1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "IPCThreadState"
18
19 #include <binder/IPCThreadState.h>
20
21 #include <binder/Binder.h>
22 #include <binder/BpBinder.h>
23 #include <binder/TextOutput.h>
24
25 #include <utils/CallStack.h>
26
27 #include <atomic>
28 #include <errno.h>
29 #include <inttypes.h>
30 #include <pthread.h>
31 #include <sched.h>
32 #include <signal.h>
33 #include <stdio.h>
34 #include <sys/ioctl.h>
35 #include <sys/resource.h>
36 #include <unistd.h>
37
38 #include "Utils.h"
39 #include "binder_module.h"
40
41 #if (defined(__ANDROID__) || defined(__Fuchsia__)) && !defined(BINDER_WITH_KERNEL_IPC)
42 #error Android and Fuchsia are expected to have BINDER_WITH_KERNEL_IPC
43 #endif
44
45 #if LOG_NDEBUG
46
47 #define IF_LOG_TRANSACTIONS() if (false)
48 #define IF_LOG_COMMANDS() if (false)
49 #define LOG_REMOTEREFS(...)
50 #define IF_LOG_REMOTEREFS() if (false)
51
52 #define LOG_THREADPOOL(...)
53 #define LOG_ONEWAY(...)
54
55 #else
56
57 #define IF_LOG_TRANSACTIONS() IF_ALOG(LOG_VERBOSE, "transact")
58 #define IF_LOG_COMMANDS() IF_ALOG(LOG_VERBOSE, "ipc")
59 #define LOG_REMOTEREFS(...) ALOG(LOG_DEBUG, "remoterefs", __VA_ARGS__)
60 #define IF_LOG_REMOTEREFS() IF_ALOG(LOG_DEBUG, "remoterefs")
61 #define LOG_THREADPOOL(...) ALOG(LOG_DEBUG, "threadpool", __VA_ARGS__)
62 #define LOG_ONEWAY(...) ALOG(LOG_DEBUG, "ipc", __VA_ARGS__)
63
64 #endif
65
66 // ---------------------------------------------------------------------------
67
68 namespace android {
69
70 using namespace std::chrono_literals;
71
72 // Static const and functions will be optimized out if not used,
73 // when LOG_NDEBUG and references in IF_LOG_COMMANDS() are optimized out.
74 static const char* kReturnStrings[] = {
75 "BR_ERROR",
76 "BR_OK",
77 "BR_TRANSACTION/BR_TRANSACTION_SEC_CTX",
78 "BR_REPLY",
79 "BR_ACQUIRE_RESULT",
80 "BR_DEAD_REPLY",
81 "BR_TRANSACTION_COMPLETE",
82 "BR_INCREFS",
83 "BR_ACQUIRE",
84 "BR_RELEASE",
85 "BR_DECREFS",
86 "BR_ATTEMPT_ACQUIRE",
87 "BR_NOOP",
88 "BR_SPAWN_LOOPER",
89 "BR_FINISHED",
90 "BR_DEAD_BINDER",
91 "BR_CLEAR_DEATH_NOTIFICATION_DONE",
92 "BR_FAILED_REPLY",
93 "BR_FROZEN_REPLY",
94 "BR_ONEWAY_SPAM_SUSPECT",
95 "BR_TRANSACTION_PENDING_FROZEN",
96 "BR_FROZEN_BINDER",
97 "BR_CLEAR_FREEZE_NOTIFICATION_DONE",
98 };
99
100 static const char* kCommandStrings[] = {
101 "BC_TRANSACTION",
102 "BC_REPLY",
103 "BC_ACQUIRE_RESULT",
104 "BC_FREE_BUFFER",
105 "BC_INCREFS",
106 "BC_ACQUIRE",
107 "BC_RELEASE",
108 "BC_DECREFS",
109 "BC_INCREFS_DONE",
110 "BC_ACQUIRE_DONE",
111 "BC_ATTEMPT_ACQUIRE",
112 "BC_REGISTER_LOOPER",
113 "BC_ENTER_LOOPER",
114 "BC_EXIT_LOOPER",
115 "BC_REQUEST_DEATH_NOTIFICATION",
116 "BC_CLEAR_DEATH_NOTIFICATION",
117 "BC_DEAD_BINDER_DONE",
118 "BC_TRANSACTION_SG",
119 "BC_REPLY_SG",
120 "BC_REQUEST_FREEZE_NOTIFICATION",
121 "BC_CLEAR_FREEZE_NOTIFICATION",
122 "BC_FREEZE_NOTIFICATION_DONE",
123 };
124
125 static const int64_t kWorkSourcePropagatedBitIndex = 32;
126
getReturnString(uint32_t cmd)127 static const char* getReturnString(uint32_t cmd)
128 {
129 size_t idx = cmd & _IOC_NRMASK;
130 if (idx < sizeof(kReturnStrings) / sizeof(kReturnStrings[0]))
131 return kReturnStrings[idx];
132 else
133 return "unknown";
134 }
135
printBinderTransactionData(std::ostream & out,const void * data)136 static const void* printBinderTransactionData(std::ostream& out, const void* data) {
137 const binder_transaction_data* btd =
138 (const binder_transaction_data*)data;
139 if (btd->target.handle < 1024) {
140 /* want to print descriptors in decimal; guess based on value */
141 out << "\ttarget.desc=" << btd->target.handle;
142 } else {
143 out << "\ttarget.ptr=" << btd->target.ptr;
144 }
145 out << "\t (cookie " << btd->cookie << ")\n"
146 << "\tcode=" << TypeCode(btd->code) << ", flags=" << (void*)(uint64_t)btd->flags << "\n"
147 << "\tdata=" << btd->data.ptr.buffer << " (" << (void*)btd->data_size << " bytes)\n"
148 << "\toffsets=" << btd->data.ptr.offsets << " (" << (void*)btd->offsets_size << " bytes)\n";
149 return btd + 1;
150 }
151
printBinderTransactionDataSecCtx(std::ostream & out,const void * data)152 static const void* printBinderTransactionDataSecCtx(std::ostream& out, const void* data) {
153 const binder_transaction_data_secctx* btd = (const binder_transaction_data_secctx*)data;
154
155 printBinderTransactionData(out, &btd->transaction_data);
156
157 char* secctx = (char*)btd->secctx;
158 out << "\tsecctx=" << secctx << "\n";
159
160 return btd+1;
161 }
162
printReturnCommand(std::ostream & out,const void * _cmd)163 static const void* printReturnCommand(std::ostream& out, const void* _cmd) {
164 static const size_t N = sizeof(kReturnStrings)/sizeof(kReturnStrings[0]);
165 const int32_t* cmd = (const int32_t*)_cmd;
166 uint32_t code = (uint32_t)*cmd++;
167 size_t cmdIndex = code & 0xff;
168 if (code == BR_ERROR) {
169 out << "\tBR_ERROR: " << (void*)(uint64_t)(*cmd++) << "\n";
170 return cmd;
171 } else if (cmdIndex >= N) {
172 out << "\tUnknown reply: " << code << "\n";
173 return cmd;
174 }
175 out << "\t" << kReturnStrings[cmdIndex];
176
177 switch (code) {
178 case BR_TRANSACTION_SEC_CTX: {
179 out << ": ";
180 cmd = (const int32_t*)printBinderTransactionDataSecCtx(out, cmd);
181 } break;
182
183 case BR_TRANSACTION:
184 case BR_REPLY: {
185 out << ": ";
186 cmd = (const int32_t*)printBinderTransactionData(out, cmd);
187 } break;
188
189 case BR_ACQUIRE_RESULT: {
190 const int32_t res = *cmd++;
191 out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)");
192 } break;
193
194 case BR_INCREFS:
195 case BR_ACQUIRE:
196 case BR_RELEASE:
197 case BR_DECREFS: {
198 const int32_t b = *cmd++;
199 const int32_t c = *cmd++;
200 out << ": target=" << (void*)(uint64_t)b << " (cookie " << (void*)(uint64_t)c << ")";
201 } break;
202
203 case BR_ATTEMPT_ACQUIRE: {
204 const int32_t p = *cmd++;
205 const int32_t b = *cmd++;
206 const int32_t c = *cmd++;
207 out << ": target=" << (void*)(uint64_t)b << " (cookie " << (void*)(uint64_t)c
208 << "), pri=" << p;
209 } break;
210
211 case BR_DEAD_BINDER:
212 case BR_CLEAR_DEATH_NOTIFICATION_DONE: {
213 const int32_t c = *cmd++;
214 out << ": death cookie " << (void*)(uint64_t)c;
215 } break;
216
217 case BR_FROZEN_BINDER: {
218 const int32_t c = *cmd++;
219 const int32_t h = *cmd++;
220 const int32_t isFrozen = *cmd++;
221 out << ": freeze cookie " << (void*)(uint64_t)c << " isFrozen: " << isFrozen;
222 } break;
223
224 case BR_CLEAR_FREEZE_NOTIFICATION_DONE: {
225 const int32_t c = *cmd++;
226 out << ": freeze cookie " << (void*)(uint64_t)c;
227 } break;
228
229 default:
230 // no details to show for: BR_OK, BR_DEAD_REPLY,
231 // BR_TRANSACTION_COMPLETE, BR_FINISHED
232 break;
233 }
234
235 out << "\n";
236 return cmd;
237 }
238
printReturnCommandParcel(std::ostream & out,const Parcel & parcel)239 static void printReturnCommandParcel(std::ostream& out, const Parcel& parcel) {
240 const void* cmds = parcel.data();
241 out << "\t" << HexDump(cmds, parcel.dataSize()) << "\n";
242 IF_LOG_COMMANDS() {
243 const void* end = parcel.data() + parcel.dataSize();
244 while (cmds < end) cmds = printReturnCommand(out, cmds);
245 }
246 }
247
