• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Utilities for manipulating the loss collections."""
16
17from tensorflow.python.eager import context
18from tensorflow.python.framework import constant_op
19from tensorflow.python.framework import dtypes
20from tensorflow.python.framework import ops
21from tensorflow.python.ops import array_ops
22from tensorflow.python.ops import check_ops
23from tensorflow.python.ops import confusion_matrix
24from tensorflow.python.ops import control_flow_ops
25from tensorflow.python.ops import math_ops
26from tensorflow.python.util import tf_contextlib
27from tensorflow.python.util.tf_export import tf_export
28
29
30def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None):
31  """Squeeze or expand last dimension if needed.
32
33  1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1
34  (using `confusion_matrix.remove_squeezable_dimensions`).
35  2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1
36  from the new rank of `y_pred`.
37  If `sample_weight` is scalar, it is kept scalar.
38
39  This will use static shape if available. Otherwise, it will add graph
40  operations, which could result in a performance hit.
41
42  Args:
43    y_pred: Predicted values, a `Tensor` of arbitrary dimensions.
44    y_true: Optional label `Tensor` whose dimensions match `y_pred`.
45    sample_weight: Optional weight scalar or `Tensor` whose dimensions match
46      `y_pred`.
47
48  Returns:
49    Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has
50    the last dimension squeezed,
51    `sample_weight` could be extended by one dimension.
52    If `sample_weight` is None, (y_pred, y_true) is returned.
53  """
54  y_pred_shape = y_pred.shape
55  y_pred_rank = y_pred_shape.ndims
56  if y_true is not None:
57
58    # If sparse matrix is provided as `y_true`, the last dimension in `y_pred`
59    # may be > 1. Eg: y_true = [0, 1, 2] (shape=(3,)),
60    # y_pred = [[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]] (shape=(3, 3))
61    # In this case, we should not try to remove squeezable dimension.
62    y_true_shape = y_true.shape
63    y_true_rank = y_true_shape.ndims
64    if (y_true_rank is not None) and (y_pred_rank is not None):
65      # Use static rank for `y_true` and `y_pred`.
66      if (y_pred_rank - y_true_rank != 1) or y_pred_shape[-1] == 1:
67        y_true, y_pred = confusion_matrix.remove_squeezable_dimensions(
68            y_true, y_pred)
69    else:
70      # Use dynamic rank.
71      rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true)
72      squeeze_dims = lambda: confusion_matrix.remove_squeezable_dimensions(  # pylint: disable=g-long-lambda
73          y_true, y_pred)
74      is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1])
75      maybe_squeeze_dims = lambda: control_flow_ops.cond(  # pylint: disable=g-long-lambda
76          is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred))
77      y_true, y_pred = control_flow_ops.cond(
78          math_ops.equal(1, rank_diff), maybe_squeeze_dims, squeeze_dims)
79
80  if sample_weight is None:
81    return y_pred, y_true
82
83  weights_shape = sample_weight.shape
84  weights_rank = weights_shape.ndims
85  if weights_rank == 0:  # If weights is scalar, do nothing.
86    return y_pred, y_true, sample_weight
87
88  if (y_pred_rank is not None) and (weights_rank is not None):
89    # Use static rank.
90    if weights_rank - y_pred_rank == 1:
91      sample_weight = array_ops.squeeze(sample_weight, [-1])
92    elif y_pred_rank - weights_rank == 1:
93      sample_weight = array_ops.expand_dims(sample_weight, [-1])
94    return y_pred, y_true, sample_weight
95
96  # Use dynamic rank.
97  weights_rank_tensor = array_ops.rank(sample_weight)
98  rank_diff = weights_rank_tensor - array_ops.rank(y_pred)
99  maybe_squeeze_weights = lambda: array_ops.squeeze(sample_weight, [-1])
100
101  def _maybe_expand_weights():
102    expand_weights = lambda: array_ops.expand_dims(sample_weight, [-1])
103    return control_flow_ops.cond(
104        math_ops.equal(rank_diff, -1), expand_weights, lambda: sample_weight)
105
106  def _maybe_adjust_weights():
107    return control_flow_ops.cond(
108        math_ops.equal(rank_diff, 1), maybe_squeeze_weights,
109        _maybe_expand_weights)
110
111  # squeeze or expand last dim of `sample_weight` if its rank differs by 1
112  # from the new rank of `y_pred`.
113  sample_weight = control_flow_ops.cond(
114      math_ops.equal(weights_rank_tensor, 0), lambda: sample_weight,
115      _maybe_adjust_weights)
116  return y_pred, y_true, sample_weight
117
118
119def scale_losses_by_sample_weight(losses, sample_weight):
120  """Scales loss values by the given sample weights.
121
122  `sample_weight` dimensions are updated to match with the dimension of `losses`
123  if possible by using squeeze/expand/broadcast.
