     }
1271     std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode);
1272     if (!info.has_value()) {
1273         return NAME_NOT_FOUND;
1274     }
1275     *outAxisInfo = *info;
1276     return NO_ERROR;
1277 }
1278 
mapSensor(int32_t deviceId,int32_t absCode) const1279 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
1280                                                                             int32_t absCode) const {
1281     std::scoped_lock _l(mLock);
1282     Device* device = getDeviceLocked(deviceId);
1283 
1284     if (device != nullptr && device->keyMap.haveKeyLayout()) {
1285         return device->keyMap.keyLayoutMap->mapSensor(absCode);
1286     }
1287     return Errorf("Device not found or device has no key layout.");
1288 }
1289 
1290 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
1291 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const1292 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
1293         int32_t deviceId) const {
1294     static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
1295     Device* device = getDeviceLocked(deviceId);
1296     if (device == nullptr || !device->associatedDevice) {
1297         return EMPTY_BATTERY_INFO;
1298     }
1299     return device->associatedDevice->batteryInfos;
1300 }
1301 
getRawBatteryIds(int32_t deviceId) const1302 std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const {
1303     std::scoped_lock _l(mLock);
1304     std::vector<int32_t> batteryIds;
1305 
1306     for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) {
1307         batteryIds.push_back(id);
1308     }
1309 
1310     return batteryIds;
1311 }
1312 
getRawBatteryInfo(int32_t deviceId,int32_t batteryId) const1313 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId,
1314                                                           int32_t batteryId) const {
1315     std::scoped_lock _l(mLock);
1316 
1317     const auto infos = getBatteryInfoLocked(deviceId);
1318 
1319     auto it = infos.find(batteryId);
1320     if (it != infos.end()) {
1321         return it->second;
1322     }
1323 
1324     return std::nullopt;
1325 }
1326 
1327 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1328 // with the device ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1329 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1330         int32_t deviceId) const {
1331     static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1332     Device* device = getDeviceLocked(deviceId);
1333     if (device == nullptr || !device->associatedDevice) {
1334         return EMPTY_LIGHT_INFO;
1335     }
1336     return device->associatedDevice->lightInfos;
1337 }
1338 
getRawLightIds(int32_t deviceId) const1339 std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const {
1340     std::scoped_lock _l(mLock);
1341     std::vector<int32_t> lightIds;
1342 
1343     for (const auto& [id, info] : getLightInfoLocked(deviceId)) {
1344         lightIds.push_back(id);
1345     }
1346 
1347     return lightIds;
1348 }
1349 
getRawLightInfo(int32_t deviceId,int32_t lightId) const1350 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
1351     std::scoped_lock _l(mLock);
1352 
1353     const auto infos = getLightInfoLocked(deviceId);
1354 
1355     auto it = infos.find(lightId);
1356     if (it != infos.end()) {
1357         return it->second;
1358     }
1359 
1360     return std::nullopt;
1361 }
1362 
getLightBrightness(int32_t deviceId,int32_t lightId) const1363 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
1364     std::scoped_lock _l(mLock);
1365 
1366     const auto infos = getLightInfoLocked(deviceId);
1367     auto it = infos.find(lightId);
1368     if (it == infos.end()) {
1369         return std::nullopt;
1370     }
1371     std::string buffer;
1372     if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1373                                 &buffer)) {
1374         return std::nullopt;
1375     }
1376     return std::stoi(buffer);
1377 }
1378 
getLightIntensities(int32_t deviceId,int32_t lightId) const1379 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1380         int32_t deviceId, int32_t lightId) const {
1381     std::scoped_lock _l(mLock);
1382 
1383     const auto infos = getLightInfoLocked(deviceId);
1384     auto lightIt = infos.find(lightId);
1385     if (lightIt == infos.end()) {
1386         return std::nullopt;
1387     }
1388 
1389     auto ret =
1390             getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1391 
1392     if (!ret.has_value()) {
1393         return std::nullopt;
1394     }
1395     std::array<LightColor, COLOR_NUM> colors = ret.value();
1396 
1397     std::string intensityStr;
1398     if (!base::ReadFileToString(lightIt->second.path /
1399                                         LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1400                                 &intensityStr)) {
1401         return std::nullopt;
1402     }
1403 
1404     // Intensity node outputs 3 color values
1405     std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1406     std::smatch results;
1407 
1408     if (!std::regex_match(intensityStr, results, intensityPattern)) {
1409         return std::nullopt;
1410     }
1411     std::unordered_map<LightColor, int32_t> intensities;
1412     for (size_t i = 1; i < results.size(); i++) {
1413         int value = std::stoi(results[i].str());
1414         intensities.emplace(colors[i - 1], value);
1415     }
1416     return intensities;
1417 }
1418 
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1419 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1420     std::scoped_lock _l(mLock);
1421 
1422     const auto infos = getLightInfoLocked(deviceId);
1423     auto lightIt = infos.find(lightId);
1424     if (lightIt == infos.end()) {
1425         ALOGE("%s lightId %d not found ", __func__, lightId);
1426         return;
1427     }
1428 
1429     if (!base::WriteStringToFile(std::to_string(brightness),
1430                                  lightIt->second.path /
1431                                          LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1432         ALOGE("Can not write to file, error: %s", strerror(errno));
1433     }
1434 }
1435 
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1436 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1437                                    std::unordered_map<LightColor, int32_t> intensities) {
1438     std::scoped_lock _l(mLock);
1439 
1440     const auto infos = getLightInfoLocked(deviceId);
1441     auto lightIt = infos.find(lightId);
1442     if (lightIt == infos.end()) {
1443         ALOGE("Light Id %d does not exist.", lightId);
1444         return;
1445     }
1446 
1447     auto ret =
1448             getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1449 
1450     if (!ret.has_value()) {
1451         return;
1452     }
1453     std::array<LightColor, COLOR_NUM> colors = ret.value();
1454 
1455     std::string rgbStr;
1456     for (size_t i = 0; i < COLOR_NUM; i++) {
1457         auto it = intensities.find(colors[i]);
1458         if (it != intensities.end()) {
1459             rgbStr += std::to_string(it->second);
1460             // Insert space between colors
1461             if (i < COLOR_NUM - 1) {
1462                 rgbStr += " ";
1463             }
1464         }
1465     }
1466     // Append new line
1467     rgbStr += "\n";
1468 
1469     if (!base::WriteStringToFile(rgbStr,
1470                                  lightIt->second.path /
1471                                          LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1472         ALOGE("Can not write to file, error: %s", strerror(errno));
1473     }
1474 }
1475 
getRawLayoutInfo(int32_t deviceId) const1476 std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const {
1477     std::scoped_lock _l(mLock);
1478     Device* device = getDeviceLocked(deviceId);
1479     if (device == nullptr || !device->associatedDevice) {
1480         return std::nullopt;
1481     }
1482     return device->associatedDevice->layoutInfo;
1483 }
1484 
setExcludedDevices(const std::vector<std::string> & devices)1485 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1486     std::scoped_lock _l(mLock);
1487 
1488     mExcludedDevices = devices;
1489 }
1490 
hasScanCode(int32_t deviceId,int32_t scanCode) const1491 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1492     std::scoped_lock _l(mLock);
1493     Device* device = getDeviceLocked(deviceId);
1494     if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1495         return device->keyBitmask.test(scanCode);
1496     }
1497     return false;
1498 }
1499 
hasKeyCode(int32_t deviceId,int32_t keyCode) const1500 bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
1501     std::scoped_lock _l(mLock);
1502     Device* device = getDeviceLocked(deviceId);
1503     if (device != nullptr) {
1504         return device->hasKeycodeLocked(keyCode);
1505     }
1506     return false;
1507 }
1508 
hasLed(int32_t deviceId,int32_t led) const1509 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1510     std::scoped_lock _l(mLock);
1511     Device* device = getDeviceLocked(deviceId);
1512     int32_t sc;
1513     if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1514         return device->ledBitmask.test(sc);
1515     }
1516     return false;
1517 }
1518 
setLedState(int32_t deviceId,int32_t led,bool on)1519 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1520     std::scoped_lock _l(mLock);
1521     Device* device = getDeviceLocked(deviceId);
1522     if (device != nullptr && device->hasValidFd()) {
1523         device->setLedStateLocked(led, on);
1524     }
1525 }
1526 
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1527 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1528                                         std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1529     outVirtualKeys.clear();
1530 
1531     std::scoped_lock _l(mLock);
1532     Device* device = getDeviceLocked(deviceId);
1533     if (device != nullptr && device->virtualKeyMap) {
1534         const std::vector<VirtualKeyDefinition> virtualKeys =
1535                 device->virtualKeyMap->getVirtualKeys();
1536         outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1537     }
1538 }
1539 
getKeyCharacterMap(int32_t deviceId) const1540 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1541     std::scoped_lock _l(mLock);
1542     Device* device = getDeviceLocked(deviceId);
1543     if (device != nullptr) {
1544         return device->getKeyCharacterMap();
1545     }
1546     return nullptr;
1547 }
1548 
1549 // If provided map is null, it will reset key character map to default KCM.