printCommand(std::ostream & out,const void * _cmd)248 static const void* printCommand(std::ostream& out, const void* _cmd) {
249 static const size_t N = sizeof(kCommandStrings)/sizeof(kCommandStrings[0]);
250 const int32_t* cmd = (const int32_t*)_cmd;
251 uint32_t code = (uint32_t)*cmd++;
252 size_t cmdIndex = code & 0xff;
253
254 if (cmdIndex >= N) {
255 out << "Unknown command: " << code << "\n";
256 return cmd;
257 }
258 out << kCommandStrings[cmdIndex];
259
260 switch (code) {
261 case BC_TRANSACTION:
262 case BC_REPLY: {
263 out << ": ";
264 cmd = (const int32_t*)printBinderTransactionData(out, cmd);
265 } break;
266
267 case BC_ACQUIRE_RESULT: {
268 const int32_t res = *cmd++;
269 out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)");
270 } break;
271
272 case BC_FREE_BUFFER: {
273 const int32_t buf = *cmd++;
274 out << ": buffer=" << (void*)(uint64_t)buf;
275 } break;
276
277 case BC_INCREFS:
278 case BC_ACQUIRE:
279 case BC_RELEASE:
280 case BC_DECREFS: {
281 const int32_t d = *cmd++;
282 out << ": desc=" << d;
283 } break;
284
285 case BC_INCREFS_DONE:
286 case BC_ACQUIRE_DONE: {
287 const int32_t b = *cmd++;
288 const int32_t c = *cmd++;
289 out << ": target=" << (void*)(uint64_t)b << " (cookie " << (void*)(uint64_t)c << ")";
290 } break;
291
292 case BC_ATTEMPT_ACQUIRE: {
293 const int32_t p = *cmd++;
294 const int32_t d = *cmd++;
295 out << ": desc=" << d << ", pri=" << p;
296 } break;
297
298 case BC_REQUEST_DEATH_NOTIFICATION:
299 case BC_CLEAR_DEATH_NOTIFICATION: {
300 const int32_t h = *cmd++;
301 const int32_t c = *cmd++;
302 out << ": handle=" << h << " (death cookie " << (void*)(uint64_t)c << ")";
303 } break;
304
305 case BC_REQUEST_FREEZE_NOTIFICATION:
306 case BC_CLEAR_FREEZE_NOTIFICATION: {
307 const int32_t h = *cmd++;
308 const int32_t c = *cmd++;
309 out << ": handle=" << h << " (freeze cookie " << (void*)(uint64_t)c << ")";
310 } break;
311
312 case BC_DEAD_BINDER_DONE: {
313 const int32_t c = *cmd++;
314 out << ": death cookie " << (void*)(uint64_t)c;
315 } break;
316
317 case BC_FREEZE_NOTIFICATION_DONE: {
318 const int32_t c = *cmd++;
319 out << ": freeze cookie " << (void*)(uint64_t)c;
320 } break;
321
322 default:
323 // no details to show for: BC_REGISTER_LOOPER, BC_ENTER_LOOPER,
324 // BC_EXIT_LOOPER
325 break;
326 }
327
328 out << "\n";
329 return cmd;
330 }
331
332 LIBBINDER_IGNORE("-Wzero-as-null-pointer-constant")
333 static pthread_mutex_t gTLSMutex = PTHREAD_MUTEX_INITIALIZER;
334 LIBBINDER_IGNORE_END()
335 static std::atomic<bool> gHaveTLS(false);
336 static pthread_key_t gTLS = 0;
337 static std::atomic<bool> gShutdown = false;
338 static std::atomic<bool> gDisableBackgroundScheduling = false;
339
self()340 IPCThreadState* IPCThreadState::self()
341 {
342 if (gHaveTLS.load(std::memory_order_acquire)) {
343 restart:
344 const pthread_key_t k = gTLS;
345 IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k);
346 if (st) return st;
347 return new IPCThreadState;
348 }
349
350 // Racey, heuristic test for simultaneous shutdown.
351 if (gShutdown.load(std::memory_order_relaxed)) {
352 ALOGW("Calling IPCThreadState::self() during shutdown is dangerous, expect a crash.\n");
353 return nullptr;
354 }
355
356 pthread_mutex_lock(&gTLSMutex);
357 if (!gHaveTLS.load(std::memory_order_relaxed)) {
358 int key_create_value = pthread_key_create(&gTLS, threadDestructor);
359 if (key_create_value != 0) {
360 pthread_mutex_unlock(&gTLSMutex);
361 ALOGW("IPCThreadState::self() unable to create TLS key, expect a crash: %s\n",
362 strerror(key_create_value));
363 return nullptr;
364 }
365 gHaveTLS.store(true, std::memory_order_release);
366 }
367 pthread_mutex_unlock(&gTLSMutex);
368 goto restart;
369 }
370
selfOrNull()371 IPCThreadState* IPCThreadState::selfOrNull()
372 {
373 if (gHaveTLS.load(std::memory_order_acquire)) {
374 const pthread_key_t k = gTLS;
375 IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k);
376 return st;
377 }
378 return nullptr;
379 }
380
shutdown()381 void IPCThreadState::shutdown()
382 {
383 gShutdown.store(true, std::memory_order_relaxed);
384
385 if (gHaveTLS.load(std::memory_order_acquire)) {
386 // XXX Need to wait for all thread pool threads to exit!
387 IPCThreadState* st = (IPCThreadState*)pthread_getspecific(gTLS);
388 if (st) {
389 delete st;
390 pthread_setspecific(gTLS, nullptr);
391 }
392 pthread_key_delete(gTLS);
393 gHaveTLS.store(false, std::memory_order_release);
394 }
395 }
396
disableBackgroundScheduling(bool disable)397 void IPCThreadState::disableBackgroundScheduling(bool disable)
398 {
399 gDisableBackgroundScheduling.store(disable, std::memory_order_relaxed);
400 }
401
backgroundSchedulingDisabled()402 bool IPCThreadState::backgroundSchedulingDisabled()
403 {
404 return gDisableBackgroundScheduling.load(std::memory_order_relaxed);
405 }
406
clearLastError()407 status_t IPCThreadState::clearLastError()
408 {
409 const status_t err = mLastError;
410 mLastError = NO_ERROR;
411 return err;
412 }
413
getCallingPid() const414 pid_t IPCThreadState::getCallingPid() const
415 {
416 checkContextIsBinderForUse(__func__);
417 return mCallingPid;
418 }
419
getCallingSid() const420 const char* IPCThreadState::getCallingSid() const
421 {
422 checkContextIsBinderForUse(__func__);
423 return mCallingSid;
424 }
425
getCallingUid() const426 uid_t IPCThreadState::getCallingUid() const
427 {
428 checkContextIsBinderForUse(__func__);
429 return mCallingUid;
430 }
431
pushGetCallingSpGuard(const SpGuard * guard)432 const IPCThreadState::SpGuard* IPCThreadState::pushGetCallingSpGuard(const SpGuard* guard) {
433 const SpGuard* orig = mServingStackPointerGuard;
434 mServingStackPointerGuard = guard;
435 return orig;
436 }
437
restoreGetCallingSpGuard(const SpGuard * guard)438 void IPCThreadState::restoreGetCallingSpGuard(const SpGuard* guard) {
439 mServingStackPointerGuard = guard;
440 }
441
checkContextIsBinderForUse(const char * use) const442 void IPCThreadState::checkContextIsBinderForUse(const char* use) const {
443 if (mServingStackPointerGuard == nullptr) [[likely]] {
444 return;
445 }
446
447 if (!mServingStackPointer || mServingStackPointerGuard->address < mServingStackPointer) {
448 LOG_ALWAYS_FATAL("In context %s, %s does not make sense (binder sp: %p, guard: %p).",
449 mServingStackPointerGuard->context, use, mServingStackPointer,
450 mServingStackPointerGuard->address);
451 }
452
453 // in the case mServingStackPointer is deeper in the stack than the guard,
454 // we must be serving a binder transaction (maybe nested). This is a binder
455 // context, so we don't abort
456 }
457
encodeExplicitIdentity(bool hasExplicitIdentity,pid_t callingPid)458 constexpr uint32_t encodeExplicitIdentity(bool hasExplicitIdentity, pid_t callingPid) {
459 uint32_t as_unsigned = static_cast<uint32_t>(callingPid);
460 if (hasExplicitIdentity) {
461 return as_unsigned | (1 << 30);
462 } else {
463 return as_unsigned & ~(1 << 30);
464 }
465 }
466
packCallingIdentity(bool hasExplicitIdentity,uid_t callingUid,pid_t callingPid)467 constexpr int64_t packCallingIdentity(bool hasExplicitIdentity, uid_t callingUid,
468 pid_t callingPid) {
469 // Calling PID is a 32-bit signed integer, but doesn't consume the entire 32 bit space.