124
125  Args:
126    losses: Loss tensor.
127    sample_weight: Sample weights tensor.
128
129  Returns:
130    `losses` scaled by `sample_weight` with dtype float32.
131  """
132  # TODO(psv): Handle the casting here in a better way, eg. if losses is float64
133  # we do not want to lose precision.
134  losses = math_ops.cast(losses, dtypes.float32)
135  sample_weight = math_ops.cast(sample_weight, dtypes.float32)
136
137  # Update dimensions of `sample_weight` to match with `losses` if possible.
138  losses, _, sample_weight = squeeze_or_expand_dimensions(
139      losses, None, sample_weight)
140  return math_ops.multiply(losses, sample_weight)
141
142
143@tf_contextlib.contextmanager
144def check_per_example_loss_rank(per_example_loss):
145  """Context manager that checks that the rank of per_example_loss is at least 1.
146
147  Args:
148    per_example_loss: Per example loss tensor.
149
150  Yields:
151    A context manager.
152  """
153  loss_rank = per_example_loss.shape.rank
154  if loss_rank is not None:
155    # Handle static rank.
156    if loss_rank == 0:
157      raise ValueError(
158          "Invalid value passed for `per_example_loss`. Expected a tensor with "
159          f"at least rank 1. Received per_example_loss={per_example_loss} with "
160          f"rank {loss_rank}")
161    yield
162  else:
163    # Handle dynamic rank.
164    with ops.control_dependencies([
165        check_ops.assert_greater_equal(
166            array_ops.rank(per_example_loss),
167            math_ops.cast(1, dtype=dtypes.int32),
168            message="Invalid value passed for `per_example_loss`. Expected a "
169            "tensor with at least rank 1.")
170    ]):
171      yield
172
173
174@tf_export(v1=["losses.add_loss"])
175def add_loss(loss, loss_collection=ops.GraphKeys.LOSSES):
176  """Adds a externally defined loss to the collection of losses.
177
178  Args:
179    loss: A loss `Tensor`.
180    loss_collection: Optional collection to add the loss to.
181  """
182  # Since we have no way of figuring out when a training iteration starts or
183  # ends, holding on to a loss when executing eagerly is indistinguishable from
184  # leaking memory. We instead leave the collection empty.
185  if loss_collection and not context.executing_eagerly():
186    ops.add_to_collection(loss_collection, loss)
187
188
189@tf_export(v1=["losses.get_losses"])
190def get_losses(scope=None, loss_collection=ops.GraphKeys.LOSSES):
191  """Gets the list of losses from the loss_collection.
192
193  Args:
194    scope: An optional scope name for filtering the losses to return.
195    loss_collection: Optional losses collection.
196
197  Returns:
198    a list of loss tensors.
199  """
200  return ops.get_collection(loss_collection, scope)
201
202
203@tf_export(v1=["losses.get_regularization_losses"])
204def get_regularization_losses(scope=None):
205  """Gets the list of regularization losses.
206
207  Args:
208    scope: An optional scope name for filtering the losses to return.
209
210  Returns:
211    A list of regularization losses as Tensors.
212  """
213  return ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES, scope)
214
215
216@tf_export(v1=["losses.get_regularization_loss"])
217def get_regularization_loss(scope=None, name="total_regularization_loss"):
218  """Gets the total regularization loss.
219
220  Args:
221    scope: An optional scope name for filtering the losses to return.
222    name: The name of the returned tensor.
223
224  Returns:
225    A scalar regularization loss.
226  """
227  losses = get_regularization_losses(scope)
228  if losses:
229    return math_ops.add_n(losses, name=name)
230  else:
231    return constant_op.constant(0.0)
232
233
234@tf_export(v1=["losses.get_total_loss"])
235def get_total_loss(add_regularization_losses=True,
236                   name="total_loss",
237                   scope=None):
238  """Returns a tensor whose value represents the total loss.
239
240  In particular, this adds any losses you have added with `tf.add_loss()` to
241  any regularization losses that have been added by regularization parameters
242  on layers constructors e.g. `tf.layers`. Be very sure to use this if you
243  are constructing a loss_op manually. Otherwise regularization arguments
244  on `tf.layers` methods will not function.
245
246  Args:
247    add_regularization_losses: A boolean indicating whether or not to use the
248      regularization losses in the sum.
249    name: The name of the returned tensor.
250    scope: An optional scope name for filtering the losses to return. Note that
251      this filters the losses added with `tf.add_loss()` as well as the
252      regularization losses to that scope.
253
254  Returns:
255    A `Tensor` whose value represents the total loss.
256
257  Raises:
258    ValueError: if `losses` is not iterable.
259  """
260  losses = get_losses(scope=scope)
261  if add_regularization_losses:
262    losses += get_regularization_losses(scope=scope)
263  return math_ops.add_n(losses, name=name)
264