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1550 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1551     std::scoped_lock _l(mLock);
1552     Device* device = getDeviceLocked(deviceId);
1553     if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) {
1554         return false;
1555     }
1556     if (map == nullptr) {
1557         device->keyMap.keyCharacterMap->clearLayoutOverlay();
1558         return true;
1559     }
1560     device->keyMap.keyCharacterMap->combine(*map);
1561     return true;
1562 }
1563 
generateDescriptor(InputDeviceIdentifier & identifier)1564 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1565     std::string rawDescriptor;
1566     rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1567     // TODO add handling for USB devices to not uniqueify kbs that show up twice
1568     if (!identifier.uniqueId.empty()) {
1569         rawDescriptor += "uniqueId:";
1570         rawDescriptor += identifier.uniqueId;
1571     }
1572     if (identifier.nonce != 0) {
1573         rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1574     }
1575 
1576     if (identifier.vendor == 0 && identifier.product == 0) {
1577         // If we don't know the vendor and product id, then the device is probably
1578         // built-in so we need to rely on other information to uniquely identify
1579         // the input device.  Usually we try to avoid relying on the device name or
1580         // location but for built-in input device, they are unlikely to ever change.
1581         if (!identifier.name.empty()) {
1582             rawDescriptor += "name:";
1583             rawDescriptor += identifier.name;
1584         } else if (!identifier.location.empty()) {
1585             rawDescriptor += "location:";
1586             rawDescriptor += identifier.location;
1587         }
1588     }
1589     identifier.descriptor = sha1(rawDescriptor);
1590     return rawDescriptor;
1591 }
1592 
assignDescriptorLocked(InputDeviceIdentifier & identifier)1593 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1594     // Compute a device descriptor that uniquely identifies the device.
1595     // The descriptor is assumed to be a stable identifier.  Its value should not
1596     // change between reboots, reconnections, firmware updates or new releases
1597     // of Android. In practice we sometimes get devices that cannot be uniquely
1598     // identified. In this case we enforce uniqueness between connected devices.
1599     // Ideally, we also want the descriptor to be short and relatively opaque.
1600     // Note that we explicitly do not use the path or location for external devices
1601     // as their path or location will change as they are plugged/unplugged or moved
1602     // to different ports. We do fallback to using name and location in the case of
1603     // internal devices which are detected by the vendor and product being 0 in
1604     // generateDescriptor. If two identical descriptors are detected we will fallback
1605     // to using a 'nonce' and incrementing it until the new descriptor no longer has
1606     // a match with any existing descriptors.
1607 
1608     identifier.nonce = 0;
1609     std::string rawDescriptor = generateDescriptor(identifier);
1610     // Enforce that the generated descriptor is unique.
1611     while (hasDeviceWithDescriptorLocked(identifier.descriptor)) {
1612         identifier.nonce++;
1613         rawDescriptor = generateDescriptor(identifier);
1614     }
1615     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1616           identifier.descriptor.c_str());
1617 }
1618 
obtainAssociatedDeviceLocked(const std::filesystem::path & devicePath,const std::shared_ptr<PropertyMap> & config) const1619 std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked(
1620         const std::filesystem::path& devicePath, const std::shared_ptr<PropertyMap>& config) const {
1621     const std::optional<std::filesystem::path> sysfsRootPathOpt =
1622             getSysfsRootForEvdevDevicePath(devicePath.c_str());
1623     if (!sysfsRootPathOpt) {
1624         return nullptr;
1625     }
1626 
1627     const auto& path = *sysfsRootPathOpt;
1628 
1629     std::shared_ptr<const AssociatedDevice> associatedDevice;
1630     for (const auto& [id, dev] : mDevices) {
1631         if (!dev->associatedDevice || dev->associatedDevice->sysfsRootPath != path) {
1632             continue;
1633         }
1634         if (!associatedDevice) {
1635             // Found matching associated device for the first time.
1636             associatedDevice = dev->associatedDevice;
1637             // Reload this associated device if needed.  Use the base device
1638             // config.  Note that this will essentially arbitrarily pick one
1639             // Device as the base for the AssociatedDevice configuration.  If
1640             // there are multiple Device's that have a configuration for the
1641             // AssociatedDevice, only one configuration will be chosen and will
1642             // be used for all other AssociatedDevices for the same sysfs path.
1643             const auto reloadedDevice = AssociatedDevice(path, associatedDevice->baseDevConfig);
1644             if (reloadedDevice != *dev->associatedDevice) {
1645                 ALOGI("The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s",
1646                       path.c_str(), associatedDevice->dump().c_str());
1647                 associatedDevice = std::make_shared<AssociatedDevice>(std::move(reloadedDevice));
1648             }
1649         }
1650         // Update the associatedDevice.
1651         dev->associatedDevice = associatedDevice;
1652     }
1653 
1654     if (!associatedDevice) {
1655         // No existing associated device found for this path, so create a new one.
1656         associatedDevice = std::make_shared<AssociatedDevice>(path, config);
1657     }
1658 
1659     return associatedDevice;
1660 }
1661 
AssociatedDevice(const std::filesystem::path & sysfsRootPath,std::shared_ptr<PropertyMap> config)1662 EventHub::AssociatedDevice::AssociatedDevice(const std::filesystem::path& sysfsRootPath,
1663                                              std::shared_ptr<PropertyMap> config)
1664       : sysfsRootPath(sysfsRootPath),
1665         baseDevConfig(std::move(config)),
1666         batteryInfos(readBatteryConfiguration(sysfsRootPath)),
1667         lightInfos(readLightsConfiguration(sysfsRootPath, baseDevConfig)),
1668         layoutInfo(readLayoutConfiguration(sysfsRootPath)) {}
1669 
dump() const1670 std::string EventHub::AssociatedDevice::dump() const {
1671     return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(),
1672                         batteryInfos.size(), lightInfos.size());
1673 }
1674 
vibrate(int32_t deviceId,const VibrationElement & element)1675 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1676     std::scoped_lock _l(mLock);
1677     Device* device = getDeviceLocked(deviceId);
1678     if (device != nullptr && device->hasValidFd()) {
1679         ff_effect effect;
1680         memset(&effect, 0, sizeof(effect));
1681         effect.type = FF_RUMBLE;
1682         effect.id = device->ffEffectId;
1683         // evdev FF_RUMBLE effect only supports two channels of vibration.