470 // To future-proof this and because we have extra capacity, we decided to also support -1,
471 // since this constant is used to represent invalid UID in other places of the system.
472 // Thus, we pack hasExplicitIdentity into the 2nd bit from the left. This allows us to
473 // preserve the (left-most) bit for the sign while also encoding the value of
474 // hasExplicitIdentity.
475 // 32b | 1b | 1b | 30b
476 // token = [ calling uid | calling pid(sign) | has explicit identity | calling pid(rest) ]
477 uint64_t token = (static_cast<uint64_t>(callingUid) << 32) |
478 encodeExplicitIdentity(hasExplicitIdentity, callingPid);
479 return static_cast<int64_t>(token);
480 }
481
unpackHasExplicitIdentity(int64_t token)482 constexpr bool unpackHasExplicitIdentity(int64_t token) {
483 return static_cast<int32_t>(token) & (1 << 30);
484 }
485
unpackCallingUid(int64_t token)486 constexpr uid_t unpackCallingUid(int64_t token) {
487 return static_cast<uid_t>(token >> 32);
488 }
489
unpackCallingPid(int64_t token)490 constexpr pid_t unpackCallingPid(int64_t token) {
491 int32_t encodedPid = static_cast<int32_t>(token);
492 if (encodedPid & (1 << 31)) {
493 return encodedPid | (1 << 30);
494 } else {
495 return encodedPid & ~(1 << 30);
496 }
497 }
498
499 static_assert(unpackHasExplicitIdentity(packCallingIdentity(true, 1000, 9999)) == true,
500 "pack true hasExplicit");
501
502 static_assert(unpackCallingUid(packCallingIdentity(true, 1000, 9999)) == 1000, "pack true uid");
503
504 static_assert(unpackCallingPid(packCallingIdentity(true, 1000, 9999)) == 9999, "pack true pid");
505
506 static_assert(unpackHasExplicitIdentity(packCallingIdentity(false, 1000, 9999)) == false,
507 "pack false hasExplicit");
508
509 static_assert(unpackCallingUid(packCallingIdentity(false, 1000, 9999)) == 1000, "pack false uid");
510
511 static_assert(unpackCallingPid(packCallingIdentity(false, 1000, 9999)) == 9999, "pack false pid");
512
513 static_assert(unpackHasExplicitIdentity(packCallingIdentity(true, 1000, -1)) == true,
514 "pack true (negative) hasExplicit");
515
516 static_assert(unpackCallingUid(packCallingIdentity(true, 1000, -1)) == 1000,
517 "pack true (negative) uid");
518
519 static_assert(unpackCallingPid(packCallingIdentity(true, 1000, -1)) == -1,
520 "pack true (negative) pid");
521
522 static_assert(unpackHasExplicitIdentity(packCallingIdentity(false, 1000, -1)) == false,
523 "pack false (negative) hasExplicit");
524
525 static_assert(unpackCallingUid(packCallingIdentity(false, 1000, -1)) == 1000,
526 "pack false (negative) uid");
527
528 static_assert(unpackCallingPid(packCallingIdentity(false, 1000, -1)) == -1,
529 "pack false (negative) pid");
530
clearCallingIdentity()531 int64_t IPCThreadState::clearCallingIdentity()
532 {
533 // ignore mCallingSid for legacy reasons
534 int64_t token = packCallingIdentity(mHasExplicitIdentity, mCallingUid, mCallingPid);
535 clearCaller();
536 mHasExplicitIdentity = true;
537 return token;
538 }
539
hasExplicitIdentity()540 bool IPCThreadState::hasExplicitIdentity() {
541 return mHasExplicitIdentity;
542 }
543
setStrictModePolicy(int32_t policy)544 void IPCThreadState::setStrictModePolicy(int32_t policy)
545 {
546 mStrictModePolicy = policy;
547 }
548
getStrictModePolicy() const549 int32_t IPCThreadState::getStrictModePolicy() const
550 {
551 return mStrictModePolicy;
552 }
553
setCallingWorkSourceUid(uid_t uid)554 int64_t IPCThreadState::setCallingWorkSourceUid(uid_t uid)
555 {
556 int64_t token = setCallingWorkSourceUidWithoutPropagation(uid);
557 mPropagateWorkSource = true;
558 return token;
559 }
560
setCallingWorkSourceUidWithoutPropagation(uid_t uid)561 int64_t IPCThreadState::setCallingWorkSourceUidWithoutPropagation(uid_t uid)
562 {
563 const int64_t propagatedBit = ((int64_t)mPropagateWorkSource) << kWorkSourcePropagatedBitIndex;
564 int64_t token = propagatedBit | mWorkSource;
565 mWorkSource = uid;
566 return token;
567 }
568
clearPropagateWorkSource()569 void IPCThreadState::clearPropagateWorkSource()
570 {
571 mPropagateWorkSource = false;
572 }
573
shouldPropagateWorkSource() const574 bool IPCThreadState::shouldPropagateWorkSource() const
575 {
576 return mPropagateWorkSource;
577 }
578
getCallingWorkSourceUid() const579 uid_t IPCThreadState::getCallingWorkSourceUid() const
580 {
581 return mWorkSource;
582 }
583
clearCallingWorkSource()584 int64_t IPCThreadState::clearCallingWorkSource()
585 {
586 return setCallingWorkSourceUid(kUnsetWorkSource);
587 }
588
restoreCallingWorkSource(int64_t token)589 void IPCThreadState::restoreCallingWorkSource(int64_t token)
590 {
591 uid_t uid = (int)token;
592 setCallingWorkSourceUidWithoutPropagation(uid);
593 mPropagateWorkSource = ((token >> kWorkSourcePropagatedBitIndex) & 1) == 1;
594 }
595
setLastTransactionBinderFlags(int32_t flags)596 void IPCThreadState::setLastTransactionBinderFlags(int32_t flags)
597 {
598 mLastTransactionBinderFlags = flags;
599 }
600
getLastTransactionBinderFlags() const601 int32_t IPCThreadState::getLastTransactionBinderFlags() const
602 {
603 return mLastTransactionBinderFlags;
604 }
605
setCallRestriction(ProcessState::CallRestriction restriction)606 void IPCThreadState::setCallRestriction(ProcessState::CallRestriction restriction) {
607 mCallRestriction = restriction;
608 }
609
getCallRestriction() const610 ProcessState::CallRestriction IPCThreadState::getCallRestriction() const {
611 return mCallRestriction;
612 }
613
restoreCallingIdentity(int64_t token)614 void IPCThreadState::restoreCallingIdentity(int64_t token)
615 {
616 mCallingUid = unpackCallingUid(token);
617 mCallingSid = nullptr; // not enough data to restore
618 mCallingPid = unpackCallingPid(token);
619 mHasExplicitIdentity = unpackHasExplicitIdentity(token);
620 }
621
clearCaller()622 void IPCThreadState::clearCaller()
623 {
624 mCallingPid = getpid();
625 mCallingSid = nullptr; // expensive to lookup
626 mCallingUid = getuid();
627 }
628
flushCommands()629 void IPCThreadState::flushCommands()
630 {
631 if (mProcess->mDriverFD < 0)
632 return;
633
634 if (status_t res = talkWithDriver(false); res != OK) {
635 // TODO: we may want to abort for some of these cases
636 ALOGW("1st call to talkWithDriver returned error in flushCommands: %s",
637 statusToString(res).c_str());
638 }
639
640 // The flush could have caused post-write refcount decrements to have
641 // been executed, which in turn could result in BC_RELEASE/BC_DECREFS
642 // being queued in mOut. So flush again, if we need to.
643 if (mOut.dataSize() > 0) {
644 if (status_t res = talkWithDriver(false); res != OK) {
645 // TODO: we may want to abort for some of these cases
646 ALOGW("2nd call to talkWithDriver returned error in flushCommands: %s",
647 statusToString(res).c_str());
648 }
649 }
650 if (mOut.dataSize() > 0) {
651 ALOGW("mOut.dataSize() > 0 after flushCommands()");
652 }
653 }
654
flushIfNeeded()655 bool IPCThreadState::flushIfNeeded()
656 {
657 if (mIsLooper || mServingStackPointer != nullptr || mIsFlushing) {
658 return false;
659 }
660 mIsFlushing = true;
661 // In case this thread is not a looper and is not currently serving a binder transaction,
662 // there's no guarantee that this thread will call back into the kernel driver any time
663 // soon. Therefore, flush pending commands such as BC_FREE_BUFFER, to prevent them from getting
664 // stuck in this thread's out buffer.
665 flushCommands();
666 mIsFlushing = false;
667 return true;
668 }
669
blockUntilThreadAvailable()670 void IPCThreadState::blockUntilThreadAvailable()
671 {
672 std::unique_lock lock_guard_(mProcess->mOnThreadAvailableLock);
673 mProcess->mOnThreadAvailableWaiting++;
674 mProcess->mOnThreadAvailableCondVar.wait(lock_guard_, [&] {
675 size_t max = mProcess->mMaxThreads;
676 size_t cur = mProcess->mExecutingThreadsCount;
677 if (cur < max) {
678 return true;
679 }
680 ALOGW("Waiting for thread to be free. mExecutingThreadsCount=%zu mMaxThreads=%zu\n", cur,
681 max);
682 return false;
683 });
684 mProcess->mOnThreadAvailableWaiting--;
685 }
686
getAndExecuteCommand()687 status_t IPCThreadState::getAndExecuteCommand()
688 {
689 status_t result;
690 int32_t cmd;
691
692 result = talkWithDriver();
693 if (result >= NO_ERROR) {
694 size_t IN = mIn.dataAvail();
695 if (IN < sizeof(int32_t)) return result;
696 cmd = mIn.readInt32();
697 IF_LOG_COMMANDS() {
698 std::ostringstream logStream;
699 logStream << "Processing top-level Command: " << getReturnString(cmd) << "\n";
700 std::string message = logStream.str();
701 ALOGI("%s", message.c_str());
702 }
703
704 size_t newThreadsCount = mProcess->mExecutingThreadsCount.fetch_add(1) + 1;
705 if (newThreadsCount >= mProcess->mMaxThreads) {
706 auto expected = ProcessState::never();
707 mProcess->mStarvationStartTime
708 .compare_exchange_strong(expected, std::chrono::steady_clock::now());
709 }
710
711 result = executeCommand(cmd);
712
713 size_t maxThreads = mProcess->mMaxThreads;
714 newThreadsCount = mProcess->mExecutingThreadsCount.fetch_sub(1) - 1;
715 if (newThreadsCount < maxThreads) {
716 auto starvationStartTime =
717 mProcess->mStarvationStartTime.exchange(ProcessState::never());
718 if (starvationStartTime != ProcessState::never()) {
719 auto starvationTime = std::chrono::steady_clock::now() - starvationStartTime;
720 if (starvationTime > 100ms) {
721 ALOGE("binder thread pool (%zu threads) starved for %" PRId64 " ms", maxThreads,
722 to_ms(starvationTime));
723 }
724 }
725 }
726
727 // Cond broadcast can be expensive, so don't send it every time a binder
728 // call is processed. b/168806193
729 if (mProcess->mOnThreadAvailableWaiting > 0) {
730 std::lock_guard lock_guard_(mProcess->mOnThreadAvailableLock);
731 mProcess->mOnThreadAvailableCondVar.notify_all();
732 }
733 }
734
735 return result;
736 }
737
738 // When we've cleared the incoming command queue, process any pending derefs
processPendingDerefs()739 void IPCThreadState::processPendingDerefs()
740 {
741 if (mIn.dataPosition() >= mIn.dataSize()) {
742 /*
743 * The decWeak()/decStrong() calls may cause a destructor to run,
744 * which in turn could have initiated an outgoing transaction,
745 * which in turn could cause us to add to the pending refs
746 * vectors; so instead of simply iterating, loop until they're empty.
747 *
748 * We do this in an outer loop, because calling decStrong()
749 * may result in something being added to mPendingWeakDerefs,
750 * which could be delayed until the next incoming command
751 * from the driver if we don't process it now.
752 */
753 while (mPendingWeakDerefs.size() > 0 || mPendingStrongDerefs.size() > 0) {
754 while (mPendingWeakDerefs.size() > 0) {
755 RefBase::weakref_type* refs = mPendingWeakDerefs[0];
756 mPendingWeakDerefs.removeAt(0);
757 refs->decWeak(mProcess.get());
758 }
759
760 if (mPendingStrongDerefs.size() > 0) {
761 // We don't use while() here because we don't want to re-order
762 // strong and weak decs at all; if this decStrong() causes both a
763 // decWeak() and a decStrong() to be queued, we want to process
764 // the decWeak() first.
765 BBinder* obj = mPendingStrongDerefs[0];
766 mPendingStrongDerefs.removeAt(0);
767 obj->decStrong(mProcess.get());
768 }
769 }
770 }
771 }
772
processPostWriteDerefs()773 void IPCThreadState::processPostWriteDerefs()
774 {
775 for (size_t i = 0; i < mPostWriteWeakDerefs.size(); i++) {
776 RefBase::weakref_type* refs = mPostWriteWeakDerefs[i];
777 refs->decWeak(mProcess.get());
778 }
779 mPostWriteWeakDerefs.clear();
780
781 for (size_t i = 0; i < mPostWriteStrongDerefs.size(); i++) {
782 RefBase* obj = mPostWriteStrongDerefs[i];
783 obj->decStrong(mProcess.get());
784 }
785 mPostWriteStrongDerefs.clear();
786 }
787
joinThreadPool(bool isMain)788 void IPCThreadState::joinThreadPool(bool isMain)
789 {
790 LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(),
791 getpid());
792 mProcess->checkExpectingThreadPoolStart();
793 mProcess->mCurrentThreads++;
794 mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
795
796 mIsLooper = true;
797 status_t result;
798 do {
799 processPendingDerefs();
800 // now get the next command to be processed, waiting if necessary
801 result = getAndExecuteCommand();
802
803 if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
804 LOG_ALWAYS_FATAL("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
805 mProcess->mDriverFD, result);
806 }
807
808 // Let this thread exit the thread pool if it is no longer
809 // needed and it is not the main process thread.