1684         effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1685         effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1686         effect.replay.length = element.duration.count();
1687         effect.replay.delay = 0;
1688         if (ioctl(device->fd, EVIOCSFF, &effect)) {
1689             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1690                   device->identifier.name.c_str(), errno);
1691             return;
1692         }
1693         device->ffEffectId = effect.id;
1694 
1695         struct input_event ev;
1696         ev.input_event_sec = 0;
1697         ev.input_event_usec = 0;
1698         ev.type = EV_FF;
1699         ev.code = device->ffEffectId;
1700         ev.value = 1;
1701         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1702             ALOGW("Could not start force feedback effect on device %s due to error %d.",
1703                   device->identifier.name.c_str(), errno);
1704             return;
1705         }
1706         device->ffEffectPlaying = true;
1707     }
1708 }
1709 
cancelVibrate(int32_t deviceId)1710 void EventHub::cancelVibrate(int32_t deviceId) {
1711     std::scoped_lock _l(mLock);
1712     Device* device = getDeviceLocked(deviceId);
1713     if (device != nullptr && device->hasValidFd()) {
1714         if (device->ffEffectPlaying) {
1715             device->ffEffectPlaying = false;
1716 
1717             struct input_event ev;
1718             ev.input_event_sec = 0;
1719             ev.input_event_usec = 0;
1720             ev.type = EV_FF;
1721             ev.code = device->ffEffectId;
1722             ev.value = 0;
1723             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1724                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1725                       device->identifier.name.c_str(), errno);
1726                 return;
1727             }
1728         }
1729     }
1730 }
1731 
getVibratorIds(int32_t deviceId) const1732 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const {
1733     std::scoped_lock _l(mLock);
1734     std::vector<int32_t> vibrators;
1735     Device* device = getDeviceLocked(deviceId);
1736     if (device != nullptr && device->hasValidFd() &&
1737         device->classes.test(InputDeviceClass::VIBRATOR)) {
1738         vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1739         vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1740     }
1741     return vibrators;
1742 }
1743 
1744 /**
1745  * Checks both mDevices and mOpeningDevices for a device with the descriptor passed.
1746  */
hasDeviceWithDescriptorLocked(const std::string & descriptor) const1747 bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const {
1748     for (const auto& device : mOpeningDevices) {
1749         if (descriptor == device->identifier.descriptor) {
1750             return true;
1751         }
1752     }
1753 
1754     for (const auto& [id, device] : mDevices) {
1755         if (descriptor == device->identifier.descriptor) {
1756             return true;
1757         }
1758     }
1759     return false;
1760 }
1761 
getDeviceLocked(int32_t deviceId) const1762 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1763     if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1764         deviceId = mBuiltInKeyboardId;
1765     }
1766     const auto& it = mDevices.find(deviceId);
1767     return it != mDevices.end() ? it->second.get() : nullptr;
1768 }
1769 
getDeviceByPathLocked(const std::string & devicePath) const1770 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1771     for (const auto& [id, device] : mDevices) {
1772         if (device->path == devicePath) {
1773             return device.get();
1774         }
1775     }
1776     return nullptr;
1777 }
1778 
1779 /**
1780  * The file descriptor could be either input device, or a video device (associated with a
1781  * specific input device). Check both cases here, and return the device that this event
1782  * belongs to. Caller can compare the fd's once more to determine event type.
1783  * Looks through all input devices, and only attached video devices. Unattached video
1784  * devices are ignored.
1785  */
getDeviceByFdLocked(int fd) const1786 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1787     for (const auto& [id, device] : mDevices) {
1788         if (device->fd == fd) {
1789             // This is an input device event
1790             return device.get();
1791         }
1792         if (device->videoDevice && device->videoDevice->getFd() == fd) {
1793             // This is a video device event
1794             return device.get();
1795         }
1796     }
1797     // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1798     // and therefore should never be looked up by fd.
1799     return nullptr;
1800 }
1801 
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1802 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1803     std::filesystem::path batteryPath;
1804     {
1805         // Do not read the sysfs node to get the battery state while holding
1806         // the EventHub lock. For some peripheral devices, reading battery state
1807         // can be broken and take 5+ seconds. Holding the lock in this case would
1808         // block all other event processing during this time. For now, we assume this
1809         // call never happens on the InputReader thread and read the sysfs node outside
1810         // the lock to prevent event processing from being blocked by this call.
1811         std::scoped_lock _l(mLock);
1812 
1813         const auto& infos = getBatteryInfoLocked(deviceId);
1814         auto it = infos.find(batteryId);
1815         if (it == infos.end()) {
1816             return std::nullopt;
1817         }
1818         batteryPath = it->second.path;
1819     } // release lock
1820 
1821     std::string buffer;
1822 
1823     // Some devices report battery capacity as an integer through the "capacity" file
1824     if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1825                                &buffer)) {
1826         return std::stoi(base::Trim(buffer));
1827     }
1828 
1829     // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1830     // These values are taken from kernel source code include/linux/power_supply.h
1831     if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1832                                &buffer)) {
1833         // Remove any white space such as trailing new line
1834         const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1835         if (levelIt != BATTERY_LEVEL.end()) {
1836             return levelIt->second;
1837         }
1838     }
1839 
1840     return std::nullopt;
1841 }
1842 
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1843 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1844     std::filesystem::path batteryPath;
1845     {
1846         // Do not read the sysfs node to get the battery state while holding
1847         // the EventHub lock. For some peripheral devices, reading battery state
1848         // can be broken and take 5+ seconds. Holding the lock in this case would
1849         // block all other event processing during this time. For now, we assume this
1850         // call never happens on the InputReader thread and read the sysfs node outside
1851         // the lock to prevent event processing from being blocked by this call.
1852         std::scoped_lock _l(mLock);
1853 
1854         const auto& infos = getBatteryInfoLocked(deviceId);
1855         auto it = infos.find(batteryId);
1856         if (it == infos.end()) {
1857             return std::nullopt;
1858         }
1859         batteryPath = it->second.path;
1860     } // release lock
1861 
1862     std::string buffer;
1863 
1864     if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS),
1865                                 &buffer)) {
1866         ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1867         return std::nullopt;
1868     }
1869 
1870     // Remove white space like trailing new line
1871     const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1872     if (statusIt != BATTERY_STATUS.end()) {
1873         return statusIt->second;
1874     }
1875 
1876     return std::nullopt;
1877 }
1878 
getEvents(int timeoutMillis)1879 std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) {
1880     std::scoped_lock _l(mLock);
1881 
1882     std::array<input_event, EVENT_BUFFER_SIZE> readBuffer;
1883 
1884     std::vector<RawEvent> events;
1885     bool awoken = false;
1886     for (;;) {
1887         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1888 
1889         // Reopen input devices if needed.
1890         if (mNeedToReopenDevices) {
1891             mNeedToReopenDevices = false;
1892 
1893             ALOGI("Reopening all input devices due to a configuration change.");
1894 
1895             closeAllDevicesLocked();
1896             mNeedToScanDevices = true;
1897             break; // return to the caller before we actually rescan
1898         }
1899 
1900         handleSysfsNodeChangeNotificationsLocked();
1901 
1902         // Use a do-while loop to ensure that we drain the closing and opening devices loop
1903         // at least once, even if there are no devices to re-open.
1904         do {
1905             if (!mDeviceIdsToReopen.empty()) {
1906                 // If there are devices that need to be re-opened, ensure that we re-open them
1907                 // one at a time to send the DEVICE_REMOVED and DEVICE_ADDED notifications for
1908                 // each before moving on to the next. This is to avoid notifying all device
1909                 // removals and additions in one batch, which could cause additional unnecessary
1910                 // device added/removed notifications for merged InputDevices from InputReader.
1911                 const int32_t deviceId = mDeviceIdsToReopen.back();
1912                 mDeviceIdsToReopen.erase(mDeviceIdsToReopen.end() - 1);
1913                 if (auto it = mDevices.find(deviceId); it != mDevices.end()) {
1914                     ALOGI("Reopening input device: id=%d, name=%s", it->second->id,
1915                           it->second->identifier.name.c_str());
1916                     const auto path = it->second->path;
1917                     closeDeviceLocked(*it->second);
1918                     openDeviceLocked(path);
1919                 }
1920             }
1921 
1922             // Report any devices that had last been added/removed.