810 if(result == TIMED_OUT && !isMain) {
811 break;
812 }
813 } while (result != -ECONNREFUSED && result != -EBADF);
814
815 LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%d\n",
816 (void*)pthread_self(), getpid(), result);
817
818 mOut.writeInt32(BC_EXIT_LOOPER);
819 mIsLooper = false;
820 if (status_t res = talkWithDriver(false); res != OK) {
821 // TODO: we may want to abort for some of these cases
822 ALOGW("call to talkWithDriver in joinThreadPool returned error: %s, FD: %d",
823 statusToString(res).c_str(), mProcess->mDriverFD);
824 }
825 size_t oldCount = mProcess->mCurrentThreads.fetch_sub(1);
826 LOG_ALWAYS_FATAL_IF(oldCount == 0,
827 "Threadpool thread count underflowed. Thread cannot exist and exit in "
828 "empty threadpool\n"
829 "Misconfiguration. Increase threadpool max threads configuration\n");
830 }
831
setupPolling(int * fd)832 status_t IPCThreadState::setupPolling(int* fd)
833 {
834 if (mProcess->mDriverFD < 0) {
835 return -EBADF;
836 }
837
838 mOut.writeInt32(BC_ENTER_LOOPER);
839 flushCommands();
840 *fd = mProcess->mDriverFD;
841 mProcess->mCurrentThreads++;
842 return 0;
843 }
844
handlePolledCommands()845 status_t IPCThreadState::handlePolledCommands()
846 {
847 status_t result;
848
849 do {
850 result = getAndExecuteCommand();
851 } while (mIn.dataPosition() < mIn.dataSize());
852
853 processPendingDerefs();
854 flushCommands();
855 return result;
856 }
857
stopProcess(bool)858 void IPCThreadState::stopProcess(bool /*immediate*/)
859 {
860 //ALOGI("**** STOPPING PROCESS");
861 (void)flushCommands();
862 int fd = mProcess->mDriverFD;
863 mProcess->mDriverFD = -1;
864 close(fd);
865 //kill(getpid(), SIGKILL);
866 }
867
transact(int32_t handle,uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)868 status_t IPCThreadState::transact(int32_t handle,
869 uint32_t code, const Parcel& data,
870 Parcel* reply, uint32_t flags)
871 {
872 LOG_ALWAYS_FATAL_IF(data.isForRpc(), "Parcel constructed for RPC, but being used with binder.");
873
874 status_t err;
875
876 flags |= TF_ACCEPT_FDS;
877
878 IF_LOG_TRANSACTIONS() {
879 std::ostringstream logStream;
880 logStream << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle
881 << " / code " << TypeCode(code) << ": \t" << data << "\n";
882 std::string message = logStream.str();
883 ALOGI("%s", message.c_str());
884 }
885
886 LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
887 (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
888 err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, nullptr);
889
890 if (err != NO_ERROR) {
891 if (reply) reply->setError(err);
892 return (mLastError = err);
893 }
894
895 if ((flags & TF_ONE_WAY) == 0) {
896 if (mCallRestriction != ProcessState::CallRestriction::NONE) [[unlikely]] {
897 if (mCallRestriction == ProcessState::CallRestriction::ERROR_IF_NOT_ONEWAY) {
898 ALOGE("Process making non-oneway call (code: %u) but is restricted.", code);
899 CallStack::logStack("non-oneway call", CallStack::getCurrent(10).get(),
900 ANDROID_LOG_ERROR);
901 } else /* FATAL_IF_NOT_ONEWAY */ {
902 LOG_ALWAYS_FATAL("Process may not make non-oneway calls (code: %u).", code);
903 }
904 }
905
906 #if 0
907 if (code == 4) { // relayout
908 ALOGI(">>>>>> CALLING transaction 4");
909 } else {
910 ALOGI(">>>>>> CALLING transaction %d", code);
911 }
912 #endif
913 if (reply) {
914 err = waitForResponse(reply);
915 } else {
916 Parcel fakeReply;
917 err = waitForResponse(&fakeReply);
918 }
919 #if 0
920 if (code == 4) { // relayout
921 ALOGI("<<<<<< RETURNING transaction 4");
922 } else {
923 ALOGI("<<<<<< RETURNING transaction %d", code);
924 }
925 #endif
926
927 IF_LOG_TRANSACTIONS() {
928 std::ostringstream logStream;
929 logStream << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": ";
930 if (reply)
931 logStream << "\t" << *reply << "\n";
932 else
933 logStream << "(none requested)"
934 << "\n";
935 std::string message = logStream.str();
936 ALOGI("%s", message.c_str());
937 }
938 } else {
939 err = waitForResponse(nullptr, nullptr);
940 }
941
942 return err;
943 }
944
incStrongHandle(int32_t handle,BpBinder * proxy)945 void IPCThreadState::incStrongHandle(int32_t handle, BpBinder *proxy)
946 {
947 LOG_REMOTEREFS("IPCThreadState::incStrongHandle(%d)\n", handle);
948 mOut.writeInt32(BC_ACQUIRE);
949 mOut.writeInt32(handle);
950 if (!flushIfNeeded()) {
951 // Create a temp reference until the driver has handled this command.
952 proxy->incStrong(mProcess.get());
953 mPostWriteStrongDerefs.push(proxy);
954 }
955 }
956
decStrongHandle(int32_t handle)957 void IPCThreadState::decStrongHandle(int32_t handle)
958 {
959 LOG_REMOTEREFS("IPCThreadState::decStrongHandle(%d)\n", handle);
960 mOut.writeInt32(BC_RELEASE);
961 mOut.writeInt32(handle);
962 flushIfNeeded();
963 }
964
incWeakHandle(int32_t handle,BpBinder * proxy)965 void IPCThreadState::incWeakHandle(int32_t handle, BpBinder *proxy)
966 {
967 LOG_REMOTEREFS("IPCThreadState::incWeakHandle(%d)\n", handle);
968 mOut.writeInt32(BC_INCREFS);
969 mOut.writeInt32(handle);
970 if (!flushIfNeeded()) {
971 // Create a temp reference until the driver has handled this command.
972 proxy->getWeakRefs()->incWeak(mProcess.get());
973 mPostWriteWeakDerefs.push(proxy->getWeakRefs());
974 }
975 }
976
decWeakHandle(int32_t handle)977 void IPCThreadState::decWeakHandle(int32_t handle)
978 {
979 LOG_REMOTEREFS("IPCThreadState::decWeakHandle(%d)\n", handle);
980 mOut.writeInt32(BC_DECREFS);
981 mOut.writeInt32(handle);
982 flushIfNeeded();
983 }
984
attemptIncStrongHandle(int32_t handle)985 status_t IPCThreadState::attemptIncStrongHandle(int32_t handle) {
986 (void)handle;
987 ALOGE("%s(%d): Not supported\n", __func__, handle);
988 return INVALID_OPERATION;
989 }
990
expungeHandle(int32_t handle,IBinder * binder)991 void IPCThreadState::expungeHandle(int32_t handle, IBinder* binder)
992 {
993 #if LOG_REFCOUNTS
994 ALOGV("IPCThreadState::expungeHandle(%ld)\n", handle);
995 #endif
996 self()->mProcess->expungeHandle(handle, binder); // NOLINT
997 }
998
requestDeathNotification(int32_t handle,BpBinder * proxy)999 status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy)
1000 {
1001 mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION);
1002 mOut.writeInt32((int32_t)handle);
1003 mOut.writePointer((uintptr_t)proxy);
1004 return NO_ERROR;
1005 }
1006
clearDeathNotification(int32_t handle,BpBinder * proxy)1007 status_t IPCThreadState::clearDeathNotification(int32_t handle, BpBinder* proxy)
1008 {
1009 mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION);
1010 mOut.writeInt32((int32_t)handle);
1011 mOut.writePointer((uintptr_t)proxy);
1012 return NO_ERROR;
1013 }
1014
addFrozenStateChangeCallback(int32_t handle,BpBinder * proxy)1015 status_t IPCThreadState::addFrozenStateChangeCallback(int32_t handle, BpBinder* proxy) {
1016 static bool isSupported =
1017 ProcessState::isDriverFeatureEnabled(ProcessState::DriverFeature::FREEZE_NOTIFICATION);
1018 if (!isSupported) {
1019 return INVALID_OPERATION;
1020 }
1021 proxy->getWeakRefs()->incWeak(proxy);
1022 mOut.writeInt32(BC_REQUEST_FREEZE_NOTIFICATION);
1023 mOut.writeInt32((int32_t)handle);
1024 mOut.writePointer((uintptr_t)proxy);
1025 flushCommands();
1026 return NO_ERROR;
1027 }
1028
removeFrozenStateChangeCallback(int32_t handle,BpBinder * proxy)1029 status_t IPCThreadState::removeFrozenStateChangeCallback(int32_t handle, BpBinder* proxy) {
1030 static bool isSupported =
1031 ProcessState::isDriverFeatureEnabled(ProcessState::DriverFeature::FREEZE_NOTIFICATION);
1032 if (!isSupported) {
1033 return INVALID_OPERATION;
1034 }
1035 mOut.writeInt32(BC_CLEAR_FREEZE_NOTIFICATION);
1036 mOut.writeInt32((int32_t)handle);
1037 mOut.writePointer((uintptr_t)proxy);
1038 flushCommands();
1039 return NO_ERROR;
1040 }
1041
IPCThreadState()1042 IPCThreadState::IPCThreadState()
1043 : mProcess(ProcessState::self()),
1044 mServingStackPointer(nullptr),
1045 mServingStackPointerGuard(nullptr),
1046 mWorkSource(kUnsetWorkSource),
1047 mPropagateWorkSource(false),
1048 mIsLooper(false),
1049 mIsFlushing(false),
1050 mStrictModePolicy(0),
1051 mLastTransactionBinderFlags(0),
1052 mCallRestriction(mProcess->mCallRestriction) {
1053 pthread_setspecific(gTLS, this);
1054 clearCaller();
1055 mHasExplicitIdentity = false;
1056 mIn.setDataCapacity(256);
1057 mOut.setDataCapacity(256);
1058 }
1059
~IPCThreadState()1060 IPCThreadState::~IPCThreadState()
1061 {
1062 }
1063
sendReply(const Parcel & reply,uint32_t flags)1064 status_t IPCThreadState::sendReply(const Parcel& reply, uint32_t flags)
1065 {
1066 status_t err;
1067 status_t statusBuffer;
1068 err = writeTransactionData(BC_REPLY, flags, -1, 0, reply, &statusBuffer);
1069 if (err < NO_ERROR) return err;
1070
1071 return waitForResponse(nullptr, nullptr);
1072 }
1073
waitForResponse(Parcel * reply,status_t * acquireResult)1074 status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
1075 {
1076 uint32_t cmd;
1077 int32_t err;
1078
1079 while (1) {
1080 if ((err=talkWithDriver()) < NO_ERROR) break;
1081 err = mIn.errorCheck();
1082 if (err < NO_ERROR) break;
1083 if (mIn.dataAvail() == 0) continue;
1084
1085 cmd = (uint32_t)mIn.readInt32();
1086
1087 IF_LOG_COMMANDS() {
1088 std::ostringstream logStream;
1089 logStream << "Processing waitForResponse Command: " << getReturnString(cmd) << "\n";
1090 std::string message = logStream.str();
1091 ALOGI("%s", message.c_str());
1092 }
1093
1094 switch (cmd) {
1095 case BR_ONEWAY_SPAM_SUSPECT:
1096 ALOGE("Process seems to be sending too many oneway calls.");
1097 CallStack::logStack("oneway spamming", CallStack::getCurrent().get(),
1098 ANDROID_LOG_ERROR);
1099 [[fallthrough]];
1100 case BR_TRANSACTION_COMPLETE:
1101 if (!reply && !acquireResult) goto finish;
1102 break;
1103
1104 case BR_TRANSACTION_PENDING_FROZEN:
1105 ALOGW("Sending oneway calls to frozen process.");
1106 goto finish;
1107
1108 case BR_DEAD_REPLY:
1109 err = DEAD_OBJECT;
1110 goto finish;
1111
1112 case BR_FAILED_REPLY:
1113 err = FAILED_TRANSACTION;
1114 goto finish;
1115
1116 case BR_FROZEN_REPLY:
1117 ALOGW("Transaction failed because process frozen.");
1118 err = FAILED_TRANSACTION;
1119 goto finish;
1120
1121 case BR_ACQUIRE_RESULT:
1122 {
1123 ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
1124 const int32_t result = mIn.readInt32();
1125 if (!acquireResult) continue;
1126 *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
1127 }
1128 goto finish;
1129
1130 case BR_REPLY:
1131 {
1132 binder_transaction_data tr;
1133 err = mIn.read(&tr, sizeof(tr));
1134 ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
1135 if (err != NO_ERROR) goto finish;
1136
1137 if (reply) {
1138 if ((tr.flags & TF_STATUS_CODE) == 0) {
1139 reply->ipcSetDataReference(
1140 reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
1141 tr.data_size,
1142 reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
1143 tr.offsets_size/sizeof(binder_size_t),
1144 freeBuffer);
1145 } else {
1146 err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
1147 freeBuffer(reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
1148 tr.data_size,
1149 reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
1150 tr.offsets_size / sizeof(binder_size_t));
1151 }
1152 } else {
1153 freeBuffer(reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size,
1154 reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
1155 tr.offsets_size / sizeof(binder_size_t));
1156 continue;
1157 }
1158 }
1159 goto finish;
1160
1161 default:
1162 err = executeCommand(cmd);
1163 if (err != NO_ERROR) goto finish;
1164 break;
1165 }
1166 }
1167
1168 finish:
1169 if (err != NO_ERROR) {
1170 if (acquireResult) *acquireResult = err;
1171 if (reply) reply->setError(err);
1172 mLastError = err;
1173 logExtendedError();
1174 }
1175
1176 return err;
1177 }
1178
talkWithDriver(bool doReceive)1179 status_t IPCThreadState::talkWithDriver(bool doReceive)
1180 {
1181 if (mProcess->mDriverFD < 0) {
1182 return -EBADF;
1183 }
1184
1185 binder_write_read bwr;
1186
1187 // Is the read buffer empty?
1188 const bool needRead = mIn.dataPosition() >= mIn.dataSize();
1189
1190 // We don't want to write anything if we are still reading
1191 // from data left in the input buffer and the caller
1192 // has requested to read the next data.
1193 const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
1194
1195 bwr.write_size = outAvail;
1196 bwr.write_buffer = (uintptr_t)mOut.data();
1197
1198 // This is what we'll read.
1199 if (doReceive && needRead) {
1200 bwr.read_size = mIn.dataCapacity();
1201 bwr.read_buffer = (uintptr_t)mIn.data();
1202 } else {
1203 bwr.read_size = 0;
1204 bwr.read_buffer = 0;
1205 }
1206
1207 IF_LOG_COMMANDS() {
1208 std::ostringstream logStream;
1209 if (outAvail != 0) {
1210 logStream << "Sending commands to driver: ";
1211 const void* cmds = (const void*)bwr.write_buffer;
1212 const void* end = ((const uint8_t*)cmds) + bwr.write_size;
1213 logStream << "\t" << HexDump(cmds, bwr.write_size) << "\n";
1214 while (cmds < end) cmds = printCommand(logStream, cmds);
1215 }
1216 logStream << "Size of receive buffer: " << bwr.read_size << ", needRead: " << needRead
1217 << ", doReceive: " << doReceive << "\n";
1218
1219 std::string message = logStream.str();
1220 ALOGI("%s", message.c_str());
1221 }
1222
1223 // Return immediately if there is nothing to do.
1224 if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
1225
1226 bwr.write_consumed = 0;
1227 bwr.read_consumed = 0;
1228 status_t err;
1229 do {
1230 IF_LOG_COMMANDS() {
1231 std::ostringstream logStream;
1232 logStream << "About to read/write, write size = " << mOut.dataSize() << "\n";
1233 std::string message = logStream.str();
1234 ALOGI("%s", message.c_str());
1235 }
1236 #if defined(BINDER_WITH_KERNEL_IPC)
1237 if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
1238 err = NO_ERROR;
1239 else
1240 err = -errno;
1241 #else
1242 err = INVALID_OPERATION;
1243 #endif
1244 if (mProcess->mDriverFD < 0) {
1245 err = -EBADF;
1246 }
1247 IF_LOG_COMMANDS() {
1248 std::ostringstream logStream;
1249 logStream << "Finished read/write, write size = " << mOut.dataSize() << "\n";
1250 std::string message = logStream.str();
1251 ALOGI("%s", message.c_str());
1252 }
1253 } while (err == -EINTR);
1254
1255 IF_LOG_COMMANDS() {
1256 std::ostringstream logStream;
1257 logStream << "Our err: " << (void*)(intptr_t)err
1258 << ", write consumed: " << bwr.write_consumed << " (of " << mOut.dataSize()
1259 << "), read consumed: " << bwr.read_consumed << "\n";
1260 std::string message = logStream.str();
1261 ALOGI("%s", message.c_str());
1262 }
1263
1264 if (err >= NO_ERROR) {
1265 if (bwr.write_consumed > 0) {
1266 if (bwr.write_consumed < mOut.dataSize()) {
1267 std::ostringstream logStream;
1268 printReturnCommandParcel(logStream, mIn);
1269 LOG_ALWAYS_FATAL("Driver did not consume write buffer. "
1270 "err: %s consumed: %zu of %zu.\n"
1271 "Return command: %s",
1272 statusToString(err).c_str(), (size_t)bwr.write_consumed,
1273 mOut.dataSize(), logStream.str().c_str());
1274 } else {
1275 mOut.setDataSize(0);
1276 processPostWriteDerefs();
1277 }
1278 }
1279 if (bwr.read_consumed > 0) {
1280 mIn.setDataSize(bwr.read_consumed);
1281 mIn.setDataPosition(0);
1282 }
1283 IF_LOG_COMMANDS() {
1284 std::ostringstream logStream;
1285 printReturnCommandParcel(logStream, mIn);
1286 ALOGI("%s", logStream.str().c_str());
1287 }
1288 return NO_ERROR;
1289 }
1290
1291 ALOGE_IF(mProcess->mDriverFD >= 0,