1923             for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1924                 std::unique_ptr<Device> device = std::move(*it);
1925                 ALOGV("Reporting device closed: id=%d, name=%s\n", device->id,
1926                       device->path.c_str());
1927                 const int32_t deviceId = (device->id == mBuiltInKeyboardId)
1928                         ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1929                         : device->id;
1930                 events.push_back({
1931                         .when = now,
1932                         .deviceId = deviceId,
1933                         .type = DEVICE_REMOVED,
1934                 });
1935                 it = mClosingDevices.erase(it);
1936                 if (events.size() == EVENT_BUFFER_SIZE) {
1937                     break;
1938                 }
1939             }
1940 
1941             if (mNeedToScanDevices) {
1942                 mNeedToScanDevices = false;
1943                 scanDevicesLocked();
1944             }
1945 
1946             while (!mOpeningDevices.empty()) {
1947                 std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1948                 mOpeningDevices.pop_back();
1949                 ALOGV("Reporting device opened: id=%d, name=%s\n", device->id,
1950                       device->path.c_str());
1951                 const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1952                 events.push_back({
1953                         .when = now,
1954                         .deviceId = deviceId,
1955                         .type = DEVICE_ADDED,
1956                 });
1957 
1958                 // Try to find a matching video device by comparing device names
1959                 for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1960                      it++) {
1961                     std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1962                     if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1963                         // videoDevice was transferred to 'device'
1964                         it = mUnattachedVideoDevices.erase(it);
1965                         break;
1966                     }
1967                 }
1968 
1969                 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1970                 if (!inserted) {
1971                     ALOGW("Device id %d exists, replaced.", device->id);
1972                 }
1973                 if (events.size() == EVENT_BUFFER_SIZE) {
1974                     break;
1975                 }
1976             }
1977 
1978             // Perform this loop of re-opening devices so that we re-open one device at a time.
1979         } while (!mDeviceIdsToReopen.empty());
1980 
1981         if (events.size() == EVENT_BUFFER_SIZE) {
1982             break;
1983         }
1984 
1985         // Grab the next input event.
1986         bool deviceChanged = false;
1987         while (mPendingEventIndex < mPendingEventCount) {
1988             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1989             if (eventItem.data.fd == mINotifyFd) {
1990                 if (eventItem.events & EPOLLIN) {
1991                     mPendingINotify = true;
1992                 } else {
1993                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1994                 }
1995                 continue;
1996             }
1997 
1998             if (eventItem.data.fd == mWakeReadPipeFd) {
1999                 if (eventItem.events & EPOLLIN) {
2000                     ALOGV("awoken after wake()");
2001                     awoken = true;
2002                     char wakeReadBuffer[16];
2003                     ssize_t nRead;
2004                     do {
2005                         nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
2006                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
2007                 } else {
2008                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
2009                           eventItem.events);
2010                 }
2011                 continue;
2012             }
2013 
2014             Device* device = getDeviceByFdLocked(eventItem.data.fd);
2015             if (device == nullptr) {
2016                 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
2017                       eventItem.data.fd);
2018                 ALOG_ASSERT(!DEBUG);
2019                 continue;
2020             }
2021             if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
2022                 if (eventItem.events & EPOLLIN) {
2023                     size_t numFrames = device->videoDevice->readAndQueueFrames();
2024                     if (numFrames == 0) {
2025                         ALOGE("Received epoll event for video device %s, but could not read frame",
2026                               device->videoDevice->getName().c_str());
2027                     }
2028                 } else if (eventItem.events & EPOLLHUP) {
2029                     // TODO(b/121395353) - consider adding EPOLLRDHUP
2030                     ALOGI("Removing video device %s due to epoll hang-up event.",
2031                           device->videoDevice->getName().c_str());
2032                     unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2033                     device->videoDevice = nullptr;
2034                 } else {
2035                     ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
2036                           device->videoDevice->getName().c_str());
2037                     ALOG_ASSERT(!DEBUG);
2038                 }
2039                 continue;
2040             }
2041             // This must be an input event
2042             if (eventItem.events & EPOLLIN) {
2043                 int32_t readSize =
2044                         read(device->fd, readBuffer.data(),
2045                              sizeof(decltype(readBuffer)::value_type) * readBuffer.size());
2046                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
2047                     // Device was removed before INotify noticed.
2048                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
2049                           " capacity: %zu errno: %d)\n",
2050                           device->fd, readSize, readBuffer.size(), errno);
2051                     deviceChanged = true;
2052                     closeDeviceLocked(*device);
2053                 } else if (readSize < 0) {
2054                     if (errno != EAGAIN && errno != EINTR) {
2055                         ALOGW("could not get event (errno=%d)", errno);
2056                     }
2057                 } else if ((readSize % sizeof(struct input_event)) != 0) {
2058                     ALOGE("could not get event (wrong size: %d)", readSize);
2059                 } else {
2060                     const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
2061 
2062                     const size_t count = size_t(readSize) / sizeof(struct input_event);
2063                     for (size_t i = 0; i < count; i++) {
2064                         struct input_event& iev = readBuffer[i];
2065                         device->trackInputEvent(iev);
2066                         events.push_back({
2067                                 .when = processEventTimestamp(iev),
2068                                 .readTime = systemTime(SYSTEM_TIME_MONOTONIC),
2069                                 .deviceId = deviceId,
2070                                 .type = iev.type,
2071                                 .code = iev.code,
2072                                 .value = iev.value,
2073                         });
2074                     }
2075                     if (events.size() >= EVENT_BUFFER_SIZE) {
2076                         // The result buffer is full.  Reset the pending event index
2077                         // so we will try to read the device again on the next iteration.
2078                         mPendingEventIndex -= 1;
2079                         break;
2080                     }
2081                 }
2082             } else if (eventItem.events & EPOLLHUP) {
2083                 ALOGI("Removing device %s due to epoll hang-up event.",
2084                       device->identifier.name.c_str());
2085                 deviceChanged = true;
2086                 closeDeviceLocked(*device);
2087             } else {
2088                 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
2089                       device->identifier.name.c_str());
2090             }
2091         }
2092 
2093         // readNotify() will modify the list of devices so this must be done after
2094         // processing all other events to ensure that we read all remaining events
2095         // before closing the devices.
2096         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
2097             mPendingINotify = false;
2098             const auto res = readNotifyLocked();
2099             if (!res.ok()) {
2100                 ALOGW("Failed to read from inotify: %s", res.error().message().c_str());
2101             }
2102             deviceChanged = true;
2103         }
2104 
2105         // Report added or removed devices immediately.
2106         if (deviceChanged) {
2107             continue;
2108         }
2109 
2110         // Return now if we have collected any events or if we were explicitly awoken.
2111         if (!events.empty() || awoken) {
2112             break;
2113         }
2114 
2115         // Poll for events.
2116         // When a device driver has pending (unread) events, it acquires
2117         // a kernel wake lock.  Once the last pending event has been read, the device
2118         // driver will release the kernel wake lock, but the epoll will hold the wakelock,
2119         // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
2120         // is called again for the same fd that produced the event.
2121         // Thus the system can only sleep if there are no events pending or
2122         // currently being processed.
2123         //
2124         // The timeout is advisory only.  If the device is asleep, it will not wake just to
2125         // service the timeout.
2126         mPendingEventIndex = 0;
2127 
2128         mLock.unlock(); // release lock before poll
2129 
2130         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
2131 
2132         mLock.lock(); // reacquire lock after poll
2133 
2134         if (pollResult == 0) {
2135             // Timed out.
2136             mPendingEventCount = 0;
2137             break;
2138         }
2139 
2140         if (pollResult < 0) {
2141             // An error occurred.
2142             mPendingEventCount = 0;
2143 
2144             // Sleep after errors to avoid locking up the system.
2145             // Hopefully the error is transient.
2146             if (errno != EINTR) {
2147                 ALOGW("poll failed (errno=%d)\n", errno);
2148                 usleep(100000);
2149             }
2150         } else {
2151             // Some events occurred.
2152             mPendingEventCount = size_t(pollResult);
2153         }
2154     }
2155 
2156     // All done, return the number of events we read.
2157     return events;
2158 }
2159 
getVideoFrames(int32_t deviceId)2160 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
2161     std::scoped_lock _l(mLock);
2162 
2163     Device* device = getDeviceLocked(deviceId);
2164     if (device == nullptr || !device->videoDevice) {
2165         return {};
2166     }
2167     return device->videoDevice->consumeFrames();
2168 }
2169 
wake()2170 void EventHub::wake() {
2171     ALOGV("wake() called");
2172 
2173     ssize_t nWrite;
2174     do {
2175         nWrite = write(mWakeWritePipeFd, "W", 1);
2176     } while (nWrite == -1 && errno == EINTR);
2177 
2178     if (nWrite != 1 && errno != EAGAIN) {
2179         ALOGW("Could not write wake signal: %s", strerror(errno));
2180     }
2181 }
2182 
scanDevicesLocked()2183 void EventHub::scanDevicesLocked() {
2184     status_t result;
2185     std::error_code errorCode;
2186 
2187     if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
2188         result = scanDirLocked(DEVICE_INPUT_PATH);
2189         if (result < 0) {
2190             ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH);
2191         }
2192     } else {
2193         if (errorCode) {
2194             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
2195                   errorCode.message().c_str());
2196         }
2197     }
2198     if (isV4lScanningEnabled()) {
2199         result = scanVideoDirLocked(DEVICE_PATH);
2200         if (result != OK) {
2201             ALOGE("scan video dir failed for %s", DEVICE_PATH);
2202         }
2203     }
2204     if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
2205         createVirtualKeyboardLocked();
2206     }
2207 }
2208 
2209 // ----------------------------------------------------------------------------
2210 
registerFdForEpoll(int fd)2211 status_t EventHub::registerFdForEpoll(int fd) {
2212     // TODO(b/121395353) - consider adding EPOLLRDHUP
2213     struct epoll_event eventItem = {};
2214     eventItem.events = EPOLLIN | EPOLLWAKEUP;
2215     eventItem.data.fd = fd;
2216     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
2217         ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
2218         return -errno;
2219     }
2220     return OK;
2221 }
2222 
unregisterFdFromEpoll(int fd)2223 status_t EventHub::unregisterFdFromEpoll(int fd) {
2224     if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
2225         ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
2226         return -errno;
2227     }
2228     return OK;
2229 }
2230 
registerDeviceForEpollLocked(Device & device)2231 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
2232     status_t result = registerFdForEpoll(device.fd);
2233     if (result != OK) {
2234         ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
2235         return result;
2236     }
2237     if (device.videoDevice) {
2238         registerVideoDeviceForEpollLocked(*device.videoDevice);
2239     }
2240     return result;
2241 }
2242 
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)2243 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
2244     status_t result = registerFdForEpoll(videoDevice.getFd());
2245     if (result != OK) {
2246         ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
2247     }
2248 }
2249 
unregisterDeviceFromEpollLocked(Device & device)2250 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
2251     if (device.hasValidFd()) {
2252         status_t result = unregisterFdFromEpoll(device.fd);
2253         if (result != OK) {
2254             ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
2255             return result;
2256         }
2257     }
2258     if (device.videoDevice) {
2259         unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
2260     }
2261     return OK;
2262 }
2263 
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)2264 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
2265     if (videoDevice.hasValidFd()) {
2266         status_t result = unregisterFdFromEpoll(videoDevice.getFd());
2267         if (result != OK) {
2268             ALOGW("Could not remove video device fd from epoll for device: %s",
2269                   videoDevice.getName().c_str());
2270         }
2271     }
2272 }
2273 
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,ftl::Flags<InputDeviceClass> classes)2274 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
2275                                                     ftl::Flags<InputDeviceClass> classes) {
2276     SHA256_CTX ctx;
2277     SHA256_Init(&ctx);
2278     SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
2279                   identifier.uniqueId.size());
2280     std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
2281     SHA256_Final(digest.data(), &ctx);
2282 
2283     std::string obfuscatedId;
2284     for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
2285         obfuscatedId += StringPrintf("%02x", digest[i]);
2286     }
2287 
2288     android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
2289                                identifier.vendor, identifier.product, identifier.version,
2290                                identifier.bus, obfuscatedId.c_str(), classes.get());
2291 }
2292 
openDeviceLocked(const std::string & devicePath)2293 void EventHub::openDeviceLocked(const std::string& devicePath) {
2294     // If an input device happens to register around the time when EventHub's constructor runs, it
2295     // is possible that the same input event node (for example, /dev/input/event3) will be noticed
2296     // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
2297     // from getting registered, ensure that this path is not already covered by an existing device.
2298     for (const auto& [deviceId, device] : mDevices) {
2299         if (device->path == devicePath) {
2300             return; // device was already registered
2301         }
2302     }
2303 
2304     char buffer[80];
2305 
2306     ALOGV("Opening device: %s", devicePath.c_str());
2307 
2308     int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
2309     if (fd < 0) {
2310         ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
2311         return;
2312     }
2313 
2314     InputDeviceIdentifier identifier;
2315 
2316     // Get device name.
2317     if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
2318         ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
2319     } else {
2320         buffer[sizeof(buffer) - 1] = '\0';
2321         identifier.name = buffer;
2322     }
2323 
2324     // Check to see if the device is on our excluded list
2325     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
2326         const std::string& item = mExcludedDevices[i];
2327         if (identifier.name == item) {
2328             ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
2329             close(fd);
2330             return;
2331         }
2332     }
2333 
2334     // Get device driver version.
2335     int driverVersion;
2336     if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
2337         ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
2338         close(fd);
2339         return;
2340     }
2341 
2342     // Get device identifier.
2343     struct input_id inputId;
2344     if (ioctl(fd, EVIOCGID, &inputId)) {
2345         ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
2346         close(fd);
2347         return;
2348     }
2349     identifier.bus = inputId.bustype;
2350     identifier.product = inputId.product;
2351     identifier.vendor = inputId.vendor;
2352     identifier.version = inputId.version;
2353 
2354     // Get device physical location.
2355     if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
2356         // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
2357     } else {
2358         buffer[sizeof(buffer) - 1] = '\0';
2359         identifier.location = buffer;
2360     }
2361 
2362     // Get device unique id.
2363     if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
2364         // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
2365     } else {
2366         buffer[sizeof(buffer) - 1] = '\0';
2367         identifier.uniqueId = buffer;
2368     }
2369 
2370     // Attempt to get the bluetooth address of an input device from the uniqueId.
2371     if (identifier.bus == BUS_BLUETOOTH &&
2372         std::regex_match(identifier.uniqueId,
2373                          std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) {
2374         identifier.bluetoothAddress = identifier.uniqueId;
2375         // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address.
2376         for (auto& c : *identifier.bluetoothAddress) {
2377             c = ::toupper(c);
2378         }
2379     }
2380 
2381     // Fill in the descriptor.
2382     assignDescriptorLocked(identifier);
2383 
2384     // Load the configuration file for the device.
2385     std::shared_ptr<PropertyMap> configuration = nullptr;
2386     base::Result<std::shared_ptr<PropertyMap>> propertyMapResult = loadConfiguration(identifier);
2387     if (!propertyMapResult.ok()) {
2388         ALOGE("Error loading input device configuration file for device '%s'. "
2389               "Using default configuration. Error: %s",
2390               identifier.name.c_str(), propertyMapResult.error().message().c_str());
2391     } else {
2392         configuration = propertyMapResult.value();
2393     }
2394 
2395     // Allocate device.  (The device object takes ownership of the fd at this point.)
2396     int32_t deviceId = mNextDeviceId++;
2397     std::unique_ptr<Device> device =
2398             std::make_unique<Device>(fd, deviceId, devicePath, identifier, configuration);
2399 
2400     ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
2401     ALOGV("  bus:        %04x\n"
2402           "  vendor      %04x\n"
2403           "  product     %04x\n"
2404           "  version     %04x\n",
2405           identifier.bus, identifier.vendor, identifier.product, identifier.version);
2406     ALOGV("  name:       \"%s\"\n", identifier.name.c_str());
2407     ALOGV("  location:   \"%s\"\n", identifier.location.c_str());
2408     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.c_str());
2409     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.c_str());
2410     ALOGV("  driver:     v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
2411           driverVersion & 0xff);
2412 
2413     // Obtain the associated device, if any.
2414     device->associatedDevice = obtainAssociatedDeviceLocked(devicePath, device->configuration);
2415 
2416     // Figure out the kinds of events the device reports.
2417     device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
2418     device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
2419     device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
2420     device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
2421     device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
2422     device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
2423     device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
2424     device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
2425 
2426     // See if this is a device with keys. This could be full keyboard, or other devices like
2427     // gamepads, joysticks, and styluses with buttons that should generate key presses.