1292 "Driver returned error (%s). This is a bug in either libbinder or the driver. This "
1293 "thread's connection to %s will no longer work.",
1294 statusToString(err).c_str(), mProcess->mDriverName.c_str());
1295 return err;
1296 }
1297
writeTransactionData(int32_t cmd,uint32_t binderFlags,int32_t handle,uint32_t code,const Parcel & data,status_t * statusBuffer)1298 status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
1299 int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
1300 {
1301 binder_transaction_data tr;
1302
1303 tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */
1304 tr.target.handle = handle;
1305 tr.code = code;
1306 tr.flags = binderFlags;
1307 tr.cookie = 0;
1308 tr.sender_pid = 0;
1309 tr.sender_euid = 0;
1310
1311 const status_t err = data.errorCheck();
1312 if (err == NO_ERROR) {
1313 tr.data_size = data.ipcDataSize();
1314 tr.data.ptr.buffer = data.ipcData();
1315 tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
1316 tr.data.ptr.offsets = data.ipcObjects();
1317 } else if (statusBuffer) {
1318 tr.flags |= TF_STATUS_CODE;
1319 *statusBuffer = err;
1320 tr.data_size = sizeof(status_t);
1321 tr.data.ptr.buffer = reinterpret_cast<uintptr_t>(statusBuffer);
1322 tr.offsets_size = 0;
1323 tr.data.ptr.offsets = 0;
1324 } else {
1325 return (mLastError = err);
1326 }
1327
1328 mOut.writeInt32(cmd);
1329 mOut.write(&tr, sizeof(tr));
1330
1331 return NO_ERROR;
1332 }
1333
1334 sp<BBinder> the_context_object;
1335
setTheContextObject(const sp<BBinder> & obj)1336 void IPCThreadState::setTheContextObject(const sp<BBinder>& obj)
1337 {
1338 the_context_object = obj;
1339 }
1340
executeCommand(int32_t cmd)1341 status_t IPCThreadState::executeCommand(int32_t cmd)
1342 {
1343 BBinder* obj;
1344 RefBase::weakref_type* refs;
1345 status_t result = NO_ERROR;
1346
1347 switch ((uint32_t)cmd) {
1348 case BR_ERROR:
1349 result = mIn.readInt32();
1350 break;
1351
1352 case BR_OK:
1353 break;
1354
1355 case BR_ACQUIRE:
1356 refs = (RefBase::weakref_type*)mIn.readPointer();
1357 obj = (BBinder*)mIn.readPointer();
1358 ALOG_ASSERT(refs->refBase() == obj,
1359 "BR_ACQUIRE: object %p does not match cookie %p (expected %p)",
1360 refs, obj, refs->refBase());
1361 obj->incStrong(mProcess.get());
1362 IF_LOG_REMOTEREFS() {
1363 LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj);
1364 obj->printRefs();
1365 }
1366 mOut.writeInt32(BC_ACQUIRE_DONE);
1367 mOut.writePointer((uintptr_t)refs);
1368 mOut.writePointer((uintptr_t)obj);
1369 break;
1370
1371 case BR_RELEASE:
1372 refs = (RefBase::weakref_type*)mIn.readPointer();
1373 obj = (BBinder*)mIn.readPointer();
1374 ALOG_ASSERT(refs->refBase() == obj,
1375 "BR_RELEASE: object %p does not match cookie %p (expected %p)",
1376 refs, obj, refs->refBase());
1377 IF_LOG_REMOTEREFS() {
1378 LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj);
1379 obj->printRefs();
1380 }
1381 mPendingStrongDerefs.push(obj);
1382 break;
1383
1384 case BR_INCREFS:
1385 refs = (RefBase::weakref_type*)mIn.readPointer();
1386 obj = (BBinder*)mIn.readPointer();
1387 refs->incWeak(mProcess.get());
1388 mOut.writeInt32(BC_INCREFS_DONE);
1389 mOut.writePointer((uintptr_t)refs);
1390 mOut.writePointer((uintptr_t)obj);
1391 break;
1392
1393 case BR_DECREFS:
1394 refs = (RefBase::weakref_type*)mIn.readPointer();
1395 // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
1396 obj = (BBinder*)mIn.readPointer(); // consume
1397 // NOTE: This assertion is not valid, because the object may no
1398 // longer exist (thus the (BBinder*)cast above resulting in a different
1399 // memory address).
1400 //ALOG_ASSERT(refs->refBase() == obj,
1401 // "BR_DECREFS: object %p does not match cookie %p (expected %p)",
1402 // refs, obj, refs->refBase());
1403 mPendingWeakDerefs.push(refs);
1404 break;
1405
1406 case BR_ATTEMPT_ACQUIRE:
1407 refs = (RefBase::weakref_type*)mIn.readPointer();
1408 obj = (BBinder*)mIn.readPointer();
1409
1410 {
1411 const bool success = refs->attemptIncStrong(mProcess.get());
1412 ALOG_ASSERT(success && refs->refBase() == obj,
1413 "BR_ATTEMPT_ACQUIRE: object %p does not match cookie %p (expected %p)",
1414 refs, obj, refs->refBase());
1415
1416 mOut.writeInt32(BC_ACQUIRE_RESULT);
1417 mOut.writeInt32((int32_t)success);
1418 }
1419 break;
1420
1421 case BR_TRANSACTION_SEC_CTX:
1422 case BR_TRANSACTION:
1423 {
1424 binder_transaction_data_secctx tr_secctx;
1425 binder_transaction_data& tr = tr_secctx.transaction_data;
1426
1427 if (cmd == (int) BR_TRANSACTION_SEC_CTX) {
1428 result = mIn.read(&tr_secctx, sizeof(tr_secctx));
1429 } else {
1430 result = mIn.read(&tr, sizeof(tr));
1431 tr_secctx.secctx = 0;
1432 }
1433
1434 ALOG_ASSERT(result == NO_ERROR,
1435 "Not enough command data for brTRANSACTION");
1436 if (result != NO_ERROR) break;
1437
1438 Parcel buffer;
1439 buffer.ipcSetDataReference(
1440 reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
1441 tr.data_size,
1442 reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
1443 tr.offsets_size/sizeof(binder_size_t), freeBuffer);
1444
1445 const void* origServingStackPointer = mServingStackPointer;
1446 mServingStackPointer = __builtin_frame_address(0);
1447
1448 const pid_t origPid = mCallingPid;
1449 const char* origSid = mCallingSid;
1450 const uid_t origUid = mCallingUid;
1451 const bool origHasExplicitIdentity = mHasExplicitIdentity;
1452 const int32_t origStrictModePolicy = mStrictModePolicy;
1453 const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;
1454 const int32_t origWorkSource = mWorkSource;
1455 const bool origPropagateWorkSet = mPropagateWorkSource;
1456 // Calling work source will be set by Parcel#enforceInterface. Parcel#enforceInterface
1457 // is only guaranteed to be called for AIDL-generated stubs so we reset the work source
1458 // here to never propagate it.
1459 clearCallingWorkSource();
1460 clearPropagateWorkSource();
1461
1462 mCallingPid = tr.sender_pid;
1463 mCallingSid = reinterpret_cast<const char*>(tr_secctx.secctx);
1464 mCallingUid = tr.sender_euid;
1465 mHasExplicitIdentity = false;
1466 mLastTransactionBinderFlags = tr.flags;
1467
1468 // ALOGI(">>>> TRANSACT from pid %d sid %s uid %d\n", mCallingPid,
1469 // (mCallingSid ? mCallingSid : "<N/A>"), mCallingUid);
1470
1471 Parcel reply;
1472 status_t error;
1473 IF_LOG_TRANSACTIONS() {
1474 std::ostringstream logStream;
1475 logStream << "BR_TRANSACTION thr " << (void*)pthread_self() << " / obj "
1476 << tr.target.ptr << " / code " << TypeCode(tr.code) << ": \t" << buffer
1477 << "\n"
1478 << "Data addr = " << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
1479 << ", offsets addr="
1480 << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << "\n";
1481 std::string message = logStream.str();
1482 ALOGI("%s", message.c_str());
1483 }
1484 if (tr.target.ptr) {
1485 // We only have a weak reference on the target object, so we must first try to
1486 // safely acquire a strong reference before doing anything else with it.
1487 if (reinterpret_cast<RefBase::weakref_type*>(
1488 tr.target.ptr)->attemptIncStrong(this)) {
1489 error = reinterpret_cast<BBinder*>(tr.cookie)->transact(tr.code, buffer,
1490 &reply, tr.flags);
1491 reinterpret_cast<BBinder*>(tr.cookie)->decStrong(this);
1492 } else {
1493 error = UNKNOWN_TRANSACTION;
1494 }
1495
1496 } else {
1497 error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
1498 }
1499
1500 //ALOGI("<<<< TRANSACT from pid %d restore pid %d sid %s uid %d\n",
1501 // mCallingPid, origPid, (origSid ? origSid : "<N/A>"), origUid);
1502
1503 if ((tr.flags & TF_ONE_WAY) == 0) {
1504 LOG_ONEWAY("Sending reply to %d!", mCallingPid);
1505 if (error < NO_ERROR) reply.setError(error);
1506
1507 // b/238777741: clear buffer before we send the reply.