2428     bool haveKeyboardKeys =
2429             device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
2430     bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
2431             device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
2432     bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) ||
2433             device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3);
2434     if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) {
2435         device->classes |= InputDeviceClass::KEYBOARD;
2436     }
2437 
2438     // See if this is a cursor device such as a trackball or mouse.
2439     if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
2440         device->relBitmask.test(REL_Y)) {
2441         device->classes |= InputDeviceClass::CURSOR;
2442     }
2443 
2444     // See if the device is specially configured to be of a certain type.
2445     if (device->configuration) {
2446         std::string deviceType = device->configuration->getString("device.type").value_or("");
2447         if (deviceType == "rotaryEncoder") {
2448             device->classes |= InputDeviceClass::ROTARY_ENCODER;
2449         } else if (deviceType == "externalStylus") {
2450             device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2451         }
2452     }
2453 
2454     // See if this is a touch pad.
2455     // Is this a new modern multi-touch driver?
2456     if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2457         // Some joysticks such as the PS3 controller report axes that conflict
2458         // with the ABS_MT range.  Try to confirm that the device really is
2459         // a touch screen.
2460         if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2461             device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2462             if (device->propBitmask.test(INPUT_PROP_POINTER) &&
2463                 !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) {
2464                 device->classes |= InputDeviceClass::TOUCHPAD;
2465             }
2466         }
2467         // Is this an old style single-touch driver?
2468     } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2469                device->absBitmask.test(ABS_Y)) {
2470         device->classes |= InputDeviceClass::TOUCH;
2471         // Is this a stylus that reports contact/pressure independently of touch coordinates?
2472     } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2473                !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2474         device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2475     }
2476 
2477     // See if this device is a joystick.
2478     // Assumes that joysticks always have gamepad buttons in order to distinguish them
2479     // from other devices such as accelerometers that also have absolute axes.
2480     if (haveGamepadButtons) {
2481         auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2482         for (int i = 0; i <= ABS_MAX; i++) {
2483             if (device->absBitmask.test(i) &&
2484                 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2485                 device->classes = assumedClasses;
2486                 break;
2487             }
2488         }
2489     }
2490 
2491     // Check whether this device is an accelerometer.
2492     if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2493         device->classes |= InputDeviceClass::SENSOR;
2494     }
2495 
2496     // Check whether this device has switches.
2497     for (int i = 0; i <= SW_MAX; i++) {
2498         if (device->swBitmask.test(i)) {
2499             device->classes |= InputDeviceClass::SWITCH;
2500             break;
2501         }
2502     }
2503 
2504     // Check whether this device supports the vibrator.
2505     if (device->ffBitmask.test(FF_RUMBLE)) {
2506         device->classes |= InputDeviceClass::VIBRATOR;
2507     }
2508 
2509     // Configure virtual keys.
2510     if ((device->classes.test(InputDeviceClass::TOUCH))) {
2511         // Load the virtual keys for the touch screen, if any.
2512         // We do this now so that we can make sure to load the keymap if necessary.
2513         bool success = device->loadVirtualKeyMapLocked();
2514         if (success) {
2515             device->classes |= InputDeviceClass::KEYBOARD;
2516         }
2517     }
2518 
2519     // Load the key map.
2520     // We need to do this for joysticks too because the key layout may specify axes, and for
2521     // sensor as well because the key layout may specify the axes to sensor data mapping.
2522     status_t keyMapStatus = NAME_NOT_FOUND;
2523     if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2524                             InputDeviceClass::SENSOR)) {
2525         // Load the keymap for the device.
2526         keyMapStatus = device->loadKeyMapLocked();
2527     }
2528 
2529     // Configure the keyboard, gamepad or virtual keyboard.
2530     if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2531         // Register the keyboard as a built-in keyboard if it is eligible.
2532         if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2533             isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2534                                       &device->keyMap)) {
2535             mBuiltInKeyboardId = device->id;
2536         }
2537 
2538         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2539         if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2540             device->classes |= InputDeviceClass::ALPHAKEY;
2541         }
2542 
2543         // See if this device has a D-pad.
2544         if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(),
2545                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2546             device->classes |= InputDeviceClass::DPAD;
2547         }
2548 
2549         // See if this device has a gamepad.
2550         if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(),
2551                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2552             device->classes |= InputDeviceClass::GAMEPAD;
2553         }
2554 
2555         // See if this device has any stylus buttons that we would want to fuse with touch data.
2556         if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) &&
2557             !device->classes.any(InputDeviceClass::ALPHAKEY) &&
2558             std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(),
2559                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2560             device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2561         }
2562     }
2563 
2564     // See if the device is a rotary encoder with a single scroll axis and nothing else.
2565     if (vd_flags::virtual_rotary() && device->classes == ftl::Flags<InputDeviceClass>(0) &&
2566         device->relBitmask.test(REL_WHEEL) && !device->relBitmask.test(REL_HWHEEL)) {
2567         device->classes |= InputDeviceClass::ROTARY_ENCODER;
2568     }
2569 
2570     // If the device isn't recognized as something we handle, don't monitor it.
2571     if (device->classes == ftl::Flags<InputDeviceClass>(0)) {
2572         ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2573               device->identifier.name.c_str());
2574         return;
2575     }
2576 
2577     // Classify InputDeviceClass::BATTERY.
2578     if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) {
2579         device->classes |= InputDeviceClass::BATTERY;
2580     }
2581 
2582     // Classify InputDeviceClass::LIGHT.
2583     if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) {
2584         device->classes |= InputDeviceClass::LIGHT;
2585     }
2586 
2587     // Determine whether the device has a mic.
2588     if (device->deviceHasMicLocked()) {
2589         device->classes |= InputDeviceClass::MIC;
2590     }
2591 
2592     // Determine whether the device is external or internal.
2593     if (device->isExternalDeviceLocked()) {
2594         device->classes |= InputDeviceClass::EXTERNAL;
2595     }
2596 
2597     if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2598         device->classes.test(InputDeviceClass::GAMEPAD)) {
2599         device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2600         device->setLedForControllerLocked();
2601     }
2602 
2603     if (registerDeviceForEpollLocked(*device) != OK) {
2604         return;
2605     }
2606 
2607     device->configureFd();
2608 
2609     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2610           "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2611           deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2612           device->classes.string().c_str(), device->configurationFile.c_str(),
2613           device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2614           toString(mBuiltInKeyboardId == deviceId));
2615 
2616     addDeviceLocked(std::move(device));
2617 }
2618 
openVideoDeviceLocked(const std::string & devicePath)2619 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2620     std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2621     if (!videoDevice) {
2622         ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2623         return;
2624     }
2625     // Transfer ownership of this video device to a matching input device
2626     for (const auto& [id, device] : mDevices) {
2627         if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2628             return; // 'device' now owns 'videoDevice'
2629         }
2630     }
2631 
2632     // Couldn't find a matching input device, so just add it to a temporary holding queue.
2633     // A matching input device may appear later.
2634     ALOGI("Adding video device %s to list of unattached video devices",
2635           videoDevice->getName().c_str());
2636     mUnattachedVideoDevices.push_back(std::move(videoDevice));
2637 }
2638 
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2639 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2640                                        std::unique_ptr<TouchVideoDevice>& videoDevice) {
2641     if (videoDevice->getName() != device.identifier.name) {
2642         return false;
2643     }
2644     device.videoDevice = std::move(videoDevice);
2645     if (device.enabled) {
2646         registerVideoDeviceForEpollLocked(*device.videoDevice);
2647     }
2648     return true;
2649 }
2650 
isDeviceEnabled(int32_t deviceId) const2651 bool EventHub::isDeviceEnabled(int32_t deviceId) const {
2652     std::scoped_lock _l(mLock);
2653     Device* device = getDeviceLocked(deviceId);
2654     if (device == nullptr) {
2655         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2656         return false;
2657     }
2658     return device->enabled;
2659 }
2660 
enableDevice(int32_t deviceId)2661 status_t EventHub::enableDevice(int32_t deviceId) {
2662     std::scoped_lock _l(mLock);
2663     Device* device = getDeviceLocked(deviceId);
2664     if (device == nullptr) {
2665         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2666         return BAD_VALUE;
2667     }
2668     if (device->enabled) {
2669         ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2670         return OK;
2671     }
2672     status_t result = device->enable();
2673     if (result != OK) {
2674         ALOGE("Failed to enable device %" PRId32, deviceId);
2675         return result;
2676     }
2677 
2678     device->configureFd();
2679 
2680     return registerDeviceForEpollLocked(*device);
2681 }
2682 
disableDevice(int32_t deviceId)2683 status_t EventHub::disableDevice(int32_t deviceId) {
2684     std::scoped_lock _l(mLock);
2685     Device* device = getDeviceLocked(deviceId);
2686     if (device == nullptr) {
2687         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2688         return BAD_VALUE;
2689     }
2690     if (!device->enabled) {
2691         ALOGW("Duplicate call to %s, input device already disabled", __func__);
2692         return OK;
2693     }
2694     unregisterDeviceFromEpollLocked(*device);
2695     return device->disable();
2696 }
2697 
getSysfsRootPath(int32_t deviceId) const2698 std::filesystem::path EventHub::getSysfsRootPath(int32_t deviceId) const {
2699     std::scoped_lock _l(mLock);
2700     Device* device = getDeviceLocked(deviceId);
2701     if (device == nullptr) {
2702         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2703         return {};
2704     }
2705 
2706     return device->associatedDevice ? device->associatedDevice->sysfsRootPath
2707                                     : std::filesystem::path{};
2708 }
2709 
2710 // TODO(b/274755573): Shift to uevent handling on native side and remove this method
2711 // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a
2712 // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to
2713 // directly observe UEvents instead of triggering from Java side.
sysfsNodeChanged(const std::string & sysfsNodePath)2714 void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
2715     mChangedSysfsNodeNotifications.emplace(sysfsNodePath);
2716 }
2717 
handleSysfsNodeChangeNotificationsLocked()2718 void EventHub::handleSysfsNodeChangeNotificationsLocked() {
2719     // Use a set to de-dup any repeated notifications.
2720     std::set<std::string> changedNodes;
2721     while (true) {
2722         auto node = mChangedSysfsNodeNotifications.popWithTimeout(std::chrono::nanoseconds(0));
2723         if (!node.has_value()) break;
2724         changedNodes.emplace(*node);
2725     }
2726     if (changedNodes.empty()) {
2727         return;
2728     }
2729 
2730     // Testing whether a sysfs node changed involves several syscalls, so use a cache to avoid
2731     // testing the same node multiple times.
2732     // TODO(b/281822656): Notify InputReader separately when an AssociatedDevice changes,
2733     //  instead of needing to re-open all of Devices that are associated with it.
2734     std::map<std::shared_ptr<const AssociatedDevice>, bool /*changed*/> testedDevices;
2735     auto shouldReopenDevice = [&testedDevices, &changedNodes](const Device& dev) {
2736         if (!dev.associatedDevice) {
2737             return false;
2738         }
2739         if (auto testedIt = testedDevices.find(dev.associatedDevice);
2740             testedIt != testedDevices.end()) {
2741             return testedIt->second;
2742         }
2743         // Cache miss
2744         const bool anyNodesChanged =
2745                 std::any_of(changedNodes.begin(), changedNodes.end(), [&](const std::string& node) {
2746                     return node.find(dev.associatedDevice->sysfsRootPath.string()) !=
2747                             std::string::npos;
2748                 });
2749         if (!anyNodesChanged) {
2750             testedDevices.emplace(dev.associatedDevice, false);
2751             return false;
2752         }
2753         auto reloadedDevice = AssociatedDevice(dev.associatedDevice->sysfsRootPath,
2754                                                dev.associatedDevice->baseDevConfig);
2755         const bool changed = *dev.associatedDevice != reloadedDevice;
2756         if (changed) {
2757             ALOGI("sysfsNodeChanged: Identified change in sysfs nodes for device: %s",
2758                   dev.identifier.name.c_str());
2759         }
2760         testedDevices.emplace(dev.associatedDevice, changed);
2761         return changed;
2762     };
2763 
2764     // Check in opening devices. These can be re-opened directly because we have not yet notified
2765     // the Reader about these devices.
2766     for (const auto& dev : mOpeningDevices) {
2767         if (shouldReopenDevice(*dev)) {
2768             ALOGI("Reopening input device from mOpeningDevices: id=%d, name=%s", dev->id,
2769                   dev->identifier.name.c_str());
2770             const auto path = dev->path;
2771             closeDeviceLocked(*dev); // The Device object is deleted by this function.
2772             openDeviceLocked(path);
2773         }
2774     }
2775 
2776     // Check in already added devices. Add them to the re-opening list so they can be
2777     // re-opened serially.
2778     for (const auto& [id, dev] : mDevices) {
2779         if (shouldReopenDevice(*dev)) {
2780             mDeviceIdsToReopen.emplace_back(dev->id);
2781         }
2782     }
2783 }
2784 
createVirtualKeyboardLocked()2785 void EventHub::createVirtualKeyboardLocked() {
2786     InputDeviceIdentifier identifier;
2787     identifier.name = "Virtual";
2788     identifier.uniqueId = "<virtual>";
2789     assignDescriptorLocked(identifier);
2790 
2791     std::unique_ptr<Device> device =
2792             std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2793                                      identifier, /*associatedDevice=*/nullptr);
2794     device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2795             InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2796     device->loadKeyMapLocked();
2797     addDeviceLocked(std::move(device));
2798 }
2799 
addDeviceLocked(std::unique_ptr<Device> device)2800 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2801     reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2802     mOpeningDevices.push_back(std::move(device));
2803 }
2804 
getNextControllerNumberLocked(const std::string & name)2805 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2806     if (mControllerNumbers.isFull()) {
2807         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2808               name.c_str());
2809         return 0;
2810     }
2811     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2812     // one
2813     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2814 }
2815 
releaseControllerNumberLocked(int32_t num)2816 void EventHub::releaseControllerNumberLocked(int32_t num) {
2817     if (num > 0) {
2818         mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2819     }
2820 }
2821 
closeDeviceByPathLocked(const std::string & devicePath)2822 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2823     Device* device = getDeviceByPathLocked(devicePath);
2824     if (device != nullptr) {
2825         closeDeviceLocked(*device);
2826         return;
2827     }
2828     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2829 }
2830 
2831 /**
2832  * Find the video device by filename, and close it.
2833  * The video device is closed by path during an inotify event, where we don't have the
2834  * additional context about the video device fd, or the associated input device.
2835  */
closeVideoDeviceByPathLocked(const std::string & devicePath)2836 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2837     // A video device may be owned by an existing input device, or it may be stored in
2838     // the mUnattachedVideoDevices queue. Check both locations.
2839     for (const auto& [id, device] : mDevices) {
2840         if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2841             unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2842             device->videoDevice = nullptr;
2843             return;
2844         }
2845     }
2846     std::erase_if(mUnattachedVideoDevices,
2847                   [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2848                       return videoDevice->getPath() == devicePath;
2849                   });
2850 }
2851 
closeAllDevicesLocked()2852 void EventHub::closeAllDevicesLocked() {
2853     mUnattachedVideoDevices.clear();
2854     while (!mDevices.empty()) {
2855         closeDeviceLocked(*(mDevices.begin()->second));
2856     }
2857 }
2858 
closeDeviceLocked(Device & device)2859 void EventHub::closeDeviceLocked(Device& device) {
2860     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2861           device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2862 
2863     if (device.id == mBuiltInKeyboardId) {
2864         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2865               device.path.c_str(), mBuiltInKeyboardId);
2866         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2867     }
2868 
2869     unregisterDeviceFromEpollLocked(device);
2870     if (device.videoDevice) {
2871         // This must be done after the video device is removed from epoll
2872         mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2873     }
2874 
2875     releaseControllerNumberLocked(device.controllerNumber);
2876     device.controllerNumber = 0;
2877     device.close();
2878 
2879     // Try to remove this device from mDevices.
2880     if (auto it = mDevices.find(device.id); it != mDevices.end()) {
2881         mClosingDevices.push_back(std::move(mDevices[device.id]));
2882         mDevices.erase(device.id);
2883         return;
2884     }
2885 
2886     // Try to remove this device from mOpeningDevices.