1508 // Otherwise, there is a race where the client may
1509 // receive the reply and send another transaction
1510 // here and the space used by this transaction won't
1511 // be freed for the client.
1512 buffer.setDataSize(0);
1513
1514 constexpr uint32_t kForwardReplyFlags = TF_CLEAR_BUF;
1515
1516 // TODO: we may want to abort if there is an error here, or return as 'error'
1517 // from this function, but the impact needs to be measured
1518 status_t error2 = sendReply(reply, (tr.flags & kForwardReplyFlags));
1519 if (error2 != OK) {
1520 ALOGE("error in sendReply for synchronous call: %s",
1521 statusToString(error2).c_str());
1522 }
1523 } else {
1524 if (error != OK) {
1525 std::ostringstream logStream;
1526 logStream << "oneway function results for code " << tr.code << " on binder at "
1527 << reinterpret_cast<void*>(tr.target.ptr)
1528 << " will be dropped but finished with status "
1529 << statusToString(error);
1530
1531 // ideally we could log this even when error == OK, but it
1532 // causes too much logspam because some manually-written
1533 // interfaces have clients that call methods which always
1534 // write results, sometimes as oneway methods.
1535 if (reply.dataSize() != 0) {
1536 logStream << " and reply parcel size " << reply.dataSize();
1537 }
1538 std::string message = logStream.str();
1539 ALOGI("%s", message.c_str());
1540 }
1541 LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
1542 }
1543
1544 mServingStackPointer = origServingStackPointer;
1545 mCallingPid = origPid;
1546 mCallingSid = origSid;
1547 mCallingUid = origUid;
1548 mHasExplicitIdentity = origHasExplicitIdentity;
1549 mStrictModePolicy = origStrictModePolicy;
1550 mLastTransactionBinderFlags = origTransactionBinderFlags;
1551 mWorkSource = origWorkSource;
1552 mPropagateWorkSource = origPropagateWorkSet;
1553
1554 IF_LOG_TRANSACTIONS() {
1555 std::ostringstream logStream;
1556 logStream << "BC_REPLY thr " << (void*)pthread_self() << " / obj " << tr.target.ptr
1557 << ": \t" << reply << "\n";
1558 std::string message = logStream.str();
1559 ALOGI("%s", message.c_str());
1560 }
1561
1562 }
1563 break;
1564
1565 case BR_DEAD_BINDER:
1566 {
1567 BpBinder *proxy = (BpBinder*)mIn.readPointer();
1568 proxy->sendObituary();
1569 mOut.writeInt32(BC_DEAD_BINDER_DONE);
1570 mOut.writePointer((uintptr_t)proxy);
1571 } break;
1572
1573 case BR_CLEAR_DEATH_NOTIFICATION_DONE:
1574 {
1575 BpBinder *proxy = (BpBinder*)mIn.readPointer();
1576 proxy->getWeakRefs()->decWeak(proxy);
1577 } break;
1578
1579 case BR_FROZEN_BINDER: {
1580 const struct binder_frozen_state_info* data =
1581 reinterpret_cast<const struct binder_frozen_state_info*>(
1582 mIn.readInplace(sizeof(struct binder_frozen_state_info)));
1583 if (data == nullptr) {
1584 result = UNKNOWN_ERROR;
1585 break;
1586 }
1587 BpBinder* proxy = (BpBinder*)data->cookie;
1588 bool isFrozen = mIn.readInt32() > 0;
1589 proxy->getPrivateAccessor().onFrozenStateChanged(data->is_frozen);
1590 mOut.writeInt32(BC_FREEZE_NOTIFICATION_DONE);
1591 mOut.writePointer(data->cookie);
1592 } break;
1593
1594 case BR_CLEAR_FREEZE_NOTIFICATION_DONE: {
1595 BpBinder* proxy = (BpBinder*)mIn.readPointer();
1596 proxy->getWeakRefs()->decWeak(proxy);
1597 } break;
1598
1599 case BR_FINISHED:
1600 result = TIMED_OUT;
1601 break;
1602
1603 case BR_NOOP:
1604 break;
1605
1606 case BR_SPAWN_LOOPER:
1607 mProcess->spawnPooledThread(false);
1608 break;
1609
1610 default:
1611 ALOGE("*** BAD COMMAND %d received from Binder driver\n", cmd);
1612 result = UNKNOWN_ERROR;
1613 break;
1614 }
1615
1616 if (result != NO_ERROR) {
1617 mLastError = result;
1618 }
1619
1620 return result;
1621 }
1622
getServingStackPointer() const1623 const void* IPCThreadState::getServingStackPointer() const {
1624 return mServingStackPointer;
1625 }
1626
threadDestructor(void * st)1627 void IPCThreadState::threadDestructor(void *st)
1628 {
1629 IPCThreadState* const self = static_cast<IPCThreadState*>(st);
1630 if (self) {
1631 self->flushCommands();
1632 #if defined(BINDER_WITH_KERNEL_IPC)
1633 if (self->mProcess->mDriverFD >= 0) {
1634 ioctl(self->mProcess->mDriverFD, BINDER_THREAD_EXIT, 0);
1635 }
1636 #endif
1637 delete self;
1638 }
1639 }
1640
getProcessFreezeInfo(pid_t pid,uint32_t * sync_received,uint32_t * async_received)1641 status_t IPCThreadState::getProcessFreezeInfo(pid_t pid, uint32_t *sync_received,
1642 uint32_t *async_received)
1643 {
1644 int ret = 0;
1645 binder_frozen_status_info info = {};
1646 info.pid = pid;
1647
1648 #if defined(BINDER_WITH_KERNEL_IPC)
1649 if (ioctl(self()->mProcess->mDriverFD, BINDER_GET_FROZEN_INFO, &info) < 0)
1650 ret = -errno;
1651 #endif
1652 *sync_received = info.sync_recv;
1653 *async_received = info.async_recv;
1654
1655 return ret;
1656 }
1657
freeze(pid_t pid,bool enable,uint32_t timeout_ms)1658 status_t IPCThreadState::freeze(pid_t pid, bool enable, uint32_t timeout_ms) {
1659 struct binder_freeze_info info;
1660 int ret = 0;
1661
1662 info.pid = pid;
1663 info.enable = enable;
1664 info.timeout_ms = timeout_ms;
1665
1666
1667 #if defined(BINDER_WITH_KERNEL_IPC)
1668 if (ioctl(self()->mProcess->mDriverFD, BINDER_FREEZE, &info) < 0)
1669 ret = -errno;
1670 #endif
1671
1672 //
1673 // ret==-EAGAIN indicates that transactions have not drained.
1674 // Call again to poll for completion.
1675 //
1676 return ret;
1677 }
1678
logExtendedError()1679 void IPCThreadState::logExtendedError() {
1680 struct binder_extended_error ee = {.command = BR_OK};
1681
1682 if (!ProcessState::isDriverFeatureEnabled(ProcessState::DriverFeature::EXTENDED_ERROR))
1683 return;
1684
1685 #if defined(BINDER_WITH_KERNEL_IPC)
1686 if (ioctl(self()->mProcess->mDriverFD, BINDER_GET_EXTENDED_ERROR, &ee) < 0) {
1687 ALOGE("Failed to get extended error: %s", strerror(errno));
1688 return;
1689 }
1690 #endif
1691
1692 ALOGE_IF(ee.command != BR_OK, "Binder transaction failure. id: %d, BR_*: %d, error: %d (%s)",
1693 ee.id, ee.command, ee.param, strerror(-ee.param));
1694 }
1695
freeBuffer(const uint8_t * data,size_t,const binder_size_t *,size_t)1696 void IPCThreadState::freeBuffer(const uint8_t* data, size_t /*dataSize*/,
1697 const binder_size_t* /*objects*/, size_t /*objectsSize*/) {
1698 //ALOGI("Freeing parcel %p", &parcel);
1699 IF_LOG_COMMANDS() {
1700 std::ostringstream logStream;
1701 logStream << "Writing BC_FREE_BUFFER for " << data << "\n";
1702 std::string message = logStream.str();
1703 ALOGI("%s", message.c_str());
1704 }
1705 ALOG_ASSERT(data != NULL, "Called with NULL data");
1706 IPCThreadState* state = self();
1707 state->mOut.writeInt32(BC_FREE_BUFFER);
1708 state->mOut.writePointer((uintptr_t)data);
1709 state->flushIfNeeded();
1710 }
1711
1712 } // namespace android
1713