2887     if (auto it = std::find_if(mOpeningDevices.begin(), mOpeningDevices.end(),
2888                                [&device](auto& d) { return d->id == device.id; });
2889         it != mOpeningDevices.end()) {
2890         mOpeningDevices.erase(it);
2891         return;
2892     }
2893 
2894     LOG_ALWAYS_FATAL("%s: Device with id %d was not found!", __func__, device.id);
2895 }
2896 
readNotifyLocked()2897 base::Result<void> EventHub::readNotifyLocked() {
2898     static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event));
2899     uint8_t eventBuffer[512];
2900     ssize_t sizeRead;
2901 
2902     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2903     do {
2904         sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer));
2905     } while (sizeRead < 0 && errno == EINTR);
2906 
2907     if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno));
2908 
2909     for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) {
2910         const inotify_event* event;
2911         event = (const inotify_event*)(eventBuffer + eventPos);
2912         if (event->len == 0) continue;
2913 
2914         handleNotifyEventLocked(*event);
2915 
2916         const ssize_t eventSize = EVENT_SIZE + event->len;
2917         sizeRead -= eventSize;
2918         eventPos += eventSize;
2919     }
2920     return {};
2921 }
2922 
handleNotifyEventLocked(const inotify_event & event)2923 void EventHub::handleNotifyEventLocked(const inotify_event& event) {
2924     if (event.wd == mDeviceInputWd) {
2925         std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name;
2926         if (event.mask & IN_CREATE) {
2927             openDeviceLocked(filename);
2928         } else {
2929             ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2930             closeDeviceByPathLocked(filename);
2931         }
2932     } else if (event.wd == mDeviceWd) {
2933         if (isV4lTouchNode(event.name)) {
2934             std::string filename = std::string(DEVICE_PATH) + "/" + event.name;
2935             if (event.mask & IN_CREATE) {
2936                 openVideoDeviceLocked(filename);
2937             } else {
2938                 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2939                 closeVideoDeviceByPathLocked(filename);
2940             }
2941         } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) {
2942             addDeviceInputInotify();
2943         }
2944     } else {
2945         LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd);
2946     }
2947 }
2948 
scanDirLocked(const std::string & dirname)2949 status_t EventHub::scanDirLocked(const std::string& dirname) {
2950     for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2951         openDeviceLocked(entry.path());
2952     }
2953     return 0;
2954 }
2955 
2956 /**
2957  * Look for all dirname/v4l-touch* devices, and open them.
2958  */
scanVideoDirLocked(const std::string & dirname)2959 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2960     for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2961         if (isV4lTouchNode(entry.path())) {
2962             ALOGI("Found touch video device %s", entry.path().c_str());
2963             openVideoDeviceLocked(entry.path());
2964         }
2965     }
2966     return OK;
2967 }
2968 
requestReopenDevices()2969 void EventHub::requestReopenDevices() {
2970     ALOGV("requestReopenDevices() called");
2971 
2972     std::scoped_lock _l(mLock);
2973     mNeedToReopenDevices = true;
2974 }
2975 
setKernelWakeEnabled(int32_t deviceId,bool enabled)2976 bool EventHub::setKernelWakeEnabled(int32_t deviceId, bool enabled) {
2977     std::scoped_lock _l(mLock);
2978     std::string enabledStr = enabled ? "enabled" : "disabled";
2979     Device* device = getDeviceLocked(deviceId);
2980     if (device == nullptr) {
2981         ALOGE("Device Id %d does not exist for setting power wakeup", deviceId);
2982         return false;
2983     }
2984     if (device->associatedDevice == nullptr) {
2985         return false;
2986     }
2987     std::filesystem::path currentPath = device->associatedDevice->sysfsRootPath;
2988     while (!currentPath.empty() && currentPath != "/") {
2989         std::string nodePath = currentPath / "power/wakeup";
2990         if (std::filesystem::exists(nodePath)) {
2991             if (base::WriteStringToFile(enabledStr, nodePath)) {
2992                 return true;
2993 
2994             }
2995             // No need to continue searching in parent directories as power/wakeup nodes
2996             // higher up may control other subdevices.
2997             ALOGW("Failed to set power/wakeup node at %s", nodePath.c_str());
2998             return false;
2999         }
3000         currentPath = currentPath.parent_path();
3001     }
3002     return false;
3003 }
3004 
dump(std::string & dump) const3005 void EventHub::dump(std::string& dump) const {
3006     dump += "Event Hub State:\n";
3007 
3008     { // acquire lock
3009         std::scoped_lock _l(mLock);
3010 
3011         dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
3012 
3013         dump += INDENT "Devices:\n";
3014 
3015         for (const auto& [id, device] : mDevices) {
3016             if (mBuiltInKeyboardId == device->id) {
3017                 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
3018                                      device->id, device->identifier.name.c_str());
3019             } else {
3020                 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
3021                                      device->identifier.name.c_str());
3022             }
3023             dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
3024             dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
3025             dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
3026             dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
3027             dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
3028             dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
3029             dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
3030             dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
3031                                          "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n",
3032                                  device->identifier.bus, device->identifier.vendor,
3033                                  device->identifier.product, device->identifier.version,
3034                                  toString(device->identifier.bluetoothAddress).c_str());
3035             dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
3036                                  device->keyMap.keyLayoutFile.c_str());
3037             dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
3038                                  device->keyMap.keyCharacterMapFile.c_str());
3039             if (device->associatedDevice && device->associatedDevice->layoutInfo) {
3040                 dump += StringPrintf(INDENT3 "LanguageTag: %s\n",
3041                                      device->associatedDevice->layoutInfo->languageTag.c_str());
3042                 dump += StringPrintf(INDENT3 "LayoutType: %s\n",
3043                                      device->associatedDevice->layoutInfo->layoutType.c_str());
3044             }
3045             dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
3046                                  device->configurationFile.c_str());
3047             dump += StringPrintf(INDENT3 "VideoDevice: %s\n",
3048                                  device->videoDevice ? device->videoDevice->dump().c_str()
3049                                                      : "<none>");
3050             dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n",
3051                                  device->associatedDevice
3052                                          ? device->associatedDevice->sysfsRootPath.c_str()
3053                                          : "<none>");
3054             if (device->keyBitmask.any(0, KEY_MAX + 1)) {
3055                 const auto pressedKeys = device->keyState.dumpSetIndices(", ", [](int i) {
3056                     return InputEventLookup::getLinuxEvdevLabel(EV_KEY, i, 1).code;
3057                 });
3058                 dump += StringPrintf(INDENT3 "KeyState (pressed): %s\n", pressedKeys.c_str());
3059             }
3060             if (device->swBitmask.any(0, SW_MAX + 1)) {
3061                 const auto pressedSwitches = device->swState.dumpSetIndices(", ", [](int i) {
3062                     return InputEventLookup::getLinuxEvdevLabel(EV_SW, i, 1).code;
3063                 });
3064                 dump += StringPrintf(INDENT3 "SwState (pressed): %s\n", pressedSwitches.c_str());
3065             }
3066             if (!device->absState.empty()) {
3067                 std::string axisValues;
3068                 for (const auto& [axis, state] : device->absState) {
3069                     if (!axisValues.empty()) {
3070                         axisValues += ", ";
3071                     }
3072                     axisValues += StringPrintf("%s=%d",
3073                                                InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0)
3074                                                        .code.c_str(),
3075                                                state.value);
3076                 }
3077                 dump += INDENT3 "AbsState: " + axisValues + "\n";
3078             }
3079         }
3080 
3081         dump += INDENT "Unattached video devices:\n";
3082         for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
3083             dump += INDENT2 + videoDevice->dump() + "\n";
3084         }
3085         if (mUnattachedVideoDevices.empty()) {
3086             dump += INDENT2 "<none>\n";
3087         }
3088     } // release lock
3089 }
3090 
monitor() const3091 void EventHub::monitor() const {
3092     // Acquire and release the lock to ensure that the event hub has not deadlocked.
3093     std::unique_lock<std::mutex> lock(mLock);
3094 }
3095 
3096 } // namespace android
3097